贝叶斯统计-教学大纲

合集下载

机器学习理论(双语)-教学大纲

机器学习理论(双语)-教学大纲

教学大纲《机器学习理论(双语)》教学大纲课程编号:111103A课程类型:□通识教育必修课□通识教育选修课□专业必修课■专业选修课□学科基础课总学时:48 讲课学时:32 实验(上机)学时:16学分:3适用对象:投资学专业先修课程:金融计算机语言、金融计量学、量化金融学(双语)一、教学目标当代投资学越来越多的采用人工智能技术解决复杂投资决策问题。

人工智能的理论和技术在当代投资中的地位越来越重要,甚至已有取代传统投资决策和方法技术之趋势,因此投资学专业学生需要系统的学习人工智能理论在金融投资中的应用。

人工智能的理论和技术主要来自于机器学习理论。

本课程系统的向学生讲授机器学习理论。

机器学习理论与计算机编程、统计学以及计量经济学有密切的联系,因此学生在学习本课程前需要有足够的背景知识。

本课程将通过介绍机器学习理论,让学生了解如何利用机器学习理论以及人工智能技术进行金融问题研究和进行量化投资决策。

该课程是专业必修课中的一门重要课程,是一门跨学科的复合型课程,因此需要学生对各先修学科有扎实的基础,本课程突出学习前沿人工智能理论知识与应用相结合,重点培养学生综合运用跨学科知识进行量化投资。

学生在学好本课程后,将对其后续课程以及毕业论文设计帮助巨大,也将增强学生在大数据人工智能时代的就业竞争优势。

目标1:掌握主流和前沿的机器学习理论目标2:熟练运用机器学习理论结合投资学知识解决具体问题目标3:融会贯通投资学、统计学、计量经济学、计算机编程以及机器学习理论,提升处理复杂投资决策问题的能力。

目标4:充分了解投资学发展的前沿,了解人工智能与投资学发展逻辑联系。

二、教学内容及其与毕业要求的对应关系(一)教学内容《机器学习理论》涉及三大板块知识。

即基础理论知识介绍、上机实习和综合运用。

在基础知识模块主要介绍和讲授机器学习理论的主要知识框架,包括:监督学习、无监督学习和强化学习,其中监督学习中的若干模型属于精讲内容,无监督学习属于细讲的内容,而强化学习属于粗讲的内容。

《贝叶斯分析》教学大纲

《贝叶斯分析》教学大纲

《贝叶斯分析》课程教学大纲课程代码:090542005课程英文名称:Bias Analysis课程总学时:40 讲课:40 实验:0 上机:0适用专业:应用统计学大纲编写(修订)时间:2017.6一、大纲使用说明(一)课程的地位及教学目标本课程是应用统计学专业的一门专业课,通过本课程的学习,可以使学生掌握贝叶斯统计推断的基本思想与方法;能够利用所学的理论与方法,对常用统计分布进行贝叶斯分析,了解这些方法金融经济、风险管理与决策中的应用;为后续的专业课程的学习打下良好专业基础。

(二)知识、能力及技能方面的基本要求1.基本知识:要求学生掌握贝叶斯统计推断的基本思想与方法。

2.基本能力:培养学生逻辑推理能力和抽象思维能力;根据实际问题,对常用统计分布运用贝叶斯分析思想和方法分析、解决实际问题的能力和创新思维与应用能力。

3.基本技能:使学生获得贝叶斯分析的基本运算技能;运用计算机软件求解基本模型和分析结果的技能。

(三)实施说明1. 本大纲主要依据应用统计学专业2017版教学计划、应用统计学专业建设和特色发展规划和沈阳理工大学编写本科教学大纲的有关规定及全国通用《贝叶斯分析教学大纲》并根据我校实际情况进行编写的;2. 教师在授课过程中可以根据实际情况酌情安排各部分的学时,课时分配表仅供参考;3. 教师在授课过程中对内容不相关的部分可以自行安排讲授顺序;4. 本课程建议采用课堂讲授、讨论、多媒体教学和实际问题的分析解决相结合的多种手段开展教学。

(四)对先修课的要求本课程的教学必须在完成先修课程之后进行。

本课程主要的先修课程有:数学分析、高等代数及概率论与数理统计方面的课程。

(五)对习题课、实验环节的要求习题的选取应体现相应的教学内容的基本概念、基本计算方法及应用,以教材上习题为主。

(六)课程考核方式1.考核方式:考试2.考核目标:在考核学生对课程中各基本模型的基本概念及基本原理的基础上,重点考核学生的分析能力、模型求解能力及方法的运用和分析结果的能力。

贝叶斯统计ppt课件

贝叶斯统计ppt课件

29
二 参数的Bayes点估计
(3)后验中位数估计
若 Me是后验分布h(θ| x )的中位数, 则 Me称为θ的后验中位数估计。即若
u0.5 h( x)d 0.5
则后验分布中位数估计
Me u0.5
30
二 参数的Bayes点估计
以上三种估计统称θ的Bayes估计,记为
或简记B 为 。它们 皆是样本观察值
18
历史迭代图
不收敛 收敛
19
(2)观察自相关性图 (m)
自相关性图用于描述(m)序列在不同迭代
延迟下的相关性,延迟i的自相关性是指相 距i步的两迭代之间的相关性。具有较差的 性质的链随着迭代延迟的增加会表现出较 慢的自相关衰弱。
20
21
22
23
Bayes Bayes统计推断
Bayes统计推断概述 参数的Bayes点估计 Bayes区间估计 Bayes假设检验
选择检验统计量,确定抽样分布,等等。
41
四 Bayes假设检验
Bayes假设检验不同型:
简单假设 简单假设
复杂假设 复杂假设 假单假设 复杂假设
42
四 Bayes假设检验
Bayes因子
设两个假设Θ0,Θ1的先验概率分布为π0与π1,
即:
0 P( 0 ),1 P( 1)
则 0 1 称为先验概率比。
3
(一)预备知识
4
5
(二)基本思想
6
(三)常用MCMC算法 Gibbs抽样(吉布斯采样算法)
7
8
立即更新的Gibbs抽样
每次迭带的时候 的一些元素已经被跟新了,如果在更
新其他的元素时不使用这些更新后的元素会造成一定程度 的浪费。事实上, Gibbs抽样 可通过在每一步都利用近似 得到的其他元素的值来获得更好的效果。这种方法改进了 练的混合,换句话说,链能更加迅速,更加详尽的搜索目 标分布的支撑空间。

教学大纲_贝叶斯统计(双语)

教学大纲_贝叶斯统计(双语)

《贝叶斯统计(双语)》教学大纲课程编号:120872B课程类型:□通识教育必修课□通识教育选修课□专业必修课□√专业选修课□学科基础课总学时:32 讲课学时:32实验(上机)学时:0学分:2适用对象:经济统计学先修课程:微积分、概率论与数理统计学毕业要求:1.应用专业知识,解决数据分析问题2.可以建立统计模型,获得有效结论3.掌握统计软件及常用数据库工具的使用4.关注国际统计应用的新进展5.基于数据结论,提出决策咨询建议6.具有不断学习的意识一、课程的教学目标贝叶斯统计是上世纪50年代后,才迅速发展起来的一门统计理论。

目前,在欧美等西方国家,贝叶斯统计已经成为了与经典统计学派并驾齐驱的当今两大统计学派之一;随着贝叶斯理论和方法的不断发展和完善,以及相应的计算软件的研制,贝叶斯方法在实践中获得了日趋广泛的应用;特别是,贝叶斯决策问题在统计应用中占有越来越重要的地位。

在商业经济预测、政府宏观经济管理、国防工业中对武器装备系统可靠性评估、生物医学研究;知识发现和数据挖掘技术等都获得了广泛应用。

本课程通过贝叶斯统计的教学使学习过传统的数理统计课程的学生了解贝叶斯统计的基本思想和基本观点,了解贝叶斯统计与传统的数理统计在理论和处理方法上的区别,了解贝叶斯统计的最新进展,能够系统的掌握贝叶斯统计的基本理论、基本方法,特别是贝叶斯统计极具特色的一些处理方法,引进一个效用函数(utility function)并选择使期望效用最大的最优决策,这样就把贝叶斯的统计思想扩展到在不确定时的决策问题。

很好的将统计学与最优化的思想方法和技术很好的进行了结合。

贝叶斯统计理论和方法技术的学习,不仅能够提高学生分析和解决实际问题的能力,还能够更进一步提高对经典数理统计的深入理解。

二、教学基本要求根据贝叶斯统计课程的教学内容,本课程将重点介绍贝叶斯统计推断理论,贝叶斯决策理论。

并且注重贝叶斯统计处理方法和基本观点与传统数理统计相应内容对比的讲授方式。

(完整版)贝叶斯统计方法

(完整版)贝叶斯统计方法

贝叶斯方法贝叶斯分类器是一种比较有潜力的数据挖掘工具,它本质上是一种分类手段,但是它的优势不仅仅在于高分类准确率,更重要的是,它会通过训练集学习一个因果关系图(有向无环图)。

如在医学领域,贝叶斯分类器可以辅助医生判断病情,并给出各症状影响关系,这样医生就可以有重点的分析病情给出更全面的诊断。

进一步来说,在面对未知问题的情况下,可以从该因果关系图入手分析,而贝叶斯分类器此时充当的是一种辅助分析问题领域的工具。

如果我们能够提出一种准确率很高的分类模型,那么无论是辅助诊疗还是辅助分析的作用都会非常大甚至起主导作用,可见贝叶斯分类器的研究是非常有意义的。

与五花八门的贝叶斯分类器构造方法相比,其工作原理就相对简单很多。

我们甚至可以把它归结为一个如下所示的公式:选取其中后验概率最大的c,即分类结果,可用如下公式表示贝叶斯统计的应用范围很广,如计算机科学中的“统计模式识别”、勘探专家所采用的概率推理、计量经济中的贝叶斯推断、经济理论中的贝叶斯模型等。

上述公式本质上是由两部分构成的:贝叶斯分类模型和贝叶斯公式。

下面介绍贝叶斯分类器工作流程:1.学习训练集,存储计算条件概率所需的属性组合个数。

2.使用1中存储的数据,计算构造模型所需的互信息和条件互信息。

3.使用2种计算的互信息和条件互信息,按照定义的构造规则,逐步构建出贝叶斯分类模型。

4.传入测试实例5.根据贝叶斯分类模型的结构和贝叶斯公式计算后验概率分布。

6.选取其中后验概率最大的类c,即预测结果。

一、第一部分中给出了7个定义。

定义1 给定事件组,若其中一个事件发生,而其他事件不发生,则称这些事件互不相容。

定义 2 若两个事件不能同时发生,且每次试验必有一个发生,则称这些事件相互对立。

定义 3 若定某事件未发生,而其对立事件发生,则称该事件失败定义4 若某事件发生或失败,则称该事件确定。

定义 5 任何事件的概率等于其发生的期望价值与其发生所得到的价值之比。

定义6 机会与概率是同义词。

贝叶斯统计3.4,3.5教材

贝叶斯统计3.4,3.5教材

27
例3.22
关于成功概率的无信息先验分布至今已有4种 π1(θ)=1 π2(θ)=θ-1(1-θ)-1 π3(θ)=θ-1/2(1-θ)-1/2 ——正常 ——不正常 ——正则化后可成为正常
π4(θ)=θθ(1-θ)(1-θ) ——正则化后可成为正常
注意:1.一般说来,无信息先验不是唯一的.
但它们对贝叶斯统计推断的影响都很小,很少对结 果产生较大的影响
2.任何无信息先验都可以采用。
28
总结
1. 掌握贝叶斯假设
2.掌握位置参数和尺度参数的无信息先验分布
3.会用Fisher信息阵确定无信息先验
29
§3.5 多层先验
一、多层先验 二、多层模型
30
一、多层先验
1.定义
当所给先验分布中超参数难于确定时,可以对超参数 再给出一个先验,第二个先验称为超先验。由先验和 超先验决定的一个新先验称为多层先验。
试求分布参数 与的无信息先验.
取为位置参数, 为尺度参数, 令 1, ln( ), w ln( x), 则有
p( w; , )
1
w
d * 由随机变量函数知, ( ) ( ) 1 , 2 ( ) 1 , d
浙江财经学院本科教学课程经济数学三概率统计精品文档贝叶斯统计34352第三章先验分布的确定31主观概率32利用先验信息确定先验分布33利用边缘分布mx确定先验密度34无信息先验分布35多层先验334无信息先验分布一贝叶斯假设二位置尺度参数族的无信息先验三用fisher信息阵确定无信息先验4所谓参数??的无信息先验分布是指除参数??的取值范围和??在总体分布中的地位之外再也不包含??的任何信息的先验分布
例3.23 设对某产品的不合格品率了解甚少,只知道 它比较小。现需要确定θ的先验分布。决策人经过 反复思考,最后把他引导到多层先验上去,他的思 路是这样的: (1)开始他用(0,1)上的均匀分布U(0,1)作为θ的先 验分布。

新编概率论与数理统计教学大纲

新编概率论与数理统计教学大纲

新编概率论与数理统计教学大纲一、课程简介本课程是基于概率论和数理统计的理论基础,着重介绍各种概率分布、假设检验、置信区间、回归分析等常用方法。

通过本课程的学习,学生将能够掌握基本的概率与统计理论,以及应用它们解决实际问题的方法。

二、教学目标1.理解基本概率与统计理论,掌握基本概率、随机变量、概率分布等概念,熟悉重要的分布、参数估计方法和检验理论;2.学习利用统计方法分析数据,熟悉掌握描述性统计,推断统计以及回归分析;3.培养学生独立思考与创新能力,使学生能够自主地应用概率与统计方法解决实际问题。

三、教学内容与安排第一部分:概率与分布1. 概率基础(2学时)•概率与事件;•古典概型;•条件概率与独立性。

2. 随机变量及概率分布(6学时)•随机变量的概念;•离散型随机变量与连续型随机变量;•常见的分布(即均匀分布,二项分布,泊松分布,正态分布等);•两个重要分布:t分布和F分布。

第二部分:推断统计与假设检验3. 统计推断基础(2学时)•抽样基础;•总体参数的估计;•置信区间。

4. 统计推断进阶(4学时)•单总体假设检验;•双总体假设检验;•方差分析。

第三部分:回归分析与贝叶斯统计5. 回归分析(6学时)•简单线性回归;•多元线性回归;•拟合优度检验;•变量选择原则。

6. 贝叶斯统计(2学时)•基本术语;•贝叶斯公式;•先验分布和后验分布。

第四部分:实践案例7. 实践案例分析(8学时)•实际案例分析;•利用概率与统计方法解决实际问题。

四、教学方法本课程采用讲授与实践相结合的方式,重点教师讲解与学生实践相结合的教学方法。

•讲授方法:通过讲授概率与统计理论,帮助学生掌握理论基础。

•实验方法:结合实际案例,引导学生利用概率与统计方法解决实际问题,帮助学生培养自主学习、独立思考的能力。

•讨论与研究方法:采用小组讨论和案例分析的方式,促进学生之间的交流与互动,培养学生的创新思维和问题解决能力。

五、教材与参考书目主要教材:•《概率论与数理统计》(第三版),吴连生、任红伟合著,高等教育出版社。

贝叶斯统计教学大纲.doc

贝叶斯统计教学大纲.doc

《贝叶斯统计》课程教学大纲课程编号:0712020219课程基本情况:1.课程名称:贝叶斯统计2.英文名称:Bayesian Statistics3.课程属性:专业选修课4.学分:3 总学时:515.适用专业:应用统计学6.先修课程:数学分析、高等代数、概率论与数理统计7.考核形式:考查一、本课程的性质、地位和意义《贝叶斯统计》是应用统计分析的一门专业选修课。

贝叶斯统计是当今统计学的两大学派之一, 主要研究参数随机化情况下,统计分布参数的估计、检验,以及线性模型参数的统计推断,课程教学主要内容是贝叶斯统计推断的主要思想,重点是对概念、基本定理和方法的直观理解和数学模型的建立。

二、教学目的与要求通过对贝叶斯统计的学习,使学生常握贝叶斯统计•推断的基本思想与方法,能够利用所学的理论与方法,对常用统计分布进行贝叶斯分析,了解这些方法在金融经济、风险管理与决策中的应用,为后续专业课程的学习打下良好的专业基础。

三、课程教学内容及学时安排按照教学方案安排,本课程安排在第5学期讲授,其中课内讲授38学时,习题课13学时,具体讲授内容及学时安排见下表:《贝叶斯统计》教学内容及学时分配表四、参考教材与书目1.参考教材前诗松,汤银才,贝叶斯统计,第二版,中国统计出版社,20122.参考书目[1]张尧庭、陈汉峰,贝叶斯统计推断,科学出版社,1991[2]KotzS、吴喜之,现代贝叶斯统计,中国统计出版社,2000[3]言茂松,贝叶斯风险与决策工程,清华大学出版社,1988[4]Berger JO.,贝叶斯统计与决策,第二版,中国统计出版社,1998第1章先验分布与后验分布(8学时)【教学目的与要求】1.了解贝叶斯统计思想的历史背景、基本观点及其基本学术思想内涵;2.掌握先验分布和后验分布的概念;3.掌握计算后验分布的技巧;4.掌握贝叶斯公式的密度函数形式、共轨先验分布的计算及其优缺点、超参数的确定方法;5.了解多参数模型和充分统计量.【教学重点】1.贝叶斯统计的三种信息;2.先验分布的确定、后验分布的计算;3.贝叶斯公式的密度函数形式,共轨先验分布的计算;4.超参数的确定方法.【教学难点】多参数模型和充分统计量.【教学方法】讲授法、研讨性教学【教学内容】1.三种信息;2.贝叶斯公式;3.共辘先验分布;4.超参数的确定;5.多参数模型;6.充分统计量.通过本章内容的学习,引导学生熟练掌握先验分布和后验分布的概念,深刻理解贝叶斯公式的三种基本形式、分布密度的核、充分统计量、共辘分布等基本概念,理解贝叶斯假设的基本内容,熟练常握计算后验分布的技巧,掌握确定超参数的基本方法,了解多参数模型,能用这些基木的方法解决一些简单的实际问题。

贝叶斯统计教学设计

贝叶斯统计教学设计

贝叶斯统计教学设计贝叶斯统计是一种基于概率理论的统计推断方法,其核心思想是将先验知识与观测数据相结合,通过贝叶斯公式进行后验概率的计算和推断。

在教学设计中,可以采用以下步骤进行:1.引入贝叶斯统计的背景和意义首先,可以通过举例引入贝叶斯统计的背景和应用领域,如医学诊断、信息推荐等。

介绍贝叶斯统计的优点,即能够结合领域知识进行推断,并且能够根据新的观测数据不断更新推断结果。

2.介绍贝叶斯公式和基本概念接下来,可以详细介绍贝叶斯公式和基本概念。

贝叶斯公式表达了先验概率、似然函数和边缘概率之间的关系。

在介绍贝叶斯公式的同时,也要解释概率的含义和基本性质,如条件概率、独立性等。

此外,还要介绍先验概率和后验概率的概念,以及它们在贝叶斯推断中的作用。

3.讲解先验知识的获取和建模在进行贝叶斯推断之前,需要获取或建模先验知识。

教学设计可以包括例如如何根据领域知识、历史数据等获取或建模先验概率的方法。

可以通过案例分析的方式,让学生了解如何建立合理的先验知识,并且讨论先验知识的来源和不确定性。

4.介绍贝叶斯推断的步骤在学生掌握了贝叶斯公式和先验概率的基础上,可以引入贝叶斯推断的步骤。

首先,需要根据观测数据计算似然函数;然后,利用贝叶斯公式计算后验概率;最后,根据后验概率进行推断和决策。

5.应用案例分析为了帮助学生更好地理解和应用贝叶斯统计,可以引入一些应用案例进行分析。

例如,可以使用医学诊断的例子,让学生根据先验概率和似然函数来推断疾病的发生概率或者判断一种治疗方法的有效性。

6.实际计算练习在教学设计中,还可以设计实际的计算练习。

通过使用电子表格软件或统计软件,让学生通过计算和模拟实践贝叶斯统计的步骤。

例如,可以设计一个关于产品质量检验的实验,让学生根据观测数据计算产品的质量概率,并进行推断和决策。

7.总结和讨论最后,进行一次总结和讨论。

对贝叶斯统计的核心概念、公式和步骤进行回顾,并鼓励学生对贝叶斯统计的应用进行进一步思考和讨论。

贝叶斯统计的教学研究

贝叶斯统计的教学研究

贝叶斯统计的教学研究
贝叶斯统计是一种基于贝叶斯定理的统计推断方法,其在教学研究中得到广泛的应用。

贝叶斯统计的教学研究主要包括课程设置、教学方法和评估等方面。

贝叶斯统计的课程设置是教学研究的重要内容之一。

在高校统计学专业的课程设置中,通常会安排贝叶斯统计的相关内容。

课程设置中应包括贝叶斯定理的基本原理、贝叶斯推
断的基本思想和方法,以及贝叶斯模型的建立和参数估计等内容。

还可以结合实例和案例
进行教学,增加学生的实践操作和实际应用能力。

贝叶斯统计的教学方法也是研究的重要方面。

传统的统计学教学注重理论推导和公式
应用,而贝叶斯统计的教学方法应更注重思维方式和思维习惯的培养。

可以通过讲解具体
的案例,引导学生理解贝叶斯统计的思维方式和推断过程。

教师可以通过演示和讨论问题
的方法,激发学生的兴趣和思考能力,提高学生的学习效果和贝叶斯统计的应用能力。

贝叶斯统计的评估方法也是教学研究的重要内容之一。

评估方法包括知识掌握和技能
应用的考核,以及学习效果和教学质量的评估。

学生可以通过课堂作业、小组讨论和期末
考试等方式进行知识的掌握和技能的应用考核。

而学习效果和教学质量可以通过学生的学
习反馈和评价、课程改进和教学建议等进行评估。

通过评估结果的分析和总结,可以进一
步改进和完善贝叶斯统计的教学方法和内容,提高教学质量和教学效果。

贝叶斯统计教案

贝叶斯统计教案

贝叶斯统计教案第一节:导言贝叶斯统计是一种基于概率理论的统计推断方法,它在各个领域中都有广泛的应用。

本教案旨在介绍贝叶斯统计的基本概念、原理和应用,并提供相关案例和练习,帮助学生深入理解和掌握贝叶斯统计的方法和技巧。

第二节:贝叶斯理论基础在深入学习贝叶斯统计之前,我们先来了解一下贝叶斯理论的基础概念。

贝叶斯统计的核心是贝叶斯公式,它描述了在已知一些先验信息的情况下,如何根据新的观测数据来更新我们对事物的信念。

第三节:贝叶斯公式贝叶斯公式是贝叶斯统计的基本工具。

它由条件概率公式推导而来,用于计算在给定某个条件下,事件发生的概率。

贝叶斯公式的数学表达式如下:P(A|B) = P(B|A) * P(A) / P(B)其中,P(A|B)表示在已知事件B发生的条件下,事件A发生的概率;P(B|A)表示在已知事件A发生的条件下,事件B发生的概率;P(A)和P(B)分别表示事件A和事件B的概率。

第四节:先验分布和后验分布贝叶斯统计中的先验分布和后验分布是贝叶斯推断的关键概念。

先验分布是对未观测数据的先期估计,它基于已有的知识或假设。

后验分布是在考虑观测数据后,更新了先验分布的估计结果。

第五节:贝叶斯估计贝叶斯估计是贝叶斯统计的核心方法之一。

它通过将先验与观测数据相结合,得到参数的后验分布,并利用后验分布对参数进行估计。

贝叶斯估计克服了传统频率统计的一些缺点,如样本量过小时的不准确性和过拟合问题。

第六节:贝叶斯网络贝叶斯网络是贝叶斯统计中的重要工具之一。

它用图形模型表示变量之间的依赖关系,并利用贝叶斯定理进行推断。

贝叶斯网络在机器学习、数据挖掘等领域中被广泛应用,可用于描述复杂系统的概率模型。

第七节:贝叶斯分类贝叶斯分类是贝叶斯统计的一项重要应用。

它基于贝叶斯定理和条件概率,将待分类对象分到最可能的类别中。

贝叶斯分类在模式识别、文本分类、垃圾邮件过滤等领域中具有广泛应用。

第八节:案例分析本节将通过一些典型案例,展示贝叶斯统计在实际问题中的应用。

《贝叶斯统计》课程教学大纲

《贝叶斯统计》课程教学大纲

《贝叶斯统计》课程教学大纲(2004年制定,2006年修订)课程编号:060046英文名:Bayesian Statistics课程类别:统计学专业选修课前置课:微积分、概率论与数理统计后置课:学分:3学分课时:54课时主讲教师:陈耀辉等选定教材:茆诗松,贝叶斯统计,北京:中国统计出版社,1999课程概述:贝叶斯学派是数理统计中一个重要的学派,它有鲜明的特点和独到的处理方法,在国际上贝叶斯学派与非贝叶斯学派的争论是很多的。

本课程重点介绍贝叶斯统计推断的理论、方法及其基本观点,同时对贝叶斯方法和经典方法在历史上的重大分歧也适当地予以介绍。

通过本课程的学习能系统地掌握贝叶斯统计的基本理论、方法和应用,特别是贝叶斯统计中所具特色的一些处理方法及相应的理论。

主要内容有:先验分布与后验分布的基本概念、后验分布的计算方法、估计及假设检验、贝叶斯统计决策方法等。

教学目的:通过该门课程的学习,使学生能了解贝叶斯学派的基本观点和基本思想,了解贝叶斯学派和频率学派联系和区别,了解贝叶斯统计的最新研究进展,能够系统地掌握贝叶斯统计的基本理论、基本方法,更重要的是掌握贝叶斯统计具有特色的一些处理方法以及相应的理论,用以分析问题、解决问题。

教学方法:根据该门课程的特点,在利用传统的教学方法讲授理论的同时,注重案例教学,特别是要适当地运用研讨性教学方法,而且要适时运用创新教学方法,即教师应依据教材对教学内容作合理的安排,讲透重点难点,注意本学科研究的最新成果和前沿知识,既要教学生学习知识,又要培养学生的能力,特别是要培养学生的创新意识和创新能力,争取开展一些第二课堂活动。

各章教学要求及教学要点第一章引论课时分配:2课时教学要求:通过本章的学习,要求学生掌握贝叶斯统计理论的基本观点,了解贝叶斯统计学派和经典统计学派之间的重大分歧,了解现代贝叶斯统计理论的研究现状及贝叶斯统计理论的应用,重点掌握贝叶斯统计的基本思想,深刻理解“概率”、“统计”的不同的哲学解释,学习他们各自的优点来分析问题、解决问题。

贝叶斯统计第一章

贝叶斯统计第一章

例1.2 “免检产品”是怎样决定的?某厂的产品每天都 有抽验几件,获得不合格品率θ的估计。在经过一段时 间后就积累大量的资料,根据这些历史资料(先验信息 的一种)对过去产品的不合格品率可构造一个分布: i P ( ) i , i 0,1,...,n n
这个对先验信息进行加工获得的分布今后称为先验分布。
贝叶斯统计
Bayesian Statistics
统计与数学学院
王春伟
贝叶斯统计
茆诗松编,贝叶斯统计, 中国统计出版社,2005年.
[1] 贝叶斯统计与决策.Berger J O.中国统计出版 社.1998 [2] 现代贝叶斯统计.Kotz S,吴喜之.中国统计出版 社.1999 [3] 贝叶斯统计推断.张尧庭、陈汉峰.科学出版 社.1991
贝叶斯方法(Bayesian approach )
• 贝叶斯方法是基于贝叶斯定理而发展起来用于系 统地阐述和解决统计问题的方法(Samuel Kotz和 吴喜之,2000)。
• 贝叶斯推断的基本方法是将关于未知参数的先 验信息与样本信息综合,再根据贝叶斯定理,得 出后验信息,然后根据后验信息去推断未知参数 (茆诗松和王静龙等,1998年)。 “贝叶斯提出了一种归纳推理的理论(贝叶斯定 理),以后被一些统计学者发展为一种系统的统计 推断方法,称为贝叶斯方法.”──摘自《中国大百 科全书》(数学卷)
贝叶斯学派的观点:除了上述两种信息以外,统 计推断还应该使用第三种信息:先验信息。 人们在试验之前对要做的问题在经 验上和资料上 总是有所了解的,这些信息对 统计推断是有益的。
三、先验信息,即是抽样(试验)之前有关统计 问题的一些信息。 一般说来,先验信息来源于经验和历史资料。先 验 信息在日常生活和工作中是很重要的。

贝叶斯统计学1

贝叶斯统计学1

例1.2 “免检产品”是怎样决定的?某厂的产品每天都要抽检几件, 获得不合格品率θ 的估计。经过一段时间后就积累大量的资料,根 据这些历史资料(先验信息的一种)对过去产品的不合格率可构造一 个分布:
P(θ =i/n)=π i i=0,1,2….n
这个对先验信息进行加工获得的分布今后称为先验分布。这个先验 分布是综合了该厂过去产品的质量情况。如果这个分布的概率绝大 部分集中在θ =0附近,那该产品可认为是“信得过产品”。假如 以后的多次抽检结果与历史资料提供的先验分布是一致的。使用单 位就可以对它作出“免检产品”的决定,或者每月抽检一、二次就 足够了,这就省去了大量的人力与物力。可见历史资料在统计推断
称此为贝叶斯公式的密度函数形式。


x)

h(x,θ ) m(x)


p(x /θ )π p(x /θ )π dθ
θ
3.贝叶斯学给定时,某值x
的条件分布。
(2)根据参数的先验信息确定的分布就是先
验分布
(3)从贝叶斯观点来看,样本一般分两步进
1
0.5

0
x
1

n
x
d
P(θ<0.5/x)=1.15×10-42
在样本出现以前,θ在0~1之间处处等可 能取值。
在样本出现以后,θ按分布θ/x~ Be(x+1,n-x+1)在0~1之间取值。
这是调整以后的结果。 由于从调整以后结果来看,θ小于0.5的
概率非常小,所以认为θ应该大于0.5。
章。
第一章 先验分布与后验分布
1.1 三种信息(总体信息、样本信息和先验信息) 1.2 贝叶斯公式(事件形式和密度函数形式) 1.3 共轭先验分布 1.4 超参数及其确定 1.5 多参数模型 1.6 充分统计量

教学大纲_贝叶斯统计

教学大纲_贝叶斯统计

《贝叶斯统计》教学大纲课程编号:120493A课程类型:□通识教育必修课□通识教育选修课□√专业必修课□专业选修课□学科基础课总学时:48 讲课学时:32实验(上机)学时:16学分:3适用对象:统计学专业先修课程:高等数学、概率论与数理统计学毕业要求:1.扎实的数学基础和完整的统计知识体系2.计算机编程技能与经济学基本常识3.解决实际问题的能力4.统计学和大数据专业知识一、教学目标贝叶斯统计是上世纪50年代后,才迅速发展起来的一门统计理论。

目前,在欧美等西方国家,贝叶斯统计已经成为了与经典统计学派并驾齐驱的当今两大统计学派之一;随着贝叶斯理论和方法的不断发展和完善,以及相应的计算软件的研制,贝叶斯方法在实践中获得了日趋广泛的应用;特别是,贝叶斯决策问题在统计应用中占有越来越重要的地位。

在商业经济预测、政府宏观经济管理、国防工业中对武器装备系统可靠性评估、生物医学研究;知识发现和数据挖掘技术等都获得了广泛应用。

本课程通过贝叶斯统计的教学使学习过传统的数理统计课程的学生了解贝叶斯统计的基本思想和基本观点,了解贝叶斯统计与传统的数理统计在理论和处理方法上的区别,了解贝叶斯统计的最新进展,能够系统的掌握贝叶斯统计的基本理论、基本方法,特别是贝叶斯统计极具特色的一些处理方法,引进一个效用函数(utility function)并选择使期望效用最大的最优决策,这样就把贝叶斯的统计思想扩展到在不确定时的决策问题。

很好的将统计学与最优化的思想方法和技术很好的进行了结合。

贝叶斯统计理论和方法技术的学习,不仅能够提高学生分析和解决实际问题的能力,还能够更进一步提高对经典数理统计的深入理解。

二、教学内容及其与毕业要求的对应关系根据贝叶斯统计课程的教学内容,本课程将重点介绍贝叶斯统计推断理论,贝叶斯决策理论。

并且注重贝叶斯统计处理方法和基本观点与传统数理统计相应内容对比的讲授方式。

注重案例教学,安排学生课后查阅文献资料,以及课堂研讨等方式,了解贝叶斯统计理论和应用最新成果及前沿研究进展。

贝叶斯统计 教学大纲

贝叶斯统计   教学大纲

贝叶斯统计一、课程说明课程编号:130333Z10课程名称:贝叶斯统计/Bayes statistics课程类别:专业教育课程学时/学分:32/2先修课程:高等数学,线性代数,概率论与数理统计适用专业:统计学教材、教学参考书:1.茆诗松,汤银才.贝叶斯统计[M],第2版.北京:中国统计出版社,2012.2.张尧庭,陈汉峰.贝叶斯统计推断[M],第1版.北京:科学出版社,19913.吴喜之.现代贝叶斯统计学[M],第1版.北京:中国统计出版社,20004.贾乃光.贝叶斯统计学[M],第1版.北京:中国林业出版社,1995二、课程设置的目的意义贝叶斯统计是当今统计学的两大统计学派之一,它主要研究参数随机化情况下统计分布参数的估计、检验,以及线性模型参数的统计推断。

课程教学主要是培养学生的贝叶斯统计推断的基本思想,重点放在对概念、基本定理和方法的直观理解和数学模型的表示。

通过教学达到如下三个目标:(1)掌握贝叶斯统计推断的基本思想与方法;(2)能够利用所学的理论与方法对常用统计分布进行贝叶斯分析,了解这些方法金融经济、风险管理与决策中的应用;(3)为后续的专业课程的学习打下良好专业基础。

三、课程的基本要求知识:掌握贝叶斯统计推断的基本思想与方法;能力:能够利用所学的理论与方法,对常用统计分布进行贝叶斯分析,了解这些方法在金融经济、风险管理与决策中的应用,为后续的专业课程的学习打下良好专业基础。

素质:通过从主观、客观两方面分析实际问题-估计分布参数-统计推断,培养学生进行贝叶斯统计推断的基本思想;建立起解决实际问题的新的思维模式,提升有效解决金融、风险管理、提供决策等经济问题的基本素质。

四、教学内容、重点难点及教学设计注:实践包括实验、上机等五、实践教学内容和基本要求没有实践教学课时,但要求学生能利用一种以上的计算机语言(如:matlab,Winbug)编写贝叶斯统计中的各种方法,对已编有的算法程序能够基本掌握运用。

贝叶斯统计知识整理

贝叶斯统计知识整理

只能据先验分布对 作出推断。在有样本观察值 x=( x1 ,…, xn )之后,我们依据 h(x, ) 对 作出推断。为此我们需把 h(x, ) 作如下分解:
h(x, ) ( x)m(x)
其中 m(x)是 x 的边缘密度函数。
m(x) h(x, )d p(x ) ( )
它与 无关,或者说,m(x)中不含 的任何信息。因此能用来对 作出推断
中有关 的一切信息,而又是排除一切与 无关的信息之后所得到的的结果。
(三)贝叶斯公式的离散形式
是离散随机变量时,先验分布可用先验分布列 (i ) ,i=1,2,…,表示。这
时后验分布也是离散形式。
( i | x )
p ( x | i ) ( i ) ,i 1,2, p ( x | j ) ( j )
( ) 0
( )
Var ( X ) 2
4.伽马分布的特性
(1)当α=1,伽玛分布就是指数分布 (2)当α=1/2 1/ 2 时,伽马分布称为自由度为 n 的卡方分布。 (二)贝塔分布
1.贝塔函数
B(a,b) 1 xa1(1 x)b1dx 0
称为贝塔函数,其中参数 a>0,b>0 贝塔函数的性质 2.
2.二项分布中的成功概率 的共轭先验分布是贝塔分布。 设总体 X ~ b(n, ) ,其密度函数中与 有关的部分为 x (1 )nx 。又设 的 先验分布为贝塔分布 Be( , ) ,其核为 1(1 ) 1 ,其中 , 已知,从而可 写出 的后验分布

立即可以看出,这是贝塔分布
的核,故此后验密度为
(1)B(a,b) B(b, a) (2)B(a,b) (a)(b) (a b)
3.贝塔分布
若随机变量 X 具有概率密度函数:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《贝叶斯统计》教学大纲“Bayesian Statistics” Course Outline课程编号:152053A课程类型:专业选修课总学时:48 讲课学时:48实验(上机)学时:0学分:3适用对象:金融学(金融经济)先修课程:数学分析、概率论与数理统计、计量经济学Course Code:152053ACourse Type:Discipline ElectiveTotal Hours:48 Lecture:48Experiment(Computer):0Credit:3Applicable Major:Finance(Finance and Economics Experiment Class)Prerequisite:Mathematical Analysis, Probability Theory and Statistics, Econometrics一、课程的教学目标本课程旨在向学生介绍贝叶斯统计理论、贝叶斯统计方法及其在实证研究中的应用。

贝叶斯统计理论与传统统计理论遵循着不同的基本假设,为我们处理数据信息提供新的角度和解读思路,并在处理某些复杂模型上(如,估计动态随机一般均衡模型、带时变参数的状态空间模型等)相比传统方法具有相对优势。

本课程要求学生在选课前具备基本的微积分、概率统计以及计量经济学知识。

以此为起点,我们将主要就贝叶斯统计理论知识、统计模型的应用以及基于计算机编程的实证能力三方面对学生进行训练。

经过对本课程的学习,学生应了解贝叶斯框架的基本思想,掌握基本的贝叶斯理论方法及其主要应用,并掌握实证研究中常用的贝叶斯数值抽样方法以及相关的计算机编程技能。

特别地,学生应能明确了解贝叶斯统计方法与传统统计方法在思想和应用上的区别以及各自的优缺点,以便能在实际应用中合理选择统计分析工具。

This course introduces the basic concepts of Bayesian statistics and the use of Bayesian econometric methods in empirical study. Bayesian statistics has different fundamental assumptions from the classical (frequentist) framework, providing us with an alternative way in analyzing and interpreting data information. Bayesian methods also have relative advantages, and thus are widely used, in dealing with certain complicated models (for example, the estimation of Dynamic Stochastic General Equilibrium model, state space models with time-varying parameters, etc.).Students should have had basic trainings on calculus, probability theory and statistics, and preferably econometrics prior to this course. The major trainings offered in this course focus on Bayesian theories, Bayesian statistical models with applications and computational skills required for empirical analysis. After the course, students should develop their understanding on the philosophy of Bayesian framework, understand basic Bayesian theories, Bayesian estimation methods and their applications, and master the computer skills for the practical use of Bayesian methods. Specifically, students should understand the differences between the Bayesian viewpoint and the classical frequentist perspective in order to be able to choose appropriate analyzing tools in empirical use.二、教学基本要求贝叶斯统计学和计量方法在近年得到越来越广泛的关注和应用,主要得益于计算机技术的发展使得贝叶斯数值抽样方法在实际应用中得以实现。

因此,除了对贝叶斯相关理论的讲授,计算机数值方法的介绍与相关实践也是同等重要的。

统计理论的部分,本课程主要涵盖贝叶斯定理以及贝叶斯方法的基本数据分析框架,以及运用贝叶斯方法进行回归模型的估计、预测和模型比较的基本方法。

数值方法部分,主要介绍Markov Chain Monte Carlo后验分布抽样方法(Gibbs抽样法和Methopolis-Hastings抽样法),以及边缘似然函数和贝叶斯因子的估计方法等。

这两部分的内容应紧密结合并辅以实例分析,以课堂讲授结合计算机演示的方式进行教学。

另外,贝叶斯方法与传统统计方法的对比也应贯穿课程各章节,以帮助学生了解两种方法的优缺点及适用范围,为实际应用提供指导。

对应课堂内容,课后作业也应强调理论和实践的结合,编程练习应占重要比例。

教师应提供必要的编程软件使用指导,并指导学生根据提供的范例练习运用贝叶斯方法进行数据分析。

课程考核方式及其权重如下:Thanks to the development of computer technology, Bayesian statistics and econometrics has become more popular as Bayesian computational methods have become practical. Computational methods are as important as theories to Bayesian statistics, so as to this course.In the theoretical statistics part, this course involve lectures on Bayes Theorem, the general Bayesian analysis framework, and the general approaches to estimate models, develop predictions and compare models in the Bayesian way. In terms of computational methods, we will mainly introduce the MCMC posterior sampling (the Gibbs Sampling and the Metropolis-Hasting Algorithm), and the approximation technique for marginal likelihood and the Bayes factor. The two parts should introduced along with each other. Empirical and computer illustrations are also necessary for students to understand the approach. Last but not the least, instructor should have the Bayesian framework compared with the Classicalfrequentistframework in all aspects when appropriate in order to illustrate the advantages/disadvantages of the two frameworks, providing students with empirical instructions.Homework assignments should be composed of derivations and computer exercises. Proper software instructions and examples should be provided to facilitate students’ practice on Bayesian analysis techniques.三、各教学环节学时分配四、教学内容第一章课程简介及贝叶斯定理第一节课程简介第二节贝叶斯定理1.贝叶斯定理2.贝叶斯定理的简单应用教学重点、难点:贝叶斯定理的涵义并通过实例阐释。

课程考核要求:掌握贝叶斯定理的涵义,并能运用定理对对简单的事件作出推论。

Chapter 1 Course Overview and Bayes TheoremSection 1 Course OverviewSection 2 Bayes Theorem1.Bayes Theorem2.Simple Applications of Bayes TheoremKey and Difficult Points: the key idea of Bayes Theorem presented with examples.Evaluation Requirements: master the key idea of Bayes Theorem, and make inferences with the theorem in simple scenarios.第二章贝叶斯统计理论初步第一节贝叶斯统计理论的基本要素1.先验分布与后验分布2.贝叶斯定理的应用3.贝叶斯统计与传统统计方法的系统性差别第二节点估计和置信区间1.点估计2.最高后验密度区间第三节贝叶斯决策理论第四节模型比较1.边际似然函数2.预测密度函数教学重点、难点:贝叶斯统计各要素的相互关联,与传统统计方法的根本区别。

相关文档
最新文档