磁场计算题

合集下载

磁场习题解答

磁场习题解答

第 12 页
2. 带电刚性细杆AB,电荷线密度为λ,绕垂直于直线的轴O
以角速度ω匀速转动(O点在细杆AB延长线上),求:
(1) O点的磁感应强度 Bo ; (2) 若a>>b,求 Bo 。
解 细杆带电并作圆周运动,杆上电荷就形
成圆电流: dI dq dr T 2
dB 0dI
2r

nB
第2页
2. 边长l为的正方形线圈,分别用图示两种的方式通以电流I (其中ab、cd与正方形共面),在这两种情况下,线圈在其中
产生的磁感应强度大小分别为C[ ]

B1

0 I 4 l
cos1 cos2 4 2
20 I l
2
B2 0
a
l
Ib
I
× B1
2
1
l
×B2 I
i q 2 Ra Ra T 2

R

a
根据载流长直螺线管内部的磁场公式B=0nI,公式中的nI为单
位长度内的电流。(因为n的意义是单位长度上的匝数,I是每 一匝上的电流)
因此有: nI=i/a=R
B 0nI 0R
第 15 页
1. 已知均匀磁场,其磁感应强度 B 2.0wb / m2, 方向沿x轴方向,如图所示,试求: (1) 通过图中abOc面的磁通量; (2) 通过图中bedO面的磁通量; (3) 通过图中acde面的磁通量。
[A]

FAB FAC // FBC //
向着长直导线平移

A
F I1 AB I2
C
B
第5页
5. 有一无限长通有电流、宽度为a、厚度不计的扁平铜片,电 流I在铜片上均匀分布,在铜片外与铜片共面、离铜片右边缘

高中物理 磁场计算专题(附答案详解)

高中物理  磁场计算专题(附答案详解)

专题:磁场计算题(附答案详解)1、如图所示,从离子源产生的甲、乙两种离子,由静止经加速电压U加速后在纸面内水平向右运动,自M点垂直于磁场边界射入匀强磁场,磁场方向垂直于纸面向里,磁场左边界竖直.已知甲种离子射入磁场的速度大小为v1,并在磁场边界的N点射出;乙种离子在MN的中点射出;MN长为l.不计重力影响和离子间的相互作用.求:(1)磁场的磁感应强度大小;(2)甲、乙两种离子的比荷之比.2、如图所示,在y>0的区域存在方向沿y轴负方向的匀强电场,场强大小为E;在y<0的区域存在方向垂直于xOy平面向外的匀强磁场.一个氕核11H和一个氘21H先后从y轴上y=h点以相同的动能射出,速度方向沿x轴正方向.已知11H进入磁场时,速度方向与x轴正方向的夹角为60°,并从坐标原点O处第一次射出磁场.11H的质量为m,电荷量为q.不计重力.求:(1)11H第一次进入磁场的位置到原点O的距离;(2)磁场的磁感应强大小;(3)21H第一次离开磁场的位置到原点O的距离.3、一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy平面内的截面如图所示:中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xOy平面;磁场的上、下两侧为电场区域,宽度均为l′,电场强度的大小均为E,方向均沿x轴正方向;M、N为条状区域边界上的两点,它们的连线与y轴平行.一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N点沿y轴正方向射出.不计重力.(1)定性画出该粒子在电磁场中运动的轨迹;(2)求该粒子从M点入射时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为π6,求该粒子的比荷及其从M点运动到N点的时间.4、如图所示,竖直放置的平行金属板板间电压为U,质量为m、电荷量为+q的带电粒子在靠近左板的P点,由静止开始经电场加速,从小孔Q射出,从a点进入磁场区域,abde是边长为2L的正方形区域,ab边与竖直方向夹角为45°,cf与ab平行且将正方形区域等分成两部分,abcf中有方向垂直纸面向外的匀强磁场B1,defc中有方向垂直纸面向里的匀强磁场B2,粒子进入磁场B1后又从cf 上的M点垂直cf射入磁场B2中(图中M点未画出),不计粒子重力,求:(1)粒子从小孔Q射出时的速度;(2)磁感应强度B1的大小;(3)磁感应强度B2的取值在什么范围内,粒子能从边界cd间射出.5、如图所示,在真空中xOy平面的第一象限内,分布有沿x轴负方向的匀强电场,场强E=4×104 N/C,第二、三象限内分布有垂直于纸面向里且磁感应强度为B2的匀强磁场,第四象限内分布有垂直纸面向里且磁感应强度为B1=0.2 T的匀强磁场.在x轴上有一个垂直于y轴的平板OM,平板上开有一个小孔P,在y轴负方向上距O点为 3 cm的粒子源S可以向第四象限平面内各个方向发射α粒子,且OS>OP.设发射的α粒子速度大小v均为2×105 m/s,除了垂直于x轴通过P点的α粒子可以进入电场,其余打到平板上的α粒子均被吸收.已知α粒子的比荷为qm=5×107 C/kg,重力不计,试问:(1)P点距O点的距离;(2)α粒子经过P点第一次进入电场,运动后到达y轴的位置与O点的距离;(3)要使离开电场的α粒子能回到粒子源S处,磁感应强度B2应为多大?6、如图25所示,在xOy平面的0≤x≤23a范围内有沿y轴正方向的匀强电场,在x>23a范围内某矩形区域内有一个垂直于xOy平面向里的匀强磁场,磁感应强度大小为B.一质量为m、电荷量为+q的粒子从坐标原点O以速度v0沿x轴正方向射入电场,从M点离开电场,M点坐标为(23a,a).再经时间t=3mqB进入匀强磁场,又从M点正上方的N点沿x轴负方向再次进入匀强电场.不计粒子重力,已知sin 15°=6-24,cos 15°=6+24.求:(1)匀强电场的电场强度;(2)N点的纵坐标;(3)矩形匀强磁场的最小面积.7、如图甲所示,竖直挡板MN左侧空间有方向竖直向上的匀强电场和垂直纸面的匀强磁场,电场和磁场的范围足够大,电场强度E=40 N/C,磁感应强度B随时间t变化的关系图象如图乙所示,选定磁场垂直于纸面向里为正方向.t=0时刻,一质量m=8×10-4 kg、电荷量q=+2×10-4 C的微粒在O点具有竖直向下的速度v=0.12 m/s,O′是挡板MN上一点,直线OO′与挡板MN垂直,g取10m/s2.求:(1)微粒再次经过直线OO′时与O点的距离;(2)微粒在运动过程中离开直线OO′的最大高度.(3)水平移动挡板,使微粒能垂直射到挡板上,挡板与O点间的距离应满足的条件.8、如图所示,在竖直平面内,水平x轴的上方和下方分别存在方向垂直纸面向外和方向垂直纸面向里的匀强磁场,其中x轴上方的匀强磁场磁感应强度大小为B1,并且在第一象限和第二象限有方向相反、强弱相同的平行于x轴的匀强电场,电场强度大小为E1,已知一质量为m的带电小球从y轴上的A(0,L)位置斜向下与y轴负半轴成60°角射入第一象限,恰能做匀速直线运动。

2024高考物理磁场强度计算题及答案

2024高考物理磁场强度计算题及答案

2024高考物理磁场强度计算题及答案磁场强度的计算在物理学中是一个非常基础而重要的概念。

在2024年的高考物理试题中,磁场强度的计算题目无疑是考生们需要重点关注和备考的内容。

本文将为大家提供一道典型的磁场强度计算题以及详细的解答过程。

题目:一根直导线在一个匀强磁场中垂直运动,其运动速度为v = 6 m/s。

已知该导线所受到的磁场力为F = 0.3 N,导线长度为l = 0.5 m,导线与磁场的夹角为θ = 30°。

求该匀强磁场的磁场强度大小B。

解答:根据题目中所给的信息,我们可以利用洛伦兹力的公式来计算磁场强度。

洛伦兹力公式表达为F = qvBsinθ,其中F为磁场力,q为电荷数量,v为速度,B为磁场强度,θ为导线与磁场夹角。

我们已知磁场力F为0.3 N,速度v为6 m/s,导线长度l为0.5 m,角度θ为30°。

在这道题目中,由于没有给出导线电荷数量q的具体数值,所以我们可以利用导线电流I来简化计算过程。

根据电流和导线电荷的关系,我们可以得到公式I = q/t,其中I为电流强度,q为电荷数量,t为时间。

由于题目中没有给出时间t的具体数值,我们可以对公式进行变换,得到q = It。

将导线电流I代入到洛伦兹力公式中,我们可以得到F = IBlvsinθ。

由于我们已知了F、v、l和θ的数值,所以我们可以将其带入公式中计算。

将题目中给定的数值代入公式中,我们有0.3 = B × 6 × 0.5 × sin30°。

由于sin30° = 1/2,我们可以进一步简化计算,得到0.3 = B × 6 × 0.5 ×1/2。

消除分数,我们可以得到0.3 = 0.75B。

接下来,我们可以通过计算得出磁场强度B的数值。

将0.3除以0.75,我们可以得到B = 0.4 T。

因此,解答中匀强磁场的磁场强度大小B为0.4 T。

磁场单元练习题-计算题题专练

磁场单元练习题-计算题题专练

高三物理复习资料-磁场计算题专练班级学号姓名.1.如图,在同一水平面内的两导相互平行,并处在竖直向上的匀强磁场中,一根质量为1.5Kg的金属棒放在宽为2m的导轨上,当金属棒中的电流为5A时,金属棒做匀速运动;当金属棒中的电流增加到8A时,金属棒获得2m/s2的加速度,则磁感应强度为多大?2.如图4所示,长60cm、质量60g的粗细均匀的金属棒,两端用相同的轻弹簧挂起,处于一方向垂直于纸面向里的匀强磁场中,磁感应强度为0.4T。

求:(1)要使弹簧恢复原长,金属棒中应通入怎样大小和方向的电流?(2)若在金属棒中应通入大小为0.2A自左向右的电流时,弹簧伸长1mm,若在金属棒中应通入大小为0.2A自右向左的电流时,弹簧伸长是多少?3.如图所示,质量为m、长度为L的导体棒MN静止在水平轨道上,通过MN的电流为I,匀强磁场的磁感应强度为B,其方向与轨道平面成θ角斜向上,求:MN受到的支持力的大小及摩擦力的大小分别为多少?4.如图光滑导轨与水平面成α角,导轨宽L。

匀强磁场磁感应强度为B。

金属杆长也为L ,质量为m,水平放在导轨上。

当回路总电流为I1时,金属杆正好能静止。

求:①B至少多大?这时B的方向如何?到多大,才能使金属杆保持静止?5.如图所示,宽为L的框架和水平面的夹角为α,处于磁感应强度为B的匀强磁场中,磁场的方向垂直于框架平面。

导体棒ab的质量为m,置于金属框架上时向下匀加速滑动,导体棒与框架间的最大静摩擦力为f。

为使导体棒静止在框架上,将电动势为E的电源接入电路中,框架与导体棒的电阻不计,求需要接入的滑动变阻器的阻值范围。

6.两根相距L=1m的光滑平行导线左端接有电源,右端连接着半径R=0.5m的光滑圆弧形导轨,,在导轨上搁置一根质量m=1Kg的金属棒,整个装置处于竖直向上,磁感应强度B=0.1T的匀强磁场中,当在棒中通以如图所示方向的瞬时电流时,金属棒受到安培力作用从静止起向右滑动,刚好能到达轨道的最高点,求通电过程中通过金属棒的电量。

磁场,感应计算题有详细答案(快考试了,希望对同学们有所帮助)

磁场,感应计算题有详细答案(快考试了,希望对同学们有所帮助)

稳恒磁场计算题144.稳恒磁学计算题144、如下图所示,AB 、CD 为长直导线BC 为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O点的磁感应强度.解:如图所示,O 点磁场由DC 、CB 、BA 三部分电流产生,其中:DC 产生 )21(4)2sin 4(sin45cos 40001-=-=RI R IB πμπππμ 方向向里 CB 产生 RIR I B 16224002μμππ== 方向向里 BA 产生 03=BRIR I B B B B O 16)12(400321μπμ+-=++= 方向向里145、如图所示,一载流导线中间部分被弯成半圆弧状,其圆心点为O ,圆弧半径为R 。

若导线的流过电流I ,求圆心O 处的磁感应强度。

解:两段直电流部分在O 点产生的磁场01=B弧线电流在O 点产生的磁场 RIB 2202μπα=RI R I B B B O παμπαμ42220021==+=∴146、载流体如图所示,求两半圆的圆心点P 处的磁感应强度。

解:水平直电流产生01=B大半圆 产生1024R IB μ=方向向里小半圆 产生2034R IB μ=方向向里竖直直电流产生2044R I B πμ=方向向外4321B B B B B O +++=∴ )111(44442210202010R R R I R I R IR IB O πμπμμμ-+=-+=方向向里147、在真空中,有两根互相平行的无限长直导线相距0.1m ,通有方向相反的电流,I 1=20A,I 2=10A ,如图所示.试求空间磁感应强度分布,指明方向和磁感应强度为零的点的位置.、解:取垂直纸面向里为正,如图设X 轴。

)1.0(102102)(2272010x x xx d I x I B --⨯=-+=-πμπμ 在电流1I 左侧,B方向垂直纸面向外在电流1I 、2I 之间,B方向垂直纸面向里在电流2I 右侧,当m x 2.0<时,B方向垂直纸面向外当m x 2.0>时,B方向垂直纸面向里当0=B 时,即0)1.0(1021027=--⨯-x x x则 m x 2.0=处的B为0。

磁场的感应和磁通量练习题

磁场的感应和磁通量练习题

磁场的感应和磁通量练习题1. 简答题(1) 什么是磁感应强度?(2) 什么是磁通量?(3) 什么是法拉第电磁感应定律?(4) 描述磁通量守恒定律的原理。

(5) 什么是楞次定律?2. 计算题(1) 一个匀强磁场的磁感应强度为2T,某垂直于磁场方向上的圆线圈的面积为0.5平方米,当线圈轴线的法向速度为10m/s时,计算在这个过程中感应在圆线圈上的电动势。

(2) 一根长为10cm的导线以匀速1m/s在垂直于磁感应强度为0.5T的磁场中直线运动,求此导线两端之间的电势差。

(3) 一个电感为2H的电感线圈,当通过电流变化的速率为0.2A/s 时,计算感应在电感线圈上的电动势。

(4) 某导体在垂直于磁感应强度为0.8T的磁场中以速率5m/s运动,导体的长度为10cm,导体两端之间的电势差为多少伏特?3. 综合题一根长度为20cm的导线以匀速2m/s向左运动,同时垂直于导线的方向有一个磁场,磁感应强度大小为1T,方向指向纸面内。

导线两端之间的电势差为U。

求:(1) 导线两端之间的电势差U的大小;(2) 当导线长度变为40cm时,导线两端之间的电势差U'的大小。

4. 应用题(1) 在一个长度为10cm的导线周围,空间内有一个与导线平面垂直的匀强磁场,当磁感应强度为0.5T时,导线中通过的电流为2A。

求导线两端之间的电势差。

(2) 一台发电机的磁感应强度为0.2T,由发电机产生的电动势为12V,发电机旋转一周的时间为1s。

求发电机的匝数。

通过以上的练习题,你能够更好地理解和应用磁场的感应和磁通量的相关概念和定律。

希望这些题目能够帮助你巩固相关知识,提高解题能力。

大学物理磁场试题及答案

大学物理磁场试题及答案

大学物理磁场试题及答案一、选择题(每题2分,共10分)1. 磁场的基本特性是()。

A. 有方向性B. 有大小和方向C. 只有方向性D. 只有大小答案:B2. 根据安培环路定理,穿过闭合回路的磁通量与()。

A. 回路的面积成正比B. 回路的面积成反比C. 回路的面积无关D. 回路的面积的平方成正比答案:C3. 磁感应强度的方向是()。

A. 电流方向B. 电流方向的相反方向C. 垂直于电流方向D. 与电流方向成任意角度答案:C4. 磁通量的大小由()决定。

A. 磁场的强度B. 面积的大小C. 磁场与面积的夹角D. 以上所有因素答案:D5. 磁感应强度的单位是()。

A. 特斯拉B. 高斯C. 安培/米D. 以上都是答案:D二、填空题(每题2分,共10分)1. 一个长直导线产生的磁场,其磁感应强度与导线距离的平方成______。

答案:反比2. 地球的磁场可以近似看作是一个______。

答案:条形磁铁3. 根据洛伦兹力公式,一个带电粒子在磁场中运动时受到的力的方向与______。

答案:磁场方向和粒子速度方向都垂直4. 磁通量的基本单位是______。

答案:韦伯5. 磁感应强度的定义式为______。

答案:B = F/IL三、计算题(每题10分,共30分)1. 一个长为L的直导线,通有电流I,求在距离导线r处的磁感应强度。

答案:B = (μ₀I)/(2πr)2. 一个半径为R的圆形线圈,通有电流I,求其轴线上距离线圈中心d处的磁感应强度。

答案:B = (μ₀I)/(2R² + d²)^(3/2)3. 一个长为L的直导线,通有电流I,求在距离导线r处的磁通量,假设导线上方有一面积为A的平面与磁场垂直。

答案:Φ = B * A = (μ₀I * A)/(2πr)四、简答题(每题5分,共10分)1. 简述磁感应强度和磁通量的区别。

答案:磁感应强度是描述磁场强弱和方向的物理量,其大小和方向由磁场本身决定,与测试电荷无关。

电场磁场计算题专项训练及答案

电场磁场计算题专项训练及答案

电场磁场计算题专项训练【注】该专项涉及运动:电场中加速、抛物线运动、磁场中圆周 1、(2009浙江)如图所示,相距为d 的平行金属板A 、B 竖直放置,在两板之间水平放置一绝缘平板。

有一质量m 、电荷量q (q >0)的小物块在与金属板A 相距l 处静止。

若某一时刻在金属板A 、B 间加一电压U AB =-qmgd23μ,小物块与金属板只发生了一次碰撞,碰撞后电荷量变为-q /2,并以与碰前大小相等的速度反方向弹回。

已知小物块与绝缘平板间的动摩擦因数为μ,若不计小物块几何量对电场的影响和碰撞时间。

则(1)小物块与金属板A 碰撞前瞬间的速度大小是多少? (2)小物块碰撞后经过多长时间停止运动?停在何位置?2、(2006天津)在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度应大小为B 、方向垂直于纸面向里的匀强磁场,如图所示。

一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,它恰好从磁场边界的交点C 处沿+y 方向飞出。

(1)判断该粒子带何种电荷,并求出其比荷q /m ;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B /,该粒子仍以A 处相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B /多大?此粒子在磁场中运动所用时间t 是多少?3、(2010全国卷Ⅰ)如下图,在a x 30≤≤区域内存在与xy 平面垂直的匀强磁场,磁感应强度的大小为B 。

在t = 0时刻,一位于坐标原点的粒子源在xy 平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y 轴正方向夹角分布在0~180°范围内。

已知B沿y轴正方向发射的粒子在t =t0时刻刚好从磁场边界上P(a3,a)点离开磁场。

求:(1)粒子在磁场中做圆周运动的半径R及粒子的比荷q/m;(2)t0时刻仍在磁场中的粒子的初速度方向与y轴正方向夹角的取值范围;(3)从粒子发射到全部粒子离开磁场所用的时间.4、(2008天津)在平面直角坐标系xOy中,第一象限存在沿y轴负方向的匀强电场,第四象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B。

磁场综合练习题-1

磁场综合练习题-1

磁场综合练习题-1一.选择题:1. 在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为(A) πr 2B .. (B) 2 πr 2B .(C) -πr 2B sin α. (D) -πr 2B cos α. [ ] 2. 边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感强度B 为 (A) l I π420μ. (B) l Iπ220μ.(C)lIπ02μ. (D) 以上均不对. [ ] 3. 边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为 (A) 01=B ,02=B . (B) 01=B ,l I B π=0222μ.(C) l IB π=0122μ,02=B . (D) l I B π=0122μ,lIB π=0222μ.[ ]4. 如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知(A) 0d =⎰⋅Ll B ,且环路上任意一点B = 0.(B) 0d =⎰⋅Ll B,且环路上任意一点B ≠0.(C) 0d ≠⎰⋅Ll B,且环路上任意一点B ≠0.(D) 0d ≠⎰⋅Ll B,且环路上任意一点B =常量. [ ]5. 如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分⎰⋅Ll Bd 等于(A)I 0μ. (B)I 031μ. (C) 4/0I μ. (D) 3/20I μ. [ ]a二.填空题:6. 在匀强磁场B 中,取一半径为R 的圆,圆面的法线n 与B 成60°角,如图所示,则通过以该圆周为边线的如图所示的任意曲面S 的磁通量==⎰⎰⋅Sm S Bd Φ_______________________.7. 在非均匀磁场中,有一电荷为q 的运动电荷.当电荷运动至某点时,其速率为v ,运动方向与磁场方向间的夹角为α ,此时测出它所受的磁力为f m .则该运动电荷所在处的磁感强度的大小为________________.磁力f m 的方向一定垂直于________________________________________________________________.8. 电流由长直导线1沿切向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿切线流出,经长直导线2返回电源(如图).已知直导线上的电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一直线上,则O 点的磁感强度的大小为______________. 9. 在真空中,电流由长直导线1沿半径方向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上的电流强度为I ,圆环半径为R .a 、b 和圆心O在同一直线上,则O 处的磁感强度B 的大小为__________________________. 10. 电流由长直导线1经过a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,两直导线的延长线交于三角形中心点O ,三角框每边长为l ,则O 处的磁感强度为______________. 三.计算题: 11. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为ρ1 =2.50×10-8Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8 Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A)四.简答题:12. 从毕奥─萨伐尔定律能导出无限长直电流的磁场公式aIB π20μ=,当考察点无限接近导线时(a →0),则B →∞,这是没有物理意义的,请解释.13. 载有电流的I 长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度 v平行导线平移,求半圆环内感应电动势的大小和方向以及MN 两端的电压U M - U N .任意曲面I答案:一.选择题:1. D2. A3. C4.B5.D 二.填空题:6. 221R B π-3分 7. αsin v q f m2分运动电荷速度矢量与该点磁感强度矢量所组成的平面. 2分 8. 0 3分 9.RIπ40μ 3分10. 0 3分三.计算题:11. 解:设弧ADB = L 1,弧ACB = L 2,两段弧上电流在圆心处产生的磁感强度分别为 211014R L I B π=μ 222024R L I B π=μ 3分 1B、2B 方向相反.圆心处总磁感强度值为 12B B B -=)(411222L I L I R -π=μ)1(422112220L I L I R L I -π=μ 2分 两段导线的电阻分别为 S L r 111ρ= S Lr 222ρ= 1分因并联 11221221L Lr r I I ρρ== 2分又 R R L 2/22=ππ=∴ )1(21220ρρμ-π=R I B =1.60×10-8 T 2分四.简答题:12. 答:公式)2/(0R I B π=μ只对忽略导线粗细的理想线电流适用,当a →0, 导线的尺寸不能忽略. 此电流就不能称为线电流,此公式不适用. 5分13. 解:动生电动势⎰⋅⨯=MNv l B MeN d )(☜ 为计算简单,可引入一条辅助线MN ,构成闭合回路MeNM , 闭合回路总电动势 0=+=NM MeN ☜☜☜总MN NM MeN ☜☜☜=-= 2分x x I l B b a ba MNd 2d )(0⎰⎰⋅+-π-=⨯=μv v MN☜b a b a I -+π-=ln20v μ I负号表示MN ☜的方向与x 轴相反. 3分ba ba I MeN -+π-=ln20vμ☜ 方向N →M 2分 ba ba I U U MN N M -+π=-=-ln20vμ☜ 3分。

初中电磁感应专题练习(含详细答案)

初中电磁感应专题练习(含详细答案)

初中电磁感应专题练习(含详细答案)
一、选择题
1. 一个导线在磁场中匀速向右移动,感应电动势的方向如何?
A. 由左向右
B. 由右向左
C. 没有感应电动势
D. 无法确定
答案:B
2. 带电粒子在磁场中匀速运动,运动轨迹如何?
A. 直线运动
B. 圆形运动
C. 抛物线运动
D. 双曲线运动
答案:B
二、计算题
1. 一个弯曲的导线长为10cm,导线中有一个电流I=2A,若在
导线处有一个磁感应强度为B=3T的磁场,求电动势的大小为多少?
解答:
$\mathcal{E}=Blv=\frac{1}{2}Blv=\frac{1}{2}Blsin\theta=\frac{1}{2} \times 3 \times 0.1 \times 2=\frac{3}{20}$V。

三、简答题
1. 什么是电磁感应?
电磁感应是指导体中的电子受到磁场的作用从而在导体两端产
生的电动势。

2. 什么是法拉第电磁感应定律?
法拉第电磁感应定律指出,当导体中的磁力线发生变化时,沿
着导体的任意闭合回路中就会产生感应电动势,其大小与磁通量的
变化率成正比,方向满足楞次定律。

3. 什么是楞次定律?
楞次定律指出,当导体内有感应电流时,该电流所发出的磁场的方向是这样的,即它所引起的磁通量的变化总是阻碍引起这种变化的原因。

4. 什么情况下会产生感应电流?
当导体在磁场中发生运动或被磁场线穿过而发生变化时,就会在导体中产生感应电流。

2024年大学物理磁场试题库含答案

2024年大学物理磁场试题库含答案

第八章 磁场填空题 (简单)1、将通有电流为I的无限长直导线折成1/4圆环形状,已知半圆环的半径为R,则圆心O点的磁感应强度大小为 。

08IRμ2、磁场的高斯定理表白磁场是 无源场 。

3、只要有运动电荷,其周围就有 磁场 产生;4、(如图)无限长直导线载有电流I 1,矩形回路载有电流I 2,I 2回路的AB 边与长直导线平行。

电流I1产生的磁场作用在I 2回路上的合力F 的大小为,F的方向 水平向左 。

(综01201222()I I L I I La ab μμππ-+合) 5、有一圆形线圈,通有电流I,放在均匀磁场B 中,线圈平面与B垂直,则线圈上P点将受到 安培 力的作用,其方向为 指向圆心 ,线圈所受合力大小为 0 。

(综合)6、 是 磁场中的安培环路定理 ,它所反应的物理意义∑⎰==⋅n i i lI l d B 00μ是 在真空的稳恒磁场中,磁感强度沿任一闭合途径的积分等于乘以该闭合途径所包围的各电流的代数B 0μ和。

7、磁场的高斯定理表白通过任意闭合曲面的磁通量必等于 0 。

4题图5题图8、电荷在磁场中 不一定 (填一定或不一定)受磁场力的作用。

9、磁场最基本的性质是对 运动电荷、载流导线 有力的作用。

10、如图所示,在磁感强度为B 的均匀磁场中,有二分之一径为R的半球面,B 与半球面轴线的夹角为。

求通过该半球面的磁通量为。

(综合)α2cos B R πα- 12、一电荷以速度v 运动,它既 产生 电场,又 产生 磁场。

(填“产生”或“不产生”)13、一电荷为+q,质量为m ,初速度为的粒子垂直进入磁感应强度为B 的均匀磁场中,粒子将作 匀速圆0υ周 运动,其盘旋半径R=,盘旋周期T= 。

0m Bq υ2mBqπ14、把长直导线与半径为R 的半圆形铁环与圆形铁环相连接(如图a、b 所示),若通以电流为,则 a圆心I O的磁感应强度为___0__________;图b圆心O 的磁感应强度为。

电磁感应计算题及解答

电磁感应计算题及解答

电磁感应一、选择题1、如图所示,空间存在两个磁场,磁感应强度大小均为B,方向相反且垂直纸面,MN、PQ为其边界,OO’为其对称轴。

一导线折成变长为的正方形闭合回路abcd,回路在纸面内以恒定速度v o向右运动,当运动到关于OO’对称的位置时A.穿过回路的磁通量为零B.回路中感应电动势大小为C.回路中感应电流的方向为顺时针方向D.回路中ab边与cd边所受安培力方向相同2、如图8,在O点下方有一个具有理想边界的磁场,铜环在A点由静止释放向右摆至最高点B,不考虑空气阻力,则下列说法正确的是()A.A、B两点在同一水平线B.A点高于B点C.A点低于B点D.铜环将做等幅摆动二、计算题3、如图所示,两根质量均为m=2kg的金属棒垂直地放在光滑的水平导轨上,左右两部分导轨间距之比为1∶2,导轨间有大小相等但左右两部分方向相反的匀强磁场,CD棒电阻为AB棒电阻的两倍,不计导轨电阻,今用250N的水平力F向右拉CD棒,在CD棒运动0.5m的过程中,两棒上产生的焦耳热共为45J,此时CD棒速率为8m/s,立即撤去拉力F,设导轨足够长且两棒始终在不同磁场中运动,求:(1)撤去拉力F瞬间AB棒速度v A;(2)两棒最终匀速运动的速度v A′和v C′。

4、如图所示,光滑矩形斜面ABCD的倾角为,在其上放置一矩形金属线框,的边长,的边长,线框的质量,电阻,线框通过细线绕过定滑轮与重物相连,细线与斜面平行且靠近。

重物质量,离地面的高度为。

斜面上区域是有界匀强磁场,方向垂直于斜面向上,已知AB到的距离为,到的距离为,到CD的距离为,取。

现让线框从静止开始运动(开始时刻与AB边重合),发现线框匀速穿过匀强磁场区域,求:(1)区域内匀强磁场的磁感应强度B(2)线框在通过磁场区域过程中产生的焦耳热Q(3)通过计算分析画出线框从开始运动到边与CD边重合过程中线框的图象5、如图所示,半径为r的圆形导线框内有一匀强磁场,磁场方向垂直于导线框所在平面,导线框的左端通过导线接一对水平放置的平行的金属板,两极间的距离为d,板长为L。

高中物理磁场经典计算题训练(有答案)

高中物理磁场经典计算题训练(有答案)

高中物理磁场经典计算题训练(有答案)1.弹性挡板围成边长为L = 100cm 的正方形abcd ,固定在光滑的水平面上,匀强磁场竖直向下,磁感应强度为B = 0。

5T ,如图所示。

质量为m =2×10-4kg 、带电量为q =4×10-3C 的小球,从cd 边中点的小孔P 处以某一速度v 垂直于cd 边和磁场方向射入,以后小球与挡板的碰撞过程中没有能量损失。

(1)为使小球在最短的时间内从P 点垂直于dc 射出来,小球入射的速度v 1是多少? (2)若小球以v 2 = 1 m/s 的速度入射,则需经过多少时间才能由P 点出来?2。

如图所示, 在区域足够大空间中充满磁感应强度大小为B 的匀强磁场,其方向垂直于纸面向里。

在纸面内固定放置一绝缘材料制成的边长为L 的等边三角形框架DEF , DE 中点S 处有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE 边向下,如图(a )所示.发射粒子的电量为+q ,质量为m ,但速度v 有各种不同的数值.若这些粒子与三角形框架碰撞时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边。

试求: (1)带电粒子的速度v 为多大时,能够打到E 点? (2)为使S 点发出的粒子最终又回到S 点,且运动时间最短,v 应为多大?最短时间为多少? (3)若磁场是半径为a 的圆柱形区域,如图(b )所示(图中圆为其横截面),圆柱的轴线通过等边三角形的中心O ,且a =)10133( L 。

要使S 点发出的粒子最终又回到S 点,带电粒子速度v 的大小应取哪些数值?3。

在直径为d 的圆形区域内存在匀强磁场,磁场方向垂直于圆面指向纸外.一电荷量为q ,质量为m 的粒子,从磁场区域的一条直径AC 上的A 点射入磁场,其速度大小为v 0,方向与AC 成α.若此粒子恰好能打在磁场区域圆周上D 点,AD 与AC 的夹角为β,如图所示.求该匀强磁场的磁感强度B 的大小.a b cdACFD(a )(b )4。

带电粒子在匀强磁场中的运动计算题含答案

带电粒子在匀强磁场中的运动计算题含答案

带电粒子在匀强磁场中的运动计算题1.如图,空间存在方向垂直于纸面(xOy平面)向里的磁场。

在x≥0区域,磁感应强度的大小为B0;x<0区域,磁感应强度的大小为λB0(常数λ>1)。

一质量为m、电荷量为q(q>0)的带电粒子以速度v0从坐标原点O沿x轴正向射入磁场,此时开始计时,当粒子的速度方向再次沿x轴正向时,求(不计重力)(1)粒子运动的时间;(2)粒子与O点间的距离。

2.平面直角坐标系xOy中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅲ象限存在沿y轴负方向的匀强电场,如图所示。

一带负电的粒子从电场中的Q点以速度v0沿x轴正方向开始运动,Q点到y轴的距离为到x轴距离的2倍。

粒子从坐标原点O离开电场进入磁场,最终从x轴上的P点射出磁场,P点到y轴距离与Q点到y轴距离相等。

不计粒子重力,求:(1)粒子到达O点时速度的大小和方向;(2)电场强度和磁感应强度的大小之比。

3.如图,在y>0的区域存在方向沿y轴负方向的匀强电场,场强大小为E,在y<0的区域存在方向垂直于xOy 平面向外的匀强磁场。

一个氕核11H和一个氘核12H先后从y轴上y=h点以相同的动能射出,速度方向沿x 轴正方向。

已知11H进入磁场时,速度方向与x轴正方向的夹角为60°,并从坐标原点O处第一次射出磁场。

1H的质量为m,电荷量为q,不计重力。

求1(1)11H第一次进入磁场的位置到原点O的距离;(2)磁场的磁感应强度大小;(3)12H第一次离开磁场的位置到原点O的距离。

4.如图甲,空间存在﹣范围足够大的垂直于xOy平面向外的匀强磁场,磁感应强度大小为B.让质量为m,电量为q(q>0)的粒子从坐标原点O沿xOy平面以不同的初速度大小和方向入射到该磁场中。

不计重力和粒子间的影响。

(1)若粒子以初速度v1沿y轴正向入射,恰好能经过x轴上的A(a,0)点,求v1的大小;(2)已知一粒子的初速度大小为v(v>v1),为使该粒子能经过A(a,0)点,其入射角θ(粒子初速度与x 轴正向的夹角)有几个?并求出对应的sinθ值;(3)如图乙,若在此空间再加入沿y轴正向、大小为E的匀强电场,一粒子从O点以初速度v0沿y轴正向发射。

磁场测试题及答案

磁场测试题及答案

磁场测试题及答案一、选择题1. 磁场的基本单位是:A. 牛顿B. 特斯拉C. 安培D. 库仑2. 地球的磁场是由什么产生的?A. 地球的自转B. 地球的公转C. 地球内部的液态铁D. 太阳风3. 以下哪个现象不是由磁场引起的?A. 指南针指向北方B. 磁铁吸引铁钉C. 电流通过导线产生热量D. 磁悬浮列车的悬浮二、填空题4. 磁场中某点的磁场强度B可以通过公式_______来计算,其中H是磁场强度,I是电流,l是导线长度。

5. 磁感应强度的单位是_______,它表示磁场对运动电荷的作用力。

三、简答题6. 简述磁场对运动电荷的作用。

7. 描述一下磁铁的两极以及它们之间的相互作用。

四、计算题8. 一个长为0.5米的直导线,通过电流为10安培,求在距离导线0.1米处的磁场强度。

9. 如果将上述导线弯曲成半径为0.2米的圆形,求圆心处的磁场强度。

五、论述题10. 论述地球磁场对人类生活的影响。

答案:一、选择题1. B2. C3. C二、填空题4. B = μ₀I/(2πl)5. 特斯拉(T)三、简答题6. 磁场对运动电荷的作用表现为洛伦兹力,其大小与电荷的速度、电荷量和磁场强度有关,作用方向垂直于电荷速度和磁场方向。

7. 磁铁的两极分别是N极和S极,同名磁极相互排斥,异名磁极相互吸引。

四、计算题8. 根据公式B = μ₀I/(2πd),其中μ₀是真空的磁导率,大约为4π×10⁻⁷ T·m/A,d是距离,I是电流。

代入数值得B =(4π×10⁻⁷ T·m/A × 10 A) / (2π × 0.1 m) ≈ 2×10⁻⁵ T。

9. 对于圆形导线,圆心处的磁场强度B = (μ₀I)/(2R),代入数值得B = (4π×10⁻⁷ T·m/A × 10 A) / (2 × 0.2 m) ≈ 10⁻⁵ T。

高中物理竞赛磁场试题及答案

高中物理竞赛磁场试题及答案

高中物理竞赛磁场试题及答案一、选择题(每题3分,共15分)1. 一个带正电的粒子以速度v进入一个垂直于速度方向的均匀磁场中,该粒子将:A. 做匀速直线运动B. 做匀速圆周运动C. 做螺旋运动D. 静止不动2. 地球的磁场是由:A. 地球内部的电流产生的B. 太阳风影响产生的C. 地球表面的岩石产生的D. 地球大气层中的电荷分布产生的3. 根据洛伦兹力公式 \( F = q(v \times B) \),当带电粒子的速度方向与磁场方向平行时,洛伦兹力的大小为:A. 0B. \( qvB \)C. \( qB \)D. \( vB \)4. 一个带电粒子在磁场中做匀速圆周运动,其半径 \( r \) 与磁场强度 \( B \) 和粒子速度 \( v \) 的关系是:A. \( r \propto \frac{1}{Bv} \)B. \( r \propto \frac{1}{B^2v} \)C. \( r \propto \frac{1}{v} \)D. \( r \propto Bv \)5. 以下哪个选项不是磁感应强度的单位?A. 特斯拉(T)B. 韦伯(Wb)C. 高斯(G)D. 奥斯特(Oe)二、填空题(每空2分,共10分)6. 一个带电粒子在磁场中受到的洛伦兹力大小为 \( F = ______ \)。

7. 磁通量 \( \Phi \) 定义为穿过某一闭合表面的磁感应线的总数量,其单位是 ______ 。

8. 当线圈中的电流发生变化时,线圈周围的磁场也会发生变化,根据法拉第电磁感应定律,线圈中将产生 ______ 。

9. 磁感应强度 \( B \) 的方向定义为 ______ 。

10. 磁铁的南极和北极分别用字母 ______ 和 ______ 表示。

三、计算题(每题10分,共20分)11. 一个带正电的粒子,电荷量 \( q = 1.6 \times 10^{-19} \) C,以速度 \( v = 3 \times 10^7 \) m/s 进入一个磁场强度 \( B =0.5 \) T 的均匀磁场中,求该粒子在磁场中的运动轨迹半径。

高中磁场试题及答案

高中磁场试题及答案

高中磁场试题及答案一、选择题1. 磁场的基本性质是什么?A. 磁场对放入其中的电流有力的作用B. 磁场对放入其中的电荷有力的作用C. 磁场对放入其中的物体有力的作用D. 磁场对放入其中的金属有力的作用答案:A2. 根据安培环路定理,磁场线是闭合的,那么以下哪个选项是错误的?A. 磁场线是闭合的B. 磁场线不相交C. 磁场线可以是直线D. 磁场线总是从磁北极指向磁南极答案:D3. 一个带正电的粒子以一定速度进入磁场,如果磁场方向垂直于粒子运动的方向,那么粒子的运动轨迹是什么形状?A. 直线B. 圆C. 螺旋D. 抛物线答案:B二、填空题4. 根据洛伦兹力公式,一个带电粒子在磁场中的受力大小为 \[ F = q \times v \times B \],其中 \( q \) 表示______,\( v \) 表示______,\( B \) 表示______。

答案:电荷量;速度;磁感应强度5. 磁通量是穿过一个闭合表面的磁场线的总数,其单位是______。

答案:韦伯(Weber)三、简答题6. 请简述法拉第电磁感应定律的主要内容。

答案:法拉第电磁感应定律指出,当磁场中的磁通量发生变化时,会在闭合电路中产生感应电动势。

感应电动势的大小与磁通量变化的速率成正比。

四、计算题7. 一个长为 \( L \) 的导线,以速度 \( v \) 在垂直于磁场 \( B \) 的方向上运动,求导线两端的感应电动势。

答案:根据法拉第电磁感应定律,导线两端的感应电动势 \( E \) 可以通过公式 \( E = B \times L \times v \) 计算得出。

五、论述题8. 论述磁场对带电粒子运动的影响,并给出一个实际应用的例子。

答案:磁场对带电粒子的影响主要体现在洛伦兹力的作用上。

当带电粒子以一定速度进入磁场时,如果其速度方向与磁场方向不平行,粒子将受到一个垂直于速度和磁场方向的力,导致粒子做圆周运动。

一个实际应用的例子是质谱仪,它利用磁场使带电粒子在磁场中做圆周运动,通过测量粒子的轨迹半径来确定粒子的质量和电荷比。

真空中静磁场部分习题

真空中静磁场部分习题

真空中静磁场部分习题相关习题:一、计算题1.无限长直导线折成V 形,顶角为θ,置于xy 平面内,一个角边与x 轴重合,如图所示。

当导线中有电流I 时,求y 轴上一点),0(a P 处的磁感强度大小。

2.如图所示的被折成钝角的长导线中通有20A 的电流,求A 点的磁感应强度的大小和方向,设2=a cm ,120=α。

3.一载有电流I 的长直导线弯折成如图所示的状态,CD 为1/4圆弧,半径为R ,圆心O 在AC 、EF 的延长线上,求O 点处的磁感应强度的大小和方向。

D4.如图所示,一宽为a 的薄长金属板,其中载电流为I ,试求薄板的平面上距板的一边为a 的P 点的磁感应强度。

5.一弯曲的载流导线在同一平面内,形状如图所示 (O 点是半径为1R 和2R 的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),求O 点磁感强度的大小。

6.如图所示,一根无限长直导线,通有电流I ,中部一段弯成圆弧形。

求图中P 点磁感应强度的大小。

7.如图所示,长直导线与矩形线圈共面,且 DF 边与直导线平行。

已知I 1=20A ,I 2=10A ,d =1.0cm ,a =9.0cm ,b =20.0cm ,求线圈各边所受的磁力。

二、选择题1.四条相互平行的载流长直导线电流强度均为I ,如图 放置。

设正方形的边长为a 2,则正方形中心的磁感应强度为( ) A .I a B πμ=02 B .I aB πμ=220 C .0=B D .I a B πμ=0题图32.如图 所示,A A '及B B '为两个正交的圆形线圈,A A '的半径为R ,通电流I ,B B ' 的半径为2R ,通电流2I ,两线圈的公共中心O 点磁感应强度为( ) A .R I 20μ B .RI0μ C .R I 220μ D .03.长直导线通以电流I ,设弯折成图所示形状,则圆心O 点的磁感应强度为( ) A .R I R I 4200μ+πμ B .R I R I 8400μ+πμ C .R I R I 8200μ+πμ D .RIR I 4400μ+πμ4. 磁场的高斯定理⎰⎰=⋅sS B 0d, 说明( )(A) 穿入闭合曲面的磁感应线的条数必然等于穿出的磁感应线的条数 (B) 穿入闭合曲面的磁感应线的条数不等于穿出的磁感应线的条数 (C) 一根磁感应线可以终止在闭合曲面内 (D) 一根磁感应线不可能完全处于闭合曲面内5. 对于安培环路定律0d LB l I μ⋅=∑⎰, 在下面说法中正确的是( )(A) B只是穿过闭合环路的电流所激发, 与环路外的电流无关(B) ∑I 是环路内、外电流的代数和(C) 安培环路定律只在具有高度对称的磁场中才成立(D) 只有磁场分布具有高度对称性时, 才能用它直接计算磁场强度的大小 6. 在圆形电流的平面内取一同心圆形环路, 由于环路内无电流穿过, 所以d 0LB l ⋅=⎰, 由此可知( )(A) 圆形环路上各点的磁场强度为零(B) 圆形环路上各点的磁场强度方向垂直于环路平面 (C) 圆形环路上各点的磁场强度方向指向圆心(D) 圆形环路上各点的磁场强度方向为该点的切线方向7. 取一闭合积分回路L , 使三根载流导线穿过L 所围成的面,如图 所示. 现改变三根导线之间的相互间隔, 但不越出积分回路, 则( )(A) 回路L 内的∑I 不变, L 上各点的B 不变 (B) 回路L 内的∑I 不变, L 上各点的B 改变 (C) 回路L 内的∑I 改变, L 上各点的B 不变 (D) 回路L 内的∑I 改变, L 上各点的B 改变8. 一无限长直圆柱体, 半径为R , 沿轴向均匀流有电流,如图 所示.设圆柱体内(r <R )的磁感应强度大小为B 1, 圆柱体外( r >R )感应强度大小为B 2, 则有( )(A) B 1、B 2均与 r 成正比 (B) B 1、B 2均与 r 成反比(C) B 1与 r 成反比, B 2与 r 成正比 (D) B 1与 r 成正比, B 2与 r 成反比9. 一个半径为R 的圆形电流I , 其圆心处的磁场强度大小为( ) (A) R I 4 (B) ∞ (C) 0 (D) RI 2 10. 有一个圆形回路1及一个正方形回路2,圆的直径和正方形回路的边长相等, 二者中通有大小相等的电流, 它们在各自中心产生的磁感应强度的大小之比21B B 为((A) 0.90 (B) 1.00 (C) 1.11 (D) 1.2211.如图,在一圆形电流I 的平面内,选取一个同心圆闭合回路L 。

磁场中的计算题

磁场中的计算题
距离y要满足的条件. (2)电子从M点运动
到P点所用的时间.
图43
首先必须进行两个分析:受力分析和运动分析,并 且这两个分析是相互联系的,要相互结合起来分析
-
图43
例3.如图所示,虚线所围区域内有方向垂直纸
面向里的匀强磁场,磁感应强度为B。一束电子沿圆
形区域的直径方向以速度v射入磁场,电子束经过磁
由t的表达式可知,当n=2时,运动时间最短。
(2)有界磁场-------圆形区域:
变式:如右图,两个共轴的圆筒形金属电极,外电极接
地,其上均匀分布着平行于轴线的四条狭缝a,b,c和d,
外筒的外半径为r0。在圆筒之外的足够大区域中有平行 于轴线方向的均匀磁场,磁感应强度的大小为B,在两
极间加上电压,使两圆筒之间的区域内有沿半径向外的
向垂直纸面向外的匀强磁场。O是MN上的一点,从O点
可以向磁场区域发射电荷量为+q、质量为m、速率为v
的粒子,粒子射入磁场时的速度可在纸面内各个方向,
已知先后射入的两个粒子恰好在磁场中给定的P点相遇,
P到O的距离为L,不计重力和粒子间的相互作用。
(1)求所考察的粒子在磁场中
M
的轨道半径;
(2)求这两个粒子从O点射入 O 磁场的时间间隔。
质量为m、带电量为q的正离子在小孔S处,以速
度v0向圆心射入,已知磁感应强度为B,若粒子
与筒壁碰撞两次后从原孔射出,求粒子在圆筒内
运动的时间(设相碰时电量和动能均无损失)
600 T 2 m
qB
t 31Tm 3R
r
B
. R vO0
·
6 qB v0 O’ r S
进阶:1、若粒子与筒壁碰撞n次,结果又如何?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B E
A
1.如图所示,在与水平方向成60°角的光滑金属导轨间连一电源,在相距1m 的平行导轨上放一重力为3N 的金属棒ab ,棒上通过3A 的电流,磁场方向竖直向上,这时金属棒恰好静止,求:
(1)匀强磁场的磁感强度为多大? (2)ab 棒对导轨的压力为多大? 1.解:(1)tan 60B IL G
︒=
tan 6031
G B IL

==
⨯(T )
=(T ) (2)cos 60G N ︒=
3cos 600.5
G N =
=

(N )=6(N ) (
N'=N =6(N )
2. 如图所示,在水平正交的匀强电场和匀强磁场区域内,有一个带正电小球A ,已知电场强度为E ,磁感应强度为B ,小球在场区中受到电场力的大小恰与它的重力大小相等,要使小球在磁场中匀速运动,小球的速度必须一定,请求出小球的速度大小和方向。

2.(8分)粒子所受重力、电场力及洛伦兹力三力合力为零, 且满足: qvB =2
2
)()(Eq mg + (2分) 又有: mg =Eq (2分) 解得:v =2E /B , (2分) 方向成45°角斜向上
2分)
3.如图所示,x 轴上方有垂直纸面向里的匀强磁场.有两个质量相同,电荷量也相同的带正、负电的离子(不计重力),以相同速度从O 点射入磁场中,射入方向与x 轴均夹θ角.则正、负离子在磁场中 A.运动时间相同
B.运动轨道半径相同
C.重新回到x 轴时速度大小和方向均相同
D.重新回到x 轴时距O 点的距离相同
4.如图直线MN 上方有磁感应强度为B 的匀强磁场。

正、负电子同时从同一点O 以与MN
成30°角的同样速度v 射入磁场(电子质量为m ,电荷为e ),它们从磁场中射出时相距多远?射出的时间差是多少?
解:由公式知,它们的半径和周期是相同的。

只是偏转方向相反。

先确定圆心,画出半径,由对称性知:射入、射出点和圆心恰好组成正三角形。

所以两个射出点相距2r ,由图还可看出,经历时间相差2T /3。

答案为射出点相距
Be
mv s 2=
,时间差为Bq
m t 34π=∆。

关键是找圆心、找半径和用对称。

5.如图所示,一束电子(电量为e )以速度v 0垂直射入磁感应强度为B ,宽为d 的匀强磁场中,穿出磁场时速度方向与电子原来入射方向的夹角为30°,则电子的质量是多少?穿过磁场的时间是多少?
[方法指导]一定要先画好辅助线(半径、速度及延长线)。

偏转角由sin θ=L /R 求出。

侧移由R 2
=L 2
-(R-y )2
解出。

经历时间由Bq
m t θ=得出。

m=2dBe/v 0 t =d π/3v 0
6.长为L 的水平极板间,有垂直纸面向内的匀强磁场,如图所示,磁感强度为B ,板间距离也为L ,板不带电,现有质量为m ,电量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是: A .使粒子的速度v <BqL /4m ; B .使粒子的速度v >5BqL /4m ; C .使粒子的速度v >BqL /m ; D .使粒子速度BqL /4m <v <5BqL /4m 。

解析:由左手定则判得粒子在磁场中间向上偏,而作匀速圆周运动,很明显,圆周运动的半径大于某值r 1时粒子可以从极板右边穿出,而半径小于某值r 2时粒子可从极板的左边穿出,现在问题归结为求粒子能在右边穿出时r 的最小值r 1以及粒子在左边穿出时r 的最大值r 2,由几何知识得: 粒子擦着板从右边穿出时,圆心在O 点,有: r 12
=L 2
+(r 1-L /2)2得r 1=5L /4,
又由于r 1=mv 1/Bq 得v 1=5BqL /4m ,∴v >5BqL /4m 时粒子能从右边穿出。

粒子擦着上板从左边穿出时,圆心在O '点,有r 2=L /4,又由r 2=mv 2/Bq =L /4得v 2=BqL /4m
M
图17
∴v 2<BqL /4m 时粒子能从左边穿出。

综上可得正确答案是A 、B 。

7.如图17所示,半径为r 的圆形区域内存在着垂直纸面向里的匀强磁场,磁感应强度为B 。

现有一带电离子(不计重力)从A 以速度v 沿圆形区域的直径射入磁场,已知离子从C 点射出磁场的方向间的夹角为60º (1)该离子带何种电荷;
(2)求该离子的电荷量与质量之比q/m
7、解析:(1)根据磁场方向和离子的受力方向,由左手定则可知:离子带负电。

(2)如图,离子在磁场中运动轨迹为一段圆弧,圆心为O ´,所对应圆心角为60º。

R
mv qvB 2
=
①,R
r tg =
2
θ
②,联立①、②解得:Br
v m
q
33=

画好辅助线(半径、速度、轨迹圆的圆心、连心线)。

偏角可由R
r =2tan
θ
求出。

经历时
间由Bq
m t θ=
得出。

注意:由对称性,射出线的反向延长线必过磁场圆的圆心。

O。

相关文档
最新文档