湘教版八年级数学上册第二章测试题(含答案)

合集下载

湘教版八年级数学上册第2章测试题及答案

湘教版八年级数学上册第2章测试题及答案

湘教版八年级数学上册第2章测试题及答案2.1 三角形一、选择题1.小明与小王家相距5km,小王与小邓家相距2km,则小明与小邓家相距()A. 3kmB. 7kmC. 3km或7kmD. 不小于3km也不大于7km2.下列长度的各组线段首尾相接能构成三角形的是()A. 3cm、5cm、8cmB. 3cm、5cm、6cmC. 3cm、3cm、6cmD. 3cm、5cm、10cm3.在△ABC中,∠A=60°,∠C=70°,则∠B的度数是()A. 50°B. 60°C. 70°D. 90°4.图中的五角星是用螺栓将两端打有孔的5根木条连接而构成的,它的形状不稳定.如果用在图中木条交叉点打孔加装螺栓的办法来达到使其形状稳定的目的,且所加螺栓尽可能少,那么需要添加螺栓()A. 1个B. 2个C. 3个D. 4个5.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°-∠ABD;④BD平分∠ADC;⑤∠BDC= ∠BAC.其中正确的结论有()A. 2个B. 3个C. 4个D. 5个6.三角形的三条高线的交点在三角形的一个顶点上,则此三角形是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等腰三角形7.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A. 三角形的稳定性B. 两点之间线段最短C. 两点确定一条直线D. 垂线段最短8.已知三角形两边的长分别是3和7,则第三边的长可以是()A. 3B. 6C. 10D. 169.如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,则A、B间的距离不可能是()A. 5米B. 10米C. 15米D. 20米二、填空题10.在△ABC中,∠C=90°,∠A:∠B=1:2,则∠A=________ 度.11.如图,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C=______度.12.工人师傅砌墙的时候,常在长方形门框上斜定一根木条,他利用的原理是________ .13.一个三角形的三个外角之比为5:4:3,则这个三角形内角中最大的角是________度.14.一木工师傅现有两根木条,木条的长分别为40cm和50cm,他要选择第三根木条,将它们钉成一个三角形木架.设第三根木条长为x cm,则x的取值范围是________.15.在△ABC中,BD是AC边上的高,∠ABD=70°,∠DBC=40°,则∠ABC=________度.16.如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=________ 度.17.如图,由平面上五个点A、B、C、D、E连接而成,则∠A+∠B+∠C+∠D+∠E=________.三、解答题18.已知三角形的一个外角等于60°,且三角形中与这个外角不相邻的两个内角中,其中一个比另一个大10°,则这个三角形的三个内角分别是多少?19.如图,在△ABC中,∠C=∠ABC=2∠A,BD⊥AC于点D,求∠DBC的度数.20.如图,已知AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.21.如图,∠A=90°,∠B=21°,∠C=32°,求∠BDC的度数.参考答案一、选择题1.D2. B3.A4.A5.B6.A7.A 8B 9. A二、填空题10.30 11.25 12.三角形的稳定性13.90 14.10<x<90 15.110或30 16.50 17. 180°三、解答题18.解:设三角形中与这个外角不相邻的两个内角中较小的为x,则另一个为x+10.x+x+10=60°,解得x=25°.所以三个内角分别是120°,35°,25° .19.解:因为∠C=∠ABC=2∠A,所以∠C+∠ABC+∠A=5∠A=180°,所以∠A=36°.所以∠C=∠ABC=2∠A=72°.因为BD⊥AC,所以∠DBC=90°﹣∠C=18°.20.解:因为AD是△ABC的角平分线,∠BAC=60°,所以∠DAC=∠BAD=30°.因为CE是△ABC的高,∠BCE=40°,所以∠B=50°,所以∠ADB=180°﹣∠B﹣∠BAD=180°﹣30°﹣50°=100°.21.解:如图,连接AD并延长AD至点E,因为∠BDE=∠BAE+∠B,∠CDE=∠CAD+∠C,所以∠BDC=∠BDE+∠CDE=∠CAD+∠C+∠BAD+∠B=∠BAC+∠B+∠C.因为∠A=90°,∠B=21°,∠C=32°,所以∠BDC=90°+21°+32°=143°.2.2 命题与证明一、选择题1.已知下列命题:(1)若a>0,b>0,则a+b>0;(2)若a≠b,则a2≠b2;(3)是2的平方根;(4)近似数0.030万,精确到十位;(5)代数式+(3x﹣1)0中,x的取值范围是x≥ .其中真命题的个数是()A. 5B. 2C. 3D. 42.为了证明命题“任何偶数都是8的整数倍”是假命题,下列各数可以作为反例的是()A. 32B. 16C. 8D. 43.下列语句,不是命题的是()A. 对顶角相等B. 连接A,B两点C. 钝角大于D. 平角都相等4.下列定理有逆定理的是()A. 直角都相等B. 同旁内角互补,两直线平行C. 对顶角相等D. 全等三角形的对应角相等二、填空题5.写出一个原命题是真命题,逆命题是假命题的命题:________.6.命题“同旁内角互补,两直线平行”写成“如果…,那么…”的形式是 ________,它是 ________命题(填“真”或“假”).7.命题“对顶角相等”的逆命题是________.8.命题“等角的余角相等”写成“如果…,那么…”的形式是________.9.“等角对等边”的逆命题是________.10.将命题“互为相反数的两个数之和等于零”写成:如果________,那么________.三、解答题11.请判断下列命题的真假性,若是假命题请举反例说明.(1)若a>b,则a2>b2;(2)两个无理数的和仍是无理数;(3)若一个三角形的三边a,b,c满足(a﹣b)(b﹣c)(c﹣a)=0,则此三角形是等边三角形;(4)若三条线段a,b,c满足a+b>c,则这三条线段a,b,c能够组成三角形.12.证明命题“三角形的三内角和为180°”是真命题.13.写出命题“如果一个三角形是直角三角形,那么它的两个锐角的角平分线所夹的锐角是45°”的逆命题,并证明这个命题是真命题.14.请写出命题“等角的余角相等”的条件和结论;这个命题是真命题吗?如果是,请你证明;如果不是,请给出反例.参考答案一、选择题1. C2. D3.B4.B二、填空题5.对顶角相等6.如果同旁内角互补,那么两直线平行真7.相等的角为对顶角8.如果两个角相等,那么这两个角的余角相等9.等边对等角10.两个数互为相反数这两个数之和等于0三、解答题11. 解:(1)若a>b,则a2>b2,是假命题,例如:0>﹣1,但02<(﹣1)2;(2)两个无理数的和仍是无理数,是假命题,例如:﹣+=0,和是有理数;(3)若一个三角形的三边a,b,c满足(a﹣b)(b﹣c)(c﹣a)=0,则此三角形是等边三角形,是假命题,例如:a=b,b≠c时,(a﹣b)(b﹣c)(c﹣a)=0,此三角形是等腰三角形;(4)若三条线段a,b,c满足a+b>c,则这三条线段a,b,c能够组成三角形,是假命题,例如:三条线段a=3,b=2,c=1满足a+b>c,但这三条线段不能够组成三角形.12.已知:∠A、∠B、∠C为△ABC的三个内角,求证:∠A+∠B+∠C=180°.证明:作射线BD,过C点作CE∥AB,如图.∵CE∥AB,∴∠1=∠A,∠2=∠B,而∠C+∠1+∠2=180°,∴∠A+∠B+∠C=180°.∴命题“三角形的三内角和为180°”是真命题.13.解:逆命题是:如果一个三角形的两个角的角平分线所夹的锐角是45°,那么这个三角形是直角三角形.已知:如图,在△ABC中,BE是∠ABC的角平分线,交AC于点E,AD是∠CAB的角平分线,交BC 于点D,BE和AD相交于点O,且∠EOA=45°.求证:△ABC是直角三角形.证明:∵BE是∠ABC的角平分线,AD是∠CAB的角平分线,∴∠OAB=∠CAB,∠OBA=∠CBA,∴∠OAB+∠OBA=(∠CAB+∠CBA),∴180°﹣∠AOB=(180°﹣∠C),∴∠AOB=90°+∠C.又∵∠EOA=45°,∴∠AOB=135°=90°+∠C,∴∠C=90°,∴△ABC是直角三角形.14.解:条件:两个角分别是两个相等角的余角;结论:这两个角相等.这个命题是真命题.已知:∠1=∠2,∠3是∠1的余角,∠4是∠2的余角.求证:∠3=∠4.证明:∵∠3是∠1的余角,∠4是的余角,∴∠3=90°﹣∠1,∠4=90°﹣∠2.又∵∠1=∠2,∴∠3=∠4.2.3 等腰三角形一、选择题1.设计一张折叠型方桌子如图,若AO=BO=50cm,CO=DO=30cm,将桌子放平后,要使AB距离地面的高为40cm,则两条桌腿需要叉开的∠AOB应为()A. 60°B. 90°C. 120°D. 150°2.如图,∠ABC=50°,BD平分∠ABC,过点D作DE∥AB交BC于点E,若点F在AB上,且满足DF=DE,则∠DFB的度数为()A. 25°B. 130°C. 50°或130°D. 25°或130°3.如图,AB∥CD,点E在BC上,CD=CE,若∠ABC=34°,则∠BED的度数是()A. 104°B. 107°C. 116°D. 124°4.一个等腰三角形的两边长分别是4和9,则它的周长为()A. 17B. 20C. 22D. 17或225.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,且BC=6cm,则BD=()A. 1cmB. 2cmC. 3cmD. 4cm6.如图,一个等边三角形纸片剪去一个角后变成一个四边形,则图中∠1+∠2的度数为()A. 180°B. 220°C. 240°D. 300°7.在△ABC中,∠ACB=90°,∠A=30°,CD⊥AB于D,AB=4cm,则BD的长为().A. 3B. 4C. 1D. 78.若等腰三角形一腰上的高是腰长的一半,则这个等腰三角形的底角是()A. 75°或15°B. 75°C. 15°D. 75°或30°9.如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB 交AE的延长线于点F,则DF的长为()A. 4.5B. 5C. 5.5D. 6二、填空题10.在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,垂足为D,且AD=4cm,则AC=________.11.如图,在△ABC中,AB=BC,∠B=70°,则∠A=________°.12.已知一个等腰三角形的腰长是6,则底边长a的取值范围是________ .13.己知,如图,在△ABC中,∠C=90°,∠A=24°,请用直尺和圆规找到一条直线,把△ABC恰好分割成两个等腰三角形(不写作法,但需保留作图痕迹),直线________ 即为所求.14.等腰三角形顶角的度数为131°18′,则底角的度数为________.15.等腰三角形底边长为5cm,一腰上的中线把其周长分为两部分的差为3cm,则腰长为________.16.如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=12,BC=16,则线段EF的长为________.17.如图,已知△ABC是等边三角形,AB=5cm,AD⊥BC,DE⊥AB,DF⊥AC,则∠BAD=________,∠ADF=________,BD=________,∠EDF=________.三、解答题18.如图,已知房屋的顶角∠BAC=100°,过屋顶A的立柱AD⊥BC,屋椽AB=AC,求顶架上∠B、∠C、∠BAD、∠CAD的度数.19.如图,在△ABC中,AB=AC=CD,BD=AD,求△ABC中各角的度数.20.如图,树AB垂直于地面,为测树高,小明在C处,测得∠ACB=15°,他沿CB方向走了20米,到达D处,测得∠ADB=30°,你能帮助小明计算出树的高度吗?21.如图,在△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点D,求证:BC=3AD.22.已知:如图,D、E是△ABC中BC边上的两点,AD=AE,要证明△ABE≌△ACD,应该再增加一个什么条件?请你增加这个条件后再给予证明.参考答案一、选择题1.C2.D3.B4.C5.C6.C7.C8.A9. C二、填空题10.8cm 11.55 12.0<a<12 13.CD 14.24°21′ 15.8cm 16.2 17.30° 60° 2.5cm 120°三、解答题18.解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C==40°.∵AB=AC,AD⊥BC,∠BAC=100°,∴AD平分∠BAC,∴∠BAD=∠CAD=50°.19.解:∵AB=AC,∴∠B=∠C.∵BD=AD,∴∠B=∠DAB.∵AC=DC,∴∠DAC=∠ADC=2∠B,∴∠BAC=∠BAD+∠DAC=∠B+2∠B=3∠B.又∵∠B+∠C+∠BAC=180°,∴5∠B=180°,∴∠B=36°,∠C=36°,∠BAC=108°.20.解:∵∠ADB=30°,∠ACB=15°,∴∠CAD=∠ADB﹣∠ACB=15°,∴∠ACB=∠CAD,∴AD=CD=20.又∵∠ABD=90°,∴AB=AD=10,∴树的高度为10米.21.证明:在△ABC中,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°.又∵AD⊥AC,∴∠DAC=90°.∵∠C=30°,∴CD=2AD,∠BAD=∠B=30°,∴AD=DB,∴BC=CD+BD=AD+DC=AD+2AD=3AD.22.解:本题答案不唯一,增加一个条件可以是:EC=BD,或AB=AC,或BE=CD,或∠B=∠C或∠BAD=∠CAE或∠BAE=∠CAD等.增加∠B=∠C证明过程如下:证明:∵AD=AE,∴∠ADE=∠AED,∴∠ADB=∠AEC,∴△ABD≌△ACE(AAS),∴∠BAD=∠CAE.∵∠BAD+∠DAE=∠CAE+∠DAE,∴∠BAE=∠CAD,∴△ABE≌△ACD(AAS).2.4 线段的垂直平分线一、选择题1.如图,在△ABC中,AB=AC,AD为△ABC的角平分线,过AB的中点E作AB的垂线交AC于点F,连接BF,若AB=5,CD=2,则△BFC的周长为()A. 7B. 9C. 12D. 142.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()A. 30°B. 40°C. 50°D. 60°3.如图,在△ABC中,△ADE的周长为8,DH为AB的中垂线,EF垂直平分AC,则BC的长为()A. 4B. 6C. 8D. 164.如图,在△ABC中,已知AB=AC,DE垂直平分AC,且AC=8,BC=6,则△BDC的周长为()A. 20B. 22C. 10D. 145.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC,ED垂直平分AB于点D,若AB=6,则AE的值是()A. 3B. 2C. 3D. 26.在Rt△ABC中,∠A=40°,∠B=90°,AC的垂直平分线MN分别与AB,AC交于点D,E,则∠BCD 的度数为()A. 10°B. 15°C. 40°D. 50°7.如图,在△ABC中,∠ACB=90°,DE垂直平分AC交AB于点E,若BC=6,则DE的长为()A. 6B. 5C. 4D. 38.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A. 13B. 15C. 17D. 199.如图,∠C=90°,AB的垂直平分线交BC于点D,连接AD,若∠CAD=20°,则∠B=()A. 20°B. 30°C. 35°D. 40°10.如图,OA、OB分别是线段MC、MD的垂直平分线,MD=5cm,MC=7cm,CD=10cm,一只小蚂蚁从点M出发爬到OA边上任意一点E,再爬到OB边上任意一点F,然后爬回M点处,则小蚂蚁爬行的路径最短可为()A. 12cmB. 10cmC. 7cmD. 5cm二、填空题11.如图,在△ABC中,AB=AC,∠A=36°,AB的中垂线DE交AC于点D,交AB于点E,下述结论:①BD平分∠ABC;②AD=BD=BC;③△BDC的周长等于AB+BC;④D是AC的中点.其中正确的命题是________(填序号).12.如图,在△ABC中,EF是AB的垂直平分线,与AB交于点D,BF=12,CF=3,则AC=________.13.如图,在△ABC中,AB=AC,∠A=20°,边AC的垂直平分线交AC于点D,交AB于点E,则∠BCE 等于________ °.14.证明定理:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.已知:如图,在△ABC中,分别作AB边、BC边的垂直平分线,两线相交于点P,分别交AB边、BC边于点E、F.求证:AB、BC、AC的垂直平分线相交于点P.证明:∵点P是AB边垂直平分线上的一点,∴________ =________(________).同理可得,PB=________,∴________ =________(等量代换),∴________(到一条线段两个端点距离相等的点,在这条线段的________),∴AB、BC、AC的垂直平分线相交于点P,且________.15.线段的垂直平分线是________的点的集合.16.一条线段的垂直平分线必定经过这条线段的________点,一条线段只有________条垂直平分线.17.在等腰三角形ABC中,AB=AC=8cm,腰AB的垂直平分线交另一腰AC于点D,若△BCD的周长为10cm,则底边BC的长为________cm.18.在△ABC中,∠C=90°,∠B=∠22.5°,DE垂直平分AB交BC于点E,BC=2+2,则AC=________.三、解答题19.如图,在△ABC中,AD是高,在线段DC上取一点E,使DE=BD,已知AB+BD=DC.求证:E点在线段AC的垂直平分线上.20.如图,在△ABC中,∠C=60°,AB的垂直平分线交BC于点D,DE=6,BD=6 ,AE⊥BC于点E,求EC的长.21.已知在△ABC中,AD是∠BAC的平分线,AD的垂直平分线交BC的延长线于点F.求证:∠BAF=∠ACF.22.如图,在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,求△ABC的周长.参考答案一、选择题1.B2.B3.C4. D5. B6.A7.D8.B9.C 10.B二、填空题11.①②③12.15 13.6014.PB PA 垂直平分线上任意一点,到线段两端点的距离相等PC PA PC 点P在AC的垂直平分线上垂直平分线上PA=PB=PC 15.到线段两个端点距离相等16.中一17.2 18.2三、解答题19.证明:∵AD是高,∴AD⊥BC.又∵BD=DE,∴AD所在的直线是线段BE的垂直平分线,∴AB=AE,∴AB+BD=AE+DE.又∵AB+BD=DC,∴DC=AE+DE,∴DE+EC=AE+DE,∴EC=AE,∴点E在线段AC的垂直平分线上.20.解:如图,连接AD,∵AB的垂直平分线交BC于点D,∴BD=AD.∵DE=6,BD=6,∴AD=6,∴∠ADE=45°,∴∠B=22.5°.∵∠C=60°,∴∠BAC=97.5°.∵∠ADE=∠B+∠DAB=45°,AE⊥BC,∴DE=AE=6.∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴AC=2CE.在Rt△ACE中,AC2=AE2+CE2,即4CE2=62+CE2,∴CE2=12,解得EC=2.21.证明:∵AD是∠BAC的平分线,∴∠1=∠2.∵FE是AD的垂直平分线,∴FA=FD(线段垂直平分线上的点到线段两端的距离相等),∴∠FAD=∠FDA(等边对等角).∵∠BAF=∠FAD+∠1,∠ACF=∠FDA+∠2,∴∠BAF=∠ACF.22.解:∵DE是AC的垂直平分线,AE=3cm,∴AD=CD,AC=2AE=2×3=6(cm),∴△ABD的周长为AB+BD+AD=AB+BD+CD=AB+BC=13(cm),∴△ABC的周长为AB+BC+AC=13+6=19(cm).2.5 全等三角形一、选择题1.如图,已知AB=AD,∠1=∠2=50°,∠D=100°,那么∠ACB的度数为()A. 30°B. 40°C. 50°D. 60°2.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A. 甲和乙B. 乙和丙C. 只有乙D. 只有丙3.已知△ABC≌△DEF,且∠A=100°,∠E=35°,则∠F=()A. 35°B. 45°C. 55°D. 70°4.如图,点B、E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是()A. BC=FD,AC=EDB. ∠A=∠DEF,AC=EDC. AC=ED,AB=EFD. ∠ABC=∠EFD,BC=FD5.如图,在正方形ABCD中,AB=2,延长BC到点E,使CE=1,连接DE,动点P从点A出发以每秒1个单位的速度沿AB﹣BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当△ABP和△DCE全等时,t的值为()A. 3B. 5C. 7D. 3或76.已知△ABD≌△DEF,AB=DE,∠A=60°,∠E=40°,则∠F的度数为()A. 30°B. 70°C. 80°D. 100°7.如图,点D在AB上,点E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE≌△ACD 的是()A. AD=AEB. ∠AEB=∠ADCC. BE=CDD. AB=AC8.如图,FD⊥AO于点D,FE⊥BO于点E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件有()A. 1个B. 2个C. 3个D. 4个9.下列可使两个直角三角形全等的条件是()A. 一条边对应相等B. 两条直角边对应相等C. 一个锐角对应相等D. 两个锐角对应相等10.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A. 0个B. 1个C. 2个D. 3个二、填空题11.斜边和一条直角边分别 ________的两个三角形全等(可以简写成“________”或“HL”).12.如图,在Rt△ABC中,∠C=90°,AB=8,AD平分∠BAC,交BC边于点D,若CD=2,则△ABD的面积为________ .13.如图,在等边△ABC中,BD=CE,AD与BE相交于点F,则∠AFE= ________.14.如图,△ABC和△A′B′C′是两个全等的三角形,其中某些边的长度及某些角已知,则x=______.15.如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线.若AB=6,则点D到AB的距离是________ .16.如图,线段AD与BC相交于点O,连接AB、CD,且∠B=∠D,要使△AOB≌△COD,应添加一个条件是________(只填一个即可).17.如图,AC⊥CB,AD⊥DB,要使△ABC≌△ABD,可补充的一个条件是________.18.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE 的平分线CD相交于点D,连接AD,以下结论:①∠BAC=70°;②∠DOC=90°;③∠BDC=35°;④∠DAC=55°,其中正确的是________.(填写序号)三、解答题19.如图,已知△ACF≌△DBE,AD=9 cm,BC=5 cm,求AB的长.20.如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.21.如图,在△ABC中,∠A=90°,BD是角平分线,DE⊥BC于点E,若AD=3,BC=4,求△BDC的面积.22.如图,在△ABC中,BE,CF分别是边AC,AB上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG,则AG与AD有何关系?试给出你的结论的理由.23.如图,BD=CD,BF⊥AC,CE⊥AB,求证:点D在∠BAC的平分线上.参考答案一、选择题1. A2.B3.B4.C5.D6. C7.B8.D9.B 10.D二、填空题11.对应相等斜边、直角边12.8 13.60°14.60°15.16.OB=OD17.AC=AD(答案不唯一)18.①③④三、解答题19.解:∵△ACF≌△DBE,∴CA=BD,∴CA﹣BC=DB﹣BC,即AB=CD,∴AB+CD=2AB=AD﹣BC=9﹣5=4(cm),∴AB=2cm.20.证明:∵AB∥CD,∴∠BAC=∠ECD.在△ABC和△CED中,,∴△ABC≌△CED(SAS),∴∠B=∠E.21.解:因为∠A=90°,所以DA⊥AB.又BD是角平分线,且DE⊥BC于点E,所以DE=AD=3,所以易得△BDC的面积为6.22.解:AG=AD,AG⊥AD. 理由:∵在△ABC中,BE,CF分别是边AC,AB上的高,∴∠BFP=∠CEP=∠AFO=90°,∴∠ABD+∠FPB=90°,∠ACG+∠EPC=90°.∵∠FPB=∠EPC,∴∠ACG=∠ABD.在△ABD和△GCA中,,∴△ABD≌△GCA(SAS),∴AG=AD,∠AGC=∠BAD.∵∠AFO=90°,∴∠BAD+∠AOF=90°,∴∠AGC+∠AOF=90°,∴∠GAD=180°﹣90°=90°,∴AG⊥AD.23.证明:∵BF⊥AC,CE⊥AB,∴∠BED=∠CFD=90°.在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴DE=DF.又∵DE⊥AB,DF⊥AC,∴点D在∠BAC的平分线上.2.6 用尺规作三角形一、选择题1.下列作图语言规范的是()A. 过点P作线段AB的中垂线B. 过点P作∠AOB的平分线C. 在直线AB的延长线上取一点C,使AB=ACD. 过点P作直线AB的垂线2.如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为()A. 40°B. 55°C. 65°D. 75°3.某探究性学习小组仅利用一副三角板不能完成的操作是()A. 作已知直线的平行线B. 作已知角的平分线C. 测量钢球的直径D. 作已知三角形的中位线4.如图,已知△ABC,∠ABC=2∠C,以B为圆心任意长为半径作弧,交BA、BC于点E、F ,分别以E、F为圆心,以大于EF的长为半径作弧,两弧交于点P,作射线BP交AC于点D,则下列说法不正确的是()A. ∠ADB=∠ABCB. AB=BDC. AC=AD+BDD. ∠ABD=∠BCD5.已知线段a,求作等边三角形ABC,使AB=a,作法如下:①作射线AM;②连接AC、BC;③分别以点A和点B为圆心,以a的长为半径作圆弧,两弧交于点C;④在射线AM上截取AB,使AB=a.其合理顺序为()A. ①②③④B. ①④②③C. ①④③②D. ②①④③6.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以点B、C为圆心,大于BC的长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,正确的有()A. 1个B. 2个C. 3个D. 4个7.根据已知条件作符合条件的三角形,在作图过程中,主要依据是()A. 用尺规作一条线段等于已知线段B. 用尺规作一个角等于已知角C. 用尺规作一条线段等于已知线段和作一个角等于已知角D. 不能确定8.观察图中尺规作图的痕迹,下列结论错误的是()A. PQ为∠APB的平分线B. PA=PBC. 点A、B到PQ的距离不相等D. ∠APQ=∠BPQ9.按下列条件画三角形,能唯一确定三角形的形状和大小的是()A. 三角形的一个内角为60°,一条边长为3cmB. 三角形的两个内角为30°和70°C. 三角形的两条边长分别为3cm和5cmD. 三角形的三条边长分别为4cm、5cm和8cm10.下列属于尺规作图的是()A. 用刻度尺和圆规作△ABCB. 用量角器画一个30°的角C. 用圆规画半径2cm的圆D. 作一条线段等于已知线段二、填空题11.一个三角形木板,去了一个角,你能作出所缺角的平分线所在的直线吗? ________(填“能”或“不能”).12.如图,在Rt△ABC中,∠ACB=90°.(1)请用直尺和圆规在边AC上作一点P,且使PA=PB(不写作法,保留作图痕迹);(2)当∠B=________ 度时,PA:PC=2:1.13.下列语句是有关几何作图的叙述.①以点O为圆心作弧;②延长射线AB到点C;③作∠AOB,使∠AOB=∠1;④作直线AB ,使AB=a;⑤过三角形ABC的顶点C作它的对边AB的平行线.其中正确的有________(填序号).14.用尺规作图作已知角∠AOB的平分线OC,其根据是构造两个三角形全等,用到的三角形全等的判定方法是________ .15.阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是________ .16.如图,AB∥CD,以点B为圆心,小于DB长为半径作圆弧,分别交BA、BD于点E、F,再分别以点E、F为圆心,大于EF长为半径作圆弧,两弧交于点G,作射线BG交CD于点H.若∠D=116°,则∠DHB的大小为________度.17.如图,在△ABC,∠C=90°,∠ABC=40°,按以下步骤作图:①以点A为圆心,小于AC的长为半径.画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D,则∠ADC的度数为 ________.18.已知线段a,b,c,求作△ABC,使BC=a,AC=b,AB=c.①以点B为圆心,c为半径画弧;②连接AB,AC;③作BC=a;④以C点为圆心,b为半径画弧,两弧交于点A.作法的合理顺序是 ________ (填序号).三、解答题19.如图,有分别过A、B两个加油站的公路l1、l2相交于点O,现准备在∠AOB内建一个油库,要求油库的位置点P满足到A、B两个加油站的距离相等,而且P到两条公路l1、l2的距离也相等.请用尺规作图作出点P(不写作法,保留作图痕迹)20.作图题:已知∠AOB,利用尺规作∠A′O′B′,使∠A′O′B′=2∠AOB.21.如图,已知AD∥BC,按要求完成下列各小题(保留作图痕迹,不要求写作法).(1)用直尺和圆规作出∠BAD的平分线AP,交BC于点P.(2)在(1)的基础上,若∠APB=55°,求∠B的度数.22.如图,已知点E在直线AB外,请用三角板与直尺画图,并回答第(3)题:①过点E作直线CD,使CD∥AB;②过点E作直线EF,使EF⊥AB,垂足为F;③请判断直线CD与EF的位置关系,并说明理由.23.如图,已知∠α和∠β,线段c,用直尺和圆规作出△ABC,使∠A=∠α,∠B=∠β,AB=c(要求画出图形,并保留作图痕迹,不必写出作法)24.按要求画图:(1)作BE∥AD交DC于点E;(2)连接AC,作BF∥AC交DC的延长线于点F;(3)作AG⊥DC于点G.参考答案一、选择题1.D2. C3.C4.B5.C6.C7.C8. C9.D 10.D二、填空题11.能12.60 13.③⑤14.SSS15.到线段两个端点距离相等的点在线段的垂直平分线上,两点确定一条直线16.32 17.65°18.③①④②三、解答题19.解:如图.20.解:作法:①作∠DO'B'=∠AOB;②在∠DO'B'的外部作∠A'OD=∠AOB,则∠A'O'B'就是所求的角.21.(1)解:如图,AP为所作.(2)解:∵AD∥BC,∴∠DAP=∠APB=55°.∵AP平分∠DAB,∴∠BAP=∠DAP=55°,∴∠ABP=180°﹣55°﹣55°=70°.22.解:①、②如图:③CD⊥EF.理由:∵CD∥AB,∴∠CEF=∠EFB.∵EF⊥AB,∴∠EFB=90°,∴∠CEF=90°,∴CD⊥EF.23.解:如图,△ABC就是所求作的三角形.24.解:(1)如图,BE即为所求.(2)如图,BF即为所求.(3)如图,AG即为所求.。

湘教版八年级数学上第二章《三角形》测试卷含答案

湘教版八年级数学上第二章《三角形》测试卷含答案

湘教版八年级数学(上)第二章《三角形》测试卷一、选择题(30分) 1、如图,已知在Rt △ABC 中,∠C=90°,沿图中 虚线减去∠C ,则∠1+∠2等于( )A. 315°,B. 270°,C. 180°,D. 135°, 2、已知三角形三边长分别为4、5、x ,则x 不可能 是( ) A. 3, B. 5, C. 7, D. 9,3、如图,在△ABC 中,AB=AC ,AD=DE , ∠BAD=20°,∠EDC=10°,则∠DAE 的度数( ) A.30°, B. 40°, C. 60°, D. 80°,4、已知等腰三角形的两边长是5和6,则这个三角形的周长是( )A. 11,B. 16,C. 17,D. 16或17,5、如图,在△ABC 中,AB=AC ,BD ⊥AC ,CE ⊥AB ,O 是BD 、CE 的交点,则图中的全等 三角形有( ) A. 3对, B. 4对, C. 5对, D. 6对, 6、如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )7、在△ABC 与△A′B′C′中,已知∠A=∠A ′,AB=A ′B ′,下列说法正确的是( )A. 若添加条件AC=A ′C ′,则△ABC ≌△A′B′C′ ;B. 若添加条件∠B=∠B ′,则△ABC ≌△A′B′C′ ;,C. 若添加条件∠C=∠C ′,则△ABC ≌△A′B′C′ ;D. 若添加条件BC=B ′C ′,则△ABC ≌△A′B′C′ ;8、下列命题是真命题的是( )A. 互补的角是邻补角;B. 同位角相等;C. 对顶角相等;D. 同旁内角互补;9、如图,等腰△ABC 中,AB=AC , BD 平分∠ABC ,∠A=36°,则∠1的度数为( )A.36°,B. 60°,C.72°,D. 108°,10、△ABC ≌△DEF ,AB=2,AC=4,若△DEF 的周长为偶数,则EF 的取值为( ) A. 3, B. 4, C. 5, D. 3或4或5;二、填空题(24分)11、把一副三角板按如图所示的方式放置,则两条斜边所形成的钝角а= 。

八年级数学上册《第二章 线段的垂直平分线》练习题-含答案(湘教版)

八年级数学上册《第二章 线段的垂直平分线》练习题-含答案(湘教版)

八年级数学上册《第二章线段的垂直平分线》练习题-含答案(湘教版)一、选择题1.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误..的是( ) A.① B.② C.③ D.④2.如图,已知线段AB,分别以A,B为圆心,大于12AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为( )A.40°B.50°C.60°D.70°3.如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,适当长度(大于BC长的一半)为半径作圆弧,两弧相交于点M和N;②作直线MN交AB于点D,连接CD.若AB=9,AC=4,则△ACD的周长是( )A.12B.13C.17D.184.如图,已知AB=AC,AB=5,BC=3,以A,B两点为圆心,大于12AB的长为半径画圆弧,两弧相交于点M,N,连接MN与AC相交于点D,则△BDC的周长为( )A.8B.10C.11D.135.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于12BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若AD=AC,∠A=80°则∠ACB的度数为( )A.65°B.70°C.75°D.80°6.如图,AB∥CD,BE垂直平分AD,DC=BC,若∠A=70°,则∠C=( )A.100°B.110°C.115°D.120°7.如图,MN是线段AB的垂直平分线,C在MN外,且与A点在MN的同一侧,BC交MN于P点,则( )A.BC>PC+APB.BC<PC+APC.BC=PC+APD.BC≥PC+AP8.如图,已知在直角坐标系中,点A在y轴上,BC⊥x轴于点C,点A关于直线OB的对称点D 恰好在BC上,点E与点O关于直线BC对称,∠OBC=35°,则∠OED的度数为( )A.10°B.20°C.30°D.35°二、填空题9.如图,在△ABC中,AB=AC=8,BC=6,AB的垂直平分线交AC于点E,垂足为点D,连接BE,则△BEC的周长为 .10.如图,DE是△ABC边AC的垂直平分线,若BC=18cm,AB=10cm,则△ABD的周长为 .11.如图,若△ACD的周长为7cm,DE为AB边的垂直平分线,则AC+BC= cm.12.小军做了一个如图所示的风筝,其中EH=FH,ED=FD,小军说不用测量就知道DH是EF的垂直平分线.其中蕴含的道理是 .13.如图,在△ABC中,∠C=35°,AB=AD,DE是AC的垂直平分线,则∠BAD=度.14.如图所示,点P为∠AOB内一点,分别作出点P关于OA、OB的对称点P1、P2.连接P1P2交OA于M,交OB于N,若P1P2=6,则△PMN的周长为.三、作图题15.尺规作图(不写作法,保留作图痕迹):已知线段a和∠AOB,点M在OB上(如图所示).(1)在OA边上作点P,使OP=2a;(2)作∠AOB的平分线;(3)过点M作OB的垂线.四、解答题16.如图,在Rt△ABC中,∠C=90°,AB的垂直平分线DE交BC于点D,垂足为E,且∠CAD∶∠CAB=1∶3,求∠B的度数.17.在△ABC中,AB>BC,AB=AC,DE是AB的垂直平分线,垂足为D点,交AC于点E. (1)若∠ABE=38°,求∠EBC的度数;(2)若△ABC的周长为36cm,一边为13cm,求△BCE的周长.18.如图所示,在△ABC中,∠BAC的平分线AD交BC于点D,DE垂直平分AC,垂足为点E,∠BAD=29°,求∠B的度数.19.如图,AD平分∠BAC,EF垂直平分AD交BC的延长线于F,连接AF.求证:∠B=∠CAF.20.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M.(1)若∠B=70°,则∠NMA的度数是________.(2)连接MB,若AB=8cm,△MBC的周长是14cm.①求BC的长;②在直线MN上是否存在点P,使由P,B,C构成的△PBC的周长值最小?若存在,标出点P 的位置并求△PBC的周长最小值;若不存在,说明理由.参考答案1.C.2.B.3.B.4.A.5.C.6.D.7.C8.B.9.答案为:14.10.答案为:28cm.11.答案为:7.12.答案为:与线段两个端点距离相等的点在这条线段的垂直平分线线上.13.答案为:40.14.答案为:6.15.解:(1)点P为所求作;(2)OC为所求作;(3)MD为所求作;16.解:设∠CAD=x°则∠CAB=3x°,∠BAD=2x°.∵DE是AB的垂直平分线∴DA=DB∴∠B=∠BAD=2x°.∵∠C=90°∴∠CAB+∠B=90°即3x+2x=90,解得x=18∴∠B=2×18°=36°.17.解:∵DE是AB的垂直平分线∴AE=BE∴∠A=∠ABE=38°∵AB=AC∴∠ABC=∠C=71°∴∠EBC=∠ABC-∠ABE=71°-38°=33°由△ABC的周长为36cmAB>BC,AB=AC可知AB=AC=13cm BC=10cm△BCE的周长=BE+CE+BC=AC+BC=13+10=23(cm) 18.解:∵AD平分∠BAC∴∠BAD=∠DAE∵∠BAD=29°∴∠DAE=29°∴∠BAC=58°∵DE垂直平分AC∴AD=DC∴∠DAE=∠DCA=29°∵∠BAC+∠DCA+∠B=180°∴∠B=93°.19.证明:∵EF垂直平分AD∴AF=DF,∠ADF=∠DAF∵∠ADF=∠B+∠BAD,∠DAF=∠CAF+∠CAD又∵AD平分∠BAC∴∠BAD=∠CAD∴∠B=∠CAF.20.解:(1)50°(2)猜想的结论为:∠NMA=2∠B﹣90°.理由:∵AB=AC∴∠B=∠C∴∠A=180°﹣2∠B又∵MN垂直平分AB∴∠NMA=90°﹣∠A=90°﹣(180°﹣2∠B)=2∠B﹣90°. 如图:①∵MN垂直平分AB.∴MB=MA又∵△MBC的周长是14cm∴AC+BC=14cm∴BC=6cm.②当点P与点M重合时,PB+CP的值最小,最小值是8cm.。

湘教版八年级数学上册第二章测试题(含答案)

湘教版八年级数学上册第二章测试题(含答案)

湘教版八年级数学上册第二章测试题(含答案)(本试卷分第Ⅰ卷和第Ⅱ卷,考试时间:120分钟,赋分:120分)分数:____________第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,每小题3分,共36分)1.下列长度的三条线段中能构成三角形的是(C)A.3 cm,10 cm,5 cm B.4 cm,8 cm,4 cmC.5 cm,13 cm,12 cm D.2 cm,7 cm,4 cm2.如图,图中∠1的度数为(D)A.40°B.50° C.60° D.70°3.下列命题中是假命题的是(B)A.实数与数轴上的点一一对应B.如果两个数的绝对值相等,那么这两个数必定也相等C.对顶角相等D.三角形的重心是三角形三条中线的交点4.如图,△ABC≌△DEF,点A与点D对应,点C与点F对应,则图中相等的线段有(D)A.1组B.2组C.3组D.4组5.如图,AD∥BC,AC=BC,∠BAD=115°,则∠C的度数是(B)A.55°B.50°C.45°D.40°第5题图第6题图6.如图,AD是△ABC的中线,△ABD比△ACD的周长大6 cm,则AB与AC的差为(C)A.2 cm B.3 cm C.6 cm D.12 cm7.如图,在△ABC和△DEC中,已知AB=DE,还需要添加两个条件才能使△ABC≌△DEC,不能添加的一组是(C)A.BC=EC,∠B=∠EB.BC=EC,AC=DCC.BC=DC,∠A=∠DD.∠B=∠E,∠A=∠D第7题图第8题图8.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE 的平分线相交于点D,则∠D的度数为(A)A.15° B.17.5° C.20° D.22.5°9.如图,在△ABC中,点D是BC上的点,∠BAD=∠ABC=40°,将△ABD沿着AD 翻折得到△AED,则∠CDE=(B)A.10°B.20°C.40°D.60°第9题图第10题图10.如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC,AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为(C)A.45°B.52.5°C.67.5°D.75°11.如图,△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN至G,取NG=NQ,若△MNP的周长为12,MQ=a,则△MGQ的周长是(D)A.8+2aB.8+aC.6+aD.6+2a12.如图,在△ABC中,点D是BC边上一点,AD=AC,过点D作DE⊥BC交AB于E,若△ADE是等腰三角形,则下列判断中正确的是(B)A.∠B=∠CAD B.∠BED=∠CADC.∠ADB=∠AED D.∠BED=∠ADC第Ⅱ卷(非选择题共84分)二、填空题(本大题共6小题,每小题3分,共18分)13.如图,把手机放在一个支架上面,就可以非常方便使用,这是因为手机支架利用了三角形的稳定性.第13题图第15题图14.“同一平面内,若a⊥b,c⊥b,则a∥c”这个命题的条件是同一平面内,若a⊥b,c⊥b ,结论是a∥c ,这个命题是真命题.15.如图,AC与BD相交于点O,且AB=CD,请添加一个条件,使得△ABO≌△CDO,你添加的条件是∠A=∠C或∠B=∠D或AB∥CD(任一答案即可) .16.用反证法证明“两直线相交,交点只有一个”,第一步假设为两直线相交,交点不止一个.17.如图,△ABC中BC边上的高为h1,△DEF中DE边上的高为h2,则h1和h2的大小关系是h1=h2 .18.如图所示,△ABC,△ADE与△EFG都是等边三角形,D和G分别为AC和AE的中点,若AB=4时,则图形ABCDEFG外围的周长是15 .19.(本题满分10分,每小题5分)把下列命题改写成“如果……那么……”的形式,并写出它的逆命题.(1)不相等的角不是对顶角;(2)等边三角形也是等腰三角形.解:(1)如果两个角不相等,那么它们不是对顶角.逆命题:不是对顶角的两个角不相等.(2)如果一个三角形是等边三角形,那么它也是等腰三角形.逆命题:等腰三角形也是等边三角形.20.(本题满分5分)已知:∠α,线段c,如图所示.求作:Rt△ABC,使∠A=∠α,AB=c,∠C=90°.解:如图,△ABC即为所求.21.(本题满分6分)如图:(1)在△AEC中,AE边上的高是CD;(2)若AB=CD=2 cm,AE=3 cm,求△AEC的面积及CE的长.解:∵AE=3 cm,CD=2 cm,∴S△AEC=12AE·CD=12×3×2=3(cm2).∵S△AEC=12CE·AB=3 cm2,AB=2 cm,∴CE=3 cm.22.(本题满分8分)(东阿县期末)如图,已知∠1与∠2互为补角,且∠3=∠B,(1)求证:EF∥BC;(2)若AC=BC,CE平分∠ACB,求证:AF=CF.证明:(1)∵∠1+∠FDE=180°,∠1与∠2互为补角,∴∠2=∠FDE,∴DF ∥AB , ∴∠3=∠AEF , ∵∠3=∠B , ∴∠B =∠AEF , ∴FE ∥BC . (2)∵FE ∥BC ,∴∠BCE =∠FEC , ∵CE 平分∠ACB , ∴∠ACE =∠BCE , ∴∠FEC =∠ACE , ∴FC =FE , ∵AC =BC , ∴∠A =∠B ,又∵∠B =∠AEF , ∴∠A =∠AEF , ∴AF =FE ,∴AF =CF .23.(本题满分8分)如图,在线段BC 上有两点E ,F ,在线段CB 的异侧有两点A ,D ,满足AB =CD ,AE =DF ,CE =BF ,连接AF .(1)求证:∠B =∠C ;(2)若∠B =40°,∠DFC =30°,当AF 平分∠BAE 时,求∠BAF 的度数.(1)证明:∵CE =BF , ∴CE +EF =BF +EF , ∴BE =CF ,在△ABE 和△DCF 中,⎩⎨⎧AB =CD ,AE =DF ,BE =CF ,∴△ABE ≌△DCF (SSS),∴∠B =∠C .(2)解:由(1)得:△ABE ≌△DCF ,∴∠AEB =∠DFC =30°,∴∠BAE =180°-∠B -∠AEB=180°-40°-30°=110°,∵AF 平分∠BAE ,∴∠BAF =12∠BAE =12×110°=55°.24.(本题满分8分)(洛阳期末)如图,在△ABC 中,边AB 的垂直平分线OM 与边AC 的垂直平分线ON 交于点O ,分别交BC 于点D ,E ,已知△ADE 的周长为5 cm.(1)求BC 的长;(2)分别连接OA ,OB ,OC ,若△OBC 的周长为13 cm ,求OA 的长.解:(1)∵DM 是线段AB 的垂直平分线,∴DA =DB ,同理,EA =EC ,∵△ADE 的周长为5 cm ,∴AD +DE +EA =5,∴BC =DB +DE +EC =AD +DE +EA =5 cm.(2)∵△OBC 的周长为13,∴OB +OC +BC =13,∵BC =5,∴OB +OC =8,∵OM 垂直平分AB ,∴OA =OB ,∴同理,OA =OC ,∴OA =OB =OC =4 cm.25.(本题满分11分)两个大小不同的等腰直角三角板按如图①所示放置,图②是由它抽象出的几何图形,B ,C ,E 在同一条直线上,连接DC .(1)请找出图②中的全等三角形,并说明理由(说明:结论中不得含有未标识的字母);(2)试说明:DC ⊥BE .解:(1)△BAE ≌△CAD .理由:∵△ABC ,△DAE 是等腰直角三角形,∴AB =AC ,AD =AE ,∠BAC =∠DAE =90°,∴∠BAE =∠CAD =90°+∠CAE .在△BAE 和△CAD 中,⎩⎨⎧AB =AC ,∠BAE =∠CAD ,AE =AD ,∴△BAE ≌△CAD (SAS).(2)由(1)得△BAE ≌△CAD .∴∠DCA =∠B =45°.∵∠BCA =45°,∴∠BCD =∠BCA +∠DCA =90°,∴DC ⊥BE .26.(本题满分10分)已知:△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点.(1)如图①,E ,F 分别是AB ,AC 上的点,且BE =AF .求证:△DEF 为等腰直角三角形;(2)如图②,若E ,F 分别为AB ,CA 延长线上的点,仍有BE =AF ,其他条件不变,则△DEF 是否仍为等腰直角三角形?证明你的结论.,①),②)(1)证明:连接AD.∵AB=AC,∠BAC=90°,D为BC的中点,∴AD⊥BC,BD=AD.∴∠B=∠DAC=45°.又∵BE=AF,∴△BDE≌△ADF(SAS).∴ED=FD,∠BDE=∠ADF.∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°.∴△DEF为等腰直角三角形.(2)解:△DEF仍为等腰直角三角形.证明如下:连接AD.∵AB=AC,∠BAC=90°,D为BC的中点,∴AD=BD,AD⊥BC.∴∠DAC=∠ABD=45°.∴∠DAF=∠DBE=135°.又∵AF=BE,∴△DAF≌△DBE(SAS).∴FD=ED,∠FDA=∠EDB.∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°.∴△DEF仍为等腰直角三角形.。

湘教版八年级上册数学第二章三角形单元测试卷(含答案解析)

湘教版八年级上册数学第二章三角形单元测试卷(含答案解析)

湘教版八年级上册数学第二章三角形单元测试卷第I卷(选择题)一、选择题(本大题共12小题,共36分。

在每小题列出的选项中,选出符合题目的一项)1.已知三角形的三边长分别为a、b、c,化简|a+b−c|−2|a−b−c|+|a+b+c|得( )A. 4a−2cB. 2a−2b−cC. 4b+2cD. 2a−2b+c2.如图,在△ABC中,以点B为圆心,AB为半径画弧交BC于点D,以点C为圆心,AC为半径画弧交BC于点E,连接AE,AD.设∠ACB=α,∠EAD=β,则∠B的度数为( )A. 2β−αB. α−12β C. 2α−β D. α+12β3.在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,下列命题中,属于假命题的是( )A. 若∠C=∠A+∠B,则△ABC是直角三角形B. 若c2=b2−a2,则△ABC是直角三角形,且∠C=90°C. 若(c+a)(c−a)=b2,则△ABC是直角三角形D. 若∠A:∠B:∠C=5:2:3,则△ABC是直角三角形4.能说明命题“若a2=b2,则a=b”是假命题的一个反例可以是( )A. a=2,b=−2B. a=2,b=3C. a=−2,b=−2D. a=−2,b=−35.下列命题:①若|a|>|b|,则a>b;②直角三角形的两个锐角互余;③如果a=0,那么ab=0;④同旁内角互补,两直线平行.其中,原命题和逆命题均为真命题的有( )A. 0个B. 1个C. 2个D. 3个6.如图,已知△ABC是等边三角形,点B,C,D,E在同一直线上,且CG=CD,DF=DE,则∠E的度数为( )A. 25°B. 20°C. 15°D. 7.5°7.如图,在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC=a,BC=b,则CD=( )A. a+b2B. a−b2C. a−bD. b−a8.在如图所示的尺规作图中,与AD相等的线段是( )A. 线段ACB. 线段BDC. 线段DCD. 线段DE9.如图,AB//CD,BE垂直平分AD,DC=BC.若∠A=70°,则∠C的度数为( )A. 100°B. 110°C. 115°D. 120°10.如图,Rt△ABC沿直线边AB所在的直线向下平移得到△DEF,下列结论中不一定正确的( )A. S四边形ADHC=S四边形BEFHB. AD=BDC. AD=BED. ∠DEF=90°11.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,将△ABP绕点B顺时针旋转得到△CBQ,连接PQ,则以下结论中不正确是( )A. ∠PBQ=60°B. ∠APB=150°C. S △PQC =6D. S △BPQ =8√312. 下列说法:①相等的角是对顶角;②同位角相等;③过一点有且只有一条直线与已知直线平行;④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;⑤作图语句:连接AD ,并且平分∠BAC.其中正确的有个.( )A. 0B. 1C. 2D. 3第II 卷(非选择题)二、填空题(本大题共4小题,共12分)13. 已知:一等腰三角形的两边长x 、y 满足方程组{2x −y =33x +2y =8,则此等腰三角形的周长为 .14. 已知等腰三角形的一个内角为40∘,则它的顶角的度数为 .15. 如图,在△PAB 中,PA =PB ,M 、N 、K 分别是PA ,PB ,AB 上的点,且AM =BK ,BN =AK.若∠MKN =40°,则∠P 的度数为 .16. 已知线段a ,b 和m ,求作△ABC ,使BC =a ,AC =b ,BC 边上的中线AD =m.下面作法的合理顺序为 (填序号):①延长CD 到B ,使BD =CD ;②连接AB ;③作△ADC ,使DC =12a ,AC =b ,AD =m .三、解答题(本大题共8小题,共72分。

八年级数学上册《第二章 等腰三角形》练习题-含答案(湘教版)

八年级数学上册《第二章 等腰三角形》练习题-含答案(湘教版)

八年级数学上册《第二章 等腰三角形》练习题-含答案(湘教版)一、选择题1.等腰三角形的一边长为3 cm ,周长为19 cm ,则该三角形的腰长为( )A.3 cmB.8 cmC.3 cm 或8 cmD.以上答案均不对2.在等腰三角形ABC 中,AB=AC,其周长为20cm,则边AB 的取值范围是( ).A.1cm<AB<4cmB.5cm<AB<10cmC.4cm<AB<8cmD.4cm<AB<10cm3.已知等腰△ABC 的底边BC=8,且|AC-BC|=2,那么腰AC 的长为( )A.10或6B.10C.6D.8或64.若a,b 为等腰△ABC 的两边,且满足520a b --=,则△ABC 的周长为 ( )A.9B.12C.15或12D.9或125.若三角形三个内角的比为1:2:3,则这个三角形是( )A.锐角三角形B.直角三角形C.等腰三角形D.钝角三角形6.在△ABC 中,∠A=70°,∠B=55°,则△ABC 是( )A.钝角三角形B.等腰三角形C.等边三角形D.等腰直角三角形7.等腰三角形的两边长分别为5和11,则它的周长为( )A .21B .21或27C .27D .258.在等腰△ABC 中,AB=AC ,其周长为20cm ,则AB 边的取值范围是( )A .1cm <AB <4cm B .5cm <AB <10cmC .4cm <AB <8cmD .4cm <AB <10cm二、填空题9.如果等腰三角形的周长为29,其中一边长为7,则这个等腰三角形的底边长是 .10.已知等腰△ABC 的周长为10,若设腰长为x ,则x 的取值范围是 .11.一个等腰三角形的底边长为5 cm ,一腰上的中线把这个三角形的周长分成的两部分之差是3 cm ,则它的腰长是12.如图,l ∥m ,等腰直角三角形ABC 的直角顶点C 在直线m 上,若∠β=20°,则∠α的度数为________13.一副三角形叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角形的斜边AB上,BC与DE交于点M.如果∠ADF=100°,那么∠BMD为度;14.若等腰三角形的腰长为6,则它的底边长a的取值范围是________;若等腰三角形的底边长为4,则它的腰长b的取值范围是_______.三、解答题15.已知等腰三角形一腰上的中线把这个三角形的周长分成 9cm和 15cm两部分求这个三角形的腰长。

湘教版八年级数学上册第2章测试卷(附答案)

湘教版八年级数学上册第2章测试卷(附答案)

第2章检测卷时间:120分钟满分:120分题号一二三总分得分一、选择题(每小题3分,共30分)1.以下列各组线段为边,能组成三角形的是( )A.2cm,3cm,5cm B.5cm,6cm,10cmC.1cm,1cm,3cm D.3cm,4cm,9cm2.如图,图中∠1的度数为( )A.40° B.50°C.60° D.70°第2题图3.下列命题是假命题的是( )A.全等三角形的对应角相等B.若|a|=-a,则a>0C.两直线平行,内错角相等D.只有锐角才有余角4.已知△ABC的六个元素,下面甲、乙、丙三个三角形中标出了某些元素,则与△ABC 全等的三角形是( )A.只有乙 B.只有丙C.甲和乙 D.乙和丙5.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=30°,则∠EAC的度数是( ) A.35° B.40° C.25° D.30°第5题图第6题图6.如图,在△ABC中,DE垂直平分AC,若BC=20cm,AB=12cm,则△ABD的周长为( ) A.20cm B.22cm C.26cm D.32cm7.如图,已知AB∥CD,AB=CD,AE=FD,则图中的全等三角形有( )A.1对 B.2对 C.3对 D.4对第7题图第8题图第9题图8.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,已知EH =EB=1,AE=2,则CH的长是( )A.1 B.2 C.3 D.49.如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC,AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为( )A.45° B.52.5° C.67.5° D.75°10.在等腰△ABC中,AB=AC,边AC上的中线BD将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为( )A.7 B.11C.7或10 D.7或11二、填空题(每小题3分,共24分)11.如图,把手机放在一个支架上面,就可以非常方便地使用,这是因为手机支架利用了三角形的_________性.第11题图12.把“等腰三角形的两个底角相等”改写成“如果……,那么……”形式为:____________________________________________.13.如图,已知∠1=∠2,要得到△ABD≌△ACD,还需补充一个条件,则这个条件可以是__________.第13题图第14题图14.如图,AD是△ABC的角平分线,BE是△ABC的高,∠BAC=40°,则∠AFE的度数为_________.15.如图,AD、BE是△ABC的两条中线,则S△EDC∶S△ABD=________.第15题图第16题图16.如图,在△ABC中,BE平分∠ABC,过点E作DE∥BC交AB于点D,若AE=3cm,△ADE 的周长为10cm,则AB=________.17.如图,已知AB∥CF,E为AC的中点,若FC=6cm,DB=3cm,则AB=_________cm.第17题图第18题图18.如图,△ABC、△ADE与△EFG都是等边三角形,D和G分别为AC和AE的中点,若AB=4,则图形ABCDEFG外围的周长是15.三、解答题(共66分)19.(8分)如图:(1)在△ABC中,BC边上的高是;(2)在△AEC中,AE边上的高是;(3)若AB=CD=2cm,AE=3cm,求△AEC的面积及CE的长.20.(8分)如图,已知AB∥DE,AB=DE,BE=CF,求证:AC∥DF.21.(8分)如图,∠ABC=50°,AD垂直平分线段BC交BC于D,∠ABD的平分线BE交AD于E,连接EC,求∠AEC的度数.22.(10分)如图,已知点D、E是△ABC的边BC上两点,且BD=CE,∠1=∠2.求证:△ABC是等腰三角形.23.(10分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE,连接AE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC的周长为14cm,AC=6cm,求DC长.24.(10分)如图,在△AEC和△DFB中,∠E=∠F,点A,B,C,D在同一直线上,有如下三个关系式:①AE ∥DF ,②AB =CD ,③CE =BF .(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果⊗⊗,那么⊗”);(2)选择(1)中你写出的一个命题,说明它正确的理由.25.(12分)两个大小不同的等腰直角三角板按如图①所示放置,图②是由它抽象出的几何图形,B ,C ,E 在同一条直线上,连接DC .(1)请找出图②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母); (2)试说明:DC ⊥BE .参考答案与解析1.B 2.D 3.B 4.D 5.B 6.D 7.C 8.A9.C 解析:由题意知BC =BD =BE ,∠A =30°,所以∠BDE =∠BED ,∠ABC =∠ACB =∠BDC =75°,所以∠CBD =30°,所以∠DBE =45°,所以∠BDE =12×(180°-45°)=67.5°.故选C.10.D 解析:如图,设AB =AC =x ,BC =y ,则AD =CD =12x .依题意可分两种情况:①⎩⎪⎨⎪⎧x +12x =15,y +12x =12,解得⎩⎪⎨⎪⎧x =10,y =7;②⎩⎪⎨⎪⎧x +12x =12,y +12x =15,解得⎩⎪⎨⎪⎧x =8,y =11.两种情况都满足三角形的三边关系,所以这个等腰三角形的底边长为7或11.故选D. 11.稳定12.如果一个三角形是等腰三角形,那么它的两个底角相等 13.AB =AC (答案不唯一)14.70° 15.1∶2 16.7cm 17.918.15 解析:由题意知AB =BC =4,CD =DE =2,EF =FG =GA =1,故其外围周长为4+4+2+2+1+1+1=15.19.解:(1)AB (2分) (2)CD (4分)(3)∵AE =3cm ,CD =2cm ,∴S △AEC =12AE ·CD =12×3×2=3(cm 2).(6分)∵S △AEC =12CE ·AB=3cm 2,AB =2cm ,∴CE =3cm.(8分)20.证明:∵AB ∥DE ,∴∠ABC =∠DEF .(2分)又∵BE =CF ,∴BE +EC =CF +EC ,即BC=EF .(4分)在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE ,∠ABC =∠DEF ,BC =EF ,∴△ABC ≌△DEF (SAS),(7分)∴∠ACB=∠DFE ,∴AC ∥DF .(8分)21.解:∵AD 垂直且平分BC ,∴∠EDC =90°,BE =EC ,∴∠DBE =∠DCE .(3分)又∵∠ABC =50°,BE 为∠ABC 的平分线,∴∠C =∠EBC =12×50°=25°,∴∠AEC =∠C +∠EDC =90°+25°=115°.(8分)22.证明:∵∠1=∠2,∴AD =AE ,∠ADB =∠AEC .(2分)在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AD =AE ,∠ADB =∠AEC ,BD =CE ,∴△ABD ≌△ACE (SAS),(7分)∴AB =AC ,∴△ABC 是等腰三角形.(10分) 23.解:(1)∵AD 垂直平分BE ,EF 垂直平分AC ,∴AB =AE =EC ,∴∠AED =∠B ,∠C =∠CAE .∵∠BAE =40°,∴∠AED =70°,(3分)∴∠C =12∠AED =35°.(5分)(2)∵△ABC 的周长为14cm ,AC =6cm ,∴AB +BE +EC =8cm ,(8分)即2DE +2EC =8cm ,∴DC =DE +EC =4cm.(10分)24.解:(1)如果①②,那么③.(2分)如果①③,那么②.(4分)(2)选择如果①②,那么③.证明如下:∵AE ∥DF ,∴∠A =∠D .∵AB =CD ,∴AB +BC =BC +CD ,即AC =DB .(7分)在△ACE 和△DBF 中,⎩⎪⎨⎪⎧∠E =∠F ,∠A =∠D ,AC =DB ,∴△ACE ≌△DBF (AAS),∴CE=BF .(10分)25.解:(1)△BAE ≌△CAD .(2分)理由如下:∵△ABC ,△DAE 是等腰直角三角形,∴AB =AC ,AD =AE ,∠BAC =∠DAE =90°,∴∠BA E =∠CAD .(4分)在△BAE 和△CAD 中,⎩⎪⎨⎪⎧AB =AC ,∠BAE =∠CAD ,AE =AD ,∴△BAE ≌△CAD (SAS).(7分) (2)由(1)得△BAE ≌△CAD .∴∠DCA =∠B =45°.(9分)∵∠BCA =45°,∴∠BCD =∠BCA +∠DCA =90°,∴DC ⊥BE .(12分)。

湘教版八年级上册数学第2章 三角形含答案

湘教版八年级上册数学第2章 三角形含答案

湘教版八年级上册数学第2章三角形含答案一、单选题(共15题,共计45分)1、下列叙述中,正确的有()①如果,那么;②满足条件的n不存在;③任意一个三角形的三条高所在的直线相交于一点,且这点一定在三角形的内部;④ΔABC中,若∠A+∠B=2∠C,∠A-∠C=40°,则这个△ABC为钝角三角形.A.0个B.1个C.2个D.3个2、我国汉代数学家赵爽为了证明勾股定理,创制了一幅弦图,后人称其为赵爽弦图(如图1).,图 2 为小明同学根据弦图思路设计的.在正方形 ABCD 中,以点 B 为圆心,AB 为半径作 AC,再以CD 为直径作半圆交 AC 于点E,若边长AB=10,则△CDE 的面积为()A.20B.C.24D.3、如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC 的延长线于点E,则CE的长为()A. B. C. D.24、如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠DEF的度数是( )A.25°B.40°C.45°D.50°5、已知一个菱形的周长为8,有一个内角为120°,则该菱形较短的对角线长为()A.4B.C.2D.16、△ABC中,AB=AC,CD为AB上的高,且△ADC为等腰三角形,则∠BCD等于( )A.67.5°B.22.5°C.45°D.67.5°或22.5°7、如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对8、如图,菱形ABCD中,AB=AC,点E,F在AB,BC上,AE=BF,AF,CE交于G,GD和AC交于H,则下列结论中成立的有()个.①△ABF≌△CAE;②∠AGC=120°;③DG=AG+GC;④AD2=DH•DG;⑤△ABF≌△DAH.A.2B.3C.4D.59、下列命题是真命题的是()A.同位角相等B.有且只有一条直线与已知直线垂直C.垂线段最短D.直线外一点到这条直线的垂线段,叫做点到直线的距离10、在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3㎝的速度向点A 运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是等腰三角形时,运动的时间是()A.2.5秒B.3秒C.3.5秒D.4秒11、下列能断定△ABC为等腰三角形的是()A.∠A=40º、∠B=50ºB.∠A=50º、∠B=65ºC.AB=AC=3,BC=6 D.AB=5、BC=8,∠B=45º12、下列长度的3根小木棒不能搭成三角形的是()A.2cm,3cm,4cmB.1cm,2cm,3cmC.3cm,4cm,5cm D.4cm,5cm,6cm13、如图,在Rt△ABC 中,,D、E是斜边BC上两点,且∠DAE=45°,将△绕点顺时针旋转90 后,得到△,连接.列结论:①△ADC≌△AFB;②△≌△;③△≌△;④其中正确的是( )A.②④B.①④C.②③D.①③14、如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=50°,则∠C的度数为()A.30°B.40°C.50°D.80°15、不能判定两个三角形全等的条件是()A.三条边对应相等B.两角及一边对应相等C.两边及夹角对应相等 D.两边及一边的对角相等二、填空题(共10题,共计30分)16、若一个三角形三个内角的度数之比为1:2:3,则这个三角形中的最大的角度是________.17、如图,△ABC的面积为1cm2, BP平分∠ABC,AP⊥BP于P,则△PBC的面积为________.18、如图,在等腰△ABC 中,AB = AC,∠A = 36°,BD⊥AC 于点 D,则∠CBD =________.19、已知等腰三角形的一个角为42°,则它的底角度数为________.20、如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=________21、如图,△ADB≌△ECB,若∠CBD=40°,BD⊥EC,则∠D的度数为________.22、如图,点A是反比例函数y= 的图象上位于第一象限的点,点B在x轴的正半轴上,过点B作BC⊥x轴,与线段OA的延长线交于点C,与反比例函数的图象交于点D.若直线 AD恰为线段 OC 的中垂线,则sinC=________.23、建筑工地上吊车的横梁上有许多三角形,这是利用了________ .24、如图,等边三角形ABC内接于⊙O,点D在⊙O上,∠ABD=25°,则∠BAD =________°.25、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠ACD=3∠BCD,E是斜边AB的中点,则∠ECD的度数为________度.三、解答题(共5题,共计25分)26、如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.若∠B=35°,∠E=20°,求∠BAC的度数.27、已知:如图,在Rt△ABC中,∠C=90°,∠BAC,∠ABC的平分线相交于点D,DE⊥BC,DF⊥AC,垂足分别为E,F,求证:四边形CEDF是正方形.28、如图,在ABCD中,∠BAD的平分线AE交DC于E,若∠DAE=25°,求∠C,∠B的度数.29、如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求证:CF⊥DE于点F.30、如图,△ABC,△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上,求证:△CDA≌△CEB.参考答案一、单选题(共15题,共计45分)1、B2、A3、B4、D5、C6、D7、D8、D9、C10、D11、B12、B13、D14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湘教版八年级数学上册第二章测试题(含答案)(本试卷分第Ⅰ卷和第Ⅱ卷,考试时间:120分钟,赋分:120分)分数:____________第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,每小题3分,共36分)1.下列长度的三条线段中能构成三角形的是(C)A.3 cm,10 cm,5 cm B.4 cm,8 cm,4 cmC.5 cm,13 cm,12 cm D.2 cm,7 cm,4 cm2.如图,图中∠1的度数为(D)A.40°B.50° C.60° D.70°3.下列命题中是假命题的是(B)A.实数与数轴上的点一一对应B.如果两个数的绝对值相等,那么这两个数必定也相等C.对顶角相等D.三角形的重心是三角形三条中线的交点4.如图,△ABC≌△DEF,点A与点D对应,点C与点F对应,则图中相等的线段有(D)A.1组B.2组C.3组D.4组5.如图,AD∥BC,AC=BC,∠BAD=115°,则∠C的度数是(B)A.55°B.50°C.45°D.40°第5题图第6题图6.如图,AD是△ABC的中线,△ABD比△ACD的周长大6 cm,则AB与AC的差为(C)A.2 cm B.3 cm C.6 cm D.12 cm7.如图,在△ABC和△DEC中,已知AB=DE,还需要添加两个条件才能使△ABC≌△DEC,不能添加的一组是(C)A.BC=EC,∠B=∠EB.BC=EC,AC=DCC.BC=DC,∠A=∠DD.∠B=∠E,∠A=∠D第7题图第8题图8.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE 的平分线相交于点D,则∠D的度数为(A)A.15° B.17.5° C.20° D.22.5°9.如图,在△ABC中,点D是BC上的点,∠BAD=∠ABC=40°,将△ABD沿着AD 翻折得到△AED,则∠CDE=(B)A.10°B.20°C.40°D.60°第9题图第10题图10.如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC,AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为(C)A.45°B.52.5°C.67.5°D.75°11.如图,△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN至G,取NG=NQ,若△MNP的周长为12,MQ=a,则△MGQ的周长是(D)A.8+2aB.8+aC.6+aD.6+2a12.如图,在△ABC中,点D是BC边上一点,AD=AC,过点D作DE⊥BC交AB于E,若△ADE是等腰三角形,则下列判断中正确的是(B)A.∠B=∠CAD B.∠BED=∠CADC.∠ADB=∠AED D.∠BED=∠ADC第Ⅱ卷(非选择题共84分)二、填空题(本大题共6小题,每小题3分,共18分)13.如图,把手机放在一个支架上面,就可以非常方便使用,这是因为手机支架利用了三角形的稳定性.第13题图第15题图14.“同一平面内,若a⊥b,c⊥b,则a∥c”这个命题的条件是同一平面内,若a⊥b,c⊥b ,结论是a∥c ,这个命题是真命题.15.如图,AC与BD相交于点O,且AB=CD,请添加一个条件,使得△ABO≌△CDO,你添加的条件是∠A=∠C或∠B=∠D或AB∥CD(任一答案即可) .16.用反证法证明“两直线相交,交点只有一个”,第一步假设为两直线相交,交点不止一个.17.如图,△ABC中BC边上的高为h1,△DEF中DE边上的高为h2,则h1和h2的大小关系是h1=h2 .18.如图所示,△ABC,△ADE与△EFG都是等边三角形,D和G分别为AC和AE的中点,若AB=4时,则图形ABCDEFG外围的周长是15 .19.(本题满分10分,每小题5分)把下列命题改写成“如果……那么……”的形式,并写出它的逆命题.(1)不相等的角不是对顶角;(2)等边三角形也是等腰三角形.解:(1)如果两个角不相等,那么它们不是对顶角.逆命题:不是对顶角的两个角不相等.(2)如果一个三角形是等边三角形,那么它也是等腰三角形.逆命题:等腰三角形也是等边三角形.20.(本题满分5分)已知:∠α,线段c,如图所示.求作:Rt△ABC,使∠A=∠α,AB=c,∠C=90°.解:如图,△ABC即为所求.21.(本题满分6分)如图:(1)在△AEC中,AE边上的高是CD;(2)若AB=CD=2 cm,AE=3 cm,求△AEC的面积及CE的长.解:∵AE=3 cm,CD=2 cm,∴S△AEC=12AE·CD=12×3×2=3(cm2).∵S△AEC=12CE·AB=3 cm2,AB=2 cm,∴CE=3 cm.22.(本题满分8分)(东阿县期末)如图,已知∠1与∠2互为补角,且∠3=∠B,(1)求证:EF∥BC;(2)若AC=BC,CE平分∠ACB,求证:AF=CF.证明:(1)∵∠1+∠FDE=180°,∠1与∠2互为补角,∴∠2=∠FDE,∴DF ∥AB , ∴∠3=∠AEF , ∵∠3=∠B , ∴∠B =∠AEF , ∴FE ∥BC . (2)∵FE ∥BC ,∴∠BCE =∠FEC , ∵CE 平分∠ACB , ∴∠ACE =∠BCE , ∴∠FEC =∠ACE , ∴FC =FE , ∵AC =BC , ∴∠A =∠B ,又∵∠B =∠AEF , ∴∠A =∠AEF , ∴AF =FE ,∴AF =CF .23.(本题满分8分)如图,在线段BC 上有两点E ,F ,在线段CB 的异侧有两点A ,D ,满足AB =CD ,AE =DF ,CE =BF ,连接AF .(1)求证:∠B =∠C ;(2)若∠B =40°,∠DFC =30°,当AF 平分∠BAE 时,求∠BAF 的度数.(1)证明:∵CE =BF , ∴CE +EF =BF +EF , ∴BE =CF ,在△ABE 和△DCF 中,⎩⎨⎧AB =CD ,AE =DF ,BE =CF ,∴△ABE ≌△DCF (SSS),∴∠B =∠C .(2)解:由(1)得:△ABE ≌△DCF ,∴∠AEB =∠DFC =30°,∴∠BAE =180°-∠B -∠AEB=180°-40°-30°=110°,∵AF 平分∠BAE ,∴∠BAF =12∠BAE =12×110°=55°.24.(本题满分8分)(洛阳期末)如图,在△ABC 中,边AB 的垂直平分线OM 与边AC 的垂直平分线ON 交于点O ,分别交BC 于点D ,E ,已知△ADE 的周长为5 cm.(1)求BC 的长;(2)分别连接OA ,OB ,OC ,若△OBC 的周长为13 cm ,求OA 的长.解:(1)∵DM 是线段AB 的垂直平分线,∴DA =DB ,同理,EA =EC ,∵△ADE 的周长为5 cm ,∴AD +DE +EA =5,∴BC =DB +DE +EC =AD +DE +EA =5 cm.(2)∵△OBC 的周长为13,∴OB +OC +BC =13,∵BC =5,∴OB +OC =8,∵OM 垂直平分AB ,∴OA =OB ,∴同理,OA =OC ,∴OA =OB =OC =4 cm.25.(本题满分11分)两个大小不同的等腰直角三角板按如图①所示放置,图②是由它抽象出的几何图形,B ,C ,E 在同一条直线上,连接DC .(1)请找出图②中的全等三角形,并说明理由(说明:结论中不得含有未标识的字母);(2)试说明:DC ⊥BE .解:(1)△BAE ≌△CAD .理由:∵△ABC ,△DAE 是等腰直角三角形,∴AB =AC ,AD =AE ,∠BAC =∠DAE =90°,∴∠BAE =∠CAD =90°+∠CAE .在△BAE 和△CAD 中,⎩⎨⎧AB =AC ,∠BAE =∠CAD ,AE =AD ,∴△BAE ≌△CAD (SAS).(2)由(1)得△BAE ≌△CAD .∴∠DCA =∠B =45°.∵∠BCA =45°,∴∠BCD =∠BCA +∠DCA =90°,∴DC ⊥BE .26.(本题满分10分)已知:△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点.(1)如图①,E ,F 分别是AB ,AC 上的点,且BE =AF .求证:△DEF 为等腰直角三角形;(2)如图②,若E ,F 分别为AB ,CA 延长线上的点,仍有BE =AF ,其他条件不变,则△DEF 是否仍为等腰直角三角形?证明你的结论.,①),②)(1)证明:连接AD.∵AB=AC,∠BAC=90°,D为BC的中点,∴AD⊥BC,BD=AD.∴∠B=∠DAC=45°.又∵BE=AF,∴△BDE≌△ADF(SAS).∴ED=FD,∠BDE=∠ADF.∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°.∴△DEF为等腰直角三角形.(2)解:△DEF仍为等腰直角三角形.证明如下:连接AD.∵AB=AC,∠BAC=90°,D为BC的中点,∴AD=BD,AD⊥BC.∴∠DAC=∠ABD=45°.∴∠DAF=∠DBE=135°.又∵AF=BE,∴△DAF≌△DBE(SAS).∴FD=ED,∠FDA=∠EDB.∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°.∴△DEF仍为等腰直角三角形.。

相关文档
最新文档