北京科技大学2004年《计算方法》试题及答案

合集下载

北科大研究生计算方法作业

北科大研究生计算方法作业

计算方法姓名:学号:班级:指导教师:目录作业1 (1)作业2 (5)作业3 (8)作业4 (10)作业5 (14)作业6 (16)作业7 (17)作业11、分别用不动点迭代与Newton 法求解方程 -+=x 2x e 30的正根与负根。

解:(1)不动点迭代a.原理:将 230x x e -+=变型为1()k k x g x +=进行迭代,直到 为止变型后为有两种形式: 和 b.程序:初值为1形式: x=zeros(100,1); tol=1; i=1; x(1)=1;while tol>=10e-6; disp(x(i))x(i+1)=log(2*x(i)+3); tol=abs(x(i+1)-x(i)); i=i+1; enddisp(i-1); 形式:x=zeros(100,1); tol=1; i=1; x(1)=1;while tol>=10e-6; disp(x(i))x(i+1)=(exp(x(i))-3)/2; tol=abs(x(i+1)-x(i)); i=i+1; end disp(i-1);c.运行结果:初值为1(23)1lnk x k x ++=6110k k x x -+-<132k x k e x +-=(23)1ln k x k x ++=132k xk e x +-=迭代次数:11迭代次数:9(2)Nexton法a.原理:令()()1'kk kkf xx xf x+=-得到迭代公式为:()1232kkxkk k xx ex xe+-+=--b.程序:初值为0x=zeros(100,1);tol=1;i=1;x(1)=0;while tol>=10e-6;disp(x(i))x(i+1)=x(i)-((2*x(i)-exp(x(i))+3)/(2-exp(x(i))));tol=abs(x(i+1)-x(i));i=i+1;enddisp(i-1);初值为1x=zeros(100,1);tol=1;i=1;x(1)=1;while tol>=10e-6;disp(x(i))x(i+1)=x(i)-((2*x(i)-exp(x(i))+3)/(2-exp(x(i))));tol=abs(x(i+1)-x(i));i=i+1;enddisp(i-1)a=x(i-1);b=2*a-exp(a)+3;disp(b);c.运行结果:初值为0迭代次数:5初值为1迭代次数:8 -1.6171e -006结果分析:不动点迭代会因为迭代公式选取的不同得出不同的迭代结果,而牛顿法迭代会因为初值选取的不同而得到不同的结果。

2004-2005学年度第2学期期末试卷答案

2004-2005学年度第2学期期末试卷答案

北京科技大学2004-2005学年度第2学期材料科学与工程基础试题材02.1-02.5班, 2005-6参考答案1.①是左螺位错,因t.b=-a,滑移面(100),(001)。

(5分)。

②是刃位错,因t.b=0,滑移面(100)。

(5分)。

①号位错滑移面不唯一,它不能在(010)面上滑移。

(5分)2.可能发生;两平行小角度倾转晶界,刃位错都平行,合并后,位错间间距减小,取向差加大,为θ1+θ2;不存在不同类型位错间的作用或同类位错、但不平行的问题。

这正是回复过程发生的组织变化。

也可用小角度晶界能量与取向差的公式分别进行(加合)计算并比较前后能量差异从而确定反应能否进行。

(10分)3.按结构看,晶界可分为小角晶界和大角晶界;(3分)。

晶界结构的普遍特点是原子排列比晶内混乱的多,特别是大角晶界上原子排列更加混乱。

(3分)λ形变时,晶界阻碍位错运动,造成位错塞积;晶粒越细,晶界越多,强化越明显,有Hall-Petch关系;(3分)λ相变时,晶界是高能地点,是有效的非均匀形核处,晶界越多,新相形核地点越多,可细化晶粒,也越难获得大的过冷度。

(3分)λ再结晶时,晶界的作用与相变时相似,也是加速再结晶过程。

再结晶时只能是非均匀形核。

(3分)4.对一定结构的晶体,作用在滑移面滑移方向上的切应力达一定值时,滑移系才能开动;该值不随外力作用的方向而改变,只与材料本身性质有关。

这个规律称临界分切应力定律。

(5分)。

力轴为[111]时,有6个滑移系的取向因子相同且最大,因而有6个滑移系可同时开动。

力轴为[123]时,开动的滑移系是1个。

(5分,不要求写出具体的滑移系)。

两力轴对应的应力应变曲线有较大差异;[111]力轴下没有易滑移阶段,塑性变形开始就是多系滑移,位错间有强的交互作用,造成强的加工硬化;[123]力轴拉伸时,单系滑移对应易滑移阶段,对应典型的单晶拉伸三阶段(易滑移/线性硬化/抛物线)。

(5分,画出正确的示意图/曲线也可得满分)。

计算方法习题答案

计算方法习题答案

计算方法习题答案在数学和工程领域,计算方法是指解决数学问题的一系列算法和程序。

以下是一些常见的计算方法习题及其答案。

习题1:求解线性方程组考虑线性方程组:\[ \begin{align*}3x + 2y &= 7, \\4x - y &= 5.\end{align*} \]答案:使用高斯消元法,我们首先将第二个方程乘以2,然后从第一个方程中减去得到:\[ \begin{align*}3x + 2y &= 7, \\0x + 9y &= 17.\end{align*} \]解得 \( y = \frac{17}{9} \)。

将 \( y \) 的值代入第一个方程,解得 \( x = 1 \)。

因此,解为 \( x = 1, y = \frac{17}{9} \)。

习题2:数值积分给定函数 \( f(x) = x^2 \),求在区间 [0, 1] 上的积分。

答案:使用梯形法则进行数值积分,取两个子区间:\[ \int_{0}^{1} x^2 dx \approx \frac{1}{2} \left( f(0) + f(1) \right) = \frac{1}{2} \left( 0 + 1 \right) = 0.5. \]习题3:求解常微分方程的初值问题考虑初值问题:\[ y' = 3x^2 - 2y, \quad y(0) = 1. \]答案:使用欧拉方法,取步长 \( h = 0.1 \),计算 \( y \) 的值:\[ y_{n+1} = y_n + h f(x_n, y_n). \]从 \( y_0 = 1 \) 开始,计算得到:\[ y_1 = 1 + 0.1(0 - 2) = 1.2, \]\[ y_2 = 1.2 + 0.1(0.01 - 2.4) = 1.4, \]以此类推,可以得到 \( y \) 在区间 [0, 1] 上的近似值。

习题4:数值解非线性方程给定方程 \( f(x) = x^3 - x - 1 = 0 \),求根。

计算方法习题集及答案第四版

计算方法习题集及答案第四版
位)。
解:
y次迭代公式
k
0
1
2
3
3.5
3.64
3.63
3.63
6. 试证用牛顿法求方程在[1,3]内的根是线性收敛的。 解:

y次迭代公式 故
从而 ,时, 故, 故牛顿迭代公式是线性收敛的 7. 应用牛顿法于方程, 导出求立方根的迭代公式,并讨论其收敛
性。
解:
相应的牛顿迭代公式为 迭代函数,, 则,
习题1.1
1. 什么叫数值方法?数值方法的基本思想及其优劣的评价标准如 何?
数值方法是利用计算机求解数学问题近似解的方法 2. 试证明 及
证明: (1)令
即 又 即 ⑵ 设,不妨设, 令 即对任意非零,有 下面证明存在向量,使得, 设,取向量。其中。 显然且任意分量为, 故有即证。 3. 古代数学家祖冲之曾以作为圆周率的近似值,问此近似值具有
解: (1)迭代公式,公式收敛
k
0
1
2
3
0
(2),, 局部收敛 k0 1 2 3
0.25
0.25098 0.25098
456789
1.5 1.322 1.421 1.367 1.397 1.380 1.390 1.384 1.387 1.386
2. 方程在附近有根,把方程写成三种不同的等价形式:
(1),对应迭代公式;
9
10
11
12
13
14
15
16
1.4650 1.46593 1.4653 1.46572 1.46548 1.46563 1.465534 1.465595
迭代公式(2):
k
0
1
2
3

计算方法的课后答案

计算方法的课后答案

《计算方法》习题答案 第一章 数值计算中的误差 1.什么是计算方法?(狭义解释)答:计算方法就是将所求的的数学问题简化为一系列的算术运算和逻辑运算,以便在计算机上编程上机,求出问题的数值解,并对算法的收敛性、稳定性和误差进行分析、计算。

2.一个实际问题利用计算机解决所采取的五个步骤是什么?答:一个实际问题当利用计算机来解决时,应采取以下五个步骤:实际问题→建立数学模型→构造数值算法→编程上机→获得近似结果4.利用秦九韶算法计算多项式4)(53-+-=x x x x P 在3-=x 处的值,并编程获得解。

解:400)(2345-+⋅+-⋅+=x x x x x x P ,从而 1 0 -1 0 1 -4 -3 -3 9 -24 72 -219 1 -3 8 -24 73 -223所以,多项式4)(53-+-=x x x x P 在3-=x 处的值223)3(-=-P 。

5.叙述误差的种类及来源。

答:误差的种类及来源有如下四个方面: (1)模型误差:数学模型是对实际问题进行抽象,忽略一些次要因素简化得到的,它是原始问题的近似,即使数学模型能求出准确解,也与实际问题的真解不同,我们把数学模型与实际问题之间存在的误差称为模型误差。

(2)观测误差:在建模和具体运算过程中所用的一些原始数据往往都是通过观测、实验得来的,由于仪器的精密性,实验手段的局限性,周围环境的变化以及人们的工作态度和能力等因素,而使数据必然带有误差,这种误差称为观测误差。

(3)截断误差:理论上的精确值往往要求用无限次的运算才能得到,而实际运算时只能用有限次运算的结果来近似,这样引起的误差称为截断误差(或方法误差)。

(4)舍入误差:在数值计算过程中还会用到一些无穷小数,而计算机受机器字长的限制,它所能表示的数据只能是一定的有限数位,需要把数据按四舍五入成一定位数的近似的有理数来代替。

这样引起的误差称为舍入误差。

6.掌握绝对误差(限)和相对误差(限)的定义公式。

计算方法教程(第2版)习题答案

计算方法教程(第2版)习题答案

《计算方法教程(第二版)》习题答案第一章 习题答案1、浮点数系),,,(U L t F β共有 1)1()1(21++---L U t ββ 个数。

3、a .4097b .62211101110.0,211101000.0⨯⨯c .6211111101.0⨯ 4、设实数R x ∈,则按β进制可表达为:,1,,,3,2,011)11221(+=<≤<≤⨯++++++±=t t j jd d l t t d t t d dd x βββββββ按四舍五入的原则,当它进入浮点数系),,,(U L t F β时,若β211<+t d ,则 l tt d dd x fl ββββ⨯++±=)221()(若 β211≥+t d ,则 l tt d d d x fl ββββ⨯+++±=)1221()(对第一种情况:t l lt l t t d x fl x -++=⨯≤⨯+=-βββββ21)21(1)()(11对第二种情况:t l lt l t t d x fl x -++=⨯≤⨯--=-ββββββ21)21(1)(11就是说总有: tl x fl x -≤-β21)( 另一方面,浮点数要求 β<≤11d , 故有l x ββ1≥,将此两者相除,便得t x x fl x -≤-121)(β 5、a . 5960.1 b . 5962.1 后一种准确6、最后一个计算式:00025509.0原因:避免相近数相减,避免大数相乘,减少运算次数7、a .]!3)2(!2)2(2[2132 +++=x x x yb .)21)(1(22x x x y ++=c .)11(222-++=x x x yd . +-+-=!2)2(!6)2(!4)2(!2)2(2642x x x x y e .222qp p q y ++=8、01786.098.5521==x x9、 m )10(m f - 1 233406.0- 3 20757.0- 5 8.07 710计算宜采用:])!42151()!32141()!22131[()(2432+⨯-+⨯-+⨯--=x x x f第二章 习题答案1、a .Tx )2,1,3(= b .Tx )1,2,1,2(--= c .无法解 2、a .与 b .同上, c .T T x )2188.1,3125.0,2188.1,5312.0()39,10,39,17(321---≈---=7、a .⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---14112111473123247212122123211231321213122 b . ⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫⎝⎛----333211212110211221213231532223522121⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=111211212130213221219、T x )3415.46,3659.85,1220.95,1220.95,3659.85,3415.46(1= T x )8293.26,3171.7,4390.2,4390.2,3171.7,8293.26(2= 10、T LDL 分解:)015.0,579.3,9.1,10(diag D =⎪⎪⎪⎪⎪⎭⎫⎝⎛=16030.07895.05.018947.07.019.01L Cholesky 分解⎪⎪⎪⎪⎪⎭⎫⎝⎛=1225.01408.10833.15811.18918.12333.12136.23784.18460.21623.3G 解:)1,1,2,2(--=x 12、16,12,1612111===∞A A A611,4083.1,61122212===∞A A A2)(940)()(12111===∞A Cond A Cond A Cond524)(748)()(22221===∞A C o n d A C o n d A C o n d⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=--180.0000180.0000- 30.0000 180.0000- 192.0000 36.0000- 30.0000 36.0000- 9.0000,0.0139 0.1111- 0.0694- 0.1111- 0.0556 0.1111- 0.0694- 0.1111- 0.0139 1211A A1151.372,1666.0212211==--A A15、 1A :对应 Seidel Gauss - 迭代收敛,Jacobi 迭代不收敛; 2A :对应 Seidel Gauss - 迭代收敛,Jacobi 迭代不收敛; 3A :对应 Seidel Gauss - 迭代收敛,Jacobi 迭代收敛;第三章 习题答案1、Lagrange 插值多项式:)80.466.5)(20.366.5)(70.266.5)(00.166.5()80.4)(20.3)(70.2)(00.1(7.51)66.580.4)(20.380.4)(70.280.4)(00.180.4()66.5)(20.3)(70.2)(00.1(3.38)66.520.3)(80.420.3)(70.220.3)(00.120.3()66.5)(80.4)(70.2)(00.1(0.22)66.570.2)(80.470.2)(20.370.2)(00.170.2()66.5)(80.4)(20.3)(00.1(8.17)66.500.1)(80.400.1)(20.300.1)(70.200.1()66.5)(80.4)(20.3)(70.2(2.14)(4--------⨯+--------⨯+--------⨯+--------⨯+--------⨯=x x x x x x x x x x x x x x x x x x x x x L Newton 插值多项式:)80.4)(20.3)(70.2)(00.1(21444779.0)20.3)(70.2)(00.1(527480131.0)70.2)(00.1(855614973.2)00.1(117647059.22.14)(4----+------+-+=x x x x x x x x x x x N2、设)(x y y =,其反函数是以y 为自变量的函数)(y x x =,对)(y x 作插值多项式:)1744.0)(1081.0)(4016.0)(7001.0(01253.0)1081.0)(4016.0)(7001.0(01531.0)4016.0)(7001.0(009640.0)7001.0(3350.01000.0)(----+---+--+--=y y y y y y y y y y y N 3376.0)0(=N 是0)(=x y 在]4.0,3.0[中的近似根。

北京科技大学2004-2005学年度第1学期高等数学A试题及答案

北京科技大学2004-2005学年度第1学期高等数学A试题及答案

北京科技大学2004 — 2005 学年度第 1 学期 高等数学A (2004级) 试题 (时间120分钟)学院 班级 学号 姓名一.填空题 (每小题3分,共15分) 1. 设过原点的平面π既平行于直线: z y x =+=-221 又垂直于平面32=--z y x 。

则平面π的方程为 。

2.设),1,0(,)(≠>=a a a x f x 则 )]()2()1(ln[1lim2n f f f nn ∞→= 。

3.已知xy z arctan=,则全微分=z d 。

4.设x e -是函数)(x f 的一个原函数,则+=⎰C dx x f x )(ln 2 5.设0≥x ,位于曲线2x xe y -=下方,x 轴上方图形的面积为 。

二.单项选择题 (每小题3分,共15分)6.设向量),(,111,3b a b a b a b a=-=⨯=⋅θ),,(满足:与,则下列结论正确的是【 】 (A) 6πθ=(B) 3πθ=(C) 65πθ=(D) 32πθ=7.函数52)(24+-=x x x f 在区间 [ -1/2 , 2 ] 上的最大值和最小值分别是【 】(A)16/73,4 (B) 16/73,3 (C) 13,16/73 (D) 13,4 8.设函数)(x y y =由方程0=-y x e e 确定,则)0('',)0('y y 分别是【 】( A ) 1 ,0 ( B ) 1 ,1 ( C ) 0 ,1 ( D ) 0 ,09.=+⎰-xdx x x2sin )sin (224ππ【 】(A) 3/4 (B) 0 (C) 4/3 (D) 110.函数),(y x f 的偏导数),(y x f x ,),(y x f y 在点),(00y x 连续是),(y x f 在该点可微的【 】(A) 充分必要条件 (B) 充分条件 (C) 必要条件 (D) 既非充分,又非必要条件。

北京科技大学计算机与通信工程学院数字电子历考研真题大全附答案

北京科技大学计算机与通信工程学院数字电子历考研真题大全附答案

目 录2014年北京科技大学815数字电子考研真题 ............................................. 5 2013年北京科技大学815数字电子考研真题 ............................................ 11 2012年北京科技大学815电路与数字电子技术考研真题 .................................. 15 2011年北京科技大学815电路及数字电子技术考研真题 .................................. 18 2010年北京科技大学815电路及数字电子技术考研真题 .................................. 22 2009年北京科技大学815电路及数字电子技术考研真题 .................................. 26 2008年北京科技大学815电路及数字电子技术考研真题 .................................. 29 2007年北京科技大学415电路及数字电子技术考研真题 .................................. 33 2006年北京科技大学415电路及数字电子技术考研真题 .................................. 37 2005年北京科技大学电路及数字电子技术考研真题 ...................................... 41 2004年北京科技大学415电路及数字电子技术考研真题 .................................. 44 2003年北京科技大学415电路及数字电子技术考研真题 .................................. 48 2002年北京科技大学电路及数字电子技术考研真题 ...................................... 53 2001年北京科技大学电路及数字电子技术考研真题 ...................................... 57 2000年北京科技大学电路及数字电子技术考研真题 ...................................... 62 说明:近年科目代码和科目名称为815数字电子,往年科目代码和科目名称为815电路与数字电子技术等。

北京科技大学(已有10试题)

北京科技大学(已有10试题)

北京科技大学土木与环境工程学院地质学2003——2010工程流体力学2003——2005,2007——2010结构力学2004,2007——2010安全原理2008——2010生物化学2005岩石力学2000——2005,2007——2010晶体光学2004——2006,2008——2010普通化学2006——2010普通化学(A)2004——2005结晶学及矿物学2003——2005,2008材料力学2003(注:试卷上面标注的是:材料加工工程专业)材料力学B 2004——2005(注:试卷上面标注的是:材料加工工程、材料科学与工程专业)材料力学2003(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、固体力学专业)材料力学C 2010(注:试卷上面标注的是:车辆工程、物流工程、机械工程专业)材料力学C 2004——2008(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、机械工程、物流工程、机械装备及控制专业)材料力学D 2004——2005,2007——2010(注:试卷上面标注的是:固体力学专业)电工技术2003——2005,2008——2010化工原理2003——2005普通地质学2003,2005,2007,2010流体力学2003——2008水处理原理2003——2010钢筋混凝土结构2003——2005工程地质学2003——2005微生物学A 2008——2010微生物学B 2008——2010微生物学2007环境微生物学2004——2005环境规划与管理2007——2010有机化学A(分析化学专业)2004有机化学(分析化学专业)2005有机化学(生物化工、环境科学专业)2004有机化学(生物化工专业)2003有机化学B(生物化工、环境科学、环境工程专业)2005有机化学(B)(化学专业)2010有机化学(B)(分析化学、无机化学、有机化学、物理化学专业)2007——2008 建筑材料学2004——2005矿床学2003——2004矿山岩石力学2007——2010浮选原理2008——2010土力学2004——2005土力学与地基基础2003液压与液力传动2003——2005环境学2004——2005单考数学2003——2004,2008——2010单考俄语2008——2010单考英语2008——2010单考政治2008——2010冶金与生态工程学院传输原理2003——2010冶金物理化学2003——2010普通生态学2006——2010普通物理2008——2010普通物理(A)2004——2005普通化学2006——2010普通化学(A)2004——2005物理化学(A)2003——2010物理化学(B)2005——2010综合科技史2003——2010文物保护基础2004——2006,2008——2010中国古代史2004——2010社会学理论2010社会学2003——2008材料力学2003(注:试卷上面标注的是:材料加工工程专业)材料力学B 2004——2005(注:试卷上面标注的是:材料加工工程、材料科学与工程专业)材料力学2003(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、固体力学专业)材料力学C 2010(注:试卷上面标注的是:车辆工程、物流工程、机械工程专业)材料力学C 2004——2008(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、机械工程、物流工程、机械装备及控制专业)材料力学D 2004——2005,2007——2010(注:试卷上面标注的是:固体力学专业)钢筋混凝土结构2003——2005微生物学A 2008——2010微生物学B 2008——2010微生物学2007环境微生物学2004——2005生物化学2005统计物理2003——2005,2010单考数学2003——2004,2008——2010单考俄语2008——2010单考英语2008——2010单考政治2008——2010材料科学与工程学院物理化学(A)2003——2010物理化学(B)2005——2010材料化学2005金属学2003——2005,2007——2010材料力学2003(注:试卷上面标注的是:材料加工工程专业)材料力学B 2004——2005(注:试卷上面标注的是:材料加工工程、材料科学与工程专业)材料力学2003(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、固体力学专业)材料力学C 2010(注:试卷上面标注的是:车辆工程、物流工程、机械工程专业)材料力学C 2004——2008(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、机械工程、物流工程、机械装备及控制专业)材料力学D 2004——2005,2007——2010(注:试卷上面标注的是:固体力学专业)钢筋混凝土结构2003——2005统计物理2003——2005,2010传输原理2003——2010冶金物理化学2003——2010普通化学2006——2010普通化学(A)2004——2005综合科技史2003——2010文物保护基础2004——2006,2008——2010社会学理论2010社会学2003——2008设计基础2004——2006,2008——2010设计理论2004——2010传热学2003——2005,2007——2010工程热力学2003——2005,2007——2010生产运作与管理2003——2004现代生产管理2005,2007——2010电路及数字电子技术2003——2010通信原理2004——2010计算机组成原理及数据结构2006——2008计算机组成原理2003计算机组成原理及计算机网络2004——2005计算机组成原理及计算机系统结构2004——2005数据结构1999——2000,2003(2003有答案)数据结构及软件工程2004——2005高等代数2003——2010数学分析2004——2010常微分方程2003——2005概率统计2004——2005概率与数理统计2003——2005普通物理2008——2010普通物理(A)2004——2005固体物理2007——2010固体物理(A)2003——2005量子力学2007——2010量子力学(B)2003——2005(2004有答案)热力学与统计物理(B)2003——2005基础化学2003——2005无机化学2003——2010有机化学A(分析化学专业)2004有机化学(分析化学专业)2005有机化学(生物化工、环境科学专业)2004有机化学(生物化工专业)2003有机化学B(生物化工、环境科学、环境工程专业)2005有机化学(B)(化学专业)2010有机化学(B)(分析化学、无机化学、有机化学、物理化学专业)2007——2008 综合化学(含有机化学、分析化学)2004模拟电子技术与数字电子技术基础2004——2010(注:2007年试卷共4页,缺P4)理论力学(A)2005,2007——2010理论力学(B)2003——2005微生物学A 2008——2010微生物学B 2008——2010微生物学2007环境微生物学2004——2005单考数学2003——2004,2008——2010单考俄语2008——2010单考英语2008——2010单考政治2008——2010机械工程学院设计基础2004——2006,2008——2010设计理论2004——2010材料力学2003(注:试卷上面标注的是:材料加工工程专业)材料力学B 2004——2005(注:试卷上面标注的是:材料加工工程、材料科学与工程专业)材料力学2003(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、固体力学专业)材料力学C 2010(注:试卷上面标注的是:车辆工程、物流工程、机械工程专业)材料力学C 2004——2008(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、机械工程、物流工程、机械装备及控制专业)材料力学D 2004——2005,2007——2010(注:试卷上面标注的是:固体力学专业)理论力学(A)2005,2007——2010理论力学(B)2003——2005传热学2003——2005,2007——2010工程热力学2003——2005,2007——2010工程流体力学2003——2005,2007——2010生产运作与管理2003——2004现代生产管理2005,2007——2010单考数学2003——2004,2008——2010单考俄语2008——2010单考英语2008——2010单考政治2008——2010信息工程学院自动检测技术2007——2010电路及数字电子技术2003——2010通信原理2004——2010概率统计2004——2005计算机组成原理及数据结构2006——2008计算机组成原理2003计算机组成原理及计算机网络2004——2005计算机组成原理及计算机系统结构2004——2005数据结构1999——2000,2003(2003有答案)数据结构及软件工程2004——2005信号系统与数字电路2008——2010单考数学2003——2004,2008——2010单考俄语2008——2010单考英语2008——2010单考政治2008——2010经济管理学院管理学与经济学基础2006——2010(注:2006年缺页)管理学原理2004——2010(2004——2005有答案)数据库原理与管理系统2003单考数学2003——2004,2008——2010单考俄语2008——2010单考英语2008——2010单考政治2008——2010应用科学学院高等代数2003——2010数学分析2004——2010常微分方程2003——2005概率统计2004——2005概率与数理统计2003——2005普通物理2008——2010普通物理(A)2004——2005固体物理2007——2010固体物理(A)2003——2005量子力学2007——2010量子力学(B)2003——2005(2004有答案)热力学与统计物理(B)2003——2005基础化学2003——2005无机化学2003——2010分析化学2006——2010物理化学(A)2003——2010物理化学(B)2005——2010有机化学A(分析化学专业)2004有机化学(分析化学专业)2005有机化学(生物化工、环境科学专业)2004有机化学(生物化工专业)2003有机化学B(生物化工、环境科学、环境工程专业)2005有机化学(B)(化学专业)2010有机化学(B)(分析化学、无机化学、有机化学、物理化学专业)2007——2008 综合化学(含有机化学、分析化学)2004模拟电子技术与数字电子技术基础2004——2010(注:2007年试卷共4页,缺P4)材料力学2003(注:试卷上面标注的是:材料加工工程专业)材料力学B 2004——2005(注:试卷上面标注的是:材料加工工程、材料科学与工程专业)材料力学2003(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、固体力学专业)材料力学C 2010(注:试卷上面标注的是:车辆工程、物流工程、机械工程专业)材料力学C 2004——2008(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、机械工程、物流工程、机械装备及控制专业)材料力学D 2004——2005,2007——2010(注:试卷上面标注的是:固体力学专业)理论力学(A)2005,2007——2010理论力学(B)2003——2005生物化学与分子生物学2008——2010细胞生物学2007——2010微生物学A 2008——2010微生物学B 2008——2010微生物学2007环境微生物学2004——2005运筹学2007——2008单考数学2003——2004,2008——2010单考俄语2008——2010单考英语2008——2010单考政治2008——2010文法学院文学原理2010中国语言文学2010民法学2004——2010综合考试(民商法学、经济法学专业)2005——2010合同法2004民事诉讼法2004知识产权法2004社会学研究方法2007——2010社会学理论2010社会学2003——2008马克思主义哲学原理2007——2010马克思主义政治经济学原理2007——2010文艺美学2004文艺学原理2004——2005,2007——2008中国文论史2005,2007——2008历史唯物主义2004——2005思想政治教育原理2003——2010科学技术史2007——2010科学技术概论2007——2010现代科学技术概论2005综合科技史2003——2010行政管理学2003——2010政治经济学2003——2005教育史2005(2005有答案)普通教育学2003——2005,2007——2010(2004——2005有答案)管理学原理2004——2010(2004——2005有答案)普通心理学2003——2005,2007——2010计算机基础2003——2005,2007——2010教育学专业基础综合(全国统考试卷)2007——2008单考数学2003——2004,2008——2010单考俄语2008——2010单考英语2008——2010单考政治2008——2010外国语学院二外法语2004——2010二外日语2004——2010二外俄语2004——2010二外德语2004——2008综合英语2003——2006,2008——2010基础英语2004——2010新金属材料国家重点实验室物理化学(A)2003——2010物理化学(B)2005——2010金属学2003——2005,2007——2010材料力学2003(注:试卷上面标注的是:材料加工工程专业)材料力学B 2004——2005(注:试卷上面标注的是:材料加工工程、材料科学与工程专业)材料力学2003(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、固体力学专业)材料力学C 2010(注:试卷上面标注的是:车辆工程、物流工程、机械工程专业)材料力学C 2004——2008(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、机械工程、物流工程、机械装备及控制专业)材料力学D 2004——2005,2007——2010(注:试卷上面标注的是:固体力学专业)钢筋混凝土结构2003——2005单考数学2003——2004,2008——2010单考俄语2008——2010单考英语2008——2010单考政治2008——2010下面是余秋雨经典励志语录,欢迎阅读。

北京科技大学2003-2004学年度第二学期高等数学(A)试题及答案

北京科技大学2003-2004学年度第二学期高等数学(A)试题及答案

敛区间 t 2 ,即 1 x 3 , 当 x 3 时级数发散,当 x 1 时级数收敛,故原级数收 敛域为 [ 1, 3) 。 13.解: ï í
ì ïz = ï x= 0 ï ï î
y- 1
绕 y 轴旋转的旋转曲面方程为: y - 1 = z + x ,
2
2
I=
蝌 邋+
=
A 5
x2 y 1 = [ ] 2 ydy 1 2 y 1 2 5 [ y ( y 2) 2 y 5 ]dy = 5 1 2 8 a n 1 1 tn , lim , 收敛半径 R 2 , 收 n n a 2 n 1 2 n n

12. 解: 令 t x 1 , 则原级数化为
五.综合题 (10 分)
17 . 设 曲 线 C 的 起 点 为 A , 终 点 为 B ,
f ( ) 1 , 求 函 数 f ( x) , 使 曲 线 积 分
A,B 两点分别为 (1, 0) 和 ( , ) 时
C
[sin x f ( x)] x dx f ( x)dy 与路径无关,并求当
2 2
x
0
15.解:特征方程 r r 2 0 , r1 1, r2 2 , 齐次方程通解为 Y c1e c2e 为求原方程的特解 y 。 ,考虑两个方程,

2
x
2 x

, 对于前一方程, 因 0 不是特征根,可设 y ' ' y '2 y x 1 (1)和 y ' ' y '2 y e x (2)
(8 y 1) xdydz 2(1 y )dzdx 4 yzdxdy ,

北京科技大学2004-2005学年度第2学期高等数学A试题及答案

北京科技大学2004-2005学年度第2学期高等数学A试题及答案

北京科技大学2004 — 2005学年度第二学期高等数学(A 卷) 试题 (时间120分钟)学院 考场 班级 学号 姓名一、填空 (每小题3分,共15分)1.设函数22y x z +=,则函数在点)1,1(处的梯度为 j i 22+ 2. 将三次积分)0(),sin ,cos (002022>⎰⎰⎰-a dz z r r f rdr d ar a θθθπ化为球面坐标系下的三次积分(函数),,(z y x f 在已知区域上连续)dr r r r r f d d aφφφθφθφθππsin )cos ,sin sin ,sin cos (22020⋅⎰⎰⎰3. 曲面12-=+z ye x x 在点(0,1,-1)处的切平面与xoy 平面的夹角为a r c =ψ4. 光滑曲面),(y x f z =在坐标平面xoy 的投影区域为D ,那么该曲面的面积可以用二重积分表示为d x d y Z Z Dy x ⎰⎰++2215. 设级数∑∞=+-11)(n n n a a 收敛,且和为s ,则n n a ∞→lims a -1 二、选择 (每小题3分,共15分) 1. 已知函数22),(y x y x y x f -=-+,则=∂∂+∂∂yy x f x y x f ),(),( ( C ) (A ) y x 22-; (B) y x 22+; (C) y x +; (C) y x -2. 设常数k>0, 则级数∑∞=+-12)()1(n n n n k 是 (C ) (A) 发散; (B) 绝对收敛; (C) 条件收敛; (D) 发散与收敛与k 的取值无关3. 微分方程02'=-y xy 的通解是 ( B )(A) Cx y =; (B) 2Cx y =; (C) 3Cx y =; (D) 4Cx y = 4. 二元函数33)(3y x y x z --+=的极大值点是 ( A )(A)(1,1); (B)(1,-1); (C)(-1,1); (D)(-1,-1) 5. 若L 是上半椭圆⎩⎨⎧==tb y ta x sin cos ,取顺时针方向,则⎰-L xdy ydx 的值为 (C )(A) 0 ; (B) 2abπ; (C) ab π; (D) ab π-三、计算 (共70分)1.(6分)设)(x y 是04=+'+''y y y 的解,2)0(,41)0(='=y y计算dx x y AA ⎰∞→0)(lim解:特征方程21,2441002r r r -±++=⇒=< )(0)(2121+∞→→+=x e C e C x y x r x r (3分))(0)(212211'+∞→→+=x e r C e r C x y x r x r32414)()(4)4()(lim0'00'''0=+⨯=--=--=∞+∞++∞+∞→⎰⎰x y x y dx y y dx x y AA (6分) (先求通解,定出常数,再进行积分也可以) 2.(8分)计算二次积分dy e dx x y ⎰⎰-1102解:211100110222-----===⎰⎰⎰⎰⎰⎰e dx dy edxdy e dy e dx Dyy y x y3.(6分)在过点)0,0(O 和)0,(πA 的曲线族)0(sin >=a x a y 中,求一条曲线L ,使沿该曲线从O 到A 的积分dy y x dx y L )2()1(3+++⎰的值最小. 解:344]cos )sin 2()sin 1[()(333a a dx x a x a x x a a f +-=+++=⎰ππ(4分)1,044)(2'==+-=a a a f 唯一驻点,所以 : 所求曲线x y L sin :=使38)1(-=πf 为最小。

计算方法习题集及答案第四版

计算方法习题集及答案第四版

X
19
25
31
38
44
Y
19.0
32.3
49.0
73.3
97.8
解:依题意 故
正则方程为 解得 故拟合曲线为
习题5.
1. 试确定下面求积公式 使其具三次代数精度.
解:要公式有3次代数精度,需有 解得: 故求积公式为
2. 在区间上导出含五个节点的Newton-Cotes公式,并指出其余项及 代数精度.
由方法阶相容的充要条件知方法具有三阶相容阶。
位)。
解:
y次迭代公式
k
0
1
2
3
3.5
3.64
3.63
3.63
6. 试证用牛顿法求方程在[1,3]内的根是线性收敛的。 解:

y次迭代公式 故
从而 ,时, 故, 故牛顿迭代公式是线性收敛的 7. 应用牛顿法于方程, 导出求立方根的迭代公式,并讨论其收敛
性。
解:
相应的牛顿迭代公式为 迭代函数,, 则,
9
10
11
12
13
14
15
16
1.4650 1.46593 1.4653 1.46572 1.46548 1.46563 1.465534 1.465595
迭代公式(2):
k
0
1
2
3
4
5
6
1.5 1.481 1.473 1.469 1.467 1.466 1.466
3. 已知在[a,b]内有一根,在[a,b]上一阶可微,且,试构造一个局部 收敛于的迭代公式。
证明: (1)令
即 又 即 ⑵ 设,不妨设, 令 即对任意非零,有 下面证明存在向量,使得, 设,取向量。其中。 显然且任意分量为, 故有即证。 3. 古代数学家祖冲之曾以作为圆周率的近似值,问此近似值具有

北京科技大学计算方法考试试题答案

北京科技大学计算方法考试试题答案

计算方法考试试题答案113.96424004≈,求方程22810x x -+=的两个根,使它们至少具有6位有效数字。

解答:由方程的求根公式得到1,214x =±11427.96424004x =≈;而21140.0357599562427.96424004x ===≈。

2.(10分)给定数据(()f x =,试用二次牛顿插值多项式计算()2.15f 的近似值,并估计误差。

那么,()()()()221.4142140.3492420.043122.10.5347140.525950.0431N x x x x x x=+----=+-最后计算可以得到()()22.152.15 1.466277f N ≈=。

3.用梯形公式、复合梯形公式、辛普森公式计算积分1I =⎰(4n =)。

解:计算得到1.41421====用梯形公式[]211 1.41421 1.20712I -=+≈ 用辛普森公式[]2114 1.22474 1.41421 1.21876I -=+⨯+≈用复合梯形公式[][]111 1.41421 1.11803 1.22474 1.32288 1.218284I =++++≈。

4.(10分)给出一组数据如下表,用最小二乘法求形如bx ae y =的经验公式3212414.38.3 4.78.322.7x y ---解:由bx a y +=ln ln ,可以先做bx c y z +==ln令10=ϕ,x =1ϕ,则51,00==ϕϕ,0,1==ixϕϕ,)34,211==∑i x ϕϕ()5627.11,0==∑iz z ϕ ()9611.2,1==∑i i z x z ϕ 解方程⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛9611.25627.1134005b c 得到⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛0870912.031254.2b c 经验公式为xe y 080912.031254.2+=5.(10分)用牛顿法求方程3310x x --=在初始值02x =附近的一个正根,要求3110k k x x -+-<。

计算方法教程习题答案

计算方法教程习题答案

《计算方法教程(第二版)》习题答案第一章习题答案1、浮点数系F(0丄L、U)共有2(0-l)0i(U-厶+1) + 1个数。

3、a.4097b.0.11101000 x 22 , 0.11101110 x 25 6c.0.11111101x264、设实数xeR,则按0进制可表达为:1"1 V00 <> d j < p , J = 2,3,…+ 1,…按四舍五入得原则,当它进入浮点数系F(PJ,LM)时,若心V丄0,则2/心)"(第+2+…2“P pZ P1cK (1 +1/(□"(卡+样+…丄厂)〃P P L P l对第一种情况妝一."(x)| = (滸 + …)X0**G)X0‘ =^0 一对第二种情况:卜_/心卜爭巴一…"V *(£)x0詁旷就就是说总有:心)&丄0一2另一方面,浮点数要求1M/V0,故有|A-|^1/7\将此两者相除,便得r5 a. 1.5960 b. 1.5962后一种准确6最后一个计算式:0.00025509原因:避免相近数相减,避免大数相乘,减少运算次数2\I~X (Jx ,+1 + J 牙2 _])(2x)2 (2x)4 (2x)6(2x)2"^! 41- ~6!2!_3 -0.20757 5 0.8 7107计算宜采用:去)+G -親)x+G - 土用+…]第二章习题答案1. a.x = (3,1, 2)7b.x = (2, — 1, 2, — 1 )zc.无法解2、 a.与b.同上,c.x = —(-17, 39, -10,-39)7 « (-0.5312,1.218&一0.3125,-1.2188)7(2 -2 -1、/ 、 1、2 -2 -15p -17、a.3-12 =% 12%=3 21J 23,、% %1J 3%丿1 1J<12 1 -2〕1-2 1 -2、 25 3 -22 11 12 -2 -23 5 -2 2 13 -3、132 3 >、1 2 0 1;3 ,(1 、 (\2 1 -2]2 1 1 1 2 -2 2 31 -1\ 1 2 0 3; 1 19、=(46.3415 , 85.3659 , 95.1220 , 95.1220 , 85.3659 , 46.3415)b. y =2x 2(l + x)(l +8、 X| =55.98 9、m 1x 2 = 0.01786 /(10-H,) -0.233406x 2 =(26.8293, 7.3171, 2.4390,2.4390, 7.3171,26.8293/ 10、厶£)厶了分解:D = diag( 10,1.9, 3.579,0.015)12、阀“16, ||州厂 12, ||州8 = 16h||2 =1.4083, ||A|L=1%Cond x (A|) = Cond n (A 】)=4% Cond 2 (^) = 2 Cond { (A 2) = Cond^(A 2) = 748Cond 2(A 2) = 524第三章习题答案1、Lagrange 插值多项式:'0.0139 -0.1111 ・0.0694、( 9.0000 -36.0000 30.0000、v-0.1111 0.0556 -0.1111,^2 = -36.0000 192.0000 -180.0000,・ 0.0694 ・ 0.1111 0.0139>(30.0000 -180.0000 180.0000,A ;'= 372.1151 -眉— 0.1666…,0.91L =0.7 0.89471.0.5 0.7895 0.6030 Cholesky 分解、H1623 2.8460G =2.2136 1.2333 1.8918J.5811 1.0833 1.1408 0.1225丿15. A 】 :对应 Gauss — Seidel 迭代收敛,Jacobi 迭代不收敛;:对应 Gauss — Seidel 迭代收Jacobi 迭代不收敛;:对应 Gauss — Seidel 迭代收Jacobi 迭代收敛;1丿 解:2(2, — 2,1, —1)(x - 2.70)(x- 3・20)(x - 4.80)(x 一 5.66)(1.00 - 2.70)(l .00 - 3.20)(1.00 - 4.80)(l .00 - 5.66)(x 一 1.00)(% 一 3.20)(x 一 4.80)(x 一 5.66)(2.70 -1.00)(2.70 - 3.20)(2.70 - 4.80)(2.70 - 5.66)(x -1.00)(x- 2.70)(x 一 4.80)(x- 5.66) (3.20 -1.00)(3.20 - 2.70)(3.20 - 4.80)(3.20 - 5.66)… (x-l ・00)(x-2・70)(x-3・20)(x-5・66) + 3 & 3 x -------------------------------------------(4.80 一 1.00)(4.80 一 2.70)(4.80 一 3.20)(4.80 一 5.66) (x-1.00)(x 一 2.70)(x 一 3.20)(x- 4.80)+ 51.7 x ---------------------- ---------------------(5.66 一 1.00)(5.66 一 2.70)(5.66 一 3.20)(5.66 - 4.80)Newton 插值多项式:^4(x) = 14.2 + 2.117647059(% -1.00)+ 2.855614973(x- 1.00)(x 一 2.70)一 0.527480131(x-1.00)(x 一 2.70)(x- 3.20)+ 0.21444779(“ 一 1.00)(x- 2.70)(x - 3.20)(x 一 4.80)差商表:2、设y = y(x),其反函数就是以y 为自变量得函数x = x(y)^x(j)作插值多项式: N(y)= 0.1000-0・3350(y — 0.7001)+ 0.009640( y-0.700 l)(y - 0.4016)+ 0.0153 l(y - 0.700 l)(y - 0.4016)(y - 0.1081) + 0.01253(0.7001)( V - 0.4016)(y -0.108 l)(y - 0.1744)N(0) = 0.3376 就是 y(x) = 0在[0.3, 0.4 ]中得近似根。

北京科技大学2003-2004学年度第一学期高等数学(A)试题及答案

北京科技大学2003-2004学年度第一学期高等数学(A)试题及答案

北 京 科 技 大 学 03 级 《高 等 数 学AI 》期 末 试 题120分钟 满分100 2004.1一.填空题 (每小题4分,共20分) 1.设 =⋅⨯-=-==c b a c b a)(}0,2,1{},3,1,1{},1,3,2{则 。

2.已知yx y x z ++=2)2(,则全微分=z d 。

3.设曲线n x y =在(1,1)点处的切线与x 轴的交点为)0,(n ξ,则=∞→n n ξlim 。

4.设)(x f 可导且x x f 2tan )(cos '=,则=)(x f 。

5.不定积分⎰dx x arctan= 。

二.单项选择题 (每小题4分,共20分)6. 若∞=→)(lim 0x f x x 且∞=→)(0lim x g x x ,下列结论正确的是 【 】(A) ∞=+→)]()([lim 0x g x f x x (B) 0)]()([lim 0=-→x g x f x x(C) 0)()(1lim 0=→x g x f x x (D) 0)()(1lim=+→x g x f x x7.设b a,是非零向量,且||||b a b a +=-,则下列结论正确的是【 】(A) b a b a+=- (B) 0=⋅b a(C) 0 =⨯b a (D) ||||b a=8.设2)(x e x f =,则)0()2003(f 下列结论正确的是 【 】( A ) 2002 ( B ) 2003 ( C ) 2003! ( D ) 09.函数141232)(23+-+=x x x x f 在区间 [ -1 , 2 ] 上的最大值和最小值分别是【 】(A) 27和7 (B) 34 和 7 (C) 34和18 (D) 27 和 1810.设),(y x f 在点),(00y x 的某邻域中有定义,则下列结论正确的是 【 】(A) 若),(00y x f x ,),(00y x f y 存在,则),(y x f 在点),(00y x 处连续 (B) 若),(00y x f x ,),(00y x f y 存在,则),(y x f 在点),(00y x 处可微 (C) 若),(00y x f x ,),(00y x f y 不存在,则),(y x f 在点),(00y x 处不连续 (D) 若),(y x f x ,),(y x f y 在点),(00y x 处连续,则),(y x f 在点),(00y x 处可微三.计算题 ( 每小题6分,共36分 ) 11.求不定积分⎰-dx xx 1arcsin12.求极限)1(lim 2x x x x -++∞→13.求极限 xex x x-+→1)1(0lim14.求极限 )(lim 22222941n n n n n n n n n +++++++∞→15.求定积分⎰22cos πxdx e x16.求通过两条直线 1L :21123-==-z y x 与 2L : 21121zy x =-=+ 的平面方程。

北京科技大学研究生期末考试计算方法2006

北京科技大学研究生期末考试计算方法2006
计算方法研究生试题(2006)答案
一、填空题(1-7 每空 2%*10,8-9 每空 3%*10) 1、数值 x* 的近似值 x = 0.1234×10−3 ,若满足 x − x∗ ≤ ( 0.5 ×10−7 ),则称 x 有 4 位有效
数字.
2、已知 X = (3,4,0)T , A = XX T 则范数 X =5, A =(28).
6
6 56 56
6 125 125
75 7
∫ 所以
1
−1 f ( x)dx ≈ A1 f (−1) + A2 f (− x1 ) + A2 f ( x1 ) + A1 f (1)

A1
=
1 6

A2
=
5 6

x1 = ±
1 时达到最高代数精确度 5。 5
六、(10 分)找出合适的四次多项式ϕ(x) ,使得ϕ(i) = i 0 ≤ i ≤ 2
五、(12 分)找出合适的 A1, A2 , x1 使求积公式

∫1
−1 f ( x)dx ≈ A1 f (−1) + A2 f (− x1 ) + A2 f ( x1 ) + A1 f (1) 代数精度尽可能高。并给出此最高代数精确度。
∫ 解:令 f (x) = 1
1
f (x)dx = 2
−1
A1 f (0) + A2 f (x1) + A2 f (x2 ) + A1 f (1) = 2 A1 + 2 A2
1
1
∫ ∫ 令 f (x) = x f (x)dx = xdx = 0
−1
−1
A1 f (−1) + A2 f (x1) + A2 f (−x1) + A1 f (1) = A2 (x1 − x1) =0

计算方法 习题第一、二章答案

计算方法 习题第一、二章答案

第一章 误差1 问3。

142,3。

141,722分别作为π的近似值各具有几位有效数字?分析 利用有效数字的概念可直接得出. 解 π=3.141 592 65…记x 1=3。

142,x 2=3。

141,x 3=722。

由π— x 1=3.141 59…—3。

142=—0。

000 40…知3411110||1022x π--⨯<-≤⨯ 因而x 1具有4位有效数字。

由π- x 2=3.141 59…—3.141=-0。

000 59…知2231021||1021--⨯≤-<⨯x π因而x 2具有3位有效数字。

由π—722=3。

141 59 …—3。

142 85…=—0.001 26…知231021|722|1021--⨯≤-<⨯π因而x 3具有3位有效数字。

2 已知近似数x *有两位有效数字,试求其相对误差限。

分析 本题显然应利用有效数字与相对误差的关系.解 利用有效数字与相对误差的关系.这里n=2,a 1是1到9之间的数字。

%5101211021|*||*||)(|1211*=⨯⨯≤⨯≤-=+-+-n ra x x x x ε3 已知近似数的相对误差限为0。

3%,问x *至少有几位有效数字?分析 本题利用有效数字与相对误差的关系. 解 a 1是1到9间的数字。

1112*10)1(2110)19(21102110003%3.0)(--⨯+≤⨯+⨯=⨯<=a x r ε 设x *具有n 位有效数字,令-n+1=—1,则n=2,从而x*至少具有2位有效数字.4 计算sin1。

2,问要取几位有效数字才能保证相对误差限不大于0。

01%。

分析 本题应利用有效数字与相对误差的关系.解 设取n 位有效数字,由sin1。

2=0。

93…,故a 1=9。

411*10%01.01021|*||*||)(-+-=≤⨯≤-=n r a x x x x ε解不等式411101021-+-≤⨯n a 知取n=4即可满足要求。

计算方法考题B04(答案)

计算方法考题B04(答案)



=
x ∗ − x (k )


q x (1) − x ( 0) 1− q
k

,
(35 )
1− 3
k

5
1 ≤ 10 − 4 , ∴ 3 5 4
( )
k
≤ 16 ∗ 10 −5 ,
k≥
− 5 + 4 lg 2 − 5 + 4 ∗ (0.3010) 3.7960 = = = 17.010680487 lg 3 − lg 5 0.4771 − 0.6990 0.2219
2004 年 计算方法(B)考试答案:
2004-12-26
1、 ( 4 分 ) e = 2.718281828⋯ , e10 = 22026.46579 ⋯ , 它 们 在 浮 点 数 系
F (10,8,−8,8) 中浮点化数 fl (e) = .27182818E1 , fl (e10 ) = .22026466E5
fi , f
i−
1 2
, f i −1 ,
,若用插值法计算新的 f (t , y ) 值,需用哪几个点 ;
上的 f (t , y ) 值:
f i , f i −1 , f i − 2 , f i −3
9、 (10 分)将下述矩阵方程的系数矩阵分解成矩阵乘积 LU 形式,其中 L 为 下三角矩阵, U 为单位上三角矩阵,并解此矩阵方程。 ⎛2 0 ⎜ ⎜4 3 ⎜2 − 3 ⎜ ⎜6 6 ⎝ 1 3 ⎞ ⎛ x1 ⎟⎜ 1 7 ⎟ ⎜ x2 6 4 ⎟ ⎜ x3 ⎟⎜ ⎜ 5 18 ⎟ ⎠ ⎝ x4

1
−1
具有
3
8、 (6 分)求解常微分方程初值问题采用 3 阶 Adams-Bashforth 方法: h y i +1 = y i + [23 f i − 16 f i −1 + 5 f i − 2 ] ,通过误差估计,获知某步所得 y i +1 的误 12 差过大,需要步长减半,重新计算 y i + 1 ≈ y (t i + h ) 。请问:为此,需计算哪几 2 2 个 f (t , y ) 值

北京科技大学计算方法大作业概要

北京科技大学计算方法大作业概要

计算方法大作业机械电子工程系老师:廖福成注:本文本只有程序题,证明题全部在手写已交到理化楼204了。

2. 证明方程 310x x --=在[1,2]上有一实根*x ,并用二分法求这个根。

要求31||10k k x x -+-<。

请给出程序和运行结果。

证明:设f(x)=x3-x-1则f(1)= -1, f(2)= 5,f(1)*f(2)= -5<0因此,方程在[1,2]上必有一实根。

二分法求解程序:%预先定义homework2.m 文件如下:function lc=homework2(x)lc=x^3-x-1;在MALAB 窗口运行:cleara=1;b=2;tol=10^(-3);N=10000;k=0; fa=homework2(a); % f 需事先定义for k=1:Np=(a+b)/2;fp=homework2(p);if( fp==0 || (b-a)/2<tol)breakendif fa*fp<0 b=p; else a=p; endendk,p程序运行结果:k = 103. 用Newton 迭代法求方程 32210200x x x ++-=的一个正根,计算结果精确到7位有效数字. 要求给出程序和运行结果.解:取迭代初值01x = ,并设32()21020f x x x x =++-,则'2()3410f x x x =++. 牛顿迭代函数为32'2()21020()()3410f x x x x x x x f x x x ϕ++-=-=-++ 牛顿迭格式为:3212210203410k k k k k k k x x x x x x x +++-=-++Matlab 程序如下:%定义zuoye3.m 文件function x=zuoye3(fname,dfname,x0,e,N)if nargin<5,N=500;endif nargin<4,e=1e-7;endx=x0;x0=x+2*e;k=0;while abs(x0-x)>e&k<N,k=k+1;x0=x;x=x0-feval(fname,x0)/feval(dfname,x0);disp(x)endif k==N,warning('已达上限次数');end在Matlab 窗口中执行:zuoye3(inline('x^3+2*x^2+10*x-20'),inline('3*x^2+4*x+10'),1,1e-7)结果如下:ans =1.4. 用牛顿迭代法求方程310x x --=在01x =附近的根. 要求给出程序和运行结果.解:令:3()1f x x x =--,则'2()31f x x =-. 牛顿迭代函数为3'2()1()()31f x x x x x x f x x ϕ--=-=-- 牛顿迭格式为:312131k k k k k x x x x x +--=-- Matalb 程序如下:%定义zuoye4.m 文件function x=zuoye4(fname,dfname,x0,e,N)if nargin<5,N=500;endif nargin<4,e=1e-7;endx=x0;x0=x+2*e;k=0;while abs(x0-x)>e&k<N,k=k+1;x0=x;x=x0-feval(fname,x0)/feval(dfname,x0);disp(x)endif k==N,warning('已达上限次数');end在Matlab窗口执行:zuoye4(inline('x^3-x-1'),inline('3*x^2-1'),1,1e-7)结果如下:ans =6. 编写用全主元Gauss消去法解线性方程组的程序,并求解解:Matlab程序如下:A=[2 -1 4 -3 1;-1 1 2 1 3;4 2 3 3 -1;-3 1 3 2 4;1 3 -1 4 4]b=[11 14 4 16 18]function x=zuoye6(A,b)[n,v]=size(b);D=[A,b;eye(n),zeros(n,v)],[s1,m]=size(D);for k=1:(n-1)s=abs(A(k,k));p=k;q=k;for i=k:n for j=k:nif abs(A(i,j))>ss=abs(A(i,j));p=i;q=j;endendendif p>k t=D(k,:); D(k,:)=D(p,:); D(p,:)=t; endif q>k t1=D(:,k); D(:,k)=D(:,q); D(:,q)=t1; endh=D(k+1:n,k)/D(k,k);D(k+1:n,k+1:m)=D(k+1:n,k+1:m)-h*D(k,k+1:m);D(k+1:n,k)=zeros(n-k,1);endfor k=n:-1:1D(k,k:m)=D(k,k:m)/D(k,k);for r=1:k-1 D(r,:)=D(r,:)-D(r,k)*D(k,:); endendP=D(n+1:2*n,1:n);Q=D(1:n,n+1:m);x=P*Q在Matlab窗口中执行:A=[0.02 -1 4 -3 1;-1 1 2 1 3;4 2 3 3 -1;-3 1 3 2 4;1 3 -1 4 4]; b=[11 14 4 16 18]';zuoye6(A,b)运行结果如下:x =1.000000000000007. 用追赶法解线性方程组12345 210001 121000 012100 001210 000120xxxxx-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦要求给出程序和运行结果. 解:于是有求解Ax=b即为求解{Ly bUx y==,式中b=(1 0 0 0 0)T据1234510000110001220100330001040400015yyyyy⎡⎤⎢⎥⎢⎥-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥-⎢⎥⎣⎦y=112131415⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦据21000301002400103500014600005-⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦12345xxxxx⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=112131415⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦x=5623121316⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦Matlab程序如下:%定义zuoye7.m文件function x=zuoye7(a,b,c,d)a1=[0;a];n=length(b);q=zeros(n,1);p=zeros(n,1);%LU分解q(1)=b(1);for k=2:n,p(k)=a1(k)/q(k-1); q(k)=b(k)-p(k)*c(k-1); end%解Ly=dy=zeros(n,1);y(1)=d(1);for k=2:n, y(k)=d(k)-p(k)*y(k-1);end%解Ux=yx=zeros(n,1); x(n)=y(n)/q(n);for k=n-1:-1:1,x(k)=(y(k)-c(k)*x(k+1))/q(k);end x在Matlab窗口中执行:a=[-1 -1 -1 -1]';b=[2 2 2 2 2]';c=[-1 -1 -1 -1]';d=[1 0 0 0 0]';x=zuoye7(a,b,c,d)运行结果如下:9. 分别用Jacobi迭代法和Gauss-Seidel迭代法求解程组(编写程序)X(0)(0,0,0),精确到小数后面四位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京科技大学2004年《计算方法》试题及答案一、判断题(下列各题,你认为正确的,请在括号内打“√”,错的打“×”,每题2分,共12分)1、任何近似值的绝对误差总是大于其相对误差 (×)2、3步Adams 隐式法比4步Adams 显式法的绝对稳定性要好。

(√)3、在任何情况下,求解线性方程组时,Sidel 迭代法总是优于Jacobi 迭代法。

(×)4、设],[)(b a C x f n ∈,若0)()(≡x fn ,],[b a x ∈,则0],,,[10=n x x x f ,其中],[b a x i ∈,n i ,,1,0 = (√)5、给定n 个数据点,则至多构照1-n 次最小二乘多项式 (√)6、数值求积公式的代数精确度越高,计算结果越可靠。

(×)二、填空题(1、2、3小题每空1分,其他题每空2分,共20分)1、设A 是一个108⨯的矩阵,B 是一个5010⨯的矩阵,C 是一个150⨯的矩阵,D 是 一个801⨯的矩阵,根据矩阵乘法结合率,ABCD F =可按如下公式计算(1)[]D BC A F )(= (2)[])(CD B A F = 则公式(1)效率更高,其计算量为1240flops 。

2、设数据21,x x 的相对误差限分别为05.0和005.0,那么两数之商21x x 的相对误差限为 =)(21x x r ε0.055。

3、 设⎥⎦⎤⎢⎣⎡-=1123A ,则=1A 4,=∞A 5,=F A 15,=)(A ρ4,=∞)(A cond 4。

4、计算3a 的割线法迭代公式为211211131331)()(------++++=---=k k k k k k k k k k k k k k k x x x x x x x x x x x x x x x 5、求解初值问题⎩⎨⎧=-='0)0()exp(2y x y 的改进后的Euler 公式为)]exp()[exp(22121++-+-+=n n n n x x h y y 。

6、将正定矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=201032124A 作T LL 分解,则=L ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-81342210210027、解线性方程组⎪⎩⎪⎨⎧-=+-=-+=+244304324343232121X X X X X X X 的Seidel 迭代格式是⎪⎪⎪⎩⎪⎪⎪⎨⎧+--=+-=-=+++)(3)(2)1(3)(3)(2)1(2)(2)1(11631649421411693436k k k k k k k k x x x x x x x x 。

8、用HouseHold 矩阵H 将矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=240430432A 化为上三角阵R,则H=⎪⎪⎪⎭⎫ ⎝⎛-6.08.008.06.00001, R=⎪⎪⎪⎭⎫ ⎝⎛---4.1008.450432 三、(14分)设线性方程组b Ax =的矩阵⎪⎪⎪⎭⎫⎝⎛---=211222112A ,证明对此矩阵Jacobi 迭代法发散而Seidel 迭代法收敛。

解:(1)⎪⎪⎪⎭⎫⎝⎛---=-=-02/12/11012/12/101A D IB Jλλλλλλ452/12/1112/12/13+=---=-J B I 125)(>=J B ρ 所以Jacobi 迭代法发散 (2) ⎪⎪⎪⎭⎫ ⎝⎛----=+-=-2/1002/12/102/12/10)(1U L D B S2)21(+=-λλλS B I 解得01=λ,213,2-=λ 121)(<=S B ρ 所以Seidel 迭代法收敛四、(12分))(x P 为n 次多项式,已知2)0(=P ,1)1(-=P ,4)2(=P 且)(x P 的所有三阶向前差分均为1。

(1) 以n ,2,1,0 为节点建立)(x P 的n 阶Newton 向前差分插值多项式)(x N n ,并求)()(x N x P n -(2) 求n 和2x 的系数。

解:因为)(x P 的所有三阶向前差分均为1,所以其四阶以上向前差分均为0,可知3≥n 向前差分表为x 0 1 2 3 y 2 -1 4 ?一阶差分 -3 5 ? 二阶差分 8 ? 三阶差分 1由于所有三阶向前差分均为1,所以所有四阶向前差分均为0,因此 3261273202)2)(1(!31)1(!2832)(x x x x x x x x x x N n ++-=--+-+-= 由)()1(],,,2,1,0[)()()(n x x x x n P x N x P x R n n --=-= 因为3≥n ,所以0],,,2,1,0[=x n P ,所以0)()(=-x N x P n3261273202)()(x x x x N x P n ++-==,所以3=n ,2x 的系数为27。

五、(8分)用复合梯形求积公式计算⎰-+11211dx x 的近似值2T 和4T ,并使用外推法外推一次,得到更精确的近似值。

解:23]211221[21)]1()0(2)1([212=+⨯+=++-=f f f T 2031]215421254221[21)]1()21(2)0(2)21(2)1([414=+⨯+⨯+⨯+=+++-+-=f f f f f T外推30473235313421121242224=-=-=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-T T T T六、(6分)迭代公式)(4)6(22221a x x a a x x x k k k k k +++=+收敛于a ,计算出此公式的阶。

解: )(4)()(4)6(2422221a x x a x a a x x a a x x a x k k k k k k k k +-=-+++=-+aa a x x a xax k k k kk k 81)(41)(241limlim =+=--∞→+∞→ 此公式的阶为4七、(8试用最小二乘法求形如42cx bx a y ++=的四次拟合曲线。

解:10=ϕ,21x =ϕ,42x =ϕ 5),(00=ϕϕ 10),(),(20110===∑ixϕϕϕϕ34),(),(),(4021120====∑ixϕϕϕϕϕϕ130),(),(61221===∑i x ϕϕϕϕ 514),(822==∑i x ϕϕ 6),(0==∑iyf ϕ 18),(21==∑i i y x f ϕ 66),(42==∑i i y x f ϕ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛6618651413034130341034105c b a解得0=a ,67=b ,61-=c 四次拟合曲线为6)7(22x x -=ϕ0)0(=ϕ 1)1()1(=-=ϕϕ 2)2()2(=-=ϕϕ平方误差为0八、(8分)求A 、B 、C 和D 使得数值积分公式)1()0()1()0()(1f D f C Bf Af dx x f '+'++≈⎰的代数精确度尽可能高,并给出其最大代数精确度。

(8分) 解 :1)(=x f 时0)(='x f111=+=⎰B A dx (1)x x f =)(时1)(='x f211=++=⎰D C B xdx (2) 2)(x x f =时x x f 2)(='31212=+=⎰D B dx x (3) 3)(x x f =时23)(x x f ='41313=+=⎰D B dx x (4)由(1)(2)(3)(4)解得21=A 21=B 121=C 121-=D 即)1(121)0(121)1(21)0(21)(10f f C f f dx x f '-'++≈⎰ 当4)(x x f =时34)(x x f ='61412101211210215114=⋅-⋅+⋅+⋅≠=⎰dx x 此公式代数精确度为3九、(10分)证明初值问题⎩⎨⎧=='00)(),(y x y y x f y 的计算公式]85[12111-++-++=n n n n n f f f hy y 是三阶方法。

证明:将所有公式在n x x =处展开 )(24625)4(4321h y h y h y h y h y y n n n n n n O ++'''+''+'+=+)(624)4(3211h y h y h y h y y f n n n n nn O ++'''+''+'='=++nn n y y x f '=),( )(624)4(3211h y h y h y h y y f n n n n nn O +-'''+''-'='=--局部截断误差为 ]85[121111-+++-+--=n n n n n n f f f hy y T =n n n n nn y h y h y h y h y h y -O ++'''+''+'+)(24625)4(432 n n n n n y h h y h y h y h y h '-O +-'''-''-'-128)(7252451251255)4(432 )(722412125)4(432h y h y h y h y h n n n n O +-'''+''-'+ n nn y h y h y ''--+'+--+-=2)12112521()1211281251()11( )()721725241()24124561(5)4(43h y h y h n n O +--+'''+-+ )(2415)4(4h y h n O +-= 局部截断误差为4h 的同阶无穷小,所以此方法是3阶的。

误差主项为24/)4(4n y h -。

相关文档
最新文档