垂径定理练习及答案

合集下载

垂径定理练习题及答案

垂径定理练习题及答案

垂径定理练习题及答案一、选择题1. 在一个圆中,如果一条直径的端点与圆上一点相连,这条线段的中点与圆心的距离是直径的()A. 一半B. 半径B. 直径D. 无法确定2. 垂径定理指出,如果一条线段是圆的直径,那么它与圆上任意一点连线所形成的直角三角形的斜边是()A. 直径B. 半径C. 线段D. 无法确定3. 圆内接四边形的对角线互相平分,且其中一条对角线是圆的直径,那么这个四边形是()A. 平行四边形B. 矩形C. 菱形D. 无法确定4. 如果圆的半径为r,那么圆的直径是()A. 2rB. rC. r的平方D. 2r的平方二、填空题1. 垂径定理告诉我们,如果一条线段是圆的直径,那么它与圆上任意一点连线所形成的直角三角形的斜边是______。

2. 圆的内接四边形中,如果对角线互相平分,且其中一条对角线是圆的直径,那么这个四边形的对角线长度相等,等于______。

3. 已知圆的半径为5cm,那么圆的直径是______。

三、解答题1. 已知一个圆的半径为7cm,圆内有一点P,连接点P和圆心O,得到线段OP。

如果OP的长度为4cm,求点P到圆上任意一点的距离。

2. 一个圆的直径为14cm,圆内接四边形ABCD,其中AC为直径。

已知AB=6cm,求BC的长度。

四、证明题1. 证明:如果一个三角形是直角三角形,且斜边是圆的直径,那么这个三角形的外接圆的直径是这个三角形的斜边。

2. 证明:如果一个圆的内接四边形的对角线互相平分,且其中一条对角线是圆的直径,那么这个四边形的对角线长度相等。

答案:一、选择题1. A2. A3. B4. A二、填空题1. 直径的一半2. 圆的直径3. 10cm三、解答题1. 点P到圆上任意一点的距离是3cm(利用勾股定理,OP为直角三角形的一条直角边,半径为斜边,另一直角边为点P到圆上任意一点的距离)。

2. BC的长度是8cm(利用圆内接四边形的性质,对角线互相平分,且AC是直径,所以BD=7cm,再利用勾股定理求BC)。

垂径定理练习题及答案

垂径定理练习题及答案

1.△ ABC中 , AB=6cm , ∠ A=30° , ∠ B=15° , 则△ ABC绕直线 AC旋转一周所得几何体的表面积为 ____
2.一个圆锥的高为 10 3 cm,侧面展开图是一个半圆,则圆锥的全面积是 3.已知圆锥的母线长是 10cm,侧面展开图的面积是 60π cm2,则这个圆锥的底面半径是

A.平分一条直径的弦必垂直于这条直径
B.平分一条弧的直线垂直于这条弧所对的弦
C.弦的垂线必经过这条弦所在圆的圆心 D.在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心
7.如图,某公园的一座石拱桥是圆弧形(劣弧) ,其跨度为 24 米,拱的半径为 13 米,则拱高为 ( )
A. 5 米 B . 8 米 C . 7 米 D . 5 3 米
3、如图,在同心圆中,大圆的弦 AB 切小圆于点 C, AB=6,则圆环的面积是 _____________
1.在三角形 ABC中, BC=14, AC=9, AB=13,它的内切圆分别和 BC、 AC、 AB切于点 D、 E、 F,求 AF 、 BD、 CE的长。
第 1 题图 4.如图,已知在△ 切线;
第 2 题图
第 3 题图
ABC中, AB=AC,以 AB 为直径的⊙ O交 AC于点 F,交 BC于点 D,DF⊥ AC于点 F.求证: DF 是⊙ O的
2.如图所示, 已知 PA、PB切⊙ O于 A、B 两点,C是上一动点, 过 C 作⊙ O的切线交 PA于点 M,交 PB于点 N,已知∠ P=56°, 求∠ MON的度数。
A、 B、C 三根木柱,使得 A、 B 之间的
距离与 A、C 之间的距离相等,并测得 BC长为 240 米, A 到 BC的距离为 5 米,如图 5 所示。请你帮他们求出滴水湖的半

中考数学专题复习《垂径定理》测试卷-附带答案

中考数学专题复习《垂径定理》测试卷-附带答案

中考数学专题复习《垂径定理》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________ 1.如图 在O 中 直径AB 垂直弦CD 于点E 连接,,AC AD BC 作CF AD ⊥于点F 交线段OB 于点G (不与点,O B 重合) 连接OF .(1)若1BE = 求GE 的长.(2)求证:2BC BG BO =⋅.(3)若FO FG = 猜想CAD ∠的度数 并证明你的结论.2.如图 AB 是O 直径 直线l 经过O 上一点C 过点A 作直线l 的垂线.垂足为D .连接AC .已知AC 平分DAB ∠.(1)求证:直线l 与O 相切(2)若70DAB ∠=︒ 3CD = 求O 的半径.(参考数据:sin350.6︒≈cos350.8︒≈.tan350.7︒≈)3.如图 AC 与BD 相交于点E 连接AB CD CD DE =.经过A B C 三点的O 交BD 于点F 且CD 是O 的切线.(1)连接AF 求证:AF AB =(2)求证:2AB AE AC =⋅(3)若2AE = 6EC = 4BE = 则O 的半径为 . 4.如图 四边形ABCD 内接于O 对角线,AC BD 交于点E 连接OE .若,AC BD O ⊥的半径为,r OE m =.(1)若ABC BAD ∠=∠ 求证:OE 平分AEB ∠(2)试用含,r m 的式子表示22AC BD +的值(3)记ADE BCE ABE CDE 的面积分别为1S 2S 3S 4S 当求证:AC BD =.5.如图 AB 是O 的直径 ,C D 是O 上两点 且AD CD = 连接BC 并延长与过点D 的O 的切线相交于点E 连接OD .(1)证明:OD 平分ADC ∠(2)若44,tan 3DE B == 求CD 的长. 6.已知BC 是O 的直径 点D 是BC 延长线上一点 AB AD = AE 是O 的弦 30AEC ∠=︒.(1)求证:直线AD 是O 的切线(2)若AE BC ⊥ 垂足为M O 的半径为10 求AE 的长.7.已知 在O 中 AB 为弦 点C 在圆内 连接AC BC OC 、、,ACO BCO ∠=∠.(1)如图1 求证:AC BC =(2)如图2 延长AC BC 、交O 于点E D 、 连接DE 求证:AB DE ∥(3)如图3 在(2)的条件下 设O 的半径为,3R DE R = 弦FG 经过点C 连接BG BF 、 72,3,33DBF DBG CG R ∠=∠== 求线段CF 的长. 8.已知点,,A B C 在O 上.(1)如图① 过点A 作O 的切线EF 交BC 延长线于点,E D 是弧BC 的中点 连接DO 并延长 交BC 于点G 交O 于点H 交切线EF 于点F 连接,BA BH .若24ABH ∠=︒ 求E ∠的大小(2)如图① 若135AOC B ∠+∠=︒ O 的半径为5 8BC = 求AB 的长. 9.如图 A B C D 分别为O 上一点 连AB AC BC BD CD AC 垂直于BD 于E AC BC = 连CO 并延长交BD 于F .(1)求证:CD CF =(2)若10BC = 6BE = 求O 的半径.10.如图 在 Rt ABC △中 90C ∠=︒,AD 平分 BAC ∠ 交 BC 于点D 点O 是边 AB 上的点 以点O 为圆心 OD 长为半径的圆恰好经过点A 交AC 于点E 弦 EF AB ⊥于点G .(1)求证:BC 是O 的切线.(2)若 12AG EG ==,,求O 的半径.(3)设O 与AB 的另一个交点为 H 猜想AH AE CE 之间的数量关系 并说明理由. 11.如图 在ABC 中 90ACB ∠=︒ 5AB = 1AD = BD BC = 以BD 为直径作O 交BC 于点E 点F 为AC 边上一点 连接EF 过点A 作AG EF ⊥ 垂足为点G =BAC GAF ∠∠.(1)求证:EG 为O 的切线(2)求BE 的长.12.如图 四边形ABCD 中 90B C ∠=∠=︒ 点E 是边BC 上一点 且DE 平分AEC ∠ 作ABE的外接圆O.(1)求证:DC是O的切线(2)若O的半径为5 2CE=求BE与DE的长.13.如图1 在直角坐标系中以原点O为圆心半径为10作圆交x轴于点A B,(点A⊥(点D在点E上方)连在点B的左边).点C为直径AB上一动点过点C作弦DE AB∥交圆O于另一点记为点F.直线EF交x轴于点G连接接AE过点D作DF AE,,.OE BF AD(1)若80∠=︒求ADFBOE∠的度数(2)求证:OE BF∥(3)若2=请直接写出点C横坐标.OG CG14.如图AB为O的弦C为AB的中点D为OC延长线上一点连接BO并延长交O于点E交直线DA于点F B D∠=∠.(1)求证:DA为O的切线(2)若42EF=求弦AB的长度.AF=2⊥交O于B C两点.连15.如图在O中M为半径OA上一点.过M作弦BC OA=.接BO并延长交O于点D连接AD交BC于点E.已知EB ED(1)求证:60CD =︒(2)探究线段CE EM 长度之间的数量关系 并证明.参考答案:1.(1)1(3)45︒2.(2)2583.4.(2)()222242AC BD r m +=-5.(2)6.(2)AE =7.(3)21349CF =8.(1)48E ∠=︒ (2)9.51010.(2)52(3)2AH AE CE =+11.(2)16512.(2)6BE = 25DE =13.(1)100︒(3)点C 555-14.28215.(2)2CE EM =。

圆的垂径定理习题及答案

圆的垂径定理习题及答案

圆的垂径定理习题一. 选择题 1.如图1,00的直径为10,圆心0到弦AB 的距离0M 的长为3,那么弦AB 的长是( )2.如图,O 0的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段0M 长的最小值为()3.过O 0内一点M 的最长弦为10cm 最短弦长为8cm 则0M 的长为()A* 9cmE, 5cm4.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子 0A 0B 在 0点钉在一起,并使它们保持垂直,在测直径时,把 0点靠在圆周上,读得刻度0E=8个单位,0F=6个单位,则圆的直位 D. 15个单位5.如图,00的直径AB 垂直弦CD 于 P,且P 是半径0B 的中点,6cmCD ,则直径AB 的长是()6. 下列命题中,正确的是(A .平分一条直径的弦必垂直于这条直径B .平分一条弧的直线垂直于这条弧所对的弦C .弦的垂线必经过这条弦所在圆的圆心D .在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心7. 如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为A.4B. 6C. 7D. 8 B. 3 C. 4 D. 5B . 10个单位 C. 1个单A . 212个单位E & 5米B, 8米C. 7米D,出米D8.0O 的半径为5cm 弦AB//CD ,且AB=8cm,CD=6cn 则AB 与CD 之间的距离为( ) A . 1 cm B. 7cm C. 3 cm 或 4 cm D. 1cm 或 7cm9•已知等腰△ ABC 的三个顶点都在半径为5的0 0上,如果底边BC 的长为8,那么BC 边上的高为 ( ) A . 2 B. 8 C. 2 或 8 D. 3 二、填空题1. _________________________________________________________________________ 已知AB 是O 0的弦,AB= 8cm, OCL AB 与C, 0C=3cm 则O 0的半径为 __________________________ c m2. ____________________________________________________________________ 在直径为10cm 的圆中,弦 AB 的长为8cm,则它的弦心距为 _______________________________ cm3. 在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于 _____________________4. 已知AB 是O 0的弦,AB= 8cm, OC L AB 与C, 0C=3cm 则O O 的半径为 ________________ cm5. ______________________________________________________________________________ 如图,O 0的直径AB 垂直于弦CD ,垂足为E ,若/C0氐120°, 0E= 3厘米,贝U CD= ___________ 厘6. _____________________________________________________________ 半径为6cm 的圆中,垂直平分半径 0A 的弦长为 _______________________________________________ c m7. 过O 0内一点M 的最长的弦长为6cm,最短的弦长为4cm,则0M 勺长等于 cm8. 已知AB 是O 0的直径,弦CDL AB E为垂足,CD=8 0E=1则AB= __________9. 如图,AB 为O 0的弦,O 0的半径为5, OC L AB 于点D,交O 0于点C,且CD= l ,则弦AB 的长11. __________________________ 如图,在直角坐标系中,以点P 为圆心的圆弧与轴交于 A 、B 两点,已知P(4, 2)和A(2, 0), 贝卩点B 的坐标是12. ____________________________________________________________ 如图,AB 是O 0的直径,ODL AC 于点D, BC=6cm 则0D ________________________________ cm10. 某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知 AB= 16m 半径04 10m 则中间柱 CD的高度为13. 如图,矩形ABCDf圆心在AB上的圆0交于点G B、F、E, GB=10 EF=8 那么AD= ______14.___________________________________________________________________________ 如图,O O 的半径是 5cm P 是o o 外一点,PO=8cm / P=3GO,则 AB ______________________ cm是 __________________ Cm16. 已知AB 是圆O 的弦,半径OC 垂直AB 交AB 于D,若AB=8 CD=2则圆的半径为 _______________ 17. 一个圆弧形门拱的拱高为1米,跨度为4米,那么这个门拱的半径为 ___________________ 米 18. 在直径为10厘米的圆中,两条分别为6厘米和8厘米的平行弦之间的距离是厘米19. 如图,是一个隧道的截面,如果路面AB 宽为8米,净高CD 为8米,那么这个 隧道所在圆的20. 如图,AB 为半圆直径,O 为圆心,C 为半圆上一点,E 是弧AC 的中点,OE 交弦AC 于点0 若 AC=8cm DE=2cm 则 OD 的长为 _____________ c m21. 已知等腰△ ABC 的三个顶点都在半径为5的。

部编数学九年级上册专题24.1垂径定理(重点题专项讲练)(人教版)(解析版)含答案

部编数学九年级上册专题24.1垂径定理(重点题专项讲练)(人教版)(解析版)含答案

专题24.1 垂径定理【典例1】如图,在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点.(1)求证:AC=BD;(2)连接OA、OC,若OA=6,OC=4,∠OCD=60°,求AC的长.(1)过O作OH⊥CD于H,根据垂径定理得到CH=DH,AH=BH,即可得出结论;(2)过O作OH⊥CD于H,连接OD,由垂径定理得CH=DH=12CD,再证△OCD是等边三角形,得CD=OC=4,则CH=2,然后由勾股定理即可解决问题.(1)证明:过O作OH⊥CD于H,如图1所示:∵OH⊥CD,∴CH=DH,AH=BH,∴AH﹣CH=BH﹣DH,∴AC=BD;(2)解:过O作OH⊥CD于H,连接OD,如图2所示:则CH=DH=12 CD,∵OC=OD,∠OCD=60°,∴△OCD是等边三角形,∴CD=OC=4,∴CH=2,∴OH=∴AH∴AC=AH﹣CH=2.1.(2022•芜湖一模)已知⊙O的直径CD=10,AB是⊙O的弦,AB=8,且AB⊥CD,垂足为M,则AC 的长为( )A.B.C.D.【思路点拨】连接OA,由AB⊥CD,根据垂径定理得到AM=4,再根据勾股定理计算出OM=3,然后分类讨论:当如图1时,CM=8;当如图2时,CM=2,再利用勾股定理分别计算即可.【解题过程】解:连接OA,∵AB⊥CD,∴AM=BM=12AB=12×8=4,在Rt△OAM中,OA=5,∴OM=3,当如图1时,CM=OC+OM=5+3=8,在Rt△ACM中,AC=当如图2时,CM=OC﹣OM=5﹣3=2,在Rt△ACM中,AC=故选:C.2.(2022春•江夏区校级月考)如图,在⊙O中,弦AB=5,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为( )A.5B.2.5C.3D.2【思路点拨】连接OD,如图,利用勾股定理得到CD,利用垂线段最短得到当OC⊥AB时,OC最小,再求出CD即可.【解题过程】解:连接OD,如图,∵CD⊥OC,∴∠DCO=90°,∴CD=当OC的值最小时,CD的值最大,而OC⊥AB时,OC最小,此时D、B两点重合,∴CD=CB=12AB=12×5=2.5,即CD的最大值为2.5,故选:B.3.(2022•山海关区一模)已知⊙O的直径CD=10,CD与⊙O的弦AB垂直,垂足为M,且AM=4.8,则直径CD上的点(包含端点)与A点的距离为整数的点有( )A.1个B.3个C.6个D.7个【思路点拨】利用勾股定理得出线段AD和AC的长,根据垂线段的性质结合图形判断即可.【解题过程】解:∵CD是直径,∴OC=OD=12CD=12×10=5,∵AB⊥CD,∴∠AMC=∠AMD=90°,∵AM=4.8,∴OM==1.4,∴CM=5+1.4=6.4,MD=5﹣1.4=3.6,∴AC=8,AD=6,∵AM=4.8,∴A点到线段MD的最小距离为4.8,最大距离为6,则A点到线段MD的整数距离有5,6,A点到线段MC的最小距离为4.8,最大距离为8,则A点到线段MC的整数距离有5,6,7,8,直径CD上的点(包含端点)与A点的距离为整数的点有6个,故选:C.4.(2022•博山区一模)如图,在平面直角坐标系中,半径为5的⊙E与y轴交于点A(0,﹣2),B(0,4),与x轴交于C,D,则点D的坐标为( )A.0)B.(−4+0)C.(−40)D.0)【思路点拨】过O点作EH⊥AB于H,EF⊥CD于F,连接ED,如图,根据垂径定理得到CF=DF,AH=BH=3,所以OH=1,再利用勾股定理计算出EH=4,则EF=1,OF=4,接着利用勾股定理计算出FD,然后计算出OD,从而得到D点坐标.【解题过程】解:过O点作EH⊥AB于H,EF⊥CD于F,连接ED,如图,则CF=DF,AH=BH∵A(0,﹣2),B(0,4),∴AB=6,∴BH=3,∴OH=1,在Rt△BHE中,EH4,∵四边形EHOF为矩形,∴EF=OH=1,OF=EH=4,在Rt△OEF中,FD==∴OD=FD﹣OF=4,∴D(4,0).故选:B .5.(2022•新洲区模拟)如图,点A ,C ,D 均在⊙O 上,点B 在⊙O 内,且AB ⊥BC 于点B ,BC ⊥CD 于点C ,若AB =4,BC =8,CD =2,则⊙O 的面积为( )A .125π4B .275π4C .125π9D .275π9【思路点拨】利用垂径定理和勾股定理建立方程求出ON ,再求出半径后,根据圆面积的计算方法进行计算即可.【解题过程】解:如图,连接OA 、OC ,过点O 作OM ⊥CD 于M ,MO 的延长线于AB 延长线交于N ,则四边形BCMN 是矩形,∵OM ⊥CD ,CD 是弦,∴CM =DM =12CD =1=BN ,∴AN =AB +BN =4+1=5,设ON =x ,则OM =8﹣x ,在Rt △AON 、Rt △COM 中,由勾股定理得,OA 2=AN 2+ON 2,OC 2=OM 2+CM 2,∵OA =OC ,∴AN 2+ON 2=OM 2+CM 2,即52+x 2=(8﹣x )2+12,解得x =52,即ON =52,∴OA 2=52+(52)2=1254,∴S⊙O=π×OA2=1254π,故选:A.6.(2021秋•延平区校级期末)在Rt△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3,若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为( )A.910B.65C.85D.125【思路点拨】由题意可知,C、O、G三点在一条直线上OG最小,MN最大,再由勾股定理求得AB,然后由三角形面积求得CF,最后由垂径定理和勾股定理即可求得MN的最大值.【解题过程】解:过O作OG⊥AB于G,连接OC、OM,∵DE=3,∠ACB=90°,OD=OE,∴OC=12DE=32,只有C、O、G三点在一条直线上OG最小,∵OM=3 2,∴只有OG最小,GM才能最大,从而MN有最大值,过C作CF⊥AB于F,∴G和F重合时,MN有最大值,∵∠ACB=90°,BC=3,AC=4,∴AB==5,∵12AC•BC=12AB•CF,∴CF=AC×BCAB=4×35=125,∴OG=CF﹣OC=125−32=910,∴MG===6 5,∴MN=2MG=12 5,故选:D.7.(2022•吴忠模拟)如图,AB是⊙O的直径,且CD⊥AB于E,若AE=1,∠D=30°,则AB= 4 .【思路点拨】根据含30度角的直角三角形的性质求出AD,根据垂径定理求出AC=AD,求出AC=AD=2,根据圆周角定理求出∠ACB=90°,∠B=∠D=30°,再根据含30度角的直角三角形的性质得出AB=2AC即可.【解题过程】解:∵CD⊥AB,∴∠AED=90°,∵AE=1,∠D=30°,∴AD=2AE=2,∠ABC=∠D=30°,∵AB⊥CD,AB过圆心O,∴AC=AD,∴AC=AD=2,∵AB是⊙O的直径,∴∠ACB=90°,∴AB=2AC=2×2=4,故答案为:4.8.(2022•烟台模拟)如图,AB是⊙O的直径,弦CD交AB于点P,AP=4,BP=12,∠APC=30°,则CD的长为【思路点拨】过O作OI⊥CD于I,连接OD,求出半径OD=OA=8,求出OP,根据含30度角的直角三角形的性质求出OI,根据勾股定理求出DI,根据垂径定理求出DI=CI,再求出CD即可.【解题过程】解:过O作OI⊥CD于I,连接OD,则∠OID=∠OIP=90°,∵AP=4,BP=12,∴直径AB=4+12=16,即半径OD=OA=8,∴OP=OA﹣AP=8﹣4=4,∵∠IPO=∠APC=30°,∴OI=12OP=12×4=2,由勾股定理得:DI==∵OI⊥CD,OI过圆心O,∴DI=CI=即CD=DI+CI=故答案为:9.(2022•桥西区校级模拟)如图,AB是⊙C的弦,直径MN⊥AB于点O,MN=10,AB=8,如图以O为原点建立坐标系.我们把横纵坐标都是整数的点叫做整数点,则线段OC长是 3 ,⊙C上的整数点有 12 个.【思路点拨】过C作直径UL∥x轴,连接AC,根据垂径定理求出AO=BO=4,根据勾股定理求出OC,再得出答案即可.【解题过程】解:过C作直径UL∥x轴,连接CA,则AC=12×10=5,∵MN过圆心C,MN⊥AB,AB=8,∴AO=BO=4,∠AOC=90°,由勾股定理得:CO3,∴ON=5﹣3=2,OM=5+3=8,即A(﹣4,0),B(4,0),M(0,8),N(0,﹣2),同理还有弦QR=AB=8,弦WE=TS=6,且WE、TS、QR都平行于x轴,Q(﹣4,6),R(4,6),W(﹣3,7),E(3,7),T(﹣3,﹣1),S(3,﹣1),U(﹣5,3),L (5,3),即共12个点,故答案为:3;12.10.(2022•商城县三模)如图所示的网格中,每个小正方形的边长均为1,点A、B、C均在小正方形的顶点上,点C 同时也在AB 上,若点P 是BC 的一个动点,则△ABP 面积的最大值是 −8 .【思路点拨】作AB 的垂直平分线交AB 于D ,交AB 于E ,圆心为0,则点O 在DE 上,连接AE 、BE ,CF ⊥OE 于F ,如图,设⊙O 的半径为r ,OD =x ,利用勾股定理得到r 2=x 2+42①,r 2=(x +2)2+22②,则利用②﹣①可求出得x =2,所以r =DE =2,然后根据三角形面积公式,点P 点与点E 重合时,△ABP 面积的最大值.【解题过程】解:作AB 的垂直平分线交AB 于D ,交AB 于E ,圆心为0,则点O 在DE 上,连接AE 、BE ,CF ⊥OE 于F ,如图,设⊙O 的半径为r ,OD =x ,在Rt △BOD 中,r 2=x 2+42①,在Rt △OCF 中,r 2=(x +2)2+22②,②﹣①得4+4x +4﹣16=0,解得x =2,∴OD =2,∴r =∴DE =OE ﹣OD =2,∵点P 是BC 的一个动点,∴点P 点与点E 重合时,△ABP 面积的最大值,最大值为12×8×(2)=8.故答案为:8.11.(2022春•徐汇区校级期中)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,且CE=CB,若BE=2AE,CD=5,那么⊙O的半径为【思路点拨】先证明△AFO和△BCE是等边三角形,设DE=x,根据CD=5列方程,求出x得到AD【解题过程】解:如图,记DC与⊙O交于点F,连接AF、OF、OB,过点C作CT⊥AB于点T,连接OE,OT.∵D为半径OA的中点,CD⊥OA,∴FD垂直平分AO,∴FA=FO,又∵OA=OF,∴△AOF是等边三角形,∴∠OAF=∠AOF=∠AFO=60°,∵CE=CB,CT⊥EB,∴ET=TB,∵BE=2AE,∴AE=ET=BT,∵AD=OD,∴DE∥OT,∴∠AOT=∠ADE=90°,∴OE=AE=ET,∵OA=OB,∴∠OAE=∠OBT,∵AO=BO,AE=BT,∴△AOE≌△BOT(SAS),∴OE=OT,∴OE=OT=ET,∴∠ETO=60°,∴∠OAB=∠OBA=30°,∠AED=∠CEB=60°,∴△CEB是等边三角形,∴CE=CB=BE,设DE=x,∴AE=2x,BE=CE=4x,∴CD=5x=5,∴x=1,∴AD∴AO=故答案为:12.(2022•盐城)证明:垂直于弦AB的直径CD平分弦以及弦所对的两条弧.【思路点拨】先根据已知画图,然后写出已知和求证,再进行证明即可.【解题过程】如图,CD为⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为M.求证:AM=BM,AC=BC,AD=BD.证明:连接OA、OB,∵OA=OB,∴△OAB是等腰三角形,∵AB⊥CD,∴AM=BM,∠AOC=∠BOC,∴AC=BC,AD=BD.13.(2021秋•鼓楼区校级期末)如图,AB是⊙O的直径,弦CD⊥AB于点E,若BE=5,CD=6,求AE 的长.【思路点拨】根据垂径定理和勾股定理求出圆的半径,进而求出AE的长即可.【解题过程】解:如图,连接OC,∵CD⊥AB,AB是直径,∴CE=DE=12CD=3,在Rt△COE中,设半径为r,则OE=5﹣r,OC=r,由勾股定理得,OE2+CE2=OC2,即(5﹣r)2+32=r2,解得r =3.4,∴AE =AB ﹣BE =3.4×2﹣5=1.8,答:AE 的长为1.8.14.(2021秋•芜湖月考)如图,在△ABC 中AB =5,AC =4,BC =2,以A 为圆心,AB 为半径作⊙A ,延长BC 交⊙A 于点D ,试求CD 的长.【思路点拨】过点A 作AE ⊥BD 于点E ,如图,则DE =BE ,利用双勾股得到AC 2﹣CE 2=AB 2﹣BE 2,即42﹣(BE ﹣2)2=52﹣BE 2,解方程得到BE =134,然后计算BD ﹣BC 即可.【解题过程】解:过点A 作AE ⊥BD 于点E ,连接AD ,如图,则DE =BE ,在Rt △ACE 中,AE 2=AC 2﹣CE 2,在Rt △ABE 中,AE 2=AB 2﹣BE 2,∴AC 2﹣CE 2=AB 2﹣BE 2,即42﹣(BE ﹣2)2=52﹣BE 2,解得BE =134,∴CD =BD ﹣BC =2BE ﹣2=2×134−2=92.答:CD 的长为92.15.(2022•江西开学)如图,在⊙O 中,弦AB ∥CD ,AB =8,CD =6,AB ,CD 之间的距离为1.(1)求圆的半径.(2)将弦AB 绕着圆心O 旋转一周,求弦AB 扫过的面积.【思路点拨】(1)过点O作OF⊥CD于点F,交AB于点E,连接OA、OD,即可得出DF=CF=3,再因为AB∥CD,则可得到OE⊥AB,进而得到AE=BE=4,最后根据勾股定理计算即可;(2)先判断出将弦AB绕着圆心O旋转一周,得到的图形,再根据圆面积公式计算即可.【解题过程】解:(1)如图,过点O作OF⊥CD于点F,交AB于点E,连接OA、OD,则DF=CF=3,∵AB∥CD,∴OE⊥AB,∴AE=BE=4,设OE=x,则OF=x+1,根据题意可得:x2+42=(x+1)2+32,∴x=3,∴=5;(2)将弦AB绕着圆心O旋转一周,得到的图形是以点O为圆心,以3为半径的圆与以5为半径的圆所围成的环形,故弦AB扫过的面积为π×52﹣π×32=16π.16.(2021秋•玄武区校级月考)如图,AB是⊙O直径,弦CD⊥AB于点E,过点C作DB的垂线,交AB 的延长线于点G,垂足为点F,连结AC.(1)求证:AC=CG;(2)若CD=EG=8,求⊙O的半径.【思路点拨】(1)利用等角的余角证明∠D=∠G,再根据圆周角定理得到∠A=∠D,所以∠A=∠G,从而得到结论;(2)连接OC,如图,设⊙O的半径为r,根据等腰三角形的性质和垂径定理得到AE=EG=8,EC=ED=4,则OE=8﹣r,利用勾股定理得r2=(8﹣r)2+42,然后解方程即可.【解题过程】(1)证明:∵DF⊥CG,CD⊥AB,∴∠DEB=∠BFG=90°,∵∠DBE=∠GBF,∴∠D=∠G,∵∠A=∠D,∴∠A=∠G,∴AC=CG;(2)解:连接OC,如图,设⊙O的半径为r.∵CA=CG,CD⊥AB,∴AE=EG=8,EC=ED=4,∴OE=AE﹣OA=8﹣r,在Rt△OEC中,∵OC2=OE2+EC2,∴r2=(8﹣r)2+42,解得r=5,∴⊙O的半径为5.17.(2022•白云区二模)已知:如图,A,B是半圆O上的两点,CD是⊙O的直径,∠AOD=80°,B是AD 的中点.(1)在CD上求作一点P,使得AP+PB最短;(2)若CD=4cm,求AP+PB的最小值.【思路点拨】(1)作出B关于CD的对称点B′,连接AB′,交CD于P点,P就是所求的点;(2)延长AO交圆与E,连接OB′,B′E,可以根据圆周角定理求得∠AOB′的度数,根据等腰三角形的性质求得∠A的度数,然后在直角△AEB′中,解直角三角形即可求解.【解题过程】解:(1)作BB′⊥CD,交圆于B′,然后连接AB′,交CD于P点,P就是所求的点;(2)延长AO交圆于E,连接OB′,B′E.∵BB′⊥CD∴BD=B′D,∵∠AOD=80°,B是AD的中点,∴∠DOB′=12∠AOD=40°.∴∠AOB′=∠AOD+∠DOB′=120°,又∵OA=OB′,∴∠A=180°−∠AOB′2=30°.∵AE是圆的直径,∴∠AB′E=90°,∴直角△AEB′中,B′E=12AE=12×4=2,∴AB′=.18.(2022•中山市模拟)已知:如图,在⊙O中,AB、AC为互相垂直的两条弦,OD⊥AB,OE⊥AC,D、E 为垂足.(1)若AB=AC,求证:四边形ADOE为正方形.(2)若AB>AC,判断OD与OE的大小关系,并证明你的结论.【思路点拨】(1)连接OA,根据垂径定理得出AE=CE,AD=BD,根据AB=AC求出AE=AD,再根据矩形的判定和正方形的判定推出即可;(2)根据勾股定理得出OE2=OA2﹣AE2,OD2=OA2﹣AD2,根据AB>AC求出AD>AE,再得出答案即可.【解题过程】(1)证明:连接OA,∵OD⊥AB,OE⊥AC,OD和OE都过圆心O,∴∠OEA=∠ODA=90°,AE=CE,AD=BD,∵AC=AB,∴AE=AD,∵AB、AC为互相垂直的两条弦,∴∠EAD=90°,即∠OEA=∠EAD=∠ODA=90°,∴四边形EADO是正方形(有一组邻边相等的矩形是正方形);(2)解:OD<OE,证明:∵AB>AC,AE=CE,AD=BD,∴AD>AE,在Rt△ODA和Rt△OEA中,由勾股定理得:OE2=OA2﹣AE2,OD2=OA2﹣AD2,∴OD2<OE2,即OD<OE.19.(2022•全椒县一模)如图,⊙O中两条互相垂直的弦AB,CD交于点E.(1)OM⊥CD于点M,CD=24,⊙O的半径长为OM的长.(2)点G在BD上,且AG⊥BD交CD于点F,求证:CE=EF.【思路点拨】(1)连接OD,由垂径定理和勾股定理可得答案;(2)连接AC,由垂直的定义及等腰三角形的性质可得结论.【解题过程】(1)解:如图,连接OD,∵OM⊥CD,OM过圆心,CD=24,∴DM=CM=12CD=12,∠OMD=90°,由勾股定理得,OM=4,即OM的长为4;(2)证明:如图,连接AC,∵AG⊥BD,∴∠DGF=90°,∴∠DFG+∠D=90°,∵AB⊥CD,∴∠CEA=90°,∴∠C+∠EAC=90°,∵∠EAC=∠D,∠DFG=∠AFC,∴∠C=∠AFC,∴AF=AC,∵AB⊥CD,∴CE=EF.20.(2022•合肥模拟)如图,在⊙O中,AB,AC为弦,CD为直径,AB⊥CD于E,BF⊥AC于F,BF与CD相交于G.(1)求证:ED=EG;(2)若AB=8,OG=1,求⊙O的半径.【思路点拨】(1)连接BD,容易得到∠GBE和∠DBE相等,利用ASA证明△BGE和△BDE全等即可;(2)连接OA,设OA=r,则DG=r+1,根据ED=EG容易求出OE=r−12,再根据垂径定理求出AE的值,最后在Rt△OAE中根据勾股定理求出r的值即可.【解题过程】(1)证明:如图:连接BD,∵AB⊥CD于E,BF⊥AC于F,∴∠CFG=∠GEB,∵∠CGF=∠BGE,∴∠C=∠GBE,∵∠C=∠DBE,∴∠GBE=∠DBE,∵AB⊥CD于E,∴∠GEB=∠DEB,在△GBE和△DBE中,∠GEB=∠DEBBE=BE∠GBE=∠DBE,∴△BGE≌△BDE(ASA),∴ED=EG.(2)解:如图:连接OA,设OA=r,则DG=r+1,由(1)可知ED=EG,∴OE=r−1 2,∵AB⊥CD于E,AB=8,∴AE=BE=4,∴在Rt△OAE中,根据勾股定理得:OE2+AE2=OA2,即(r−12)2+42=r2,解得:r=13 3,即⊙O的半径为13 3.21.(2021•遵义一模)在《折叠圆形纸片》综合实践课上,小东同学展示了如下的操作及问题:(1)如图1,⊙O1的半径为4cm,通过折叠圆形纸片,使得劣弧AB沿弦AB折叠后恰好过圆心O1,求,AB长;(2)如图2,O2C⊥弦AB,垂足为点C,劣弧AB沿弦AB折叠后经过O2C的中点D,AB=10cm,求⊙O 的半径.【思路点拨】(1)过点O1作O1F⊥AB于F,得出O1F=12O1F,再根据勾股定理,即可得出结论;(2)同(1)的方法先判断出O2C=2rcm,再根据勾股定理建立方程求解,即可得出结论.【解题过程】解:(1)如图1,过点O1作O1F⊥AB于F,并延长O1F交虚线劣弧AB于E,∴AB=2AF,由折叠知,EF=O1F=12O1E=12×4=2(cm),连接O1A,在Rt△O1FA中,O1A=4,根据勾股定理得,AF cm),∴AB=2AF=;(2)如图2,延长O2C交虚线劣弧AB于G,由折叠知,CG=CD,∵D是O2C的中点,∴CD=O2D,∴CG=CD=O2D,设⊙O2的半径为3rcm,则O2C=2r(cm),∵O2C⊥弦AB,∴AC=12AB=5(cm),连接O2A,在Rt△ACO2中,根据勾股定理得,(3r)2﹣(2r)2=25,∴r∴O2A=3r=cm),即⊙O2的半径为.22.(2021•浙江自主招生)以O为圆心,1为半径的圆内有一定点A,过A引互相垂直的弦PQ,RS.求PQ+RS的最大值和最小值.【思路点拨】设OA=a(定值),过O作OB⊥PQ,OC⊥RS,B、C为垂足,设OB=x,OC=y,0≤x≤a,(0≤y≤a),由勾股定理得出x,y,a的关系,再由垂径定理PQ和RS,最后由完全平方公式求得最大值和最小值.【解题过程】解:如图,设OA=a(定值),过O作OB⊥PQ,OC⊥RS,B、C为垂足,设OB=x,OC=y,0≤x≤a,(0≤y≤a),且x2+y2=a2.所以PQ=2PB=RS=所以PQ+RS=2∴(PQ+RS)2=4(2﹣a2而x2y2=x2(a2﹣x2)=﹣(x2−a22)2+a44.当x2=a22时,(x2y2)最大值=a4 4.此时PQ+RS=当x2=0或x2=a2时,(x2y2)最小值=0,=2(1+此时(PQ+RS)最小值。

初中垂径定理试题及答案

初中垂径定理试题及答案

初中垂径定理试题及答案一、选择题1. 在圆中,垂直于弦的直径是该弦的()。

A. 垂线B. 垂径C. 弦心距D. 弦长答案:B2. 垂径定理告诉我们,如果一条线段垂直于弦,并且平分弦,那么它也平分弦所对的()。

A. 弧B. 圆心角C. 弦心距D. 弦长答案:A3. 在圆中,如果一条直径垂直于弦,那么这条直径将弦分成的两段长度()。

A. 相等B. 不相等C. 无法确定D. 取决于圆的大小答案:A二、填空题4. 在圆中,如果弦AB的中点为M,且直径CD垂直于弦AB于点M,则弦AB所对的弧ACB的度数为______。

答案:90°5. 垂径定理在圆的几何学中非常重要,它说明了垂直于弦的直径将弦平分,并且平分的弦所对的弧是______。

答案:相等的三、解答题6. 已知圆O的半径为10cm,弦AB垂直于直径CD于点M,求弦AB的长度。

答案:由于直径CD垂直于弦AB,根据垂径定理,弦AB被直径CD平分,因此弦AB的长度为圆的直径,即20cm。

7. 在一个圆中,弦AC的长度为12cm,弦BC的长度为8cm,且AC和BC相交于点O,求圆的半径。

答案:由于AC和BC相交于圆心O,根据垂径定理,OA=OC,OB=OA,因此OA=OC=6cm,OB=OA=6cm。

根据勾股定理,圆的半径r满足r^2 =OA^2 + OB^2 = 6^2 + 6^2 = 72,所以r = √72 = 6√2 cm。

四、证明题8. 证明:在圆中,如果一条直径垂直于弦,那么这条直径将弦平分。

答案:设圆心为O,直径为CD,弦为AB,且CD垂直于AB于点M。

要证明CM=MD。

由于CD是直径,所以∠CMO=∠DMO=90°。

根据垂径定理,CM=MD,因此这条直径将弦平分。

浙教新版九年级上册《3.3 垂径定理》2024年同步练习卷(4)+答案解析

浙教新版九年级上册《3.3 垂径定理》2024年同步练习卷(4)+答案解析

浙教新版九年级上册《3.3垂径定理》2024年同步练习卷(4)一、选择题:本题共5小题,每小题3分,共15分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.如图,已知的直径于点E,则下列结论一定错误的是()A.B.C.D.≌2.如图,AB是的直径,弦于点E,,,则A.8B.5C.3D.23.如图,AB,BC是的两条弦,,垂足为D,若的直径为5,,则AB的长为()A.B.C.4D.54.如图,的直径,AB是的弦,,垂足为若OM::5,则AB的长为()A.8B.12C.15D.165.如图,在半径为5的中,AB、CD是互相垂直的两条弦,垂足为P,且,则OP的长为()A.3B.4C.D.二、填空题:本题共4小题,每小题3分,共12分。

6.如图,AB、AC、BC都是的弦,,,垂足分别为M、N,若,则BC的长为______.7.如图,已知AB是半圆O的直径,弦,,,则BC的长为______.8.如图,AB是半圆O的直径,AC为弦,于D,过点O作交半圆O于点E,过点E作于若,则OF的长为__________.9.如图,在中,弦,点C在AB上移动,连接OC,过点C作,交于点D,则CD长的最大值为______.三、解答题:本题共4小题,共32分。

解答应写出文字说明,证明过程或演算步骤。

10.本小题8分已知:如图,AB是的弦,半径OC、OD分别交AB于点E、F,且求证:11.本小题8分如图,是一张盾构隧道断面结构图.隧道内部为以O为圆心,AB为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A到顶棚的距离为,顶棚到路面的距离是,点B到路面的距离为请求出路面CD的宽度.精确到12.本小题8分如图,OD是的半径,AB是弦,且于点C连接AO并延长交于点E,若,,求半径OA的长.13.本小题8分如图是一个半圆形桥洞的截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,,米,于点E,此时测得OE::求CD的长;如果水位以米/小时的速度上升,则经过多长时间桥洞会刚刚被灌满?答案和解析1.【答案】B【解析】解:的直径于点E,,,在和中,,≌,根据已知条件无法证明,故选:根据垂径定理得出,,再根据全等三角形的判定方法“AAS”即可证明≌本题考查了垂径定理的应用和全等三角形的判定,注意:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.【答案】A【解析】解:,AB是直径,,在中,,,故选:根据垂径定理推出,再利用勾股定理求出OE即可解决问题.本题考查垂径定理,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.【答案】A【解析】解:连接OB,,AO过O,,,,由勾股定理得:,,在中,由勾股定理得:,故选:根据垂径定理求出BD,根据勾股定理求出OD,求出AD,再根据勾股定理求出AB即可.本题考查了垂径定理和勾股定理,能根据垂径定理求出BD长是解此题的关键.4.【答案】D【解析】解:连接OA,的直径,OM::5,,,,,故选:连接OA,先根据的直径,OM::5求出OD及OM的长,再根据勾股定理可求出AM的长,进而得出结论.本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.5.【答案】C【解析】【分析】本题考查了垂径定理及勾股定理的知识,解题的关键是正确地作出辅助线.作于M,于N,连接OB,OD,首先利用勾股定理求得OM的长,然后判定四边形OMPN 是正方形,求得正方形的对角线的长即可求得OP的长.【解答】解:作于M,于N,连接OB、OD,由垂径定理、勾股定理得:,弦AB、CD互相垂直,,于M,于N,四边形MONP是矩形,,四边形MONP是正方形,故选:6.【答案】2【解析】解:,,垂足分别为M、N,OM过圆心O,ON过圆心O,,,,,,故答案为:根据垂径定理得出,,根据三角形的中位线性质得出,再求出BC即可.本题考查了三角形的中位线和垂径定理,能根据垂径定理求出和是解此题的关键.7.【答案】【解析】解:过点O作于H,分别过点C、D作于点E,于点F,连接OC,如图,则,在中,,,,,,,又,四边形HOEC是矩形,,,,,故答案为:过点O作于H,分别过点C、D作于点E,于点F,连接OC,如图,根据垂径定理得到,再利用勾股定理计算出,根据题意推出四边形HOEC是矩形,根据矩形的性质及勾股定理即可得解.本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.8.【答案】6【解析】【分析】本题考查了垂径定理、全等三角形的性质和判定等知识.熟练掌握垂径定理,证明≌是解决问题的关键.先根据垂径定理求出AD的长,再由AAS定理得出≌,推出即可求出答案.【解答】解:,,,,,,,,在和中,,≌,,故答案为:9.【答案】2【解析】解:,,,当OC的值最小时,CD的值最大,时,OC最小,此时D、B两点重合,,即CD的最大值为2,故答案为:根据勾股定理求出CD,利用垂线段最短得到当时,OC最小,根据垂径定理计算即可.本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.10.【答案】证明:如图,过点O作于点M,则又,【解析】本题考查了等腰三角形的性质及垂径定理.平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.如图,过点O作于点根据垂径定理得到然后利用等腰三角形“三线合一”的性质推知,故11.【答案】解:如图,连接OC,AB交CD于E,由题意知:,所以,,由题意可知:,过O,,在中,由勾股定理得:,,所以路面CD的宽度为【解析】连接OC,求出OC和OE,根据勾股定理求出CE,根据垂径定理求出CD即可.本题考查了垂径定理和勾股定理,能求出CE的长是解此题的关键,注意:垂直于弦的直径平分这条弦.12.【答案】解:弦AB,,,设的半径,,在中,,解得:,【解析】先根据垂径定理求出AC的长,设的半径为r,在中利用勾股定理求出r的值.本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.13.【答案】解:直径米,米,,第11页,共11页,::8,::4,设米,则米,在中,由勾股定理得:,解得:负值已舍去,米,米;由得:米,如图,延长OE 交圆O 于点F ,米,小时,答:经过5小时桥洞会刚刚被灌满.【解析】设米,则米,由勾股定理求得DE 的长,即可得出结论;延长OE 交圆O 于点F ,求得EF 的长,即可解决问题.此题主要考查了垂径定理的应用以及勾股定理等知识,熟练掌握垂径定理和勾股定理是解题的关键.。

(附答案)《垂径定理》典型例题

(附答案)《垂径定理》典型例题

《垂径定理》典型例题例1. 选择题:(1)下列说法中,正确的是()A. 长度相等的弧是等弧B. 两个半圆是等弧C. 半径相等的弧是等弧D. 直径是圆中最长的弦答案:D(2)下列说法错误的是()A. 圆上的点到圆心的距离相等B. 过圆心的线段是直径C. 直径是圆中最长的弦D. 半径相等的圆是等圆答案:B例2. 如图,已知AB是⊙O的直径,M、N分别是AO、BO的中点,CM⊥AB,DN⊥AB。

分析:要证弧相等,可证弧所对的弦相等,也可证弧所对的圆心角相等。

证明:连结OC、OD∵M、N分别是OA、OB的中点∵OA=OB,∴OM=ON又CM⊥AB,DN⊥AB,OC=OD∴Rt△OMC≌Rt△OND∴∠AOC=∠BOD例3. 在⊙O中,弦AB=12cm,点O到AB的距离等于AB的一半,求∠AOB 的度数和圆的半径。

分析:根据O到AB的距离,可利用垂径定理解决。

解:过O点作OE⊥AB于E∵AB=12由垂径定理知:∴△ABO为直角三角形,△AOE为等腰直角三角形。

例4. 如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心,CA 为半径的圆与AB、BC分别交于点D、E。

求AB、AD的长。

分析:求AB较简单,求弦长AD可先求AF。

解:过点C作CF⊥AB于F∵∠C=90°,AC=3,BC=4∵∠A=∠A,∠AFC=∠ACB∴△AFC∽△ACB例5. 如图,⊙O中,弦AB=10cm,P是弦AB上一点,且PA=4cm,OP=5cm,求⊙O的半径。

分析:⊙O中已知弦长求半径,通常作弦心距构造直角三角形,利用勾股定理求解。

解:连OA,过点O作OM⊥AB于点M∵点P在AB上,PA=4cm即⊙O的半径为7cm。

例6. 如图“五段彩虹展翅飞”是某省利用国债资金修建的横跨渡江的琼洲大桥已正式通车,该桥的两边均有五个红色的圆拱,最高的圆拱的跨度为110米,拱高为22米,求这个圆拱所在圆的直径。

(完整版)垂径定理练习题及答案

(完整版)垂径定理练习题及答案

垂径定理一.选择题★1.如图1,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,那么弦AB 的长是( )A .4B .6C .7D .8答案:D★★2.如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 长的最小值为( )A .2B .3C .4D .5答案:B★★3.过⊙O 内一点M 的最长弦为10 cm ,最短弦长为8cm ,则OM 的长为( )A .9cmB .6cmC .3cmD .cm 41 答案:C★★4.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( )A .12个单位B .10个单位C .1个单位D .15个单位答案:B★★5.如图,O ⊙的直径AB 垂直弦CD 于P ,且P 是半径OB 的中点,6cm CD ,则直径AB 的长是( )A .23cmB .32cmC .42cmD .43cm答案:D★★6.下列命题中,正确的是()A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必经过这条弦所在圆的圆心D.在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心答案:D★★★7.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( )A.5米 B.8米 C.7米 D.53米答案:B★★★8.⊙O的半径为5cm,弦AB//CD,且AB=8cm,CD=6cm,则AB与CD之间的距离为( ) A. 1 cm B. 7cm C. 3 cm或4 cm D. 1cm 或7cm答案:D★★★9.已知等腰△ABC的三个顶点都在半径为5的⊙O上,如果底边BC的长为8,那么BC边上的高为( )A.2 B.8 C.2或8 D.3答案:C二.填空题★1.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为 cm答案:5 cm★2.在直径为10cm的圆中,弦AB的长为8cm,则它的弦心距为 cm答案:3 cm★3.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于答案:6★★4.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为 cm 答案:5 cm★★5.如图,⊙O的直径AB垂直于弦CD,垂足为E,若∠COD=120°,OE=3厘米,则CD =厘米O图 4E DCBA答案:63 cm★★6.半径为6cm的圆中,垂直平分半径OA的弦长为 cm.答案:63 cm★★7.过⊙O内一点M的最长的弦长为6cm,最短的弦长为4cm,则OM的长等于 cm 答案:5★★8.已知AB是⊙O的直径,弦CD⊥AB,E为垂足,CD=8,OE=1,则AB=____________答案:217★★9.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=l,则弦AB的长是答案:6★★10.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,则中间柱CD的高度为 m答案:4★★11.如图,在直角坐标系中,以点P为圆心的圆弧与轴交于A、B两点,已知P(4,2)和A(2,0),则点B的坐标是答案:(6,0)★★12.如图,AB是⊙O的直径,OD⊥AC于点D,BC=6cm,则OD= cm答案:3★★13.如图,矩形ABCD与圆心在AB上的圆O交于点G、B、F、E,GB=10,EF=8,那么AD=答案:3★★14.如图,⊙O的半径是5cm,P是⊙O外一点,PO=8cm,∠P=30º,则AB= cm PBAO答案:6★★★15.⊙O的半径为13 cm,弦AB∥CD,AB=24cm,CD=10cm,那么AB和CD的距离是 Cm答案:7cm 或17cm★★★16.已知AB是圆O的弦,半径OC垂直AB,交AB于D,若AB=8,CD=2,则圆的半径为答案:5★★★17.一个圆弧形门拱的拱高为1米,跨度为4米,那么这个门拱的半径为米答案:52★★★18.在直径为10厘米的圆中,两条分别为6厘米和8厘米的平行弦之间的距离是厘米BAPOyx答案:7或1★★★19.如图,是一个隧道的截面,如果路面AB 宽为8米,净高CD 为8米,那么这个 隧道所在圆的半径OA 是___________米答案:5★★★20.如图,AB 为半圆直径,O 为圆心,C 为半圆上一点,E 是弧AC 的中点,OE 交弦AC 于点D 。

垂径定理(含答案)

垂径定理(含答案)

9题10题11题5题6题《垂径定理》练习题1.半径为8的圆中,垂直平分半径的弦长为 。

2.⊙O 的半径为6,M 为⊙O 内一点,OM=4,则过点M 的所有弦中,最长的弦长为 ,最短的弦长为 。

3. 如图,⊙O 的AB 垂直平分半径OACB 的形状为 。

4.如图,⊙O 中,AB ⊥AC ,OE ⊥AB 于E ,OF ⊥AC 于F ,且OE=3,OF=4,则AB= ,AC= ,⊙O 的半径R= 。

5.如图,⊙O 中,AB 为弦,AB=8m,直径为10cm ,若M 为弦AB 上一点,则OM 的长x 的取值范围为 。

6.如图,⊙O 中,AB 为弦,且AB=421 cm ,sin ∠OAB=25,则⊙O 的半径为 。

7.如图,AB 是半径为15cm 的⊙O 中的一条弦,交半径为13cm 的同心圆于点C 、D 两点,已知,O 到AB 的距离为12cm,则AC+BD= 。

8.如图,有一条圆弧形拱桥,桥的跨度AB=16m,拱高CD=4m ,则拱形的半径为 。

9.如图,⊙O 的直径CD 与弦AB 交于点M ,添加一个条件 ,就可以得到M 为AB 的中点。

10.如图,某机械传动装置在静止状态时,连杆PA 与点A 运动所形成的⊙O 交于点B ,现测得PB=4cm,AB=10cm, ⊙O 的半径R=13cm,此时P 点到圆心O 的距离是 。

11.如图,已知AB 为⊙O 的弦,P 是AB 上一点,若AB=10cm,PB=4cm,OP=5cm,则⊙O 的半径为 。

12.如图,水平放置的圆柱形水管的截面半径为5dm,水面宽AB 为6dm,则此时水深为 。

13.⊙O 的半径为13cm ,E 为⊙O 内一点,OE=5cm,则过E 点的所有弦中,长度为整数的弦有 条。

14.⊙O 中弦AB 与弦CD 垂直于点P ,且AP=PB=4cm,PC=2cm,则⊙O 的直径为 .15.已知P 为⊙O 内一点,且经过P 点的最长弦长为26cm, 过P 点的最短弦长为10cm ,则OP= 。

垂径定理练习题及答案[1]

垂径定理练习题及答案[1]

垂径定理一.选择题★1.如图1,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,那么弦AB的长是()A.4 B.6 C.7 D.8第1题第2题第4题★★2.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM长的最小值为()A.2 B.3 C.4 D.5★★3.过⊙O内一点M的最长弦为10 cm,最短弦长为8cm,则OM的长为()41A.9cm B.6cm C.3cm D.cm★★4.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA、OB在O点钉在一起,并使它们保持垂直,在测直径时,把O点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为()A.12个单位 B.10个单位 C.1个单位 D.15个单位★★5.下列命题中,正确的是()A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必经过这条弦所在圆的圆心D.在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心★★★6.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( )A.5米 B.8米 C.7米 D.53米★★★7.⊙O的半径为5cm,弦AB//CD,且AB=8cm,CD=6cm,则AB与CD之间的距离为( ) A. 1 cm B. 7cm C. 3 cm或4 cm D. 1cm 或7cm二.填空题★1.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为 cm★★2.半径为6cm的圆中,垂直平分半径OA的弦长为 cm.★★3.过⊙O内一点M的最长的弦长为6cm,最短的弦长为4cm,则OM的长等于 cm ★★4.已知AB是⊙O的直径,弦CD⊥AB,E为垂足,CD=8,OE=1,则AB=____________★★5.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,则中间柱CD的高度为 m第5 题第6 题★★6.如图,在直角坐标系中,以点P为圆心的圆弧与轴交于A、B两点,已知P(4,2) 和A(2,0),则点B的坐标是★★★7.⊙O的半径为13 cm,弦AB∥CD,AB=24cm,CD=10cm,那么AB和CD的距离是 Cm★★★8.已知AB是圆O的弦,半径OC垂直AB,交AB于D,若AB=8,CD=2,则圆的半径为★★★9.一个圆弧形门拱的拱高为1米,跨度为4米,那么这个门拱的半径为米★★★10.在直径为10厘米的圆中,两条分别为6厘米和8厘米的平行弦之间的距离是厘米三.解答题★★1.已知⊙O的弦AB长为10,半径长R为7,求点O到AB的距离OC的长★★2.已知⊙O的半径长为50cm,弦AB长50cm.求:(1)点O到AB的距离;(2)∠AOB的大小★★3.如图,直径是50cm圆柱形油槽装入油后,油深CD为15cm,求油面宽度AB★★4.如图,已知⊙O 的半径长为R=5,弦AB 与弦CD 平行,他们之间距离为7,AB=6求:弦CD 的长.★★★5.1300 多年前,我国隋代建造的赵州石拱桥的桥拱是圆弧形,它的跨度(弧所对的弦长)为37.4米,拱高(弧的中点到弦的距离,也叫拱形高)为7.2米,求桥拱的半径(精确到0.1米)★★★6.如图是地下排水管的截面图(圆形),小敏为了计算地下排水管的直径,在圆形 弧上取了A ,B 两点并连接AB ,在劣弧AB 上取中点C 连接CB ,经测量45=BC 米, 87.36=∠ABC °,根据这些数据请你计算出地下排水管的直径。

垂径定理练习题及答案

垂径定理练习题及答案

垂径定理练习题及答案垂径定理练习题及答案垂径定理是几何学中的一个重要定理,它解决了关于圆的切线和半径之间的关系问题。

在学习和应用垂径定理时,我们需要通过大量的练习题来巩固理论知识,并提高解题能力。

下面将给出一些垂径定理的练习题,并附上详细的解答,希望能对大家的学习有所帮助。

练习题一:在一个圆中,直径为10厘米,且过圆心的直径AC与切线BD相交于点E。

若AC=8厘米,求BE的长度。

解答:根据垂径定理,切线BD与半径AC垂直,所以∠BAC=90°。

由此可知,三角形BAC是一个直角三角形。

根据勾股定理可得:BA²+AC²=BC²代入已知条件,得:BA²+8²=10²化简得:BA²+64=100移项得:BA²=36开方得:BA=6由于∠BAC=90°,所以BE也是直径,即BE=10厘米。

练习题二:在一个圆中,直径为16厘米,切线AB与半径CD相交于点E。

若AE=3厘米,求BE的长度。

解答:同样地,根据垂径定理,切线AB与半径CD垂直,所以∠CAD=90°。

由此可知,三角形CAD是一个直角三角形。

根据勾股定理可得:CA²+AD²=CD²代入已知条件,得:CA²+16²=CD²化简得:CA²+256=CD²移项得:CA²=CD²-256开方得:CA=√(CD²-256)根据垂径定理,AE是半径CD的垂直平分线,所以AE=DE。

又已知AE=3厘米,所以DE=3厘米。

由于∠CAD=90°,所以BE也是直径,即BE=16厘米。

练习题三:在一个圆中,直径为12厘米,切线AB与半径CD相交于点E。

若AE=5厘米,求BE的长度。

解答:同样地,根据垂径定理,切线AB与半径CD垂直,所以∠CAD=90°。

垂径定理及答案

垂径定理及答案

垂径定理 姓名※垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.例1.如图,一个矩形与⊙0相交,AB=4,BC=5,DE=3.求EF的长.例2.今有圆木砌入壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?(《九章算术》《勾股》章第九题)例3.如图,CD是⊙0的一条直径.AB是一条不与CD相交的弦,自C,D分别作AB的垂线,垂足为E和F.求证:AE=BF.例4.设C1 ,C2 ,C3是某个圆中处于圆心同一侧的三条平行弦.C1与C2间的距离等于C2和C3间的距离,三条弦的长度分别是20,16,8.求这个圆的半径.例5.⊙0中,弦CD与直径AB相交于P.若∠DPB =45°,⊙O的半径长记为R.求证:PC2+PD2=2R2.例 6.在波平如镜的湖面,高出半尺的地方长着一朵红莲,它孤零零地直立在那里,突然被狂风吹倒在一边,有一位渔人亲眼看见,它现在有两尺远离开那生长地点.请你来解决一个问题,湖水在这里有多少深浅?例7.P是⊙01与⊙02的一个交点,过P点作平行于0102的直线交⊙01于A,交⊙02于B,过P 点作另一直线交⊙01于C,交⊙02于D.求证:AB>CD.例8.⊙0与一正方形ABCD相交,如图所示.A1,A2,B1,B2,C1,C2,D1,D2是八个交点.求证:AA1+AA2+CC1+CC2=BB1+BB2+DD1+DD2.例9.圆内两条非直径的弦相交,试证它们不能互相平分.垂径定理练习 姓名1.⊙0与另外两同心圆相交,交大圆于点A,B,交小圆于点C, D.求证:AB∥CD.2.以∠A平分线上一点0为圆心画一个圆,在∠A的两边上截得的两条弦为BC和DE.求证:BC=DE.3.直角三角形中,直角边AC=8cm,另一直角边CB =15cm,以直角顶点C为圆心CA为半径画弧交斜边AB于点D.求AD的长.4.一条弦与一条直径成45°角,试证:该弦被直径所分两线段的平方和等于该圆半径平方的两倍.5.以AB为直径画半圆O,C是半圆上一点,作OD⊥AC于D.连结BD交OC于E,若BD长为15厘米,求BE的长.垂径定理 参考答案※垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.例1.如图,一个矩形与⊙0相交,AB=4,BC=5,DE=3.求EF的长.例2.今有圆木砌入壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?(《九章算术》《勾股》章第九题)例3.如图,CD是⊙0的一条直径.AB是一条不与CD相交的弦,自C,D分别作AB的垂线,垂足为E和F.求证:AE=BF.例4.设C1 ,C2 ,C3是某个圆中处于圆心同一侧的三条平行弦.C1与C2间的距离等于C2和C3间的距离,三条弦的长度分别是20,16,8.求这个圆的半径.例5.⊙0中,弦CD与直径AB相交于P.若∠DPB =45°,⊙O的半径长记为R.求证:PC2+PD2=2R2.例 6.在波平如镜的湖面,高出半尺的地方长着一朵红莲,它孤零零地直立在那里,突然被狂风吹倒在一边,有一位渔人亲眼看见,它现在有两尺远离开那生长地点.请你来解决一个问题,湖水在这里有多少深浅?解得x=3.75(尺)例7.P是⊙01与⊙02的一个交点,过P点作平行于0102的直线交⊙01于A,交⊙02于B,过P 点作另一直线交⊙01于C,交⊙02于D.求证:AB>CD.例8.⊙0与一正方形ABCD相交,如图所示.A1,A2,B1,B2,C1,C2,D1,D2是八个交点.求证:AA1+AA2+CC1+CC2=BB1+BB2+DD1+DD2.例9.圆内两条非直径的弦相交,试证它们不能互相平分.垂径定理练习 参考答案1.⊙0与另外两同心圆相交,交大圆于点A,B,交小圆于点C, D.求证:AB∥CD.2.以∠A 平分线上一点0为圆心画一个圆,在∠A求证:BC=DE.3.直角三角形中,直角边AC=8cm,另一直角边CB=15cm,以直角顶点C 为圆心CA 为半径画弧交斜边AB 于点D.求AD 的长.4.一条弦与一条直径成45°角,试证:该弦被直径所分两线段的平方和等于该圆半径平方的两倍.5.以AB 为直径画半圆O,C 是半圆上一点,作OD⊥AC 于D.连结BD 交OC 于E,若BD 长为15厘米,求BE 的长.。

垂径定理-练习题 含答案

垂径定理-练习题 含答案

垂径定理副标题题号一二总分得分一、选择题(本大题共4小题,共12.0分)1.如图所示,的半径为13,弦AB的长度是24,,垂足为N,则A. 5B. 7C. 9D.11【答案】A【解析】解:由题意可得,,,,,,故选A.根据的半径为13,弦AB的长度是24,,可以求得AN的长,从而可以求得ON的长.本题考查垂径定理,解题的关键是明确垂径定理的内容,利用垂径定理解答问题.2.如图,AB是的直径,弦于点E,,的半径为5cm,则圆心O到弦CD的距离为A.B. 3cmC.D. 6cm【答案】A【解析】解:连接CB.是的直径,弦于点E,圆心O到弦CD的距离为OE;同弧所对的圆周角是所对的圆心角的一半,,;在中,,,.故选A.根据垂径定理知圆心O到弦CD的距离为OE;由圆周角定理知,已知半径OC的长,即可在中求OE的长度.本题考查了垂径定理、圆周角定理及解直角三角形的综合应用解答这类题一些学生不会综合运用所学知识解答问题,不知从何处入手造成错解.3.如图,已知半径OD与弦AB互相垂直,垂足为点C,若,,则的半径为A. 5B.C.D. 4【答案】C【解析】解:连结OA,如图,设的半径为r,,,在中,,,,,解得.故选C.连结OA,如图,设的半径为r,根据垂径定理得到,再在中利用勾股定理得到,然后解方程求出r即可.本题考查了的是垂径定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.4.如图,线段AB是的直径,弦CD丄AB,,则等于A.B.C.D.【答案】C【解析】解:线段AB是的直径,弦CD丄AB,,,,.故选:C.利用垂径定理得出,进而求出,再利用邻补角的性质得出答案.此题主要考查了圆周角定理以及垂径定理等知识,得出的度数是解题关键.二、解答题(本大题共2小题,共16.0分)5.如图,在四边形ABCD中,,,AD不平行于BC,过点C作交的外接圆O于点E,连接AE.求证:四边形AECD为平行四边形;连接CO,求证:CO平分.【答案】证明:由圆周角定理得,,又,,,,,,四边形AECD为平行四边形;作于M,于N,四边形AECD为平行四边形,,又,,,又,,平分.【解析】本题考查的是三角形的外接圆与外心,掌握平行四边形的判定定理、垂径定理、圆周角定理是解题的关键.根据圆周角定理得到,得到,根据平行线的判定和性质定理得到,证明结论;作于M,于N,根据垂径定理、角平分线的判定定理证明.6.如图,AB为直径,C为上一点,点D是的中点,于E,于F.判断DE与的位置关系,并证明你的结论;若,求AC的长度.【答案】解:与相切.证明:连接OD、AD,点D是的中点,,,,,,,,,与相切.连接BC交OD于H,延长DF交于G,由垂径定理可得:,,,,弦心距,是直径,,,是的中位线,.【解析】先连接OD、AD,根据点D是的中点,得出,进而根据内错角相等,判定,最后根据,得出DE与相切;先连接BC交OD于H,延长DF交于G,根据垂径定理推导可得,再根据AB是直径,推出OH是的中位线,进而得到AC的长是OH长的2倍.本题主要考查了直线与圆的位置关系,在判定一条直线为圆的切线时,当已知条件中明确指出直线与圆有公共点时,通常连接过该公共点的半径,证明该半径垂直于这条直线本题也可以根据与相似,求得AC的长.。

(完整版)圆的垂径定理习题及答案

(完整版)圆的垂径定理习题及答案

圆的垂径定理习题一.选择题1.如图1,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,那么弦AB的长是()A.4 B.6 C.7 D.8 2.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM长的最小值为()A.2 B.3 C.4 D.53.过⊙0内一点M的最长弦为10cm,最短弦长为8cm,则OM的长为()4.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA、OB在O点钉在一起,并使它们保持垂直,在测直径时,把O点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为()A.12个单位B.10个单位C.1个单位D.15个单位5.如图,O⊙的直径AB垂直弦CD于P,且P是半径OB的中点,6cmCD,则直径AB的长是()6.下列命题中,正确的是()A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必经过这条弦所在圆的圆心D.在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心7.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( )8.⊙O的半径为5cm,弦AB//CD,且AB=8cm,CD=6cm,则AB与CD之间的距离为( )A. 1 cm B.7cm C. 3 cm或4 cm D.1cm 或7cm 9.已知等腰△ABC的三个顶点都在半径为5的⊙O上,如果底边BC的长为8,那么BC边上的高为( ) A.2 B.8 C.2或8 D.3二、填空题1.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为cm 2.在直径为10cm的圆中,弦AB的长为8cm,则它的弦心距为cm3.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于4. 已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为cm 5.如图,⊙O的直径AB垂直于弦CD,垂足为E,若∠COD=120°,OE=3厘米,则CD=厘米6.半径为6cm的圆中,垂直平分半径OA的弦长为cm7.过⊙O内一点M的最长的弦长为6cm,最短的弦长为4cm,则OM的长等于 cm8.已知AB是⊙O的直径,弦CD⊥AB,E为垂足,CD=8,OE=1,则AB=9.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=l,则弦AB的长是10.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,则中间柱CD 的高度为m11. 如图,在直角坐标系中,以点P为圆心的圆弧与轴交于A、B两点,已知P(4,2) 和A(2,0),则点B的坐标是12.如图,AB是⊙O的直径,OD⊥AC于点D,BC=6cm,则OD= cm13.如图,矩形ABCD与圆心在AB上的圆O交于点G、B、F、E,GB=10,EF=8,那么AD=14.如图,⊙O的半径是5cm,P是⊙O外一点,PO=8cm,∠P=30º,则AB= cm15.⊙O的半径为13 cm,弦AB∥CD,AB=24cm,CD=10cm,那么AB和CD的距离是Cm16.已知AB是圆O的弦,半径OC垂直AB,交AB于D,若AB=8,CD=2,则圆的半径为17.一个圆弧形门拱的拱高为1米,跨度为4米,那么这个门拱的半径为米18.在直径为10厘米的圆中,两条分别为6厘米和8厘米的平行弦之间的距离是厘米19. 如图,是一个隧道的截面,如果路面AB宽为8米,净高CD为8米,那么这个隧道所在圆的半径OA是___________米20.如图,AB为半圆直径,O 为圆心,C为半圆上一点,E是弧AC的中点,OE交弦AC于点D。

垂径定理证明题

垂径定理证明题

选择题已知圆O中,直径AB垂直于弦CD于点E,下列结论正确的是:A. CE = EDB. AE < BEC. ∠CEA = ∠CED(正确答案)D. 弧AC = 弧BD且大于弧BC在圆x² + y² = r²内,若直径MN垂直于弦PQ,则:A. MP > NQB. MP = NQ但不一定垂直于MNC. MP = PQ/2(正确答案)D. ∠PMN = ∠QMN且为锐角设圆C的半径为R,直径AB垂直于弦EF,G为垂足,则:A. AG + BG > RB. AG × BG = R²(正确答案)C. EG = GF但不一定小于RD. 弧AE与弧AF的长度相等且都大于弧BE圆O中,直径CD垂直于弦AB于点M,下列说法错误的是:A. AM = MB(正确答案的逆否形式,即若AM ≠ MB,则CD不垂直于AB,但此处要求选错误项,故不直接标为正确答案)B. ∠AMC = 90°C. 弧AC = 弧BCD. 若点N在弧AC上,则∠ANC为锐角(错误,应为∠ANM为锐角,若N不在直径上)对于圆P中的任意弦QR,若直径ST垂直于QR,则:A. 弧QS = 弧RT且都小于半圆B. QS = RT且为直径ST的一半(正确答案)C. ∠QST = ∠RST且为钝角D. 点P到弦QR的距离小于半径圆K中,直径LM垂直于弦NP,Q为LM上一点且不等于M,下列结论正确的是:A. ∠NQL = ∠PQL且都为直角B. 弦NP的长度是固定的,与Q的位置无关(正确答案)C. 弧NQ的长度随Q的位置变化而变化D. 若Q靠近L,则∠NQL为钝角已知圆R的半径为5,直径GH垂直于弦IJ,K为垂足,则:A. GK + KH = 10(正确答案)B. IK = KJ但不一定等于5C. 弧GI的长度大于弧HID. ∠GIK = ∠HIK且为锐角在圆S中,直径UV垂直于弦WX,Y为UV上一点,下列说法正确的是:A. ∠WYU和∠XYU都是直角(仅当Y为垂足时成立)B. 弧WX的长度是圆S周长的四分之一(不一定,除非WX是直径)C. 无论Y在UV上如何移动,弦WX的长度保持不变(正确答案)D. ∠WXY的度数随Y的位置变化而变化(仅当Y不在直径上时变化)。

圆垂径定理专项练习60题(有答案)ok

圆垂径定理专项练习60题(有答案)ok

垂径定理专项练习60题(有答案)1.如图,已知⊙O的直径AB=6,且AB⊥弦CD于点E,若CD=2,求BE的长.2.已知:如图,⊙O的直径PQ分别交弦AB,CD于点M,N,AM=BM,AB∥CD.求证:DN=CN.3.如图,AB为⊙O的弦,C、D分别是OA、OB延长线上的点,且CD∥AB,CD交⊙O于点E、F,若OA=3,AC=2.(1)求OD的长;(2)若,求弦EF的长.4.如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交弧BC于D.(1)请写出四个正确的结论;(2)若BC=6,ED=2,求⊙O的半径.5.如图,⊙O的弦AB=8,M是AB的中点,且OM=3,求⊙O的半径.6.已知:如图,AB是⊙O的直径,CD是⊙O的弦,且AB⊥CD,垂足为E,连接OC,OC=5,CD=8,求BE的长.7.如图,过▱ABCD中的三个顶点A、B、D作⊙O,且圆心O在▱ABCD外部,AB=8,OD⊥AB于点E,AB=8的半径为5,求▱ABCD的面积.8.已知:如图,∠PAC=30°,在射线AC上顺次截取AD=2cm,DB=6cm,以DB为直径作⊙O交射线AP于E、F 两点,又OM⊥AP于M.求OM及EF的长.9.如图,已知弦CD⊥直径AB于E,CD=2,BD=,求直径AB的长.10.如图,AB,AC分别是⊙O的直径和弦,OD⊥AC于点D,连接BD、BC,AB=5,AC=4,求:BD的长.11.如图,在⊙O中,=,半径OA交BC于点D.若BC=24,AD=8,求⊙O的半径R.12.如图,已知OE是⊙O的半径,F是OE上任意一点,AB和CD为过点F的弦,且FA=FD.求证:AB=CD.13.已知:如图,AB为半圆的直径,O为圆心,C为半圆上一点,OE⊥弦AC于点D,交⊙O于点E.若AC=8cm,DE=2cm.求OD的长.14.⊙O的两条弦AB,CD相交于点E,(1)若AB=CD,且AB=8,AE=5,求DE的长;(2)若AB是⊙O的直径,AB⊥CD,且AE=2,CD=8,求⊙O的半径.15.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD.(1)求证:BD平分∠ABC;16.已知:如图,点P是⊙O外的一点,PB与⊙O相交于点A、B,PD与⊙O相交于C、D,AB=CD.求证:(1)PO平分∠BPD;(2)PA=PC.17.如图,在平面直角坐标系xOy中,直径为10的⊙E交x轴于点A、B,交y轴于点C、D,且点A、B的坐标分别为(﹣4,0)、(2,0).(1)求圆心E的坐标;(2)求点C、D的坐标.18.如图,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.若EB=8cm,CD=24cm,求⊙O的直径.19.如图,已知⊙O的半径长为25,弦AB长为48,OC平分AB,交AB于点H,交于点C,求AC的长.20.如图,AB为⊙O的直径,CD为弦,过A、B分别作AE⊥CD、BF⊥CD,分别交直线CD于E、F.(1)求证:CE=DF;(2)若AB=20cm,CD=10cm,求AE+BF的值.21.如图所示,⊙O的直径AB和弦CD交于E,已知AE=6cm,EB=2cm,∠CEA=30°,求圆心O到CD的距离.22.如图,⊙C经过坐标原点,并与坐标轴分别交于A、D两点,点B在⊙C上,∠B=30°,点D的坐标为(0,2),求A、C两点的坐标.23.如图,凸四边形ABCD内接于⊙O,==90°,AB+CD为一偶数.求证:四边形ABCD面积为一完全平方数.24.点A、B、C在⊙O上,且AB=OA,OP⊥BC于P,DB⊥AB交OP于D.(1)找出图中等于30°的角;(2)求证:OA2=AC•.OD.25.如图,AB为⊙O的弦,过点O作OD⊥AB于点E,交⊙O于点D,过点D作CD∥AB,连接OB并延长交CD于点C,已知⊙O的半径为10,OE=6.求:(1)弦AB的长;(2)CD的长.26.如图,⊙O直径CD⊥AB于E,AF⊥BD于F,交CD的延长线于H,连AC.(1)求证:AC=AH;(2)若AB=,OH=5,求⊙O的半径.27.已知:如图⊙O的半径为5,CD为直径,AB为弦,CD⊥AB于M,若AB=6,求DM的长.28.已知:如图,点C在⊙O的弦AB上,且∠BOC=90°,BO=8,CO=6,求线段BC、线段AC的长.29.等腰△ABC中,AB=AC,高AD交对边BC于D,P为AD上任意一点.以P为圆心过B、C两点的圆交直线AB、AC于G、F两点,证明:BG=CF.30.如图所示,已知⊙O的直径为4cm,M是弧的中点,从M作弦MN,且MN=cm,MN交AB于点P,求∠APM的度数.31.已知:⊙O的半径为5cm,CD为直径,AB为弦,CD⊥AB于M,若AB=6cm,求CM的长.32.在⊙O中,弦AB=8cm,P为弦AB上一点,且AP=2cm,则经过点P的最短弦长为多少?33.已知AB是圆O的直径,弦CD垂直AB于E,BE=4cm,CD=16cm,求圆O的半径.34.半径为5cm的⊙O中,两条平行弦的长度分别为6cm和8cm,则这两条弦的距离为多少?35.如图,AB是⊙O的直径,CB是弦,OD⊥CB于E,交于D,连接AC①请写出两个不同类型的正确结论.②若CB=16,ED=4,求⊙O的半径.36.如图,在⊙O中,弦MN=12,半径OA⊥MN,垂足为B,AB=3,求OA的长.37.已知:如图,AB是⊙O的弦,半径OC、OD分别交AB于点E、F,且AE=BF.求证:OE=OF.38.已知:⊙O的直径AB和弦CD,且AB⊥CD于E,F为DC延长线上一点,连接AF交⊙O于M.求证:∠AMD=∠FMC.39.如图,⊙O半径为6厘米,弦AB与半径OA的夹角为30°.求:弦AB的长.40.如图,⊙O中,弦PQ=PR,M、N分别是PQ和PR的中点,求证:∠OMN=∠ONM.41.如图所示,⊙O的直径AB=16cm,P是OB的中点,∠APC=30°,求CD的长.42.⊙O的半径为10厘米,圆内两条平行弦AB、CD的长为12厘米,16厘米,求两弦之间的距离.43.如图,⊙O中,弦AB的长为8厘米,∠AOB的度数是120°,求⊙O的直径.44.如图,⊙O中,AB⊥CD,直径AB的长是12厘米,E是OB的中点,求CD的长.45.如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交于D.请写出五个不同类型的正确结论.46.如图,AB是⊙O的直径,BC=8,E为的中点,OE交BC于D,连接AD,DE=2.(1)求⊙O的半径;(2)求线段AD的长.47.如图,在⊙O中,直径AB⊥弦CD,垂足为P,OB=5,PB=2,求CD的长.48.在三角形ABC中,∠ACB=90°,AC=6,BC=8,以C为圆心,以AC为半径作圆C,交AB于点D,求BD的长.49.如图所示,⊙O的直径AB和弦CD交于E,已知AE=6cm,EB=2cm,∠CEA=30°,求CD.50.如图,AB是⊙O 的一条直径,CD是⊙O的一条弦,交AB与点P,=.若AP=1,CD=4,求⊙O的直径.51.已知,⊙O的半径为1,弦AB=,若点C在⊙O上,且AC=,求∠BAC的度数.(要求画出图形)52.如图所示,在⊙O中,CD是直径,AB是弦,AB⊥CD于M,CD=15cm,OM:OC=3:5,求弦AB的长.53.已知,如图,圆C中,∠ACB=90°,AC=3cm,BC=4cm.(1)求AB长度.(2)求AD长度.54.如图:AB是⊙O的直径,BC是弦,D是弧BC的中点,OD交BC于点E,且BC=8,ED=2.①求⊙O的半径;55.如图,⊙O的弦AB⊥CD于E,OF⊥CD于F,且OF=2,OE=4,OA=.(1)求AB的长;(2)求BE的长.56.如图,AB是⊙O的弦,半径OA=20cm,∠AOB=120°,求(1)弦AB的长;(2)△AOB的面积.57.如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,连接BD,CD.(1)求证:BD=CD;(2)若∠ABC的平分线交AD于点E,求证:CD=DE.58.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=20,CD=16,求线段OE的长.59.如图,梯形ABCD中,AD∥BC,∠C=90°,以AB为直径作⊙O交CD于点E、F,DF=CE,若AB=10,EF=8.求A、B到直线CD的距离之和.60.如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交弧BC于D.(1)请写出四个不同类型的正确结论;(2)若BC=,∠CBD=30°,求⊙O的半径.参考答案:1.连接OC,∵直径AB⊥弦CD于点E,CD=2,∴CE=ED=,∵在Rt△OEC中,∠OEC=90°,CE=,OC=3,∴OE=2,∴BE=1.2.∵PQ是直径,AM=BM,∴PQ⊥AB于M.又∵AB∥CD,∴PQ⊥CD于N.∴DN=CN.3.(1)∵OA=3,AC=2,∴OC=5,∵CD∥AB,∴,∵OB=OA=3,∴,(2)过点O作OG⊥CD于G,连接OE,∴OE=OA=3,∵,∴,∴,在Rt△OEG中,∴,∵OG⊥EF,EF是弦,∴EF=2EG=4.4.(1)正确的结论有:CE=BE;D 为的中点;OE∥AC;OE=AC;(2)∵OD⊥BC,∴E为BC的中点,又BC=6,∴BE=CE=3,设圆的半径为r,由DE=2,得到OE=r﹣2,在Rt△BOE中,OB=r,OE=r﹣2,EB=3,根据勾股定理得:r2=(r﹣2)2+32,解得:r=,则圆的半径为.5.连接OA,∵在圆O中,M为AB的中点,AB=8,∴OM⊥AB,AM=AB=4,在Rt△OAM中,OM=3,AM=4,根据勾股定理得:OA===5.6.∵AB为直径,AB⊥CD,∴CE=DE=CD=4,在Rt△COE中,OE===3,∴BE=OB﹣OE=5﹣3=2,故BE=2.7.连接OA,∴OA=OD=5.∵AB是⊙O的一条弦,OD⊥AB,AB=8∴AE=AB=4,在Rt△OEA中,由勾股定理得,OE2=OA2﹣EA2,∴OE=3,∴DE=2,∴S平行四边形ABCD=AB•DE=8×2=168.连接OF,∵DB=6cm,∴OD=3cm,∴AO=AD+OD=2+3=5cm,∵∠PAC=30°,OM⊥AP,∴在Rt△AOM中,OM=AO=×5=cm∵OM⊥EF,∴EM=MF,∵MF==cm∴EF=cm.9.连接OC,∵CD⊥AB,∴E为CD的中点,即CE=DE=CD=,在Rt△BDE中,BD=,DE=,根据勾股定理得:EB==1,设半径OC=OB=r,则OE=OB﹣EB=r﹣1,在Rt△COE中,OC=r,CE=,OE=r﹣1,根据勾股定理得:r2=()2+(r﹣1)2,解得:r=,则直径AB为3.10.∵OD过圆心O,OD⊥AC,AC=4,∴CD=AC=2,∵AB是⊙O的直径,∴∠C=90°,∴BC===3,在Rt△BCD中,DB===11.连接OC,∵=,AO过圆心O,∴OA⊥BC,CD=BC,∵BC=24,AD=8,∴CD=BC=12,OD=OA﹣AD=R﹣8,在Rt△ODC中,OC2=OD2+DC2,即R2=122+(R﹣8)2,解得:R=13.则圆O的半径R=13.12.连接OA,OD,作AB、CD的弦心距OM,ON,∵OA=OD,FA=FD,OF=OF,∴△AOF≌△DOF,∴∠AFO=∠DFO,∴OM=ON,∴AB=CD.13.∵OE⊥AC,AC=8cm,∴AD=AC=4.设OA=r,则OD=OA﹣DE=r﹣2,在Rt△AOD中,∴OA2=OD2+AD2,∴r2=(r﹣2)2+16解得,r=5.∴OD=3.14.(1)如图甲,当点C在AB的左侧时,∵AB=CD,∴=,∴=,∴∠B=∠C,∴CE=BE,∴DE=AE=5;如图乙,当点C在AB的右侧时,同理:DE=BE=AB﹣AE=3,(2)如图丙,若点A在CD的下方,连结OC,∵AB是⊙O的直径,AB⊥CD,∴CE=CD=4,设OC=x,则OE=x﹣2,∵AB⊥CD,∴OE2+CE2=OC2,即(x﹣2)2+42=x2,解得:x=5.如图丁,若点A在CD的上方,则AB<2AE=4,与CD=8产生矛盾(或与上类似地计算得OE为负数).答:⊙O的半径为5.15.(1)证明:∵OE⊥AC,∴=,∴∠ABD=∠CBD,即BD平分∠ABC;(2)解:∵OD⊥AC,∴AE=AC,∠OEA=90°,∵OE=3,OA=5,∴在Rt△AOE中,AE==4,∴AC=2AE=816.(1)过点O作OE⊥AB,OF⊥CD,垂足分别为E、F,∵AB=CD,∴OE=OF,∴PO平分∠BPD;(2)在Rt△POE与Rt△POF中,∵OP=OP,OE=OF,∴Rt△POE≌Rt△POF,∴PE=PF,∵AB=CD,OE⊥AB,OF⊥CD,E、F分别为垂足,∴AE=,CF=,∴AE=CF,∴PE﹣AE=PF﹣CF,即PA=PC.17.(1)作EF⊥x轴,交x轴于点F,连接EA,∵A、B的坐标分别为(﹣4,0)、(2,0),∴AB=6,OA=4,∴AF=3,∴OF=1,∵⊙E的直径为10,∴半径EA=5,∴EF=4,∴E的坐标是(﹣1,4).(2)同理,作EG⊥y轴,交y轴于点G,连接EC、ED,由勾股定理CG==2,∴点C的坐标是(0,4+),点D的坐标是(0,4﹣)18.∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD=×24=12(cm),设⊙O的半径为xcm,则OC=xcm,OE=OB﹣BE=x﹣8(cm),在Rt△OCE中,OC2=OE2+CE2,∴x2=122+(x﹣8)2,解得:x=13,∴⊙O的半径为13cm,∴⊙O的直径为26cm.故答案为:2619.连接OA,∵OC平分AB,即H为AB的中点,∴OH⊥AB,在Rt△OAH中,OA=25,AH=24,根据勾股定理得:OH==7,∴HC=OC﹣OH=25﹣7=18,在Rt△AHC中,根据勾股定理得:AC==30.20.(1)证明:过点O作OG⊥CD于G,∵AE⊥EF,OG⊥EF,BF⊥EF,∴AE∥OG∥BF,(1分)∴=又∵OA=OB,∴==,∴GE=GF,(2分)∵OG过圆心O,OG⊥CD,∴CG=GD,(3分)∴EG﹣CG=GF﹣GD,即CE=DF;(4分)(2)解:连接OC,则OC=AB=10,(5分)∵OG过圆心O,OG⊥CD,∴CG=CD=5,(6分)∴OG=,(7分)∵梯形ABFE中,EG=GF,AO=OB,∴OG=(AE+BF),∴AE+EF=2OG=.(8分)21.过O作OF⊥CD于F,则OF的长是圆心O到CD的距离,∵AE=6cm,EB=2cm,∴OB=4cm,∴OE=4cm﹣2cm=2cm,∵∠OFE=90°,∠CEA=30°,∴OF=OE=1cm,即圆心O到CD的距离是1cm22.连接AC、OC,过点C分别作CM⊥OD于M,CN⊥OA 于N.∵点B在⊙C上,∠B=30°,∴∠ACO=60°.∵CA=CO,∴△CAO是等边三角形.∴CA=CO=OA,∠COA=60°.∴∠COM=30°.∵CM⊥OD,点C为圆心,点D的坐标为(0,2),∴.在Rt△OCM中,,由勾股定理得,.∴.同理可得.∴点A的坐标为.点C的坐标为.23.∵=,∴AB∥DC,ABCD为梯形.过O作MN⊥AB于M交CD于N,易知MN⊥CD于N,由垂径定理知M为AB中点,N为CD中点,连接OA,OD.∵∠AOD=90°,∴∠AOM=90°﹣∠DON=∠ODN,从而有∴∴==∵AB+CD为偶数,∴S ABCD必是完全平方数.24.(1)解:∠OBP=30°;∠ACB=30°,先根据AB=OA得到△ABO是正三角形,所以∠ABO是60°.又DB⊥AB交OP于D,所以∠OBP是30°;∠ACB 是60°圆心角对的弧所对的圆周角,所以∠ACB是30°;(2)证明:∵OP⊥BC于P,∴∠BOD=∠BOC,∴∠BAC=∠BOD,在△ABC和△ODB中,∴△ABC∽△ODB,∴,∴AB•OB=AC•OD,∵AB=OB=OA,∴OA2=AC•OD.25.(1)∵OE2+BE2=OB2∴BE=8.(2分)又∵OE⊥AB,∴AB=2BE=16.(4分)(2)∵CD∥AB,∴∠OBE=∠C.又∠BOE=∠COD,∴△BOE∽△COD.(6分)∴=.∴CD=.26.(1)∵AF⊥BD,CD⊥AB,∴∠H=∠B,又∵∠C=∠B,∴∠C=∠H,∴AC=AH;(2)连接AO,∵AC=AH,CD⊥AB,∴AE=,CE=EH,设ED=x,OE=y,∴OA=OC=OD=x+y,∴EH=CE=x+2y,∴OH=x+3y,∴x+3y=5,又∵OA2=AE2+OE2,∴,∴x=2,y=1,∴⊙O的半径x+y=3.27.连接OA,∵CD为直径,AB为弦,AB⊥CD,AB=6,∴根据垂径定理可知AM=AB=3,在Rt△OAM中,OA=5,OM==4,∴DM=OD+OM=9.28.∵∠BOC=90°,BO=8,CO=6,∴.(2分)作OH⊥AB于H,则OH=,(3分)∴.∵OH⊥AB,∴AB=2BH=12.8,(5分)∴AC=12.8﹣10=2.8.(6分)29.连接GF交AD于H.则∠AGF=∠C,∠AFG=∠B,∵AB=AC,∴∠B=∠C,∴∠AGF=∠AFG,∴AG=AF,∴BG=CF.30.连接OM交AB于点E,∵M是弧的中点,∴OM⊥AB于E.(2分)过点O作OF⊥MN于F,由垂径定理得:,(4分)在Rt△OFM中,OM=2,,∴cos∠OMF=,(6分)∴∠OMF=30°,∴∠APM=60°.(8分)31.连接OB,∵CD⊥AB,AB=6cm,∴由垂径定理得:AM=BM=AB=3cm,∠bmo=90°,在Rt△BOM中,由勾股定理得:OM===4(cm),则CM=OC﹣OM=5cm﹣4cm=1cm.32.如图,设过P点最短的弦为CD,则OP⊥CD,由垂径定理可知CP=PD,∵AB=8,AP=2,∴PB=8﹣2=6,由相交弦定理可知,CP•PD=AP•PB,即CP2=2×6,解得CP=2,∴CD=2CP=4.答:经过点P的最短弦长为4cm.33.∵AB是圆O的直径,弦CD垂直AB于E,CD=16cm,∴CE=CD=×16=8cm,连接OC,设OC=r,则OE=OB﹣BE=r﹣4,在Rt△OCE中,OC2=OE2+CE2,即r2=(r﹣4)2+82,解得r=10cm.答:⊙O的半径是10cm.34.分两种情况讨论:两弦在圆心同侧或两弦在圆心两侧,过点O作OE⊥AB于点E,作OF⊥CD于点F,连接OA,OC,∴AE=AB=4(cm),CF=CD=3(cm),∴OE==3(cm),OF==4cm.当在同侧时,两弦之间距离为1cm,当在两侧时,两弦之间距离为7cm.35.(1)不同类型的正确结论有:①BE=CE,②=,③∠BED=90°,④∠BOD=∠A,⑤AC∥OD,⑥AC⊥BC,⑦OE2+BE2=OB2,⑧S△ABC=AC•CE等.(写出2个即可),(2)设⊙O的半径为x,则OE=x﹣4,∵OD⊥BC,∴CE=EB=BC=8;在Rt△OBE中,∵OE2+EB2=OB2,∴(x﹣4)2+82=x2,解得x=10,所以⊙O的半径是10.36.连接ON∵OA⊥MN于点B∴(2分)设ON=x,则OB=x﹣3在Rt△OBN中∵ON2=OB2+BN2∴x2=(x﹣3)2+62(4分)解得(5分)即37.连接OA,OB,∵OA=OB,∴∠A=∠B.又∵AE=BF,∴△OAE≌△OBF.∴OE=OF.38. 连接AD,∵⊙O的直径AB和弦CD,且AB⊥CD,∴弧AC=弧AD,∴∠AMD=∠ADC,∵A、M、C、D四点共圆,∴∠FMC=∠ADC(圆内接四边形的一个外角等于它的内对角),∴∠AMD=∠FMC39.作OD⊥AB于D,则AD=DB,在Rt△AOD中,∵∠DAO=30°∴OD=OA=3∵AD2=OA2﹣OD2∴AD=∴AB=2AD=.40.M、N分别是PQ和PR的中点,∴OM⊥PQ,ON⊥PR.∴∠OMP=∠ONP.∵PQ=PR,M、N分别是PQ和PR的中点,∴PM=PN.∴∠PMN=∠PNM.∴∠OMN=∠ONM.41.过O作OE⊥CD,垂足为E,连接OC,∵AB=16cm,∴OC=OB=8cm,∵P是OB的中点,∴OP=OB=4cm,∵∠APC=30°,OE⊥CD,∴OE=OP=2cm,在Rt△COE中CE===2cm,∴CD=2CE=4cm.42.过O作EF⊥AB于E点,交CD于F点,连OA、OC,∵AB∥CD,∴EF⊥CD,∴AE=BE=6cm,CF=DF=8cm,在Rt△AEO中,OA=10,OE===8,在Rt△OCF中,OF===6,如图:,当圆心O在AB与CD之间,EF=OE+OF=8+6=14(cm);,当圆心O不在AB与CD之间,EF=OE﹣OF=8﹣6=2(cm).所以两弦之间的距离为14cm或2cm43.如图,过O作OC⊥AB于C,∴C为AB的中点,而OA=OB,∴OC平分∠AOB,而弦AB的长为8厘米,∠AOB的度数是120°,∴∠AOC=60°,AC=4,∴在Rt△AOC中,OC=4,∴AO=8,∴⊙O的直径为16.44.如图,连接OC,∵AB⊥CD,且E是OB的中点,∴∠OCE=30°,CE=DE,而AB=12,∴OC=6,OE=3,∴CE=3,∴CD=645.∵AB是⊙O的直径,OD⊥BC于E,∴CE=BE ,=,∠ACB=90°,∴AC⊥BC,∴AC∥OD,∴△BOE∽△BAC,∵OA=OB,∴OE=AC.∴五个不同类型的正确结论为:CE=BE,=,∠ACB=90°,AC∥OD,OE=AC,△BOE∽△BAC等46.(1)∵BC=8,E 为的中点,∴OE⊥BC,BD=CD=BC=×8=4,设⊙O的半径为r,则OB=r,OD=r﹣DE=r﹣2,在Rt△OBD中,OB2=OD2+BD2,即r2=(r﹣2)2+42,解得r=5;答:⊙O的半径为5;(2)连接AC,∵AB是⊙O的直径,BC=8,AB=2OB=2×5=10,∴AC===6,在Rt△ACD中,AD===2.答:线段AD的长为247.连接OC,∵⊙O中,直径AB⊥弦CD,∴CD=2CP.在Rt△OPC中,∵PC2+PO2=OC2,且OP=OB﹣PB=5﹣2=3.∴PC===4,∴CD=2CP=848.∵在三角形ABC中,∠ACB=90°,AC=6,BC=8,∴AB===10,点C作CE⊥AB于点E,则AD=2AE,AC2=AE•AB,即62=AE×10,∴AE=3.6,∴AD=2AE=2×3.6=7.2,∴BD=AB﹣AD=10﹣7.2=2.8.49.∵AE=6cm,EB=2cm,∴OA=(6cm+2cm)÷2=4cm,∴OE=4cm﹣2cm=2cm,过点O作OF⊥CD于F,可得∠OEF=90°,即△OEF为直角三角形,∵∠CEA=30°,∴OF=OE=1cm,连接OC,根据勾股定理可得,在Rt△COF中,CD=2CF=2=2=2cm.50.连接OC,设OC=x,∵=,∴CD⊥AB,∵CD=4,∴CP=2,∵AP=1,∴OP=x﹣1,在Rt△CPO中,x2=22+(x﹣1)2,解得:x=,∴⊙O的直径为2×=5.51.分别作OD⊥AB,OE⊥AC,垂足分别是D、E.根据特殊角的三角函数值可得,∠AOE=60°,∠AOD=45°,∴∠BAO=30°,∠CAO=45°,∴∠BAC=45°+30°=75°,或∠BAC=45°﹣30°=15°.52.如图,连接OA,设OM=3x,OC=5x,则DM=2x,∵CD=15cm,∴3x+5x+2x=15,解得x=1.5cm,∴OM=3×1.5cm=4.5cm,∴AM===6cm,∴AB=12cm.53.(1)在Rt△ACB中,AC=3cm,BC=4cm,由勾股定理得:AB=5cm;(2)过C作CE⊥AD于E ,∵S△ABC=×AC×BC=×AB×CE,∴3cm×4cm=5cm×CE,∴CE=cm,在Rt△ACE中,由勾股定理得:AE==cm,∵CE⊥AD,CE过C,∴AB=2AC=cm.54.①∵OD是半径,D是弧BC的中点,∴OD垂直平分BC,∵BC=8,ED=2设半径为R,则BE=4,OE=R﹣2,∴R2=(R﹣2)2+42∴R=5②∵AB是直径∴∠C=90°,AB=10,BC=8∴AC=6作CF⊥AB于F,则∴55.(1)过点O作OG⊥AB于G,连接OA,则AG=BG=AB,∵OF⊥CD,AB⊥CD,∴∠OGE=∠OFE=∠FEG=90°,∴四边形OFEG是矩形,∴OG=EF,EG=OF,在Rt△OEF中,EF===2∴OG=2,在Rt△OAG中,AG===,∴AB=2.(2)∵由(1)得,四边形OFEG是矩形,∴EG=OF=2,∵由(1)得,BG=AG=AB=×2=,∴BE=BG﹣EG=﹣2.56.(1)过O作OC⊥AB于C,∵∠AOB=120°,OA=OB,∴∠A=∠B=30°,∴OC=OA=10cm,由勾股定理得:AC==10(cm),∴由垂径定理得:AB=2AC=20cm;(2)S△AOB=×AB×OC=×20cm×10cm=100cm257.(1)∵AD为直径,AD⊥BC,∴,∴BD=CD.(2)∵,∴∠BAD=∠CBD,∵∠ABC的平分线交AD于点E,∴∠ABE=∠CBE,∵∠DBE=∠CBE+∠CBD,∠BED=∠ABE+∠BAD,∴∠BAD+∠ABE=∠CBD+∠EBF,即∠BED=∠EBD,∴BD=DE,∴CD=DE.58.连接OD,如图所示:∵弦CD⊥AB,AB为圆O的直径,∴E为CD的中点,又CD=16,∴CE=DE=CD=8,又OD=AB=10,∵CD⊥AB,∴∠OED=90°,在Rt△ODE中,DE=8,OD=10,根据勾股定理得:OE2+DE2=OD2,∴OE==6,则OE的长度为6.59.连接OE,过点O作OG⊥EF于点G,∵点O是⊙O的圆心,EF=8,∴GE=EF=4,∵AB=10,∴OB=OC=5,∴OG===3,∵梯形ABCD中,AD∥BC,∠C=90°,∴点O是梯形ABCD的中位线,∴AD+BC=2OG=2×3=6.答:A、B到直线CD的距离之和是6.60.(1)①根据垂径定理可知,CE=BE;②根据直径所对的圆周角是直角可知,∠C=90°;③根据三角形中位线定理可知,OE=AC;④根据垂径定理可知,=.(2)∵OD⊥BC于E,BC=,∴CE=BE=4,在Rt△BED中,ED=4•tan30°=4,设半径为R,根据勾股定理得,R2=(R﹣4)2+(4)2,解得R=8.答:⊙O的半径为8。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

|
垂径定理一、选择题
1. 在Rt△ABC,∠C=90°,BC=5,AB=13,D是AB的中点,以C为圆心,BC为半径作⊙C,则⊙C 与点D的位置关系是( ) A. D在圆内 B.D在圆上 C.D在圆外 D.不能确定2.下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶角的距离相等;④半径相等的两个半圆是等弧.其中正确的有( )
A.4个 B.3个 C.2个 D.1个
3.下面的四个判断中,正确的一个是( )
A.过圆内的一点的无数条弦中,有最长的弦,没有最短的弦;
B.过圆内的一点的无数条弦中,有最短的弦,没有最长的弦;
C. 过圆内的一点的无数条弦中,有一条且只有一条最长的弦,也有且只有一条最短的弦;
D.过圆内的一点的无数条弦中,既没有最长的弦,也没有最短的弦.
4.下列说法中,正确的有( )①菱形的四个顶点在同一个圆上;②矩形的四个顶点在同一个圆上;
③正方形四条边的中点在同一个圆上;④平行四边形四条边的中点在同一个圆上.
A.1个 B.2个 C.3个 D.4个
5.如图所示,在⊙0中,直径MN⊥AB,垂足为C,则下列结论中错误的是( )
A.AC=CB B. C. D. OC=CN
6.过⊙O内一点M的最长的弦长为4 cm,最短的弦长为2 c( )
A.B. C. 8 cm D.
7.如图所示,AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,
AP:PB=1:5,那么⊙O的半径等于( )
A.6 cm B. C.8 cm D.
8.如果⊙O中弦AB与直径CD垂直,垂足为E,AE=4,CE=2,那么⊙O的半
径等于( )A. 5 B. C. D.
9. 如图所示,AB是⊙O的一固定直径,它把⊙O分成上、下两个半圆,自上
半圆上一点C作弦CD⊥AB.∠OCD的平分线交⊙O于点P,当点C在上半圆
(不包括A、B两点)上移动时,点P( )A.到CD的距离保持不变 B.位
置不变
C. 等分D.随C点的移动而移动
10. 如图所示,同心圆中,大圆的弦AB交小圆于C、D两点,且AC=CD,AB
的弦心距等于CD的一半。

则这两个同心圆的大小圆的半径之比( )
A. 3:1
B.
C.
D.
二、填空题
11.半径为5 cm的定圆O中,长度为6 cm的弦的中点的集合是______.
12.平面内一点到圆上点的最小距离是2cm,最大距离是8 cm.那么这个圆的半径________.
13.在半径为5 cm的圆内有两条平行弦。

分别为6 cm和8 cm.则两弦之间的距离是______.14.在圆中,垂直平分一条半径的弦长为,则此圆的半径等于_________.
15.在半径为5cm的⊙O中,若O到弦AB的距离为,则∠AOB的度数为____,AB的长等于______.
16.如图所示,⊙O的直径为10,弦AB=8,P是弦AB上的一个动点.那么OP长的取值范围是_______.
17.如图所示,AB是⊙O的直径,CD是弦,AB、CD相交于点P.AP=8 cm,BP=2 cm,∠CPA=30°,那么CD的弦心距等于________.
*
18. ⊙O的半径是20 cm,AB是⊙O的弦,∠AOB=120°,则S△AOB等于_____.
19.有一圆弧形拱桥,拱形的半径为10m,拱的跨度为16m,则拱高等于____.
20.若弓形的弦长为4,弓形的高为1,那么弓形所在圆的半径等于_____.
三、解答题
1. 如图所示,在Rt△ABC中,∠C=90°,AC=8,BC=15,以C为圆心,AC为半径的⊙C交AB于D,求AD长.
2. 如图所示,在⊙O中,AB为弦,C、D两点在AB上,且AC=BD,求证:△OCD是等腰三角形.
3. 如图所示,AD是⊙O的直径,AC为弦,∠CAD=30°,OB⊥AD于O,交AC于B,AB=5,求BC的长.
4. 已知:等边三角形ABC的边长为a,试求其外接圆O的半径及圆心O到各边的距离d.
参考答案:
678910题号1234[
5
C B
D A B A B D
答案C^
B
11. 以O点为圆心,半径长为4cm的圆.
12. 3cm或5cm 13. 1cm或7cm 14. 4 15. 60°,5cm
16. 3≤OP≤517. 1.5cm 18. 19. 4m 20.
21. (提示:过点C作AB的垂线段,利用相似三角形对应边成比例计算可得)
22. 提示:作OH⊥AB于点H
23.
24. 半径。

相关文档
最新文档