燃气燃烧方法部分预混式燃烧
燃气燃烧方法——部分预混式燃烧.doc
燃气燃烧方法——部分预混式燃烧燃气燃烧时,一次空气过剩系数α′在0~1之间,预先混入了一部分燃烧所需空气,这种燃烧方法称为部分预混式燃烧或大气式燃烧。
一、部分预混层流火焰产生部分预混层流火焰的典型装置就是本生灯。
如图3—4—6,燃气从本生灯下部小口喷出,井引射入一次空气,在管内预先混合,预混后的气体自灯口喷出燃烧,产生圆锥形的火焰,周围大气亦供给部分空气,称为二次空气,通过扩散与一次空气未燃尽的燃气混合燃烧。
这样,在正常燃烧时形成两个稳定的火焰面:内火焰面,即由燃气与一次空气预混合后燃烧而产生。
为圆锥形,呈蓝绿色,强而有力,温度亦商,为部分预混火焰,也称为蓝色锥体;外火焰面,是二次空气与一次空气未燃尽的燃气进行的扩散混合燃烧,其形状也近似圆锥形,呈黄色,软弱无力,温度较低,这是扩散火焰。
蓝色的预混火焰锥体出现是有条件的。
若燃气/空气混合物的浓度大于着火浓度上限,火焰就不可能向中心传播,蓝色锥体就不会出现,而成为扩散式燃烧。
若混合物中燃气的浓度低于着火浓度下限,则该混合气根本不可能燃烧。
氢气燃烧火焰出现蓝色锥体的一次空气系数范围相当大,而甲烷和其它碳氢化合物的燃烧火焰出现蓝色锥体的一次空气系数范围则相当窄。
蓝色锥体的实际形状,如图3—5—5,可用管道中气流速度的分布和火焰传播速度的变化来解释。
层流时,沿管道截面上气体的流速按抛物线分布,喷口中心气流速度最大,至管壁处降为零。
静止的蓝色锥体焰面说明了锥面上各点的正常火焰传播速度sn(其方向指向锥体内部)与该点气流的法向分速度vn相平衡,也即对于预混火焰锥面上的每一点都存在以下关系式,通常称为米赫尔松余弦定律:sn=vn=vcosψ (5—5)式中ψ——预混气流方向与焰面上该点法线方向之间的夹角。
余弦定律表明了层流火焰传播速度与迎面来的气流速度在火焰稳定情况下的平衡关系,火焰虽有向内传播的趋势,但仍能稳定在该点。
另一方面,蓝色锥体焰面上各点,还有一个气流切向分速度,使该处的质点要向上移动。
燃气燃烧方法(正式)
编订:__________________单位:__________________时间:__________________燃气燃烧方法(正式)Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level.Word格式 / 完整 / 可编辑文件编号:KG-AO-6024-92 燃气燃烧方法(正式)使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。
下载后就可自由编辑。
燃烧方法,是燃烧装置热工性能最直接和最重要的影响因素之一。
燃气燃烧在不同物态燃料中是一种最理想的燃烧方式,一般是将燃气通过燃烧器喷向空气中进行。
根据燃气与空气在燃烧前的混合情况,可将燃气燃烧方法分为三种:1.扩散式燃烧法将燃气、空气分别从相邻的喷口喷出,或者燃气直接喷人空气中,两者在接触面上边混合边燃烧,也称有焰燃烧法。
2.完全预混式燃烧法按一定比例将燃气、空气均匀混合,再经燃烧器喷口喷出,进行燃烧。
由于预先均匀混合,可燃混合气一到达燃烧区就能在瞬间燃烧完毕,燃烧火焰很短,甚至看不见火焰,故电称为无焰燃烧法。
3.部分预混式燃烧法在燃气中预先混入部分空气(通常,一次空气系数α′=0.45~0.75),然后经燃烧器喷入空气中燃烧,也称为半无焰燃烧法。
从本质上看燃气的燃烧过程,与其它种类燃料一样,也包括以下三个阶段:(1)燃气与空气的混合,属物理过程,需要消耗一定的能量和时间;(2)混合气的加热和达到着火,也屑物理过程,依靠可燃混合气本身燃烧反应产生的热量来预热;(3)完成燃烧化学反应,属化学过程,反应速度受化学动力学因素控制。
第四章 燃气燃烧方法
天然气和空气在多孔陶瓷板上 燃烧时的温度变化曲线
L0为小孔式火道长度
第三节 完全预混式燃烧
2、冷却法防止回火
•冷却火孔以降低火孔出口的火焰传播速度,从而防止回火。
第四节 燃烧过程的强化与完善
一、两个热强度
1. 面积热强度:指燃烧室(或火道)单位面积上在单位时间内
通常碳粒来不及在高温区烧完,随气流流入火焰尾部低温区,燃 烧由扩散区转为动力区(温度低造成),此后,碳粒的燃烧可能完全中 断,未燃尽的碳粒冷却后便形成碳黑,沉积在加热表面或管壁上。
五、火焰辐射
◆ 燃气火焰辐射有两种情况:
①、不发光的透明火焰的辐射,主要为高温气体的辐射,如 CO2、H2O。
②、黄色、光亮而不透明的光焰辐射,其中火焰内的游离碳 粒子产生的固体辐射占很大比例。气体辐射仅在窄波段进 行,辐射能力弱,而发光固体颗粒辐射具有连续发射光谱 能力,辐射能力强。
四、紊流预混火焰的稳定
◆ 采用人工的稳焰方法,出发点仍为改变气流速度以及改 变传播速度。
◆常用方法:在喷口处设置一个点火源。
1. 连续作用的人工点火装置,如炽热物体,辅助火焰。如图 1 2.使炽热的燃烧产物流回火焰根部形成点火源,如采用火焰稳定器:圆棒、
V型棒、锥体、平盘、鼓形盘等。如图2
图1 用辅助火焰作点火源 1—燃烧器火孔;2—小孔;3—环形缝隙
② 火焰焰面为圆锥形,焰面以内为燃 气,焰面以外为空气,焰面处α=1,燃 烧产物浓度最大。 ③ 火焰长度与气流速度成正比,对同 一种燃气和同一燃烧器,气流速度越大, 火焰越长。 ④ 燃气流量一定时,火焰长度与气流 速度无关,仅与气体的扩散系数成反比。 扩散系数越大,火焰越短。(扩散系数即
燃气燃烧方法——部分预混式燃烧
燃气燃烧方法——部分预混式燃烧燃气燃烧时,一次空气过剩系数α′在0~1之间,预先混入了一部分燃烧所需空气,这种燃烧方法称为部分预混式燃烧或大气式燃烧。
一、部分预混层流火焰产生部分预混层流火焰的典型装置就是本生灯。
如图3—4—6,燃气从本生灯下部小口喷出,井引射入一次空气,在管内预先混合,预混后的气体自灯口喷出燃烧,产生圆锥形的火焰,周围大气亦供给部分空气,称为二次空气,通过扩散与一次空气未燃尽的燃气混合燃烧。
这样,在正常燃烧时形成两个稳定的火焰面:内火焰面,即由燃气与一次空气预混合后燃烧而产生。
为圆锥形,呈蓝绿色,强而有力,温度亦商,为部分预混火焰,也称为蓝色锥体;外火焰面,是二次空气与一次空气未燃尽的燃气进行的扩散混合燃烧,其形状也近似圆锥形,呈黄色,软弱无力,温度较低,这是扩散火焰。
蓝色的预混火焰锥体出现是有条件的。
若燃气/空气混合物的浓度大于着火浓度上限,火焰就不可能向中心传播,蓝色锥体就不会出现,而成为扩散式燃烧。
若混合物中燃气的浓度低于着火浓度下限,则该混合气根本不可能燃烧。
氢气燃烧火焰出现蓝色锥体的一次空气系数范围相当大,而甲烷和其它碳氢化合物的燃烧火焰出现蓝色锥体的一次空气系数范围则相当窄。
蓝色锥体的实际形状,如图3—5—5,可用管道中气流速度的分布和火焰传播速度的变化来解释。
层流时,沿管道截面上气体的流速按抛物线分布,喷口中心气流速度最大,至管壁处降为零。
静止的蓝色锥体焰面说明了锥面上各点的正常火焰传播速度sn(其方向指向锥体内部)与该点气流的法向分速度vn相平衡,也即对于预混火焰锥面上的每一点都存在以下关系式,通常称为米赫尔松余弦定律:sn=vn=vco sψ (5—5)式中ψ——预混气流方向与焰面上该点法线方向之间的夹角。
余弦定律表明了层流火焰传播速度与迎面来的气流速度在火焰稳定情况下的平衡关系,火焰虽有向内传播的趋势,但仍能稳定在该。
预混燃烧名词解释
预混燃烧名词解释
预混燃烧,是指燃料和氧气或空气混合在一起后进行的燃烧。
在这个过程中,燃料与氧气或空气的混合并没有达到化学平衡,而是在燃烧过程中逐渐接近化学平衡。
预混燃烧的特点是燃烧速度快,燃烧效率高,可以大大提高热效率,降低燃
料消耗,减少污染物排放。
预混燃烧常用于发动机和燃烧器中。
对于使用液体燃料的发动机来说,预混燃烧可以提高燃烧效率和降低排放;对于使用气体燃料的燃烧器来说,预混燃烧可以使燃烧更完全,减少一氧化碳和未燃烧的燃料排放,同时可以降低燃烧噪声。
预混燃烧技术的关键是提高燃气和空气的混合效果,因此,对燃料和氧气或空气的混合方式和混合比例的控制非常重要。
一种常见的方法是使用特殊的混合器,将燃气和空气混合到一起,然后将混合好的气体送入燃烧器进行燃烧。
此外,由于预混燃烧过程中燃料与氧气或空气的混合并未达到化学平衡,因此,需要在燃烧过程中不断调整混合比例,以保证燃烧效率。
这就需要高精度的混合比例控制系统,可以对燃料和氧气或空气的混合比例进行精确的调整。
总的来说,预混燃烧是一种高效、环保的燃烧方式,但其实现需要精确的混合控制和比例控制等技术支持。
燃气燃烧方法
第五章 燃气燃烧方法第一节 扩散式燃烧二、层流扩散火焰的结构将管口喷出的燃气点燃进行燃烧,如果燃气中不含氧化剂(即'0α=)则燃烧所需的氧气将依靠扩散作用从周围大气获得。
这种燃烧方式称为扩散式燃烧。
dC M DFdr∝ (5-1)式中 D ——扩散系数;F ——垂直于扩散方向两股气流的接触面积;dCdr——径向浓度梯度。
对于上述两种相似情况,扩散率之比为:11112222dC D F M dr dC M D F dr ⎛⎫ ⎪⎝⎭=⎛⎫⎪⎝⎭ (5-2)111222F d L = (5-3)1212dC d dr dC d dr ⎛⎫ ⎪⎝⎭=⎛⎫⎪⎝⎭(5-4)11112112222122M D d L d D L M D d L d D L =⨯⨯= 2111122222D L v d D L v d = 或者2DLvd=常数2vd L D∝(5-5)三、层流扩散火焰向紊流扩散火焰的过渡10.700.29g C asC r=+ (5-6)式中 s ——距出口的轴向距离; a ——紊流结构系数; r ——射流喷口的半径。
1g gC C n=- 或111g C C n =+ (5-7)0.70110.29f al n r=++[0.70(1)0.29]f rl n a=+-(5-8)四、扩散火焰中的多相过程E RTW Be-= (5-9)式中 W ——反应速度;B ——试验系数,取决于气相组成、固相表面积等因素; E ——活化能; R ——气体常数; T ——绝对温度。
dC W DFdr=- (5-10)式中 D ——扩散系数; F ——接触表面积;dCdr——浓度梯度。
五、燃气火焰的辐射第二节 部分预混式燃烧一、部分预混层流火焰在燃烧器出口的周边上,存在一个稳定的水平焰面,它是空气-燃气混合物的点火源,又称点火环。
二、部分预混层流火焰的确定如果燃烧强度不断加大,由于v S =的点更加靠近管口,点火环就逐渐变窄。
燃气燃烧方法部分预混式燃烧
燃气燃烧方法部分预混式燃烧燃气燃烧时,一次空气过剩系数a‘在0〜1之间,预先混入了一部分燃烧所需空气,这种燃烧方法称为部分预混式燃烧或大气式燃烧。
一、部分预混层流火焰产生部分预混层流火焰的典型装置就是本生灯。
如图3—4—6,燃气从本生灯下部小口喷出,井引射入一次空气,在管内预先混合,预混后的气体自灯口喷出燃烧,产生圆锥形的火焰,周围大气亦供给部分空气,称为二次空气,通过扩散与一次空气未燃尽的燃气混合燃烧。
这样,在正常燃烧时形成两个稳定的火焰面:内火焰面,即由燃气与一次空气预混合后燃烧而产生。
为圆锥形,呈蓝绿色,强而有力,温度亦商,为部分预混火焰,也称为蓝色锥体;外火焰面,是二次空气与一次空气未燃尽的燃气进行的扩散混合燃烧,其形状也近似圆锥形,呈黄色,软弱无力,温度较低,这是扩散火焰。
蓝色的预混火焰锥体出现是有条件的。
若燃气/空气混合物的浓度大于着火浓度上限,火焰就不可能向中心传播,蓝色锥体就不会出现,而成为扩散式燃烧。
若混合物中燃气的浓度低于着火浓度下限,则该混合气根本不可能燃烧。
氢气燃烧火焰出现蓝色锥体的一次空气系数范围相当大,而甲烷和其它碳氢化合物的燃烧火焰出现蓝色锥体的一次空气系数范围则相当窄。
蓝色锥体的实际形状,如图3—5—5,可用管道中气流速度的分布和火焰传播速度的变化来解释。
层流时,沿管道截面上气体的流速按抛物线分布,喷口中心气流速度最大,至管壁处降为零。
静止的蓝色锥体焰面说明了锥面上各点的正常火焰传播速度sn(其方向指向锥体内部)与该点气流的法向分速度vn相平衡,也即对于预混火焰锥面上的每一点都存在以下关系式,通常称为米赫尔松余弦定律:sn二vn二vcos® (5 —5)式中®——预混气流方向与焰面上该点法线方向之间的夹角。
余弦定律表明了层流火焰传播速度与迎面来的气流速度在火焰稳定情况下的平衡关系,火焰虽有向内传播的趋势,但仍能稳定在该点。
另一方面,蓝色锥体焰面上各点,还有一个气流切向分速度,使该处的质点要向上移动。
燃气燃烧方法
燃气燃烧方法
燃烧方法,是燃烧装置热工性能最直接和最重要的影响因素之一。
燃气燃烧在不同物态燃料中是一种最理想的燃烧方式,一般是将燃气通过燃烧器喷向空气中进行。
根据燃气与空气在燃烧前的混合情况,可将燃气燃烧方法分为三种:
1.扩散式燃烧法
将燃气、空气分别从相邻的喷口喷出,或者燃气直接喷人空气中,两者在接触面上边混合边燃烧,也称有焰燃烧法。
2.完全预混式燃烧法
按一定比例将燃气、空气均匀混合,再经燃烧器喷口喷出,进行燃烧。
由于预先均匀混合,可燃混合气一到达燃烧区就能在瞬间燃烧完毕,燃烧火焰很短,甚至看不见火焰,故电称为无焰燃烧法。
3.部分预混式燃烧法
在燃气中预先混入部分空气(通常,一次空气系数=0.45~0.75),然后经燃烧器喷入空气中燃烧,也称为半无焰燃烧法。
从本质上看燃气的燃烧过程,与其它种类燃料一样,也包括以下三个阶段:
(1)燃气与空气的混合,属物理过程,需要消耗一定的能量和时间;
(2)混合气的加热和达到着火,也屑物理过程,依靠可燃混合气本身燃烧反应产生的热量来预热;
(3)完成燃烧化学反应,属化学过程,反应速度受化学动力
学因素控制。
所以,燃气燃烧过程所需的时间,包括氧化剂与燃气混合预热所需的时间ph和进行化学反应所需的时间ch,即:
=Ph+ch
按燃烧阶段所需时间不同,也可区别出以上不同类型的燃烧方法。
如果ph远大于ch,则ph,燃烧在扩散区进行,物理因素是影响燃烧全过程的主要因素:反之,ph远小于ch,则ch燃烧在动力区进行,化学动力学因素是影响燃烧全过程的主要因素;若phch。
燃烧在中间区进行。
燃烧学-预溷合气燃烧及火焰传播
4.1 层流火焰传播 (laminar flame)
预混可燃气体流速不高(层流状态)时 的火焰传播称为层流火焰传播。
一、层流火焰结构与传播机理
层流火焰图
层流火焰前沿浓度和温度变化
火焰结构特点
火焰前沿厚度很薄,一般不超过1mm,只有十分之几 毫米甚至百分之几毫米厚。
层流火焰图
前沿的厚度很小,但温度和浓度的变化很大,因而在 火焰前沿中出现了极大的浓度梯度及温度梯度。这就 引起了火焰中强烈的扩散流和热流。
us us
Sl=u0
(u p、us反方向) (u p、us同方向)
对固定火焰,火焰面静止不动,即up=0,则Sl = u0 = us
即:火焰传播速度就等于未燃混合气进入火焰面的流速,
两者大小相等方向相反。
可燃气体和空气混合物在20℃及760厘米水银柱 下的火焰前沿移动的正常速度值
可燃气体
H2 CO CH4 C2H2 C2H4
在火焰前沿厚度的很大一部分上,化学反应的速度很
小,称为预热区,以 δp 表示。而化学反应主要集中 在很窄的区域 δc 中进行,称其为化学反应区。
火焰前沿传播机理
火焰传播的热理论 认为火焰中反应区(即火焰前沿)在空间的移动,取
决于反应区放热从而向新鲜混合气的热传导。
火焰传播的扩散理论 认为凡是燃烧都属于链式反应,在链式反应中借助
燃烧放热率比层流火焰的 大的多。
湍流火焰与层流火焰的区别
湍流火焰传播速度的定义——St
湍流火焰传播速度指湍流火焰前沿 任一处法向相对于未燃混合气运动的速 度。
二、湍流特性
湍流的基本特性:湍流中充满大小不等、高速旋转的流体微 团,或称涡团,在不断地做无规则的运动,使流体各点每瞬 时的速度、压力都在做随机的变化。
燃气燃烧方法——部分预混式燃烧
编号:SM-ZD-75320燃气燃烧方法——部分预混式燃烧Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives编制:____________________审核:____________________时间:____________________本文档下载后可任意修改燃气燃烧方法——部分预混式燃烧简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。
文档可直接下载或修改,使用时请详细阅读内容。
燃气燃烧时,一次空气过剩系数α′在0~1之间,预先混入了一部分燃烧所需空气,这种燃烧方法称为部分预混式燃烧或大气式燃烧。
一、部分预混层流火焰产生部分预混层流火焰的典型装置就是本生灯。
如图3—4—6,燃气从本生灯下部小口喷出,井引射入一次空气,在管内预先混合,预混后的气体自灯口喷出燃烧,产生圆锥形的火焰,周围大气亦供给部分空气,称为二次空气,通过扩散与一次空气未燃尽的燃气混合燃烧。
这样,在正常燃烧时形成两个稳定的火焰面:内火焰面,即由燃气与一次空气预混合后燃烧而产生。
为圆锥形,呈蓝绿色,强而有力,温度亦商,为部分预混火焰,也称为蓝色锥体;外火焰面,是二次空气与一次空气未燃尽的燃气进行的扩散混合燃烧,其形状也近似圆锥形,呈黄色,软弱无力,温度较低,这是扩散火焰。
蓝色的预混火焰锥体出现是有条件的。
若燃气/空气混合物的浓度大于着火浓度上限,火焰就不可能向中心传播,蓝色锥体就不会出现,而成为扩散式燃烧。
若混合物中燃气的浓度低于着火浓度下限,则该混合气根本不可能燃烧。
燃气职业技能鉴定习题集答案-选择填空
燃气具安装维修工(初级)理论知识试题库一、填空题1、天然气的主要成份是甲烷,其爆炸极限为 5%~15% 。
2、家用燃气灶由四部分组成:燃烧系统、供气系统、辅助系统、点火系统。
3、燃气橡胶管使用中,两端应用卡箍固定,弯曲半径应大于5厘米,否则易过早损坏。
橡胶管使用寿命为 18个月,到期或发现老化及时更新。
4、可燃气体在其混合物中引起爆炸的最低浓度称为爆炸下限,引起爆炸的最高浓度,称为爆炸上限。
5、嵌入式灶具要用金属软管连接,不要用橡胶管连接,以防意外,保持灶下面橱柜的良好通风。
6、燃气灶的燃烧器必须设置燃气阀门。
每个燃烧器应能用火柴和点火棒点燃。
7、直接测量式燃气表中最常见的是皮模式燃气表。
8、燃气开始燃烧时的最低温度称为着火温度。
9、燃气灶的灶面边缘、烤箱的侧壁距木质家具的净距不应小于 20cm 。
10、安装燃气灶的房间净高不得低于 2.2m 。
11、火焰局部脱离火孔的现象叫做离焰。
12、由稳定的氧化反应转变为不稳定的氧化反应而引起燃烧的一瞬间,称为爆燃。
13、家用燃气灶其连接软管的长度<2m 。
14、燃气胶管使用期限为 18个月。
15、家用燃气灶按结构可分为台式灶和嵌入式灶。
16、热电式熄火安全装置是由热电偶和电磁阀所组成。
17、城镇燃气大致可以分为:人工燃气,天然气,液化石油气。
18、燃气的燃烧方法有扩散式燃烧,部分预混式燃烧,完全预混式燃烧。
19、家用燃气灶具的常用点火方法有_压电陶瓷和电子脉冲_。
20、纯天然气中甲烷含量在 98% 。
21、燃气热水器上使用的熄火保护装置有热电偶式,双金属片式,火焰离子探针式。
22、燃气灶具漏气的原因,一般是阀门旋转芯的密封面不严,很可能是旋转芯所用的密封脂已经干涸。
23、燃气热水器上设置的燃气阀门有关闭阀,安全切断阀,气量调节阀,切换电磁阀。
24、天然气是以甲烷为主的气体,一般可分为四种,这四种气体的名称分别是:气田气,油田伴生气,凝析气田气,矿井气。
第七章 燃气的燃烧方法
2、紊流扩散火焰的长度 在燃气紊流自由射流中,由实验公式,轴线上的燃气浓度 Cg与射流出口处的原始浓度C1之比为:
Cg C1 0.70 as 0.29 r
α—紊流结构系数; s—轴向距离; r—射流喷口的半径。
射流中各点的燃气浓度与空气浓度之和应该是一样的,它等 于出口处的浓度和 :
C1 0 C1
13
思考:如何消除层流扩散火焰中的煤烟?
在火焰的内侧高温区:扩散区燃烧,可从内部提供足够多的 氧气。(例如部分预混式,完全预混式燃烧)
在火焰的外侧低温区:动力区燃烧,外部保温。如马灯、煤
油灯的玻璃罩,起到防风、保温作用。
14
3、层流扩散的长度 采用相似关系来分析层流扩散火焰的基本规律。
扩散燃烧装臵 :管1、管2 ;
家庭用燃气用具大都属于此类。如燃气灶、热水器。日 常生活中常见:打火机、煤油灯。
25
燃气在一定压力下, 以一定流速从喷嘴流 出,进入吸气收缩管, 燃气靠本身能量吸入 一次空气。在引射器 内燃气和一次空气混 合,然后经头部火孔 流出,进行燃烧,形 成本生火焰。
26
27
根据气流喷出速度的不同,部分预混火焰又可分为层流和紊流。
但氧气向焰面扩散的速度基本未变,焰面的收缩点离喷
口越来越远,火焰长度不断增加。这时,火焰表面积增加,
单位时间内燃烧的燃气量↑。
b、当Vm↑→临界值时,
流动状态从层流→紊流→火焰顶点跳动。
19
c、随Vm继续↑,
火焰绝大部分均扰动起来,这时扩散转变为紊流扩散, 混合加剧,燃烧强化→火焰变短。
d、随着扰动程度的加剧,混合时间↓↓,当 在动力区进行。
29
3、点火环 思考:管道上气流的速度按抛物线分布,中心大,四周小, 管壁处为0。火焰会不会传到燃烧器里去? 不会,火焰传播速度受管壁散热的影响,该处的火焰传播 速度因为管壁散热也减小了。 思考:在焰面任一点上,Sn=Vn, 火焰在该点是否能完全稳定? 不能,只是在火焰面法向上稳定, 由于存在切向分速度,使质点向上移 动。
燃气燃烧方法部分预混式燃烧
燃气燃烧方法部分预混式燃烧随着经济的不断发展和人口的不断增长,对于能源的需求也越来越大。
燃气,作为一种清洁、环保、高效的燃料,得到了广泛的应用。
然而,燃气的使用需要采取适当的燃烧方法,预混式燃烧是一种较为常用的燃烧方法之一。
预混式燃烧的基本原理预混式燃烧是将燃料气体和空气预先混合,然后进入燃烧器进行燃烧。
混合物的浓度可以在燃烧器喷嘴处调节,以满足不同的燃烧需求。
预混式燃烧的主要特点是燃烧充分,温度分布均匀,同时可以有效降低烟气排放,减少污染物的产生。
预混式燃烧的优点燃烧效率高预混式燃烧将燃料和空气提前混合,使燃烧充分。
因此,燃料的利用率高,燃烧效率也高,从而能够节约能源,提高经济效益。
温度分布均匀预混式燃烧器将燃料和空气预先混合,送入燃烧室后燃烧充分,温度分布均匀,能够避免产生高温区和低温区,降低空气中氧含量过高引起的高温燃烧等不利因素,保证燃烧的稳定性和可靠性。
减少污染物产生预混式燃烧能够将燃料、空气和燃烧产物充分混合,使得燃料在短时间内充分燃烧,烟气排放中CO、NOx等污染物含量大大降低,具有明显的环保效益。
预混式燃烧的缺点燃烧器成本高预混式燃烧需要配备特殊的燃烧器来完成混合和燃烧的过程,这类燃烧器的成本较高,加上燃气本身就比较昂贵,因此预混式燃烧相较于其他普通燃烧方法的投资成本会更高。
调节复杂预混式燃烧器需要预先混合燃料和空气,其中混合比例的调节是非常关键的,因此需要掌握一定的技术要求,不当的操作可能会造成燃烧不均、火焰失稳等问题。
预混式燃烧的应用领域适用于小规模的燃气设备,例如家用燃气炉灶等。
同时,预混式燃烧器也广泛应用于钢铁、冶金、化工等领域的工业炉窑和锅炉中。
在国内,预混式燃烧已经成为了一种公认的环保、高效、可靠的燃烧方式。
结语预混式燃烧作为一种优良的燃烧方式,能够减少供暖、加热等方面的能源浪费,同时也能够降低烟气排放,保护环境。
但同时,预混式燃烧器的调节和维护较为复杂,需要掌握一定的技术方法和操作要求。
4.1.燃气燃烧方法
•离开管口,气流速度会逐渐变小;而越靠近管口,则管口 壁的散热作用越明显,从而使火焰传播速度降低。 •在离开管口处,必定存在气流速度大于火焰传播速度的1 点及气流速度小于火焰传播速度的2点。 •在1点处,气流法向分速度大于该点的法向火焰传播速度, vn>Sn,气流切向分速度将使焰面向上移动;而在2点处, 气流法向分速度小于该点的法向火焰传播速度,vn<Sn, 焰面将向下移动。 •在点1和点2之间必定存在一个气流速度与法向火焰传播速 度相等的点3,在点3上焰面稳定,而且没有分速度,φ=0。 •这就是说,在燃烧器出口的周边上,存在一个稳定的水平 焰面,它是燃气-空气预混气流的点火源,又称点火环。 部分预混火焰内焰 表面上的速度分析
1.扩散式燃烧
•点燃前,燃气与空气不相接触(’=0),燃烧所需的氧气完全依靠扩 散作用从周围大气获得,燃气与空气在接触面处边混合边燃烧。 •流态不同,扩散的方式也不同。
•层流状态下,扩散燃烧依靠分子扩散作用使周围氧气进入燃烧区;
•紊流状态下,则主要依靠紊流扩散作用来获得燃烧所需的氧气。 •两种流态下的火焰结构有很大的差异。
•燃气的火焰传播速度越大,脱火和回火曲线的位臵就越高。 所以火焰传播速度较大的人工燃气容易回火,而火焰传播 速度较小的天然气则容易脱火。
•对于同一种燃料,一次空气系数’与火孔热强度q则集中 反映了二者的变化情况,是影响火焰稳定的主要因素。
•相同火孔热强度下,’=1时,火焰传播速度达最大值,回火极 限速度也达最大值; •无论增大或减小,火焰传播速度都将减小,从而导致回火极限 速度减小。’增大,点火环的点火能力将减弱,从而脱火极限速 度下降。 •在相同一次空气系数下,火孔热强度q增大将导致气流速度增大, 脱火性增强;同时导致燃烧温度升高,火焰传播速度增大,从而 使回火与离焰曲线的位臵上移。 •火焰稳定性还受周围空气组成的影响。如周围大气被惰性气体污染, 由于空气中氧含量较正常少,使混合气体的燃烧速度降低,从而脱火 的可能性就增加了。 •火焰周围空气的流动对火焰的稳定有不利的影响。
预混燃烧——精选推荐
预混燃烧⼀、预混燃烧的基本介绍1.贫燃预混燃烧的介绍贫燃预混燃烧是在保证燃料充分燃烧的情况下,增⼤空⽓的供给量,从⽽降低燃烧室的温度,满⾜较低的污染物排放标准(可以做到低NOx的排放)。
但是与常规的扩散燃烧技术相⽐,贫燃预混燃烧是在偏离正常化学当量⽐下进⾏的,这就会产⽣燃烧的不稳定性(主要包括回⽕以及振荡燃烧),严重阻碍了贫燃预混燃烧技术的发展。
维持贫燃预混燃烧室内的正常燃烧,其关键就在于避免⽕焰的吹熄与振荡燃烧。
⽕焰吹熄现象是因为燃烧室内当量⽐被控制在接近贫燃熄⽕极限,以便尽量降低⽕焰温度以及的排放,⽽在这种燃烧状况下,⽕焰传播速度很低,在相对⾼速的⽕焰流场中,会导致⽕焰的熄灭现象,这种现象发⽣的时间很短,被称为静态不稳定。
因此要避免⽕焰吹熄,维持预混⽕焰的稳定燃烧,关键就在于保持⽕焰燃烧速度与流场速度的平衡,可从以下两种⽅法着⼿:①提⾼燃烧速度;②降低燃⽓供给速度。
提⾼燃烧速度可使⽤端流产⽣器提⾼⽕焰瑞流强度,⽽降低燃⽓平均速度可以通过减少燃⽓供给做到,但是燃机的总效率也会下降,通常采⽤在燃烧室内安装钝体稳焰器或在燃烧室避免加⼯凹槽形成局部低速区域,使⽕焰燃烧速率与流场速率均衡,以便维持⽕焰的燃烧。
另外除上述⽅法外,旋流因为其特殊的流动特性,也常⽤于稳定湍流⽕焰。
预混燃烧的不稳定受燃料种类、进⽓温度、燃料⼀空⽓过量空⽓系数、燃烧室⼏何参数、燃烧室温度以及压⼒等众多参数的影响。
按压⼒振荡频率可将燃烧不稳定分为:低频振荡、中频振荡、⾼频振荡。
按照压⼒振荡涉及的燃烧系统部件可以将其定义为三类:燃烧系统不稳定、燃烧室腔体不稳定以及固有燃烧不稳定。
根据燃烧系统内不同扰动间的相互关系,可将燃烧不稳定分为受迫燃烧不稳定和⾃激燃烧不稳定,也可称为受迫振荡和⾃激振荡。
⼆、国内外研究现状及进展Lieuwen等⼈对预混燃烧室内的燃烧不稳定性进⾏了理论和实验研宄,将预混燃烧室分为进⼝区域、燃烧区域以及燃烧产物区域三个部分,⽤“完全撞拌反应器”模型(WSR)对当量⽐波动引起燃烧热释放波动的机理进⾏了描述和分析。
燃气的燃烧方式分类
燃气的燃烧方式分类燃气的燃烧方式通常有三种:扩散式燃烧、部分预混式燃烧和完全预混式燃烧。
一、扩散式燃烧燃气与空气不预先混合,即一次空气系数α=0,燃气从火孔流出进行燃烧,燃烧所需要的空气,完全依靠扩散作用从周围大气中获取,这种燃烧方式称为扩散燃烧。
例如,燃气从钢管的渗漏孔外泄时的燃烧,就属于这种形式.扩散燃烧的火焰长而无力,它像蜡烛燃烧那样分成三层火焰,中心的火焰较暗,这是还未达到着火温度的可燃气流;中间一层发光明亮,这一层是碳氢化合物受热分解成的碳和氢,游离碳在高温下灼热发光;最外层是可燃气体扩散在空气中燃烧所形成的。
从外形上看,扩散式燃烧的火焰拉得较长,且为黄色,但仍会看到下部的外表有一层薄薄的蓝色,这是周围空气无法进入火焰内部的结果 (“进入”是指空气与燃气混合),这种扩散式燃烧通常用在工业上生产化工原料 (炭黑),也普遍用于点火火源。
由于扩散燃烧是通过空气的扩散作用而进行的,其混合速度慢,所以火焰温度较低,常会发生不完全燃烧。
液化石油气不宜采用这种燃烧方式,原因是燃烧需要的空气量较多。
扩散式燃烧器是按层流扩散的原理来设计的。
燃烧所需要的空气量,常用加大过剩空气系数的方式来提供。
但采用过剩空气系数加大办法会使燃烧温度下降,燃烧情况恶化,热强度较低。
如采取适当的强制送风措施,则可加大气流扰动,对提高热强度,减少火焰长度有作用。
二、部分预混式燃烧如果燃气与所需的空气预先进行部分混合,即0<αꞌ<1,然后让混合气体从火孔流出,则一经点燃,就有部分燃气靠一次空气首先燃烧起来,形成火焰的焰心,又称内锥。
内锥中间为预热区,内锥表面叫焰面。
其余的燃气与燃烧产物混合在一起,并与周围的空气进行扩散转移,再将燃烧进行完毕,这时所混合的空气称为二次空气,形成的火焰俗称外锥。
由于火孔内气体压力比周围空气压力大,燃气流出后即向外膨胀,因此,内锥底部直径比火孔直径略大一些。
这种燃烧所形成的火焰结构常称为本生火焰。
燃气燃烧方法部分预混式燃烧
燃气燃烧方法部分预混式燃烧燃气燃烧方法中的一种重要类型是预混式燃烧。
预混式燃烧是指燃气和空气在燃烧前事先混合,形成稀薄的可燃气体混合物,然后进行燃烧。
这种燃烧方法具有许多优点,如高燃烧效率、低排放、可控制的燃烧过程等。
以下将详细介绍预混式燃烧的原理、优点以及应用领域。
预混式燃烧的原理是将燃气和空气在燃烧器内先行混合,形成可燃气体混合物,再经过点火点燃。
预混式燃烧的燃气与空气的混合比例可以通过燃气和空气进气量的控制来调节,从而获得适宜的混合比例。
混合气体在燃烧时能够快速燃烧,因为可燃气体和氧气的接触面积更大,同时混合气体的温度和压力也更高。
预混式燃烧的燃焰较小,且燃烧速度较快。
预混式燃烧具有许多优点。
首先,预混式燃烧能够提高燃烧效率。
由于燃气和空气事先混合,使得燃料更充分地与氧气接触,燃烧更完全,从而提高能量利用率。
其次,预混式燃烧可以实现低排放。
由于燃料更充分地燃烧,燃烧产生的废气中的污染物减少,从而减少了废气的排放。
此外,预混式燃烧还具有燃烧温度和燃焰形状可控制的优点,通过调节燃气和空气的混合比例,可以实现燃烧的稳定和控制。
预混式燃烧方法在许多领域得到广泛应用。
首先,它在工业领域中被广泛应用于燃烧炉和锅炉等热能设备中。
预混式燃烧能够提高燃烧效率,减少能源消耗,从而降低能源成本。
其次,预混式燃烧也在家用燃气炉具中得到应用,如燃气灶和燃气热水器等。
这些炉具采用预混式燃烧能够提供高效、环保的烹饪和供暖体验。
此外,预混式燃烧还应用于柴油机、燃气轮机等内燃机中,提高其燃烧效率,并减少尾气排放。
总之,预混式燃烧是燃气燃烧方法的一种重要类型,具有高燃烧效率、低排放、可控制的燃烧过程等优点。
它在工业和家用以及交通领域等多个领域得到广泛应用。
预混式燃烧的发展有助于提高能源利用率,减少环境污染,为可持续发展做出贡献。
第05章 燃气燃烧方法
第二节 部分预混式燃烧
三、部分预混紊流火焰
• 紊流火焰的特点:火焰长度短,顶部圆,焰 面皱曲,火焰厚度增加,表面积增加。 • 紊流火焰结构: ¾ 焰核:燃气空气混合物尚未点着的冷区 ¾ 焰面:着火与燃烧区 ¾ 燃尽区:此区边界看不见,通过气体分析确 定。
25
第二节 部分预混式燃烧
四、紊流预混火焰的稳定 • 紊流火焰工作的稳定区变得很窄,常常全 部消失,只有人工办法稳焰。 • 要想稳焰,就要想办法在局部地区保持气 流速度和火焰传播速度之间的平衡。 ¾ 从气流速度着手→流体动力学方法 ¾ 从改变火焰传播速度着手→热力学和化学 方法
二、部分预混层流火焰的确定
• 离焰:当燃烧强度不断加大,气流速度v↑, 使得v=S的点更加靠近管口,点火环变窄,最 后使之消失,火焰脱离燃烧器出口,在一定 距离以外燃烧。 • 脱火:若气流速度再增大,火焰被吹熄。 • 回火:若进入燃烧器的燃气流量不断减小, 即气流速度v↓,兰色锥体高度↓,最后由于 气流v小于Sn,火焰缩进燃烧口,熄灭。
16
第二节 部分预混式燃烧
• 分析根部:在火焰根部气速度降为0,但 火焰不会传到燃烧器里去。 •在1-1环上,S<v→推离 •在2-2环上,S>v→回燃 •必存在3-3环,该环上 S=v,该环没有切向分 速,φ=0→水平焰面→点 火源→又称点火环,使层 流火焰根部得到稳定。
17
第二节 部分预混式燃烧
28
第三节 完全预混式燃烧
• 在部分预混式燃烧的基础上发展起来的, 技术合理。广泛应用。 • 在下列条件下进行的燃烧,称为完全预混 式燃烧,又称无焰燃烧 • 进行完全预混的条件: ¾ 燃气和空气在着火前预先按大于等于化学 计量比混合均匀(即α’≥1); ¾ 设置专门的火道,使燃烧区保持稳定的高 温。
燃气职业技能鉴定习题集答案-选择填空资料
燃气具安装维修工(初级)理论知识试题库一、填空题1、天然气的主要成份是甲烷,其爆炸极限为 5%~15% 。
2、家用燃气灶由四部分组成:燃烧系统、供气系统、辅助系统、点火系统。
3、燃气橡胶管使用中,两端应用卡箍固定,弯曲半径应大于5厘米,否则易过早损坏。
橡胶管使用寿命为 18个月,到期或发现老化及时更新。
4、可燃气体在其混合物中引起爆炸的最低浓度称为爆炸下限,引起爆炸的最高浓度,称为爆炸上限。
5、嵌入式灶具要用金属软管连接,不要用橡胶管连接,以防意外,保持灶下面橱柜的良好通风。
6、燃气灶的燃烧器必须设置燃气阀门。
每个燃烧器应能用火柴和点火棒点燃。
7、直接测量式燃气表中最常见的是皮模式燃气表。
8、燃气开始燃烧时的最低温度称为着火温度。
9、燃气灶的灶面边缘、烤箱的侧壁距木质家具的净距不应小于 20cm 。
10、安装燃气灶的房间净高不得低于 2.2m 。
11、火焰局部脱离火孔的现象叫做离焰。
12、由稳定的氧化反应转变为不稳定的氧化反应而引起燃烧的一瞬间,称为爆燃。
13、家用燃气灶其连接软管的长度<2m 。
14、燃气胶管使用期限为 18个月。
15、家用燃气灶按结构可分为台式灶和嵌入式灶。
16、热电式熄火安全装置是由热电偶和电磁阀所组成。
17、城镇燃气大致可以分为:人工燃气,天然气,液化石油气。
18、燃气的燃烧方法有扩散式燃烧,部分预混式燃烧,完全预混式燃烧。
19、家用燃气灶具的常用点火方法有_压电陶瓷和电子脉冲_。
20、纯天然气中甲烷含量在 98% 。
21、燃气热水器上使用的熄火保护装置有热电偶式,双金属片式,火焰离子探针式。
22、燃气灶具漏气的原因,一般是阀门旋转芯的密封面不严,很可能是旋转芯所用的密封脂已经干涸。
23、燃气热水器上设置的燃气阀门有关闭阀,安全切断阀,气量调节阀,切换电磁阀。
24、天然气是以甲烷为主的气体,一般可分为四种,这四种气体的名称分别是:气田气,油田伴生气,凝析气田气,矿井气。
25、华白指数和燃烧势是代表燃气燃烧特性的重要参数,是判定两种燃气是否具备互换性的主要指标。
燃气燃烧方法——部分预混式燃烧.doc
燃气燃烧方法——部分预混式燃烧燃气燃烧时,一次空气过剩系数α′在0~1之间,预先混入了一部分燃烧所需空气,这种燃烧方法称为部分预混式燃烧或大气式燃烧。
一、部分预混层流火焰产生部分预混层流火焰的典型装置就是本生灯。
如图3—4—6,燃气从本生灯下部小口喷出,井引射入一次空气,在管内预先混合,预混后的气体自灯口喷出燃烧,产生圆锥形的火焰,周围大气亦供给部分空气,称为二次空气,通过扩散与一次空气未燃尽的燃气混合燃烧。
这样,在正常燃烧时形成两个稳定的火焰面:内火焰面,即由燃气与一次空气预混合后燃烧而产生。
为圆锥形,呈蓝绿色,强而有力,温度亦商,为部分预混火焰,也称为蓝色锥体;外火焰面,是二次空气与一次空气未燃尽的燃气进行的扩散混合燃烧,其形状也近似圆锥形,呈黄色,软弱无力,温度较低,这是扩散火焰。
蓝色的预混火焰锥体出现是有条件的。
若燃气/空气混合物的浓度大于着火浓度上限,火焰就不可能向中心传播,蓝色锥体就不会出现,而成为扩散式燃烧。
若混合物中燃气的浓度低于着火浓度下限,则该混合气根本不可能燃烧。
氢气燃烧火焰出现蓝色锥体的一次空气系数范围相当大,而甲烷和其它碳氢化合物的燃烧火焰出现蓝色锥体的一次空气系数范围则相当窄。
蓝色锥体的实际形状,如图3—5—5,可用管道中气流速度的分布和火焰传播速度的变化来解释。
层流时,沿管道截面上气体的流速按抛物线分布,喷口中心气流速度最大,至管壁处降为零。
静止的蓝色锥体焰面说明了锥面上各点的正常火焰传播速度sn(其方向指向锥体内部)与该点气流的法向分速度vn相平衡,也即对于预混火焰锥面上的每一点都存在以下关系式,通常称为米赫尔松余弦定律:sn=vn=vcosψ (5—5)式中ψ——预混气流方向与焰面上该点法线方向之间的夹角。
余弦定律表明了层流火焰传播速度与迎面来的气流速度在火焰稳定情况下的平衡关系,火焰虽有向内传播的趋势,但仍能稳定在该点。
另一方面,蓝色锥体焰面上各点,还有一个气流切向分速度,使该处的质点要向上移动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
燃气燃烧方法——部分预混式燃烧燃气燃烧时,一次空气过剩系数α′在0~1之间,预先混入了一
部分燃烧所需空气,这种燃烧方法称为部分预混式燃烧或大气式燃烧。
一、部分预混层流火焰
产生部分预混层流火焰的典型装置就是本生灯。
如图3—4—6,燃气从本生灯下部小口喷出,井引射入一次空气,在管内预先混合,预混后的气体自灯口喷出燃烧,产生圆锥形的火焰,周围大气亦供
给部分空气,称为二次空气,通过扩散与一次空气未燃尽的燃气混
合燃烧。
这样,在正常燃烧时形成两个稳定的火焰面:内火焰面,即由
燃气与一次空气预混合后燃烧而产生。
为圆锥形,呈蓝绿色,强而
有力,温度亦商,为部分预混火焰,也称为蓝色锥体;外火焰面,
是二次空气与一次空气未燃尽的燃气进行的扩散混合燃烧,其形状也近似圆锥形,呈黄色,软弱无力,温度较低,这是扩散火焰。
蓝色的预混火焰锥体出现是有条件的。
若燃气/空气混合物的浓度大于着火浓度上限,火焰就不可能向中心传播,蓝色锥体就不会出现,而成为扩散式燃烧。
若混合物中燃气的浓度低于着火浓度下限,则该混合气根本不可能燃烧。
氢气燃烧火焰出现蓝色锥体的一次空气系数范围相当大,而甲烷和其它碳氢化合物的燃烧火焰出现蓝色锥体的一次空气系数范围则相当窄。
蓝色锥体的实际形状,如图3—5—5,可用管道中气流速度的分布和火焰传播速度的变化来解释。
层流时,沿管道截面上气体的流速按抛物线分布,喷口中心气流速度最大,至管壁处降为零。
静止的蓝色锥体焰面说明了锥面上各点的正常火焰传播速度
sn(其方向指向锥体内部)与该点气流的法向分速度vn相平衡,也即对于预混火焰锥面上的每一点都存在以下关系式,通常称为米赫尔松余弦定律:
sn=vn=vco sψ (5—5)
式中ψ——预混气流方向与焰面上该点法线方向之间的夹角。
余弦定律表明了层流火焰传播速度与迎面来的气流速度在火焰稳定情况下的平衡关系,火焰虽有向内传播的趋势,但仍能稳定在该点。
另一方面,蓝色锥体焰面上各点,还有一个气流切向分速度,使该处的质点要向上移动。
因此、在焰面上必须不断进行下面质点对上面质点的点火,也就是说,需要一个底部点火源。
为了说明什么是最下部的点火源,需要分析一下根部的情况。
在火焰根部,靠近壁面处气流速度逐渐减小,至管壁处降至零,但火焰并不会传到燃烧器里去,因为该处的火焰传报速度因管壁散热也减小了。
在图3—5—5中的点1处,火焰传播速度小于气流速度,即snv。
这样,在点1和点2之间,势必存在一个sn=v的点3,在点3上,
焰面的法线方向和预混气流方向一致;即夹角ψ=0。
这就是说,在
燃烧器出口的周边上,存在一个稳定的水平焰面,它就是燃烧器底
部预混气流的点火源,称之为“点火环”。
蓝色锥体的高度,也与火焰传播速度和可燃混合气流速度有关。
如图3—5—6,设锥体高度为h,喷管出口半径为r,在锥休表面取一微元面,它在高度上的投影为dh,在径向上的投影为dr。