4.关联速度

合集下载

专题+关联速度的问题

专题+关联速度的问题
让当事人逃离现场的救援方案:用一根不变形的轻杆MN支撑在楼面平台AB上,
N端在水平地面上向右以v0匀速运动,被救助的人员紧抱在M端随轻杆向平台B端
靠近,平台高h,当BN=2h时,则此时被救人员向B点运动的速率是(

A.v0
B.2v0
C.


D



1
解析:设杆与水平面CD的夹角为,由几何关系可知 = 2ℎ = 2

A.
B.



C.



D.

绳下端实际速度0
绳上端实际速度
1.使下端绳子伸长
将0 沿绳方向分解为⁄⁄ = 0 cos
2.使下端绳子旋转
将0 沿垂直于绳方向分解为⊥ = 0 sin
作用效果
作用效果
使上端绳子缩短

绳子下端伸长的速度⁄⁄ 和上端缩
短的速度大小相等,即⁄⁄ =
绳子的“关联”速度问题
杆以及相互接触物体的“关联”速度问题
变换参考系相关的运动合成与分解
02
典例分析
【例题】如图所示,物体放在水平平台上,系在物体上的绳子跨过定滑轮,由地
面上的人以速度 向右水平匀速拉动,设人从地面上平台的边缘开始向右行至绳
与水平方向夹角为30°处,此时物体的速度为(

即 = 30°;将杆上N点的速度分解成沿杆的分速度1 和垂直杆转动的速度2 ,由矢量三角形可知
1 = 0 =
故选C。
3
3
0 ;而沿着同一根杆,各点的速度相同,故被救人员向B点运动的速率为 0 ,
2
2
4.光滑半球A放在竖直面光滑的墙角,并用手推着保持静止.现在A与墙壁之间放入

第五讲 关联速度

第五讲 关联速度

第五讲关联速度所谓关联速度就是两个通过某种方式联系起来的速度.比如一根杆上的两个速度通过杆发生联系,一根绳两端的速度通过绳发生联系.常用的结论有:1,杆或绳约束物系各点速度的相关特征是:在同一时刻必具有相同的沿杆或绳方向的分速度.2,接触物系接触点速度的相关特征是:沿接触面法向的分速度必定相同,沿接触面切向的分速度在无相对滑动时相同.3,线状相交物系交叉点的速度是相交双方沿对方切向运动分速度的矢量和.4,如果杆(或张紧的绳)围绕某一点转动,那么杆(或张紧的绳)上各点相对转动轴的角速度相同·类型1质量分别为m1、m2和m3的三个质点A、B、C位于光滑的水平桌面上,用已拉直的不可伸长的柔软轻绳AB和BC连接,∠ABC=π-α,α为锐角,如图5-1所示.今有一冲量I沿BC方向作用于质点C,求质点A开始运动时的速度.图5-1 图5-2类型2绳的一端固定,另一端缠在圆筒上,圆筒半径为R,放在与水平面成α角的光滑斜面上,如图5-2所示.当绳变为竖直方向时,圆筒转动角速度为ω(此时绳未松弛),试求此刻圆筒轴O的速度、圆筒与斜面切点C的速度。

类型3直线AB以大小为v1的速度沿垂直于AB的方向向上移动,而直线CD以大小为v2的速度沿垂直于CD的方向向左上方移动,两条直线交角为α,如图5-3所示.求它们的交点P的速度大小与方向.(全国中学生力学竞赛试题)图5-3图5-4以上三例展示了三类物系相关速度问题.类型1求的是由杆或绳约束物系的各点速度;类型2求接触物系接触点速度;类型3则是求相交物系交叉点速度.三类问题既有共同遵从的一般规律,又有由各自相关特点所决定的特殊规律,我们若能抓住它们的共性与个性,解决物系相关速度问题便有章可循.首先应当明确,我们讨论的问题中,研究对象是刚体、刚性球、刚性杆或拉直的、不可伸长的线等,它们都具有刚体的力学性质,是不会发生形变的理想化物体,刚体上任意两点之间的相对距离是恒定不变的;任何刚体的任何一种复杂运动都是由平动与转动复合而成的.如图5-4所示,三角板从位置ABC移动到位置A′B′C′,我们可以认为整个板一方面做平动,使板上点B移到点B′,另一方面又以点B′为轴转动,使点A到达点A′、点C到达点C′.由于前述刚体的力学性质所致,点A、C及板上各点的平动速度相同,否则板上各点的相对位置就会改变.这里,我们称点B′为基点.分析刚体的运动时,基点可以任意选择.于是我们得到刚体运动的速度法则:刚体上每一点的速度都是与基点速度相同的平动速度和相对于该基点的转动速度的矢量和.我们知道转动速度v=rω,r是转动半径,ω是刚体转动角速度,刚体自身转动角速度则与基点的选择无关.根据刚体运动的速度法则,对于既有平动又有转动的刚性杆或不可伸长的线绳,每个时刻我们总可以找到某一点,这一点的速度恰是沿杆或绳的方向,以它为基点,杆或绳上其他点在同一时刻一定具有相同的沿杆或绳方向的分速度(与基点相同的平动速度).因此,我们可以得到下面的结论.结论1杆或绳约束物系各点速度的相关特征是:在同一时刻必具有相同的沿杆或绳方向的分速度.我们再来研究接触物系接触点速度的特征.由刚体的力学性质及“接触”的约束可知,沿接触面法线方向,接触双方必须具有相同的法向分速度,否则将分离或形变,从而违反接触或刚性的限制.至于沿接触面的切向接触双方是否有相同的分速度,则取决于该方向上双方有无相对滑动,若无相对滑动,则接触双方将具有完全相同的速度.因此,我们可以得到下面的结论.结论2接触物系接触点速度的相关特征是:沿接触面法向的分速度必定相同,沿接触面切向的分速度在无相对滑动时相同.相交物系交叉点速度的特征是什么呢?我们来看交叉的两直线a、b,如图5-5所示,设直线a不动,当直线b沿自身方向移动时,交点P并不移动,而当直线b沿直线a的方向移动时,交点P便沿直线a移动,因交点P亦是直线b上一点,故与直线b具有相同的沿直线a方向的平移速度.同理,若直线b固定,直线a移动,交点P的移动速度与直线a沿直线b方向平动的速度相同.根据运动合成原理,当两直线a、b各自运动,交点P的运动分别是两直线沿对方直线方向运动的合运动.于是我们可以得到下面的结论.图5-5结论3线状相交物系交叉点的速度是相交双方沿对方切向运动分速度的矢量和.这样,我们将刚体的力学性质、刚体运动的速度法则运用于三类相关速度问题,得到了这三类相关速度特征,依据这些特征,并运用速度问题中普遍适用的合成法则、相对运动法则,解题便有了操作的章法.下面我们对每一类问题各给出3道例题,展示每一条原则在不同情景中的应用.例1如图5-6所示,杆AB的A端以速度v做匀速运动,在杆运动时恒与一静止的半圆周相切,半圆周的半径为R,当杆与水平线的交角为θ时,求杆的角速度ω及杆上与半圆相切点C的速度.图5-6分析与解考察切点C的情况.由于半圆静止,杆上点C速度的法向分量为零,故点C速度必沿杆的方向.以点C为基点,将杆上点A速度v分解成沿杆方向分量v1和垂直于杆方向分量v2(如图5-7所示),则v1是点A与点C相同的沿杆方向平动速度,v2是点A对点C的转动速度,故可求得点C的速度为图5-7vC=v1=v·cosθ,又v2=v·sinθ=ω·AC.由题给几何关系知,A点对C点的转动半径为:AC=R·cotθ,代入前式中即可解得:ω=(vsin2θ)/(Rcosθ).例2如图5-8所示,合页构件由三个菱形组成,其边长之比为3∶2∶1,顶点A3以速度v沿水平方向向右运动,求当构件所有角都为直角时,顶点B2的速度vB2.图5-8分析与解顶点B2作为B2A1杆上的一点,其速度是沿B2A1杆方向的速度v1及垂直于B2A1杆方向速度v1′的合成;同时作为杆B2A2上的一点,其速度又是沿B2A2杆方向的速度v2及垂直于B2A2杆方向的速度v2′的合成.由于两杆互成直角的特定条件,由图5-9显见,v2=v1′,v1=v2′.故顶点B2的速度可通过v1、v2速度的矢量和求得,而根据杆的约束的特征,得图5-9v1=(/2)vA1;v2=(/2)vA2,于是可得由几何关系可知vA1∶vA2∶vA3=A0A1∶A0A2∶A0A3=3∶5∶6,则vA1=v/2,vA2=(5/6)v,由此求得vB2=(/6)v.图5-10上述解析,我们是选取了速度为沿杆方向的某一点为基点来考察顶点B2的速度的.当然我们也可以选取其他合适的点为基点来分析.如图5-10所示,若以A1、A2点为基点,则B2点作为B2A1杆上的点,其速度是与A1点相同的平动速度vA1和对A1点的转动速度vn1之合成,同时B2点作为B2A2杆上的点,其速度是与A2点相同的平动速度vA2和对A2点的转动速度vn2之合成,再注意到题给的几何条件,从矢量三角形中由余弦定理得而由矢量图可知vn1=(/2)(vA2-vA1),代入前式可得vB2=(/6)v.两解殊途同归.例3如图5-11所示,物体A置于水平面上,物体A上固定有动滑轮B,D为定滑轮,一根轻绳绕过滑轮D、B后固定在C点,BC段水平.当以速度v拉绳头时,物体A沿水平面运动,若绳与水平面夹角为α,物体A运动的速度是多大?图5-11分析与解首先根据绳约束特点,任何时刻绳BD段上各点有与绳端D相同的沿绳BD段方向的分速度v,再看绳的这个速度与物体A移动速度的关系:设物体A右移速度为vx,则相对于物体A(或动滑轮B的轴心),绳上B点的速度为vx,即vBA=vx,方向沿绳BD方向;而根据运动合成法则,在沿绳BD方向上,绳上B点速度是相对于参照系A(或动滑轮B的轴心)的速度vx与参照系A对静止参照系速度vxcosα的合成,即v=vBA+vxcosα;由上述两方面可得vx=v/(1+cosα).例4如图5-12所示,半径为R的半圆凸轮以等速v0沿水平面向右运动,带动从动杆AB沿竖直方向上升,O为凸轮圆心,P为其顶点.求当∠AOP=α时,AB杆的速度.图5-12 图5-13分析与解这是接触物系相关速度问题.由题可知,杆与凸轮在A点接触,杆上A点速度vA是竖直向上的,轮上A点的速度v0是水平向右的,根据接触物系触点速度相关特征,两者沿接触面法向的分速度相同,如图5-13所示,即vAcosα=v0sinα,则vA=v0tanα.故AB杆的速度为v0tanα.例5如图5-14所示,缠在线轴上的绳子一头搭在墙上的光滑钉子A上,以恒定的速度v拉绳,当绳与竖直方向成α角时,求线轴中心O的运动速度vO.设线轴的外径为R,内径为r,线轴沿水平面做无滑动的滚动.分析与解当线轴以恒定的速度v拉绳时,线轴沿顺时针方向运动.从绳端速度v到轴心速度vO,是通过绳、轴相切接触相关的.考察切点B的速度:本题中绳与线轴间无滑动,故绳上B点与轴上B点速度完全相同,即无论沿切点法向或切向,两者均有相同的分速度.图5-15是轴上B点与绳上B点速度矢量图:轴上B点具有与轴心相同的平动速度vO 及对轴心的转动速度rω(ω为轴的角速度),那么沿切向轴上B点的速度为rω-vO sinα;而绳上B点速度的切向分量正是沿绳方向、大小为速度v,于是有关系式,即图5-14图5-15 rω-vO sinα=v.① 又由于线轴沿水平地面做纯滚动,故与水平地面相切点C的速度为零,则轴心速度为vO =Rω,② 由①、②两式可解得vO =(Rv)/(r-Rsinα).若绳拉线轴使线轴逆时针转动,vO =(Rv)/(r-Rsinα),自行证明.例6如图5-16所示,线轴沿水平面做无滑动的滚动,并且线端A点速度为v,方向水平.以铰链固定于点B的木板靠在线轴上,线轴的内、外径分别为r和R.试确定木板的角速度ω与角α的关系.图5-16 图5-17 分析与解设木板与线轴相切于C点,则板上C点与线轴上C点有相同的法向速度vn ,而板上C点的这个法向速度正是C点关于B轴的转动速度,如图5-17所示,即vn =ω·BC=ω·Rcot(α/2).①现在再来考察线轴上C点的速度:它应是C点对轴心O的转动速度vCn和与轴心相同的平动速度vO的矢量和,而vCn是沿C点切向的,则C点法向速度vn应是vn=vOsinα.②又由于线轴为刚体且做纯滚动,故以线轴与水平面切点为基点,应有v/(R+r)=vO/R.③将②、③两式代入①式中,得ω=(1-cosα)/(R+r)v.例7如图5-18所示,水平直杆AB在圆心为O、半径为r的固定圆圈上以匀速u竖直下落,试求套在该直杆和圆圈的交点处一小滑环M的速度,设OM与竖直方向的夹角为φ.图5-18分析与解当小环从圆圈顶点滑过圆心角为φ的一段弧时,据交叉点速度相关特征,将杆的速度u沿杆方向与圆圈切线方向分解,则M的速度为v=u/sinφ.例8如图5-19所示,直角曲杆OBC绕O轴在如图5-19所示的平面内转动,使套在其上的光滑小环沿固定直杆OA滑动.已知OB=10cm,曲杆的角速度ω=0.5rad/s,求φ=60°时,小环M的速度.图5-19 图5-20分析与解本题首先应该求出交叉点M作为杆BC上一点的速度v,而后根据交叉点速度相关特征,求出该速度沿OA方向的分量即为小环速度.由于刚性曲杆OBC以O为轴转动,故其上与OA直杆交叉点的速度方向垂直于转动半径OM、大小是v=ω·M=10cm/s.将其沿MA、MB方向分解成两个分速度,如图5-20所示,即得小环M的速度为:vM=vMA=v·tanφ=10cm/s.例9如图5-21所示,一个半径为R的轴环O1立在水平面上,另一个同样的轴环O2以速度v从这个轴环旁通过,试求两轴环上部交叉点A的速度vA与两环中心之距离d之间的关系.轴环很薄且第二个轴环紧邻第一个轴环.图5-21 图5-22分析与解轴环O2速度为v,将此速度沿轴环O1、O2的交叉点A处的切线方向分解成v1、v2两个分量,如图5-22,由线状相交物系交叉点相关速度规律可知,交叉点A的速度即为沿对方速度分量v1.注意到图5-22中显示的几何关系便可得。

连杆传动关联速度计算公式

连杆传动关联速度计算公式

连杆传动关联速度计算公式在工程学和机械设计中,连杆传动是一种常见的机械传动方式,它通过连接两个或多个连杆,将旋转运动转换为直线运动或者将直线运动转换为旋转运动。

在连杆传动中,我们经常需要计算其关联速度,以便确定传动装置的运行速度和性能。

本文将介绍连杆传动关联速度的计算公式及其应用。

连杆传动关联速度计算公式。

在连杆传动中,如果已知某一连杆的角速度和长度,我们可以通过以下公式计算其关联速度:V = ω r。

其中,V表示关联速度,ω表示连杆的角速度,r表示连杆的长度。

这个公式表明,关联速度与角速度和连杆长度成正比,角速度越大、连杆长度越长,关联速度就越大。

在实际工程中,我们经常需要计算多个连杆的关联速度。

在这种情况下,我们可以利用以下公式计算多个连杆的关联速度:V = ω1 r1 + ω2 r2 + ... + ωn rn。

其中,V表示多个连杆的关联速度,ω1、ω2、...、ωn分别表示各个连杆的角速度,r1、r2、...、rn分别表示各个连杆的长度。

这个公式表明,多个连杆的关联速度等于各个连杆的角速度与长度的乘积之和。

连杆传动关联速度计算的应用。

连杆传动关联速度的计算公式在机械设计和工程实践中有着广泛的应用。

首先,通过计算关联速度,我们可以确定传动装置的运行速度。

这对于机械设备的设计和优化非常重要,可以帮助工程师确定传动装置的工作性能和运行参数,从而确保设备的正常运行。

其次,通过计算关联速度,我们可以评估传动系统的稳定性和可靠性。

传动系统的稳定性和可靠性与关联速度密切相关,通过计算关联速度,我们可以评估传动系统的工作状态和性能,从而及时发现和解决潜在的问题,确保传动系统的安全运行。

此外,通过计算关联速度,我们还可以进行传动系统的优化设计。

在传动系统的设计过程中,我们可以通过调整连杆的长度和角速度,来实现传动系统的性能优化,提高传动效率和能量利用率,从而降低能源消耗和成本。

总之,连杆传动关联速度的计算公式在机械设计和工程实践中有着重要的应用。

“关联”速度问题模型归类例析

“关联”速度问题模型归类例析

关联”速度问题模型归类例析绳、杆等有长度的物体,在运动过程中,如果两端点的速度方向不在绳、杆所在直线上,两端的速度通常是不样的,但两端点的速度是有联系的,称之为“关联”速度。

关联速度”问题特点:沿杆或绳方向的速度分量大小相等。

绳或杆连体速度关系:①由于绳或杆具有不可伸缩的特点,则拉动绳或杆的速度等于绳或杆拉物的速度。

②在绳或杆连体中,物体实际运动方向就是合速度的方向。

③当物体实际运动方向与绳或杆成一定夹角时,可将合速度分解为沿绳或杆方向和垂直于绳或杆方向的两个分速度。

关联速度”问题常用的解题思路和方法:先确定合运动的方向,即物体实际运动的方向,然后分析这个合运动所产生的实际效果,即一方面使绳或杆伸缩的效果;另一方面使绳或杆转动的效果,以确定两个分速度的方向,沿绳或杆方向的分速度和垂直绳或杆方向的分速度,而沿绳或杆方向的分速度大小相同。

、绳相关联问题1.一绳一物模型1)所拉的物体做匀速运动例 1 如图 1 所示,人在岸上拉船,已知船的质量为m,水的阻力恒为厂,当轻绳与水平面的夹角为e 时,船的速度为u,此时人的拉力大小为T,则此时小结人拉绳行走的速度即绳的速度,易错误地采用力的分解法则,将人拉绳行走的速度。

即按图 3 所示进行分解,则水错选 B 选项.平分速度为船的速度,得人拉绳行走的速度为u /cos e ,会2)匀速拉动物体例2 如图 4 所示,在河岸上利用定滑轮拉绳索使小船靠岸,拉绳的速度为v,当拉船头的绳索与水平面的夹角为a时,船的速度是多少?解析方法1——微元分析法取小角度e ,如图5所示,设角度变化e 方法2——运动等效法因为定滑轮右边的绳子既要缩短又要偏转,所以定滑轮右边绳上的 A 点的运动情况可以等效为:先以滑轮为网心,以AC为半径做圆周运动到达B,再沿BC直线运动到D。

做圆周运动就有垂直绳子方向的线速度,做直线运动就有沿着绳子方向的速度,也就是说船的速度(即绳上 4 点的速度)的两个分速度方向是:一个沿绳缩短的方向,另一个垂直绳的方2.两绳一物模型例3 如图7 所示,两绳通过等高的定滑轮共同对称地系住个物体 A ,两边以速度v 匀速地向下拉绳,当两根细绳与竖直方向的夹角都为60。

(推荐)关联速度的问题

(推荐)关联速度的问题

(推荐)关联速度的问题
关联速度是指在数据分析中,计算两个或多个变量之间关系的速度。

以下是几种提高关联速度的方法:
1. 数据压缩:对于大型数据集,可以使用数据压缩技术来减少数
据的体积,从而提高关联分析的速度。

2. 并行计算:使用并行计算技术可以将计算任务分配给多个处理
器或计算机进行并行处理,从而加快关联分析的速度。

3. 使用索引:在进行关联分析时,可以使用索引来加快数据的检
索速度,从而提高关联分析的效率。

4. 数据预处理:在进行关联分析之前,对数据进行预处理,如去
除重复项、缺失值处理等,可以减少数据的量,从而提高关联分
析的速度。

5. 采样方法:对于大型数据集,可以使用采样方法来获取一个较
小的数据子集,然后对子集进行关联分析,从而提高关联速度。

6. 使用高效的算法:选择适合的关联算法是提高关联速度的关键。

一些高效的关联算法如Apriori算法、FP-Growth算法等。

7. 数据分区:将数据划分为多个分区,然后对每个分区进行独立
的关联分析任务,最后将结果合并,可以提高关联速度。

8. 内存优化:合理利用内存可以减少磁盘读写的次数,从而提高
关联分析的速度。

关联速度的问题

关联速度的问题

关联速度的问题【专题概述】1、什么就是关联速度:用绳、杆相连的物体,在运动过程中,其两个物体的速度通常不同,但物体沿绳或杆方向的速度分量大小相等,即连个物体有关联的速度。

2、解此类题的思路:思路(1)明确合运动即物体的实际运动速度(2)明确分运动:一般情况下,分运动表现在:①沿绳方向的伸长或收缩运动;②垂直于绳方向的旋转运动。

解题的原则:速度的合成遵循平行四边形定则3、解题方法:把物体的实际速度分解为垂直于绳(杆)与平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解。

常见的模型如图所示【典例精讲】1、绳关联物体速度的分解典例1(多选) 如图,一人以恒定速度v0通过定滑轮竖直向下拉小车在水平面上运动,当运动到如图位置时,细绳与水平成60°角,则此时( )A.小车运动的速度为v0B.小车运动的速度为2v0C.小车在水平面上做加速运动D.小车在水平面上做减速运动2、杆关联物体的速度的分解典例2如图所示,水平面上固定一个与水平面夹角为θ的斜杆A.另一竖直杆B以速度v水平向左匀速直线运动,则从两杆开始相交到最后分离的过程中,两杆交点P的速度方向与大小分别为( )A. 水平向左,大小为vB. 竖直向上,大小为vtanθC. 沿A杆向上,大小为v/cosθD. 沿A杆向上,大小为vcosθ3、关联物体的动力学问题典例3 (多选)如图所示,轻质不可伸长的细绳绕过光滑定滑轮C与质量为m的物体A连接,A放在倾角为 的光滑斜面上,绳的另一端与套在固定竖直杆上的物体B连接.现BC连线恰沿水平方向,从当前位置开始B以速度v0匀速下滑.设绳子的张力为F T,在此后的运动过程中,下列说法正确的就是( )A. 物体A做加速运动B. 物体A做匀速运动C. F T可能小于mgsinθD. F T一定大于mgsinθ【总结提升】有关联速度的问题,我们在处理的时候主要区分清楚那个就是合速度,那个就是分速度,我们只要把握住把没有沿绳子方向的速度向绳方向与垂直于绳的方向分解就可以了,最长见的的有下面几种情况情况一:从运动情况来瞧:A的运动就是沿绳子方向的,所以不需要分解A的速度,但就是B运动的方向没有沿绳子,所以就需要分解B的速度,然后根据两者在绳子方向的速度相等来求解两者之间的速度关系。

“关联”速度问题模型归类例析

“关联”速度问题模型归类例析

关联”速度问题模型归类例析绳、杆等有长度的物体,在运动过程中,如果两端点的速度方向不在绳、杆所在直线上,两端的速度通常是不一样的,但两端点的速度是有联系的,称之为“关联”速度。

“关联速度”问题特点:沿杆或绳方向的速度分量大小相等。

绳或杆连体速度关系:①由于绳或杆具有不可伸缩的特点,则拉动绳或杆的速度等于绳或杆拉物的速度。

②在绳或杆连体中,物体实际运动方向就是合速度的方向。

③当物体实际运动方向与绳或杆成一定夹角时,可将合速度分解为沿绳或杆方向和垂直于绳或杆方向的两个分速度。

“关联速度”问题常用的解题思路和方法:先确定合运动的方向,即物体实际运动的方向,然后分析这个合运动所产生的实际效果,即一方面使绳或杆伸缩的效果;另一方面使绳或杆转动的效果,以确定两个分速度的方向,沿绳或杆方向的分速度和垂直绳或杆方向的分速度,而沿绳或杆方向的分速度大小相同。

一、绳相关联问题1.一绳一物模型(1)所拉的物体做匀速运动例 1 如图 1 所示,人在岸上拉船,已知船的质量为m,水的阻力恒为厂,当轻绳与水平面的夹角为e时,船的速度为U,此时人的拉力大小为T,则此时()小结人拉绳行走的速度即绳的速度,易错误地采用力的分解法则,将人拉绳行走的速度。

即按图 3 所示进行分解,则水平分速度为船的速度,得人拉绳行走的速度为u /cos e,会错选 B 选项.(2)匀速拉动物体例2如图 4 所示,在河岸上利用定滑轮拉绳索使小船靠岸,拉绳的速度为v,当拉船头的绳索与水平面的夹角为a时,船的速度是多少?解析方法1——微元分析法取小角度e ,如图 5 所示,设角度变化e方法2——运动等效法因为定滑轮右边的绳子既要缩短又要偏转,所以定滑轮右边绳上的 A 点的运动情况可以等效为:先以滑轮为网心,以AC为半径做圆周运动到达B,再沿BC直线运动到D。

做圆周运动就有垂直绳子方向的线速度,做直线运动就有沿着绳子方向的速度,也就是说船的速度(即绳上 4 点的速度)的两个分速度方向是:一个沿绳缩短的方向,另一个垂直绳的方2.两绳一物模型例3如图7 所示,两绳通过等高的定滑轮共同对称地系住一个物体A ,两边以速度v 匀速地向下拉绳,当两根细绳与竖直方向的夹角都为60。

关联速度的分解资料讲解

关联速度的分解资料讲解

关联速度的分解收集于网络,如有侵权请联系管理员删除“关联”速度的分解在高中运动的合成与分解教学中,学生常对该如何分解速度搞不清楚、或很难理解,其主要原因是无法弄清楚哪一个是合速度、哪一个是分速度.这里有一个简单的方法:物体的实际运动方向就是合速度的方向,然后分析这个合速度所产生的实际效果,以确定两个分速度的方向.一、绳、杆连接的物体绳、杆等连接的物体,在运动过程中,其两端物体的速度通常是不一样的,但两端物体的速度是有联系的,称为“关联”速度.关联速度的关系——物体沿杆(或绳)方向的速度分量大小相等.因此,求这类问题时,首先要明确绳连物体的速度为合速度,然后将两物体的速度分别分解成沿绳方向和与绳垂直方向,令两物体沿绳方向的速度相等即可求出.例1.如图1-1所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?解析:绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v 物是合速度,将v 物按如图1-2所示进行分解.其中:v =v 物cos θ,使绳子收缩,v ⊥=v 物sin θ使绳子绕定滑轮上的A 点转动,所以v 物=cos v . 例2.一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如图2-1所示,物块以速度v 向右运动,试求当杆与水平方向夹角为θ时,小球A 的线速度v A 图1-图1-2收集于网络,如有侵权请联系管理员删除图4解析:选取物与棒接触点B 为连结点,B 点的实际速度(合速度)也就是物块速度v ;B 点又在棒上,参与沿棒向A 点滑动的速度v 1和绕O 点转动的线速度v 2,因此,将这个合速度沿棒及垂直于棒的两个方向分解.由速度矢量分解图得v 2=v sin θ,设此时OB 长度为a ,则a =h /sin θ,令棒绕O 点转动角速度为ω,则ω=v 2/a =v sin 2θ/h ,故A 的线速度v A =ωL =vL sin 2θ/h .例3.如图3-1所示,S 为一点光源,M 为一平面镜,光屏与平面镜平行放置,SO 是垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆时针匀速转动,则转过30°角时,光点S ′在屏上移动的瞬时速度v 为多大? 解析:由几何光学知识可知,当平面镜绕O 逆时针转过30°时,则∠SOS ′=60°,此时OS ′=L /cos60°,选取光点S ′为连结点,该点实际速度(合速度)就是在光屏上移动速度v ;光点S ′又在反射光线OS ′上,它参与沿光线OS ′的运动速度v 1和绕O 点转动线速度v 2;因此将这个合速度沿光线OS ′及垂直于光线OS ′的两个方向分解,由速度矢量分解图3—2可得:v 1=v sin60°,v 2=v cos60°,又由圆周运动知识可得,光线OS ′绕O 转动角速度为2ω,则:v 2=2ωL /cos60°,vc os60°=2ωL /cos60°,解得v =8ωL .二、相互接触的物体求相互接触物体的速度关联问题时,首先要明确两接触物体的速度,分析弹力的方向,然后将两物体的速度分别沿弹力的方向和垂直于弹力的方向进行分解,令两物体沿弹力方向的速度相等即可求出.例4.一个半径为R 的半圆柱沿水平方向向右以速度v 0匀速运动.在半圆柱上放置一根竖直杆,此杆只图2—1 图2—2图3-1 图3—2收集于网络,如有侵权请联系管理员删除 能沿竖直方向运动,如图4所示.当杆与半圆柱体接触点P 与柱心的连线与竖直方向的夹角为θ时,求竖直杆运动的速度.解析:设竖直杆运动的速度为v 1,方向竖直向上,由于弹力沿OP 方向,所以有v v 01、在OP 方向的投影相等,即有v v 01sin cos θθ=,解得v v 10=tan θ.。

关联速度的分解

关联速度的分解

“关联”速度的分解在高中运动的合成与分解教学中,学生常对该如何分解速度搞不清楚、或很难理解,其主要原因是无法弄清楚哪一个是合速度、哪一个是分速度.这里有一个简单的方法:物体的实际运动方向就是合速度的方向,然后分析这个合速度所产生的实际效果,以确定两个分速度的方向.一、绳、杆连接的物体绳、杆等连接的物体,在运动过程中,其两端物体的速度通常是不一样的,但两端物体的速度是有联系的,称为“关联”速度.关联速度的关系一一物体沿杆(或绳)方向的速度分量大小相等.因此,求这类问题时,首先要明确绳连物体的速度为合速度,然后将两物体的速度分别分解成沿绳方向和与绳垂直方向,令两物体沿绳方向的速度相等即可求出.例1.如图1-1所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v运动.当绳子与水平方向成0角时,物体前进的瞬时速度是多大?解析:绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v物是合速度,将v物按如图1-2所示进行分解.其中:v=v物cos 0 , 使绳子收缩,v±=v物sin 0使绳子绕定滑轮上的A点转动,所以v物=—-.cos日例2. 一根长为L的杆OA O端用铰链固定,另一端固定着一个小球A靠在一个质量为M 高为h的物块上,如图2-1所示,物块以速度v向右运动,试求当杆与水平方向夹角为0时,小球A的线速度V A ?图2—1 图2—2解析:选取物与棒接触点B为连结点,B点的实际速度(合速度)也就是物块速度v; B 点又在棒上,参与沿棒向A点滑动的速度v i和绕C点转动的线速度V2,因此,将这个合速度沿棒及垂直于棒的两个方向分解.由速度矢量分解图得V 2=v sin 0,设此时OB 长度为a ,则a =h /sin 0,令棒绕O 点转动角速 度为 3,则3 =V 2/ a =v sin 0 /h ,故 A 的线速度 V A =® L =vL sin 0 / h .例3•如图3-1所示,S 为一点光源,M 为一平面镜,光屏与平面镜平行放置, SO^垂直照 射在Mh 的光线,已知SGL,若M 以角速度3绕O 点逆时针匀速转动,贝U 转过30°角时,光点S' 在屏上移动的瞬时速度 v 为多大?解析:由几何光学知识可知,当平面镜绕 O 逆时针转过30°时,则/ SOS =60 °,此时 OS=L /cos60 ° ,选取光点S 为连结点,该点实际速度(合速度)就是在光屏上移动速度 v ; 光点S'又在反射光线 OS 上,它参与沿光线 OS 的运动速度V 1和绕C 点转动线速度V 2;因此 将这个合速度沿光线 OS 及垂直于光线 OS 的两个方向分解,由速度矢量分解图 3—2可得: v i =v sin60 ° , V 2=V COS 60 ° ,又由圆周运动知识可得,光线 OS 绕0转动角速度为23,贝y : V 2=23 L /cos60 ° , vc os60 ° =2 3 L /cos60 ° ,解得v =8 3 L .二、相互接触的物体求相互接触物体的速度关联问题时,首先要明确两接触物体的速度,分析弹力的方向,然后将两物体的速度分别沿弹力的方向和垂直于弹力的方向进行分解,令两物体沿弹力方向 的速度相等即可求出.例4.一个半径为R 的半圆柱沿水平方向向右以速度 V 。

运动的合成与分解——“关联”速度问题

运动的合成与分解——“关联”速度问题

运动的合成与分解——“关联”速度问题●问题概述:绳、杆等有长度的物体,在运动过程中,其两端点的速度通常是不一样的,但两端点的速度是有联系的,称之为“关联”速度。

关联速度的关系——沿杆(或绳)方向的速度分量大小相等。

●关键点:1.绳子末端运动速度的分解,应按运动的实际效果进行。

2.速度投影定理:不可伸长的杆(或绳),尽管各点速度不同,但各点速度沿绳方向的投影相同。

●例题:如图所示,人用绳子通过定滑轮拉物体A,当人以速度v0匀速前进时,物体A将做( )A.匀速运动B.加速运动B.C.匀加速运动 D.减速运动解题探究:①物体A的运动有两个运动效果,分别是什么?②将该物体的速度沿哪两个方向分解?●规律总结求解绳(杆)拉物体运动的合成与分解问题的思路和方法:①先明确合运动的方向:物体的实际运动方向②然后弄清运动的实际效果:沿绳或者杆的伸缩效果;使绳子或者杆转动的效果。

③再确定两个分运动的方向:沿着绳子(杆)、垂直于绳子(杆)●常见的模型●巩固练习1、如图所示,人以水平速度v跨过定滑轮匀速拉动绳子,当拉小车的绳子与水平地面的夹角为β时,小车沿水平地面运动的速度为( )A.V B.vcosβC.vsinβD.v cosβ2、如图所示,纤绳以恒定速率v1沿水平方向通过定滑轮牵引小船靠向岸边,设小船速度为v2,则小船靠岸过程的运动情况是( )A.加速靠岸,v2>v1 B.加速靠岸,v2<v1C.减速靠岸,v2>v1 D.匀速靠岸,v2<v13、两根光滑的杆互相垂直地固定在一起,上面分别穿有一个小球,小球a、b间用一细直棒相连,如图所示。

当细直棒与竖直杆夹角为θ时,两小球实际速度大小之比为( )A.sinθB.cosθC.tanθD.cotθ4、如图所示,物体A以速度v沿杆匀速下滑,A用细绳通过定滑轮拉物体B,当绳与水平夹角为θ时,B的速度为()A.v cosθ B.v sinθC.v/cosθ D.v/sinθ5、(不定项)如图所示,在水平地面上做匀速直线运动的小车,通过定滑轮用绳子吊起一个物体,若小车和被吊的物体在同一时刻速度分别为1v 和2v ,绳子对物体的拉力为T ,物体所受重力为G ,则下面说法正确的是( )A .物体做匀速运动,且v 1=v 2B .B .物体做加速运动,且v 1>v 2C .物体做加速运动,且T>GD .物体做匀速运动,且T =G6、如图所示,套在竖直细杆上的环A 由跨过定滑轮的不可伸长的轻绳与重物B 相连。

专题03 关联速度模型-【模型与方法】2023-2024学年高一物理同步模型易点通(人教版2019必

专题03 关联速度模型-【模型与方法】2023-2024学年高一物理同步模型易点通(人教版2019必

专题03 关联速度模型1.“关联”速度关联体一般是两个或两个以上由轻绳或轻杆联系在一起,或直接挤压在一起的物体,它们的运动简称为关联运动。

一般情况下,在运动过程中,相互关联的两个物体不是都沿绳或杆运动的,即二者的速度通常不同,但却有某种联系,我们称二者的速度为“关联”速度。

2.“关联”速度分解的步骤(ⅰ)确定合运动的方向:物体实际运动的方向就是合运动的方向,即合速度的方向。

(ⅰ)确定合运动的两个效果。

用轻绳或可自由转动的轻杆连接的物体的问题―→⎩⎪⎨⎪⎧ 效果1:沿绳或杆方向的运动效果2:垂直绳或杆方向的运动 相互接触的物体的问题―→⎩⎪⎨⎪⎧效果1:垂直接触面的运动效果2:沿接触面的运动 (ⅰ)画出合运动与分运动的平行四边形,确定它们的大小关系。

3.常见的速度分解模型(1)绳牵联模型单个物体的绳子末端速度分解:如图甲所示,v ⅰ一定要正交分解在垂直于绳子方向,这样v ⅰ的大小就是拉绳的速率,注意切勿将绳子速度分解。

甲 乙 两个物体的绳子末端速度分解:如图乙所示两个物体的速度都需要正交分解,其中两个物体的速度沿着绳子方向的分速度是相等的,即v A ⅰ=v B ⅰ。

如图丙所示,将圆环的速度分解成沿绳方向和垂直于绳方向的分速度,B 的速度与A 沿绳方向的分速度相等,即v A ⅰ=v B ⅰ。

丙丁(2)杆牵联模型如图丁所示,将杆连接的两个物体的速度沿杆和垂直于杆的方向正交分解,则两个物体沿杆方向的分速度大小相等,即v Aⅰ=v Bⅰ。

【模型演练1】(2024上·甘肃兰州·高一兰州一中校考期末)如图在水平力F作用下,物体B沿水平面向左运动,物体A恰好匀速下降。

以下说法正确的是()【模型演练2】(2023上·云南·高一校联考期末)有两条位于同一竖直平面内的水平轨道,轨道上有两个物块A和B,它们通过一根绕过光滑定滑轮O的不可伸长的轻绳相连接,轻绳始终处于紧绷状态,物块A向右运动。

关联速度问题

关联速度问题

关联速度问题关联速度分解问题指物体拉绳(杆)或绳(杆)拉物体的问题:(1)物体的实际速度一定是合速度.(2)由于绳不可伸长,一根绳两端物体沿绳方向的速度分量大小相等. (3)常见的速度分解模型 情景图示(注:A 沿斜面下滑) 分解图示定量结论 v B =v A cos θ v A cos θ=v 0 v A cos α=v B cos β v B sin α=v A cos α 基本思路 确定合速度(物体实际运动)→分析运动规律→确定分速度方向→平行四边形定则求解阻力恒为F f ,当轻绳与水面的夹角为θ时,船的速度为v ,人的拉力大小为F ,则此时( )A.人拉绳行走的速度大小为v cos θB.人拉绳行走的速度大小为v cos θC.船的加速度大小为F cos θ-F f mD.船的加速度大小为F -F f m【题型2】如图所示, 一根长直轻杆AB 在墙角沿竖直墙和水平地面滑动.当AB 杆和墙的夹角为θ时,杆的A 端沿墙下滑的速度大小为v 1,B 端沿地面滑动的速度大小为v 2,则v 1、v 2的关系是( )A.v 1=v 2B.v 1=v 2cos θC.v 1=v 2tan θD.v 1=v 2sin θ【题型3】人用绳子通过光滑轻质定滑轮拉物体A ,A 穿在光滑的竖直杆上,当以速度v 0匀速地拉绳使物体A 到达如图所示位置时,绳与竖直杆的夹角为θ,则物体A 实际运动的速度大小是( )A.v 0sin θB.v 0 sin θC.v 0cos θD.v 0 cos θ【题型4】如图所示,一根长为L 的轻杆OA ,O 端用铰链固定,轻杆靠在一个高为h 的物块上,某时杆与水平方向的夹角为θ,物块向右运动的速度为v ,则此时A 点速度为( )A.Lv sin θhB.Lv cos θhC.Lv sin 2θhD.Lv cos 2θh【题型5】如图所示,长为L 的直棒一端可绕固定轴O 转动,另一端搁在升降平台上,平台以速度v 匀速上升,当棒与竖直方向的夹角为α时,棒的角速度为( )A.v sin αLB.v L sin αC.v cos αLD.v L cos α针对训练1.如图所示,有人在河面上方20 m 的岸上用跨过定滑轮的长绳拴住一条小船,开始时绳与水面的夹角为30°.人以恒定的速率v =3 m/s 拉绳,使小船靠岸,那么( )A.5 s 时绳与水面的夹角为60°B.5 s 时小船前进了15 mC.5 s 时小船的速率为5 m/sD.5 s 时小船到岸边距离为10 m2.一轻杆两端分别固定质量为m A 和m B 的两个小球A 和B (可视为质点),将其放在一个光滑球形容器中从位置1开始下滑,如图所示,当轻杆到达位置2时,球A 与球形容器球心等高,其速度大小为v 1,已知此时轻杆与水平方向成θ=30°角,球B 的速度大小为v 2,则( )A .v 2=12v 1 B .v 2=2v 1 C .v 2=v 1 D .v 2=3v 13.如图所示,人用轻绳通过定滑轮拉穿在光滑竖直杆上的物块A ,人以速度v 0向左匀速拉绳,某一时刻,绳与竖直杆的夹角为θ,与水平面的夹角为α,此时物块A 的速度v 1为( )A.v 1=v 0sin αcos θB.v 1=v 0sin αsin θC.v 1=v 0cos αcos θD.v 1=v 0cos αcos θ4.一探照灯照射在云层底面上,云层底面是与地面平行的平面,如图所示,云层底面距地面高h ,探照灯以恒定角速度ω在竖直平面内转动,当光束转到与竖直方向夹角为θ时,云层底面上光点的移动速度是( )A .hω B.θωcos h C. θω2cos h D .Hωtan θ5.如图所示,水平面上固定一个与水平面夹角为θ的斜杆A .另一竖直杆B 以速度v 水平向左匀速直线运动,则从两杆开始相交到最后分离的过程中,两杆交点P 的速度方向和大小分别为( )A .水平向左,大小为vB .竖直向上,大小为vtanθC .沿A 杆向上,大小为v/cosθD .沿A 杆向上,大小为vcosθ6.如图所示,细绳一端固定在天花板上的O 点,另一端穿过一张CD 光盘的中央小孔后拴着一个橡胶球,橡胶球静止时,竖直悬线刚好挨着水平桌面的边沿.现将CD 光盘按在桌面上,并沿桌面边缘以速度v 匀速移动,移动过程中,CD 光盘中央小孔始终紧挨桌面边线,当悬线与竖直方向的夹角为θ时,小球上升的速度大小为( )A .v sin θB .v cos θC .v cos θD .v sin θ关联速度问题参考答案【题型1】【答案】 AC【解析】 船的运动产生了两个效果:一是使滑轮与船间的绳缩短,二是使滑轮与船间的绳偏转,因此将船的速度按如图所示(沿绳方向与垂直于绳方向)方式进行分解,人拉绳行走的速度大小v 人=v ∥=v cos θ,选项A 正确,B 错误;绳对船的拉力大小等于人拉绳的力的大小,即绳的拉力大小为F ,与水平方向成θ角,因此F cos θ-F f =ma ,解得a =F cos θ-F f m,选项C 正确,D 错误.【题型2】【答案】C【解析】将A 端的速度沿杆方向和垂直于杆的方向分解,沿杆方向的分速度为v 1∥=v 1cos θ,将B 端的速度沿杆方向和垂直于杆方向分解,沿杆方向的分速度v 2∥=v 2sin θ.由于v 1∥=v 2∥.所以v 1=v 2tan θ,故C 正确,A 、B 、D 错误.【题型3】【答案】D【解析】由运动的合成与分解可知,物体A 参与两个分运动:一个是沿着与它相连接的绳子的运动,另一个是垂直于绳子斜向上的运动.而物体A 的实际运动轨迹是沿着竖直杆向上的,这一轨迹所对应的运动就是物体A 的合运动,它们之间的关系如图所示.由几何关系可得v =v 0 cos θ,所以D 正确.【题型4】【答案】 C【解析】 根据运动的效果可知物块向右运动的速度,如图所示.沿杆和垂直于杆的方向分解成1v 和2v ,根据平行四边形定则可得θθcos cos 1v v v B ==,θθsin sin 2v v v B ==,根据几何关系可得θsin h OB =,由于B 点的线速度为ωθ⋅==OB v v sin 2,所以h v OB v θθω2sin sin ==,所以A 点的线速度hLv L v A θω2sin ==,故C 正确。

关联速度模型的知识点总结

关联速度模型的知识点总结

关联速度模型的知识点总结1. 速度模型的定义速度模型是描述地球内部介质物理性质的一种模型,主要包括地震波速度、密度等信息。

地下介质是非均匀的,在地震波传播过程中,不同介质的物理性质会对地震波产生不同的影响,速度模型可以帮助我们了解地下介质的结构和性质,为地震成像、地质勘探等提供重要的信息。

2. 速度模型的构建方法速度模型的构建是地球物理勘探的重要环节,通常通过地震资料处理和解释来获得地下介质的速度信息。

构建速度模型的一般方法包括:(1)地面观测和数据采集:通过地震仪器在地面上进行观测和数据采集,获取地震波的传播信息;(2)数据处理和解释:对采集到的地震数据进行处理和解释,包括地震波反演、速度分析等方法,以获得地下介质的速度信息;(3)速度模型构建:根据处理和解释得到的地下介质速度信息,构建地下介质的速度模型,通常采用层状模型或者复杂模型来描述地下介质的速度分布。

3. 速度模型的应用领域速度模型在地球物理勘探和地下水资源开发等领域有着广泛的应用,具体应用包括:(1)地震勘探:在地震勘探中,速度模型主要用于地震成像和地震定位,通过对地下介质速度分布的分析,可以获得地下构造和岩层信息,为油气勘探和矿产勘探提供重要的地质信息;(2)地震成像:速度模型在地震成像过程中起着重要作用,通过对地下介质速度信息的分析,可以获得地震波的传播路径和反射界面的信息,从而实现地下介质的成像;(3)地下水资源开发:速度模型在地下水资源勘探和开发中也有重要应用,通过对地下介质速度分布的分析,可以预测地下水的分布和运移规律,为地下水资源的开发和管理提供重要的参考信息。

4. 速度模型的影响因素速度模型的构建和应用受到许多因素的影响,主要包括:(1)地质背景:地下介质的地质背景对速度模型的构建和应用有着重要影响,不同的地质背景会导致地下介质的速度分布和反射特征不同;(2)地震波类型:不同类型的地震波,在地下介质中的传播特点和速度分布也会有所不同,这对速度模型的构建和应用有一定影响;(3)数据质量:速度模型的构建和应用需要大量的地震数据支撑,数据的采集质量和处理方法会直接影响速度模型的准确性和可靠性;(4)模型参数:速度模型的构建需要估计不同地层的速度和密度等参数,这些参数的准确性和选择方法会影响速度模型的准确性和适用性。

增分微课4 速度关联问题的研究(解析版)

增分微课4  速度关联问题的研究(解析版)

增分微课4速度关联问题的研究3、注意事项:(1)当物体速度不沿绳时,不要认为绳连接的两物体速度大小相等;●题型综述(2)无论何种情况下,要用沿绳分速度相等的结论,高中物理中涉及到很多绳、杆、面连接的两个物体的运动学、动力学和能量问题,这些问题的关键之一是两个物都必须沿绳和垂直绳正.交.分解,如下图所示情形也只能将M的速度沿绳DA和垂直绳DA分体的速度之间的关系——即速度关联的问题,另一个关键则解时,才能认为M、m沿绳方是两物体之间的受力的关系问题。

其中速度关联问题对很多向分速度相等,而不能将M的同学而言,存在准确理解和记忆的问题。

本文就对速度关联速度沿DA、DB方向斜交分解。

M问题进行一个深入的分析。

4、应用示例●应考策略【练1】如图所示,将质量为2m的重物悬挂在轻绳的在深入理解本文的内容的前提下,准确记住各种情况一端,轻绳的另一端系一质量为下速度的具体关联形式,以及必须正交分解的基本原则,那m的小环,小环套在竖直固定的么,速度关联的问题就不过是这类问题的一个常识节点,你光滑直杆上,光滑定滑轮与直杆的注意力就会转移到更加复杂的动力学、能量问题上去。

的距离为d.现将小环从与定滑●应用举例轮等高的A处由静止释放,B一、绳连接体的速度关联1、基本结论:将绳连接的两个物体的速度沿.绳.和.垂.直.处在A处正下方距离为d处,绳.正.交.分.解.,则有两物体沿绳方向分.速.度.大.小.相等。

则下列说法正确的是A.小环刚释放时轻绳中的张力一定大于2mg2、结论推导:跨定滑轮绳连接体(拉船模型)【例1】如图所示,人在岸上捉住绳上的A点以速度v0水平向左匀速拉动轻绳,绳跨过定滑轮O拉着在水面上B.小环在B处的速度与重物上升的速度大小之比等于2C.小环下降速度最大时,轻绳中的张力一定等于2mg向左移动的小船B,若已知某一瞬间OB绳与水平方向的夹角为θ,试求此时小船B A O的速度v为多大?【解析】当A运动到A1时,B运动到B1,Bθ小船B的实际运动是水(1)A选项:平向左的,但是我们可以将其想象成小船先沿圆弧BB2(以设小环经过一段极短的时间t下落一小段距离y,小环O为圆心、OB为半径,OB长度不变)运动至v0A1A O的速度增加为v1,此时重物上升的速度为v2,B2(此过程中A点不动),然后沿绳B2O向上运动至B1(此过程中A运动到A1),则由于v nBθBvB2则有:1y gt d tan22v2v1sin gtsin绳不可伸长,故有AA1=B2B1,即若将B的运动分解到沿圆弧(垂直绳)和沿半径(沿绳)方向,则必有沿绳方向两物体速度相等的结论:v n=v0即:vcosθ=v0,解得v v0/cos若不是正交分解,而sin tan,则有:12gt g t223 v gt2d2d而是如图(2)所示斜交分解,则B3B1=A3A1,则重物上升的加速度为:而B3B1≠AA1,故此时就有v x≠v0。

关联速度知识点总结

关联速度知识点总结

关联速度知识点总结一、速度的定义速度是一个矢量,它具有大小和方向。

在物理学中,速度通常用矢量表示,它的大小即速率,是描述物体单位时间内移动的距离;而方向则表示物体向着哪个方向移动。

通常用符号v表示速度,速度的单位可以是米/秒(m/s)、千米/小时(km/h)等。

二、不同类型的速度1. 瞬时速度瞬时速度是指物体在某一瞬间的速度。

即在某一时刻,我们可以通过计算物体在该时刻的位移和时间的比值,来得到物体在该时刻的瞬时速度。

用数学表示即为v=lim(Δs/Δt),其中Δs表示位移,Δt表示时间。

当Δt趋近于0时,就是瞬时速度。

2. 平均速度平均速度是指物体在一段时间内的平均速度。

这段时间内,物体移动的总距离除以总时间,就得到了物体的平均速度。

用数学表示为v=Δs/Δt,其中Δs表示总位移,Δt表示总时间。

3. 相对速度相对速度是指两个物体之间相对运动的速度。

当两个物体互相靠近或远离时,它们之间的速度就是相对速度。

相对速度的计算方法比较简单,可以通过两个物体的速度相减来得到。

4. 绝对速度绝对速度是指物体相对于地面或其他基准点的速度。

通常情况下,我们讨论的速度都是相对于地面的速度,即绝对速度。

三、速度的计算1. 瞬时速度的计算:根据瞬时速度的定义,我们可以通过计算物体在某一时刻的位移和时间的比值,来得到物体在该时刻的瞬时速度。

2. 平均速度的计算:平均速度的计算比较简单,就是通过计算物体在一段时间内的总位移和总时间的比值来得到。

3. 相对速度的计算:相对速度的计算比较简单,可以通过两个物体的速度相减来得到。

四、与速度相关的其他物理量1. 位移位移是一个矢量,它描述了物体从一个位置到另一个位置的距离和方向。

位移和速度有着密切的关系,速度是位移与时间的比值。

2. 加速度加速度是描述物体速度变化的物理量,它是速度的变化率。

加速度和速度之间也有着密切的关系,即速度的变化率就是加速度。

3. 时间时间是一个描述事件发生顺序的物理量,速度是描述物体运动过程的物理量,它们之间的关系是物体运动的距离与所用时间的比值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、分解合速度(沿绳的方向以 及垂直于绳的方向分解) 3、列等式。
v 【答案】 v' cos
减速
1.2.4 运动的合成与分解的应用(二) 典例2:如图所示,汽车沿水平路面以恒定速度v前进,
则当拉绳与水平方向成θ角时,被吊起的物体M的速度为 vM = 。 1、画出绳上需要研究的点(通 常是端点)的实际速度(合速 度); 2、将该点的实际速度进行分解 (沿绳的方向以及垂直于绳的方 向分解) 3、列等式。 (因为绳子既不能 伸长,也不能缩短,故各点沿 着绳子的分速度相等)
α
α
V杆
vb
1.2.4 运动的合成与分解的应用(二)
“绳(杆)拉物体”模型的主要思路: (1)物体的实际运动为合运动; (2)沿绳(或杆)的运动为一个分运动;垂 直于绳(或杆)的运动为另一个分运动。 (3) “关联速度”特点:沿绳 (或杆)方向 的速度分量大小相等.
1.2.4 运动的合成与分解的应用(二)
谢谢大家!
典例5: 两根光滑的杆互相垂直地固定在一起。上面 分别穿有一个小球。小球a、b间用一细直棒相连 如图。当细直棒与水平杆夹角为α 时,求两小球 实际速度之比va∶vb 解析: 对于a: v杆 va sin
对于b : v杆: vb sin
面上运动,当α=450,β=300时,物体A的速度为2 m/s, 这时B的速度为 。
对于A : v绳 v A cos , 对于B : v绳 v B cos v A cos v B cos
B
v绳

vB

A
v绳
vA
2 6 m / s 【答案】 v B 3
1.2.4 运动的合成与分解的应用(二)
v
vM
【答案】
v M v cos
1.2.4 运动的合成与分解的应用(二) 典例3:如图所示,以速度v沿竖直杆匀速下滑的物体A,用
细绳通过定滑轮拉动物体B在水平桌面上运动,当绳与水平
面夹角为θ时,物体B的速率为
B


v
A

v sin
【答案】
vB=vsinθ
v
1.2.4 运动的合成与分解的应用(二) 典例4:如图所示,A、B两物体用细绳相连,在水平
1.2.4 运动的合成与分解的应用(二)
第一章
抛体运动
2. 运动的合成与分解
(4)运动的合成与分解的应用(二) 关联速度问题
1.2.4 运动的合成与分解的应用(二)
“绳+物”问题
B

A
vA
1.2.4 运动的合成与分解的应用(二) 绳子连带问题: ①沿绳方向直线运动
v0
②以定滑轮为圆心垂直绳的转动
v1=v0 θ
V=?
注意: 实际的运动是合运动 实际的速度是合速度
v2
1.2.4 运动的合成与分解的应用(二) 典例1:如图所示,纤绳以恒定速率v沿水平方向通过定滑轮牵
引小船靠岸,当纤绳与水面夹角为θ时,船靠岸的速度是 ;
若使船匀速靠岸,则纤绳的速度是
减速)
。(填:匀速、加速、
v'
v
解题步骤: 1、确定合速度(实际速度)
相关文档
最新文档