中型水力发电厂电气部分初步设计

合集下载

×300MW发电厂电气部分初步设计doc

×300MW发电厂电气部分初步设计doc

引言电力行业是国民经济的重要行业之一,电力自从应用于生产以来,已成为现代化生产、生活的主要能源,它为现代工农业、交通运输业、国防、科技和人民生活等方面都得到了广泛的应用。

如今,电力行业紧跟着经济发展的脚步,随着发电设备容量的不断加大,电力行业的自动化程度越来越高,相应的对电力系统的安全性、稳定性的要求也越来越高。

本次的设计题目是:4*300MW发电厂电气部分初步设计(励磁系统),主要是进行电气主接线设计,通过方案比较确定主接线方案,选择发电机和主变压器;厂用电设计,选择厂用变压器;通过短路电流计算,进行主要电气设备选择及校验,然后是励磁系统设计,发电机主保护设计以及配电装置设计;通过此次设计,使学生对自己所学专业知识在临近毕业前进行一次检验和巩固,同时利用自己所掌握的知识初步的设计出一个符合实际的能够安全运行的电厂。

通过本次设计,对大中型发电厂有一个全方位的了解和认识,将所学的理论知识与实际相结合,在巩固自己的所学的专业知识的同时,也使自己更能胜任今后的工作。

第一章电气主接线设计1.1设计原则和基本要求1 发电厂电气主接线是电力系统接线的重要组成部分。

它表明了发电机、变压器、线路、断路器等其它电气设备的数量和连接方式及可能的运行方式,从而完成发电、变电、输电和配电的任务。

电气主接线的设计直接关系到全厂电气设备的选择、配电装置的布置、继电保护和自动装置安装,关系到电力系统的安全、稳定和经济运行。

2 电气主接线设计的原则依据(1)发电厂电气主接线方案的选择,主要决定发电厂的类型、工作特性、发电厂的容量、发电机和主变压器的台数和容量。

(2)发电厂建设规模应根据电力系统5-10年发展规划进行设计。

(3)供电和负荷关系①对于一级负荷必须有两个独立电源供电,且当任何一个电源失去后,能保证对全部一级负荷不间断供电。

②对于二级负荷一般要有两个独立电源供电,且当任何一个电源失去后,能保证全部或大部分二级负荷的供电。

发电厂电气部分设计

发电厂电气部分设计

摘要:本设计是对4×600MW总装机容量为2400MW的凝汽式火力发电厂进行电气一次部分及其厂用电高压部分的设计,它主要包括了五大部分,分别为:电气主接线的选择、厂用电设计、短路电流的计算、主要电气设备的选择、完成主接线图与设计说明书。

其中详细描述了短路电流的计算和电气设备的选择,从不同的短路情况进行分析和计算,对不同的短路参数来进行不同种类设备的选择,列出各设备选择结果表。

并对设计进行了理论分析。

最后的设计总图包括主接线,主要电气设备。

关键词:电气一次部分;电气主接线;短路计算;设备选择Abstract:This design is for 4 × 600MW total installed capacity of the electrical powe r plant and a part of the high-pressu-re part of the design of 2400MW of condensing st eam power plant.Itincludes five parts, namely: the calculation of the main electrical co nnection options, power design, short-circuit current, the main electrical equipment se lection, complete the main wiring diagrams and design specification. Which describes in detail the selection of the short circuit current computing and electrical equipment for analysis and calculations from different short circuit, short circuit to different para meters to choose different types of devices, each device listed in the selection result ta ble.Theoretical analysis anddesign.The final master plan includes a main wiring,main electrical equipment.Keywords:Electrical primary part;Electrical main wiring;Short circuit calculations;Equipment selection目录1 电气主接线 (1)1.1 系统与负荷资料分析 (1)1.2 主接线方案的选择 (3)1.3 各接线方式的比较 (7)1.3.1 双母线接线方式的特点: (7)1.3.2 双母带旁路接线方式的特点: (8)1.3.3 一台半断路器接线方式的特点: (8)1.4 主变压器的选择与计算 (10)1.4.1 单元接线的主变压器容量的确定原则 (10)1.4.2 主变压器型式的确定原则 (10)1.4.3 主变压器型式的选择 (11)1.4.4 联络变压器的选择 (12)1.5 厂用电的接线方式和选择 (13)1.5.1 厂用电设计要求: (13)1.5.2 厂用电的电压等级: (13)1.5.3 厂用变压器的选择 (14)1.5.4 厂用电系统中性点接地方式 (15)1.5.5 厂用电接线形式 (15)2 短路电流的计算 (17)2.1 短路计算的一般规则 (17)2.2 短路计算的一般规定和条件 (17)2.3 短路计算过程 (18)3 电气设备的选择 (27)3.1 电气设备选择的一般规则 (27)3.2 电气选择的条件 (27)3.2.1 断路器的种类和形式的选择 (29)3.2.2 隔离开关的种类和形式的选择 (31)3.2.2 互感器的种类和形式的选择 (31)3.2.3 避雷器的种类和形式的选择 (33)3.3 500kV设备选择 (33)3.3.1 500kV断路器的选择 (33)3.3.2 500kV隔离开关的选择 (35)3.3.3 500kV电流互感器的选择 (36)3.3.4 500kV电压互感器的选择 (36)3.3.5 500kV避雷器的选择 (36)3.4 220kV设备选择 (37)3.4.1 220kV断路器的选择 (37)3.4.2 220kV隔离开关的选择 (38)3.4.3 220kV电流互感器的选择 (39)3.4.4 220kV电压互感器的选择 (40)3.4.5 220kV避雷器的选择 (40)3.5 电气设备选择的结果表 (41)4 母线选择及校验 (43)4.1 母线材料及形状的选择 (43)4.2 500KV侧母线选择及校验 (44)4.3 220KV侧母线选择及校验 (45)5 配电装置 (47)5.1 配电装置选择的一般原则 (47)5.2 配电装置的选型和依据 (47)5.3 主接线中设备配置的一般原则 (48)5.3.1 隔离开关的配置 (48)5.3.2 电压互感器的配置 (48)5.3.3 电流互感器的配置 (49)参考文献 (50)致谢 (51)附录I (52)本次设计是在课程设计任务书的基础上,依靠本学期所学的<<电力系统基础>>专业理论知识进行的,翻阅及参考了多种资料,通过本设计树立工程观点,加强基本理论的理解和工程设计基本技能的训练,了解现代大型发电厂的电能生产过程及其特点,掌握发电厂电气主系统的设计方法,并在分析、计算和解决实际工程能力等方面得到训练,为今后从事电气设计、运行管理和科研工作,奠定必要的理论基础。

发电厂电气部分设计

发电厂电气部分设计

毕业设计(论文)题目:发电厂电气部分设计学院:电子信息学院专业班级:电气工程及其自动化2009级2班指导教师:XXXXX职称:讲师学生姓名: XXXXX学号:XXXXXXXXXXX摘要水力发电厂是把水的位能和动能转换成电能的工厂,它的基本生产过程是:从河流高处或其他水库内引水,利用水的压力或流速冲动水轮机旋转,将水能转变成机械能,然后水轮机带动发电机旋转,将机械能转变成电能。

本文是对总装机容量为2X15+2X35=100MW的中小型水电厂电气部分的初步设计,主要完成了对与电厂一次系统相关方面的设计。

依据丰水期和枯水期两种不同季节水流量的差异,通过任意投切组合4台2种型号水轮发电机,本电厂可以实现对水资源充分利用,将水资源的势能和动能转换成电能,并通过升压变压器将电压升高至35kV和110kV 两种电压等级,分别供给当地负荷以及并入电网系统。

全文共分八大章节,其主要内容包括电气主接线的方案的比较、选择;主变压器容量计算、台数和型号的选择;短路电流计算;高压电气设备的选择与校验;厂用电及其接线设计、厂用变压器容量计算、台数和型号的选择及厂用电动机自启动校验,并作了过电压保护和接地装置配置设计。

其设计的重点在于利用水电厂运算曲线法对可能发生短路的短路点进行三相短路电流计算,以及按照正常工作条件选择电气设备,按照短路状态校验电器设备,从而实现对电气设备的选择等等。

关键词:水电厂,电气主接线,短路电流,电气设备,厂用电ABSTRACTHydraulic power plant is the water potential energy and kinetic energy into electricity energy, basic production process it is: water from river heights or other reservoirs, using the water pressure or velocity impulse turbine rotation, the water energy into mechanical energy, then the turbine drives the generator to spin, and the mechanical energy can be changed into electric energy.This paper is a preliminary design of medium and small hydropower plant electrical parts of the total installed capacity of 2X15+2X35=100MW, and mainly has completed plant design relating with aspects of primary system. Based on the difference between the dry season and the wet season of two different seasonal water flow, through an arbitrary switching combination of 2 types of 4 hydraulic turbine generator, the power plant can realize the full utilization of water resources, converting the potential energy and kinetic energy of water into electrical energy, and the voltage rises to two voltage levels of 35kV and 110kV through the step-up transformer, respectively, for local load and grid system.The full text is divided into eight chapters, the main contents include comparison and selection of main electrical wiring scheme; calculation of main transformer capacity, including model number selection, the number of models and amounts; short-circuit current calculation; selection and validation of high voltage electrical equipment and wiring design; power plant, transformer capacity calculation, selection and plant the number of models and motor self-starting check, and the over-voltage protection and grounding device configuration design. The design focuses on the use of hydropower plant operation curve method for three-phase short-circuit current of short circuit may short-circuit calculation, and in accordance with the normal working condition selection of electrical equipment, in accordance with the short-circuit state check electrical equipment, so as to realize the electrical equipment selection etc.Keywords: hydropower plant, the main electrical wiring, short-circuit current,electrical equipment, power plant目录第1章绪论 (1)1.1 原始资料 (1)1.1.1 设计原始资料 (1)1.1.2 对设计原始资料分析 (3)1.2 机组技术数据的选择 (3)第2章电气主接线的设计 (4)2.1 对电气主接线的基本要求 (4)2.2 电气主接线的基本形式 (5)2.3 电气主接线方案拟定 (6)2.3.1 发电机变压器母线接线形式拟定 (7)2.3.2 35kV电压母线接线形式拟定 (8)2.3.3 110kV电压母线接线形式拟定 (10)第3章主变压器的选择 (12)3.1 主变压器的台数和容量的选择 (12)3.2 主变压器型式的选择 (13)3.3 主变压器的确定 (14)第4章短路电流的计算 (15)4.1 概述 (15)4.2 三相短路电流的计算 (16)4.2.1 无限大容量电源系统供给的短路电流 (16)4.2.2 有限容量电源供给的短路电流 (18)4.3 三相短路短路电流的计算 (19)4.3.1 系统电气设备电抗标幺值计算 (20)4.3.2 K1处短路短路电流计算 (21)4.3.3 K2处短路短路电流计算 (27)4.3.4 K3处短路短路电流计算 (32)4.3.5 K4处短路短路电流计算 (35)第5章电气设备选择 (39)5.1 发电厂主要电气设备 (39)5.2 电气设备选择的一般条件 (39)5.3 断路器的选择 (41)5.3.1 35kV母线断路器的选择 (42)5.3.2 35kV分段断路器的选择 (43)5.3.3 110kV母线断路器的选择 (44)5.3.4 110kV母联断路器的选择 (46)5.3.5 联络变压器侧断路器的选择 (47)5.4 隔离开关的选择 (48)5.4.1 35kV母线隔离开关的选择 (48)5.4.2 35kV分段断路器侧隔离开关的选择 (49)5.4.3 110kV母线隔离开关的选择 (50)5.4.4 110kV母联断路器侧隔离开关的选择 (51)5.4.5 联络变压器侧断路器选择 (52)5.5 互感器在主接线中的配置 (54)5.6 电流互感器的选择 (55)5.6.1 G1、G2发电机出口侧TA的选择 (55)5.6.2 35kV母线侧TA的选择 (56)5.6.3 35kV母线分段处TA的选择 (57)5.6.4 G3、G4发电机出口侧TA的选择 (58)5.6.5 110kV母线侧TA的选择 (59)5.7 电压互感器的选择 (60)5.7.1 发电机出口侧TV的选择 (60)5.7.2 35kV侧TV的选择 (61)5.7.3 110kV侧TV的选择 (61)5.8 限流电抗器的选择 (62)第6章厂用电及其接线 (63)6.1 厂用电概述 (63)6.2 厂用电接线 (64)6.3 厂用变压器的选择 (68)6.4 高、低压厂用变压器串联自启动时母线校验 (71)第7章发电厂过电压保护和接地装置 (74)7.1 过电压保护概述 (74)7.2 避雷针和避雷线 (75)7.2.1 避雷针的设置 (75)7.2.2 避雷线的设置 (76)7.3 避雷器 (77)7.3.1 35kV母线避雷器的配置 (79)7.3.2 110kV母线避雷器的配置 (80)7.4 接地装置 (80)第8章结论 (82)参考文献 (83)致谢 (84)第1章绪论物质、能量和信息是构成客观世界的三大基础。

2X50MW发电厂电气部分设计

2X50MW发电厂电气部分设计

摘要电能是经济发展最重要的一种能源,可以方便、高效地转换成其它能源形式。

电力系统由发电厂、变电所、线路及用户组成。

发电厂是把各种能源(化学能、水能、原子能)转换成电能的工厂。

发电厂生产的电能,一般先由电厂的升压站升压,经高压输电线路传送,再经变电所若干次降压后,才能供给用户使用。

直接生产、转换和输配电能的如:开关设备,载流导体成为一次设备。

本次设计为发电厂一次设备部分的设计。

设计中将主要从理论上在电气主接线设计,所用电设计,短路电流计算,电气设备的选择,配电装置设计规划及选择,变电所总平面布置,防雷接地保护设计等方面做详尽的论述,同时,在保证设计可靠性的前提下,还要兼顾经济性和灵活性,通过计算论证该发电厂实际设计的合理性与经济性。

在计算和论证的过程中,结合新编电气工程手册规范,采用Microsoft Office Visio 软件绘制了大量电气图,进一步完善了设计。

作为现代化中型发电厂,是建立大型发电厂的基础,因为意义重大。

关键词:电气主接线设计厂用电设计短路电流计算配电装置设计规划及选择总平面布置防雷接地保护设计AbstractElectricity is the most important energy of economic development which can be conveniently and efficiently converted into other forms of energy. Today,not only in China but also in the world ,the thermoelectricity capacity accounts to about 70% and the power about 80%.So, electricity plays an important role in our country which is a developing country.In this design, I will mainly discuss main electric connection design, short circuit account, electric equipment choice, electric equipment layout, lightning strike defending design,electrical machine, transformer and generatrix protective relaying detailedly in theory and comparing with the power plant of San he,while ensuring the reliability of the design, under the premise we should also take into account economic and flexibility demonstrated by calculating the effective thermal power plant design and reasonable economy.During my counting and demonstrating,in order to consummate my design, I will protract a great lot of electric engineering-pictures by Microsoft Office Visio following the new criterion of electric engineering-enchiridion.Keywords:main electric connection design ,short current, electric equipment choice, electric equipment layout,protective relaying目录摘要 (1)Abstract (2)目录 (3)第1章电气主接线的设计 (5)1.1 明确任务和设计原理 (6)1.1.1原始资料 (6)1.1.2原始资料的分析 (6)1.2方案的设计、论证和选择 (6)1.2.1 方案设计 (6)1.2.2设计方案比较 (10)1.3 小结 (11)第 2 章厂用电设计 (11)2.1 负荷的分类与统计 (11)2.2厂用电接线的设计 (13)2.2.1厂用供电电压等级的确定 (13)2.2.2厂用电系统接地方式 (13)2.2.3 厂用工作电源引接方式 (13)2.2.4厂用备用电源和启动电源引接方式 (14)2.2.5 确定厂用电系统 (14)2.3 厂用主变选择 (15)2.3.1 厂用电主变选择原则 (16)2.3.2 确定厂用电主变容量 (16)第3章短路电流的计算 (16)3.1 短路电流计算的目的 (16)3.1.1基本假定 (17)3.1.2 一般规定 (17)3.2 短路的原因、后果及其形式 (18)3.3短路的物理过程及计算方法 (18)3.4短路电流的计算数据和计算结果 (21)3.4.1电路元件参数的计算 (21)3.5 短路电流的详细计算结果 (23)3.5.1效电抗标幺值画出等值计算网络电路图 (23)3.5.2计算短路电流 (23)3.5.3短路计算结果列表 (33)第4章电气设备的选择 (34)4.1电气设备选择概述 (34)4.2电气设备选择的一般原则 (34)4.3电气设备选择的校验内容 (35)4.4 电气设备选择的技术条件 (36)4.5 主变压器和发电机的选择 (37)4.5.1发电机的选择 (37)4.5.2主变压器的选择 (37)4.6高低压电器设备的选择 (38)4.6.1断路器的选择 (38)4.6.2隔离开关的选择 (39)4.6.3 互感器的选择 (40)4.6.4熔断器的选择 (41)4.6.5限流电抗器的选择 (42)4.6.6避雷器的选择 (42)4.7导体的设计和选择 (43)4.7.1分相封闭母线 (43)4.7.2设备选择 (45)第5章配电装置 (47)5.1屋外配电装置 (47)5.1.1 220KV室外配电装置 (47)5.2屋内配电装置 (49)5.2.1 220KV、6kV屋内配电装置 (49)第6章防雷接地保护设计 (51)6.1 避雷针 (51)6.2 避雷器 (53)6.2.1 额定电压 (53)6.2.2 灭弧电压 (53)6.2.3 工频放电电压 (54)6.2.4 冲击放电电压和残压 (54)6.2.5避雷器的选择 (54)6.2.6避雷器的装置 (54)6.3 防雷接地 (55)6.3.1 接地的一般要求 (55)6.3.2 接地的种类 (55)第7章变电所总平面布置 (55)7.1所区规划 (55)7.2建筑物及构筑物的布置 (57)7.3竖向布置 (59)7.4管沟布置 (60)7.5道路 (60)7.6其他 (61)第8章结论 (62)致谢 (63)参考文献 (64)附表: (66)1 变压器技术参数 (66)2 变压器外观 (68)3 变电所平面布置图 (69)第1章电气主接线的设计发电厂和变电所的电气主接线是保证电网安全可靠﹑经济运行的关键,是电气设备布置﹑选择﹑自动化水平和二次回路设计的原则和基础。

2×30M水力发电厂电气一次部分设计

2×30M水力发电厂电气一次部分设计

郑州航空工业管理学院发电厂电气部分课程设计2012 届电气工程及其自动化专业 1106972 班级题目2×30M水力发电厂电气一次部分设计姓名*** 学号********指导教师黄文力职称副教授二О一三年12 月2 日内容摘要本次设计是水电厂电气部分设计。

该水电站的总装机容量为2×30=60 MW。

高压侧为110Kv,一回出线与系统相连,一回出线与装机100MW的电站相连,其最大输送功率为60MW,该电厂的厂用电率为0.2%。

根据所给出的原始资料拟定三种电气主接线方案,然后对这三种方案进行可靠性、经济性和灵活性比较后,保留两种较合理的方案,最后通过定量的技术经济比较确定最终的电气主接线方案。

在对系统各种可能发生的短路故障分析计算的基础上,进行了电气设备和导体的选择校验设计。

在对发电厂一次系统分析的基础上,对发电厂的配电装置布置、防雷保护、继电保护和自动装置、同期系统、监控系统均做了初步简单的设计。

毕业设计的过程是一次将理论与实际相结合的初步过程,起到学以致用,巩固和加深对电气工程及其自动化专业的理解,树立工程设计的观念,提高了电力系统设计的能力的作用。

关键字:电气主接线,短路电流计算,设备选型,配电装置布置,防雷保护,继电保护和自动装置,同期系统,监控系统。

目录目录 (2)第一章绪论 (3)1.1 本毕业设计的目的和要求 (3)1.2 本毕业设计的内容 (3)1.2.1 本次设计主要内容 (3)第二章电气主接线设计 (4)2.1 对水电厂原始资料分析 (4)2.1.1 原始资料 (4)2.2 电气主接线方案的确定 (5)2.3 水轮发电机的选择 (6)2.4主变的选择 (6)2.4.1相数的选择 (6)2.4.2绕组数量和连接方式的选择 (7)2.4.3普通型与自偶型选择 (7)第三章短路电流计算 (8)3.1 短路电流计算的基本假设 (8)3.2 电路元件的参数计算 (8)3.3 短路电流实用计算方法 (8)第四章厂用电设计 (10)4.1 厂用变压器选择 (10)4.2 厂用电电压等级 (10)4.3 厂用电源及其引接 (10)4.3.1 工作电源 (10)4.4 厂用电接线方式 (11)参考文献 (12)第一章绪论1.1 本毕业设计的目的和要求通过毕业设计,让我们理论联系实际,系统、全面地掌握所学知识,培养我们分析问题、工程计算和独立工作的能力,让我们树立工程观点、社会主义市场经济观点,初步掌握发电厂电气部分的设计方法,并在计算、分析和解决工程实际问题等方面得到训练,为今后从事电力系统及发电厂有关设计、运行、科研等方面的工作奠定坚实的理论基础。

华北水利水电大学毕业设计(水电厂电气部分初步设计)

华北水利水电大学毕业设计(水电厂电气部分初步设计)

摘要本次设计为水电厂电气部分初步设计,主要讲述了初步设计的基本理论和计算方法,简单介绍了电气设备布置及二次回路方案的规划。

主要容分为设计说明书和设计计算书两部分。

其中,设计说明书包括五章,分别为(1)电气主接线的论证与确定;(2)厂用电的设计;(3)短路电流的计算;(4)导体与电气设备的选择;(5)电气设备布置及二次回路初步规划。

设计计算书包括两章,分别为(1)三相短路电流的详细计算过程;(2)发电厂主要电气设备的选择和校验。

在该次设计中,重点研究问题是电气主接线方案的比较和确定,三相短路电流的计算和发电机引出裸导体与电气设备的选择。

最终确定的电气主接线方案为:发电机高压侧采用发电机—变压器联合单元接线,升高电压压侧采用3/2断路器接线,厂用电采用单母线分段接线,厂用高压工作电源从主变压器低压侧引接,厂用备用电源采用暗备用的形式。

所选的主要电气设备包括发电机引出裸导体、支柱绝缘子、断路器、隔离开关、电压互感器、电流互感器、保护熔断器、避雷器和消弧线圈。

关键词:水电厂;电气主接线;短路电流;电气设备AbstractThis preliminary design of electrical part for the hydroelectric power plant mainly narrates the basic theory and calculation method, introduces the arrangement of electrical equipment and the plan of secondary circuit simply. The primary coverage has been divided into two parts: the design instruction booklet and the design account booklet. Among them, the design instruction booklet includes five chapters: (1) the proof and determination of main electrical connection; (2) the design of electricity used by factory; (3) the computation of short-circuit current; (4) the choice of conductor and electrical equipment; (5) the arrangement of electrical equipment and preliminary scheme of secondary circuit. The design account booklet includes two chapters:(1)the detailed computational process of three-phase short-circuit current; (2) the process of main electrical equipment's choice and verification in power plant.In this design, the key research questions are the comparison and the determination of main electrical connection , the computation of three-phase short-circuit current and the choice of bare conductor and electrical equipment. The main electrical connection determined ultimately is : the side in generator hign-pressur uses generator-transformer joint uint connection; the side of boosting presses uses a 3/2 breaker wiring; single busbar is used in the plant. Hign-voltage power used by plant is drawed from the low pressure side of the connection of the main transformer.Reserve supply is used in the form of dark alternative. The major electrical equipment selected include bare conductor, pillar insulator, circuit breaker, disconnecting switch, voltage transformers, current transformers, protection fuses, surge arresters and the coil.Key words: Hydropower plant; main Electrical connection;Short-circuit current; Electrical equipment目录摘要 (Ⅰ)Abstract ............................................................................. I II第一篇设计说明书1 绪论 (1)2 电气主接线的论证与确定 (3)2.1 发电机电压接线方式的选择 (3)2.2 升高电压接线方式的初步选择 (4)2.3 发电厂主变压器的选择 (9)2.4 主变压器和发电机中性点接地方式 (11)3 厂用电的设计 (13)3.1 厂用电的特点及厂用电的引接 (13)3.2 厂用变压器的选择 (14)4 短路电流的计算 (16)4.1 短路的类型及短路计算 (16)5 导体与电气设备的选择 (18)5.1 电气设备选择的一般条件 (18)5.2 发电机引出裸导体的选择 (19)5.3 支柱绝缘子的选择 (20)5.4 断路器的选择 (21)5.5 隔离开关的选择 (23)5.6 电压互感器的选择及结果 (24)5.7 电流互感器的选择及结果 (25)5.8 保护熔断器的选择 (28)5.9 避雷器的选择及结果 (29)5.10 消弧线圈的选择 (30)6 电气设备布置及二次回路初步规划 (32)6.1 电气设备布置 (32)6.2 二次回路的初步规划 (32)第二篇设计计算书1 短路电流计算 (34)2 主要电气设备的选择 (40)2.1 发电机引出裸导体的选择 (40)2.2 支柱绝缘子的选择 (43)2.3 断路器的选择 (44)2.4 隔离开关的选择 (46)2.5 电压互感器的选择 (50)2.6 电流互感器的选择 (51)2.7 保护熔断器的选择 (54)2.8 消弧线圈的选择 (55)结束语 (56)参考文献 (61)附录一外文原文 (63)附录二外文译文 (69)第一篇设计说明书1 绪论1.1 设计工作应遵循的主要原则(1)要遵守国家的法律、法规,贯彻执行国家经济建设的方针、政策和基本建设程序,特别应贯彻执行提高综合经济效益和促进技术进步的方针。

发电厂电气部分初步设计

发电厂电气部分初步设计

发电厂电气部分初步设计一、主接线设计主接线设计依据:发电厂,变电所在电力系统中的地位和作用电力系统中的发电厂有大型主力电厂、中小型地区电厂及企业自备电厂三种类型。

大型主力火电厂靠近煤矿或沿海、沿江,并接入330~500kV超高压系统;地区电厂靠近城镇,一般接入110~220kV系统,也有接入330kV系统;企业自备电厂则以对本企业供电供热为主,并与地区110~220kV系统相连。

中小型电厂常有发电机电压馈线向附近供电。

电力系统中的变电所有系统枢纽变电所、地区重要变电所和一般变电所三种类型。

一般系统枢纽变电所汇集多个大电源,进行系统功率交换和以重压供电,电压为330~500kV;地区重要变电所,电压为220~330kV;一般变电所多为终端和分支变电所,电压为110kV,但也有220kV。

发电厂、变电所的分期和最终建设规模发电厂的机组容量,应根据电力系统规划容量、负荷增长速度和电网结构等因素进行选择,最大机组容量以占系统总容量的8~10%为宜。

一个厂房内的机组,其台数以不超过6台、容量等级以不超过两种为宜。

变电所根据5~10年电力系统发展规划进行设计。

一般装设两台(组)主变压器;当技术经济比较合理时,330~500kV枢纽变电所也可以装设3~4台(组)主变压器;终端或分支变电所如只有一台电源时,可只装设一台主变压器。

负荷大小和重要性对于一级负荷必须有两个独立电源供电,且当任意一个电源失去后,能保证对全部一级负荷不间断供电。

对于二级负荷一般要有两个独立电源供电,且当一个电源失去后,能保证全部或大部分二级负荷的供电。

对于三级负荷一般只需一个电源供电。

系统备用容量大小系统需要有一定的发电机装机备用容量。

运行备用容量不宜少于8~10%,以适应负荷突增,机组检修和故障停运三种情况。

装有2台(组)及以上主变压器的变电所,其中一台(组)事故断开,其余变压器的容量应保证该所70%的全部负荷,在计及过负荷能力后的允许时间内,应保证用户的一级和二级负荷。

2x200MW发电厂电气部分设计

2x200MW发电厂电气部分设计

内容提要我这次设计主要针对一次系统为主、二次设计为辅的原则,主要对2×200MW发电机组接线形式的选择、220KV主接线形式的选择、高压断路器、隔离刀闸的选择、电压互感器和电流互感器的选择,以及进行了短路计算,并对发电机和变压器的主保护进行了简单的配置。

在电力系统中,大、中型电厂起着举足轻重的作用,一旦故障轻则引起大面积停电,重则可能引起电网崩溃。

本次设计的电厂220KV 变电站是豫北电网和河南主网联系的纽带,一旦发生事故将引起河南主网的解裂,所以对220KV变电站接线形式进行了详细的分析比较,以期找到一种安全经济成熟的主接线形式。

引言本次设计是在毕业设计任务书的基础上进行的,依靠大专四年所学的专业理论知识,结合自己参加工作几年来的经验,旨在提高自己的技术理论水平,以达到理论联系实际,学以致用的目的。

本次设计参考《电力工程电气设计手册》、《发电厂电气部分》、《电力系统分析》、《大型火力发电厂厂用电系统》等技术资料,对本设计进行经济技术上的选择,主要是对电气一次系统主接线及设备进行选择。

通过本次对发电厂发电机、变压器、主接线的选择及短路电流的计算、部分高压设备的选择,以达到理论联系实际的目的。

这次设计能够顺利完成,与指导老师的大力帮助是分不开的,同时也吸取了同学们的宝贵经验,在此向他们表示衷心的感谢。

由于本人水平有限,设计中难免存在不足之处,希望大家不惜多加指正。

2×200MW发电厂电气部分设计一、原始资料:1.发电厂类型:火力发电厂1、本厂设计规模:根据系统规划本厂计划安装200MW汽轮发电机组两台,设计工作一次完成。

2、厂址地理条件:本厂厂址地势平坦,平均海拔不超过50米,年最高温度40度,土壤最高温度为26度,本厂东临107国道,南临京广铁路交通运输特别方便。

本厂位于市郊,距离负荷中心仅30公里,供电半径70公里,本厂位于8级地震区,周围有一些水泥厂,环境较为恶劣,所以选择电气设备要能抗震外,还应选择抗污能力强的电气设备,并每年对220KV变电站进行带电水冲洗。

发电厂电气部分电气主接线及设计

发电厂电气部分电气主接线及设计

(2)降压变电站主接线常用接线形式
✓ 变电站主接线的高压侧: 1)应尽可能采用断路器数目少的接线,以节省投资,减 少占地面积;
2)随出线数的不同,可采用桥形、单母线、双母线及角 形等接线形式;
3)如果电压较高又是极为重要的枢纽变电站,宜采用带旁 路的双母线分段或一台半断路器接线。
✓ 变电站的低压侧: 常采用单母线分段或双母线接线。
用于本厂(站)用电的变压器,也称自用变。
二、主变压器容量和台数的确定
原则:尽量减少变压器台数,提高单台容量。
1、发电厂主变压器容量和台数的选择
(1)单元接线的主变压器
A、容量选择
应按发电机额定容量扣除本机组的厂用负荷后,留有10%的裕度选择
S N 1 .1 P N ( 1 G K P )/co Gs(M )VA
2)水力发电厂的升高电压侧的接线:
✓ 当出线数不多时,应优先考虑采用多角形接线等类型 的无汇流母线的接线;
✓ 当出线数较多时,可根据其重要程度采用单母线分段、 双母线或一台半断路器接线等。
某中型水电厂主接线
1)该电厂有4 台发电机 G1~G4,每两台机与一台 双绕组变压器接成扩大单 元接线;
2)110kV侧只有2回出线, 与两台主变压器接成4角 形接线。
e1
N1
d dt
e2
N2
d dt
i1
U1
i2 u1
只要一、二
u1
e1e2Biblioteka u 2ZL次绕组的匝数不 同,就能达到改
u2 变压的目的。
U2
第三节 主变压器的选择
一、有关的几个概念
1、主变压器
发电厂、变电站中向系统、用户输送功率的变压器。
2、联络变压器

2×50MW发电厂电气部分设计

2×50MW发电厂电气部分设计

引言电力系统由发电厂、变电所、线路及用户组成。

发电厂是把各种能源(化学能、水能、原子能)转换成电能的工厂。

发电厂生产的电能,一般先由电厂的升压站升压,经高压输电线路送出,再经变电所若干次降压后,才能供给用户使用。

直接生产、转换和输配电能的如:开关设备,载流导体称为一次设备。

对一次设备进行监察、测量、控制、保护、调节的辅助设备,称为二次设备,如自动保护及自动装置。

本次设计包括发电厂一次设备及二次设备的部分设计。

发电厂的主接线是根据容量,电压等级负荷等等情况设计,并经过技术经济比较,选出最佳方案,然后通过短路电流计算、回路最大持续工作电流计算,选出设备的型号,了解配电装置布置原则,设计防雷接地,最后对发电机配置保护。

断路器是发电厂中十分重要的设备,本厂选用的为真空断路器.对于真空断路器的技术性能改造还在不断进行,如用带有双重开关或多重开关的断路器代替只带有一个开关的断路器的先进技术,正在被很多发明者改进,存在的问题是真空断路器应为电介质的特性,而在高压范围内限制使用。

本设计基本达到安全可靠,经济合理的要求。

尽量采用新型技术设备。

作为现代化中型发电厂,是建立大型发电厂的基础。

因此意义重大。

第一章电气主接线的设计1.1 电气主接线的设计1.1.1 电气主接线设计的要求电气主接线图是由各种电气元件如发电机、变压器、断路器、隔离开关、互感器、母线、电缆、线路等,接照一定的要求和顺序接起来,并用国家统一规定图形的文字符号表示的发、变、供电的电路图。

电气主接线是发电厂、变电所电气设计的首要部分,也是构成电力系统的重要环节。

主接线是的确定对电力系统整体及发电厂、变电所本身运行的可靠性、灵活性和经济性密切相关,并且对电气设备选择,配电装置布置,继电保护和控制方式的拟定有较大影响。

因此,必须正确处理好各方面的关系,全面分析有关影响因素,通过技术经济比较,合理确定主接线方案。

1.1.2 基本接线及适用范围1. 35kV及110kV母线采用单母分段接线(1)优点:用断路器把母线分段后,对重要用户可以从不同段引出两个回路,有两个电源供电;当一段母线发生故障,分段断路器自动将故障段切除,保证正常段母线不间断供电和不致使重要用户停电。

中型水电站电气计算书

中型水电站电气计算书

第二部分 电气部分2.1基本资料1.本电站是一座中型水电站,并入系统,非洪期担任系统峰荷,洪水期担任腰荷。

电站总装机容量20万KW ,单机容量5万KW 。

2. 主要为工农业负荷,以工业用户为主。

3.电站220KV 出线四回直接接入系统,110KV 出线两回均送电给负荷,110KV侧输送容量约占电站总容量的20%,220KV 侧输送容量约占电站总容量的80%.4电力系统情况及参数:本电站220千伏母线短路时,系统供给的短路容量为2300MVA 。

5厂用电有6KV 和0.4KV 两个电压等级。

6单机额定容量()5058.8cos 0.85N P S MVA ϕ=== 2.2电气主接线方案的选择2.2.1水电站电气主接线的特点1.水电站一般远离负荷中心,在发电机电压侧很少接有大功率用户,而用较高电压送电,故主变压器容量多按机组容量确定。

2.除径流式电站外,其余电站大部分但任系统调频、调峰和事故备用,利用小时数一般较低,因此,开停机较频繁。

3.水电站开机程序比较简单,机组起动迅速并且容易实现自动化。

4.水电站规模确定后,一般不考虑扩建。

5.水电站多处山区,地形复杂,电气设备布置及出线走廊均受到一定限制,因此,应尽可能简化接线。

2.2.2初选方案的选择1.发电机—变压器组接线方式根据单元接线与扩大单元接线的特点,并考虑满足本电站机组运行的灵活性要求,只能采用单元接线。

2.主接线接线方式根据各电气主接线的特点及使用范围,能使用于本电站的电气主接线方式有:单母线带旁路母线、双母线、双母线带旁路母线。

各初选方案的电气主接线图见图2-1至图2-3。

表2-1初选方案主要设备表图2-1 方案一电气主接线图图2-2 方案二电气主接线图图2-3 方案三电气主接线图2.2.3初选方案的比较和精选方案的确定各种电气主接线的优缺点:1.单母线带旁路母线接线单母线带旁路母线,除具有单母线优点外,还可以使出线断路器检修时不影响送电,它比单母线分段带旁路母线节省一组断路器及其附属设备,布置面积小,同时也存在单母线其它的一些缺点。

600MW发电厂电气部分初步设计-毕业设计论文

600MW发电厂电气部分初步设计-毕业设计论文

600MW发电厂电气部分初步设计目录摘要............................................................................................................. 错误!未定义书签。

Aabstract........................................................................................................ 错误!未定义书签。

第一部分说明书 (1)第1章主变压器的选择 (1)1.1容量和台数的确定 (1)1.2型式和结构的选择 (1)1.2.1 相数 (1)1.2.2 绕组数与结构 (1)1.2.3 绕组接线组别 (2)1.2.4 调压方式 (2)1.2.5 冷却方法 (2)第2章电气主接线的设计 (3)2.1 主接线设计的要求和原则 (3)2.1.1 主接线设计的基本要求 (3)2.1.2 大机组超高压主接线可靠性的特殊要求 (3)2.1.3 主接线设计的原则 (3)2.2 原始资料分析 (4)2.3 主接线方案的拟定 (4)2.3.1 发电机-变压器单元接线 (4)2.3.2500KV电压母线接线 (4)2.4 主接线方案的比较 (7)2.5 主接线方案的确定 (7)第3章厂用电系统设计 (8)3.1厂用电接线的设计原则 (8)3.2 厂用电压等级的确定 (8)3.3厂用电源的引接方式 (8)3.3.1 厂用工作电源的引接 (8)3.3.2 备用/启动电源的引接 (8)3.4 厂用电接线形式 (9)3.5厂用高压变压器的选择 (9)3.5.1 额定电压的确定 (9)3.5.2 台数和型式的选择 (9)3.5.3 容量得选择 (10)3.5.4 电抗的选择 (10)3.6 厂用电系统接线 (11)3.6.1 高压厂用电接线 (11)3.6.2 低压厂用电接线 (11)第4章短路电流计算 (12)4.1短路电流计算的主要目的 (12)4.2一般规定 (12)4.2.1 计算的假定条件 (12)4.2.2 接线方式 (12)4.2.3 短路类型 (12)4.2.4 短路计算点 (13)4.2.5 短路电流计算方法 (13)4.3短路电流计算步骤 (13)4.4计算公式 (14)4.4.1 元件参数计算 (14)4.4.2 网络变换 (14)4.4.3 计算电抗 (16)4.4.4 短路点短路电流周期分量有效值的计算 (16)4.4.5 短路的冲击电流 (16)4.4.6 电流分布系数及转移电抗 (16)第5章电气设备和导体的选择 (18)5.1电气设备选择的一般原则 (18)5.1.1按正常工作条件选择 (18)5.1.2 按短路状态校验 (19)5.2500kV高压设备的选择 (19)5.2.1 高压断路器的选择 (19)5.2.2 隔离开关的选择 (20)5.2.3 电流互感器的选择 (21)5.2.4 电压互感器的选择 (21)5.2.5 并联电抗器的选择 (22)5.36KV高压开关柜的选择 (22)5.3.1 种类和型式的选择 (22)5.3.2 主开关的选择 (23)5.3.3 额定电压和额定电流的选择 (23)5.3.4 防护等级的选择 (23)5.3.5 开断和关合短路电流的选择 (23)5.3.6 短路热稳定和动稳定校验 (24)5.4裸导体的选择 (24)5.4.1500KV母线的选择 (24)5.4.2 封闭母线的选择 (24)5.4.3 电晕电压校验 (25)5.4.4 热稳定校验 (25)第6章500KV高压配电装置设计 (26)6.1配电装置的基本要求 (26)6.2配电装置设计的基本步骤 (26)6.3配电装置的型式选择 (26)6.4配电装置的安全净距 (26)6.5屋外配电装置的布置原则 (27)第7章继电保护和自动装置配置 (28)7.1继电保护配置 (28)7.1.1 发电机保护 (28)7.1.2 变压器保护 (29)7.1.3 并联电抗器保护 (30)7.1.4500kV线路保护 (31)7.1.5 母线和断路器失灵保护 (31)7.2自动装置配置 (32)第8章防雷保护设计 (33)8.2直击雷的防护 (33)8.2.1 直击雷防护措施 (33)8.2.2 避雷针装设的基本原则 (33)8.2.3 避雷针的保护范围 (33)8.3入浸雷的防护 (34)8.3.1 入浸雷防护措施 (34)8.3.2 避雷器的配置要求 (34)8.3.3 避雷器的配置原则 (34)8.3.4 避雷器参数选择 (35)8.4防雷接地 (35)第二部分计算书 (36)第9章变压器的选择计算 (36)9.1主变压器的选择 (36)9.2厂用高压变压器的选择 (36)第10章短路电流计算 (38)10.1短路电流计算接线图 (38)10.2参数计算 (38)10.3500kV母线短路(k1) (39)10.4发电机出口短路(k2) (40)10.5厂用高压工作变压器6kV一段短路(k3) (42)10.6备用/启动变压器6kV一段短路(k4) (44)10.7计算结果列表 (46)第11章电气设备和导体的选择计算 (47)11.1 500kV高压设备的选择 (47)11.1.1 高压断路器的选择 (47)11.1.2 高压隔离开关的选择 (47)11.1.3 电流互感器的选择 (48)11.1.4 电压互感器的选择 (48)11.1.5 并联电抗器的选择 (49)11.26kV高压开关柜的选择 (49)11.3裸导体的选择 (50)11.3.1500kV主母线的选择 (50)11.3.2 发电机出口主封闭母线选择 (52)11.3.3 共箱封闭母线选择 (52)第12章防雷保护设计 (54)12.1 避雷针的布置图 (54)12.2避雷针高度的确定 (54)总结 (56)致谢 (57)参考文献......................................................................................................... 错误!未定义书签。

水力发电厂电气一次部分设计罗开元

水力发电厂电气一次部分设计罗开元

实用文档发电厂电气部分电气设计报告题目:水力发电厂电气一次部分设计班级: K0312417:罗开元学号: K031241723老师:高仕红2015年 07 月 06 日信息工程学院课程设计任务书摘要本文为4×15MW水力发电厂电气一次部分设计。

通过对原始资料的详细分析,根据设计任务书的要求,进行了电气主接线方案的经济技术比较,厂用电设计,短路电流计算和电气设备的选择和校验,配电装置设计。

编制了设计说明书,绘制了主接线图,厂用电接线图。

关键字:主接线、短路计算、设备选择、配电装置、设计说明书、主接线图、厂用电AbstractThis article is 4 x 15 mw hydropower plant electrical part design at a time. Through detailed analysis of original data, according to the requirements of the design plan descriptions of the economic and technical comparison, the main electrical wiring scheme design of auxiliary power, short circuit current calculation and selection of electrical equipment and calibration, power distribution equipment design. Compiled the design specification, draw the main wiring diagram, auxiliary power wiring diagram.The keyword :The main connection, short circuit calculation, equipment selection, power distribution equipment, design specifications, main wiring diagram, auxiliary power目录1综合课程设计任务 (2)1.1题目…………………………………………………………………................ .21.2原始资料 (2)1.3设计任务 (2)1.4设计成果 (2)1.5备注 (2)2、发电厂电气主接线设计 (3)2.1主接线的方案设计 (3)2.2主接线方案的经济技术比较 (5)3、短路电流计算 (11)4、导体,电器设备选择及校验 (15)4.1导体设备选择概述 (15)4.2导体的选择与校验 (15)4.3导体和电气设备的选择成果表 (17)5、配电装置设计 (20)参考文献 (21)附录 (22)1、综合课程设计任务1.1题目水力发电厂电气一次系统设计1.2原始资料(1城镇名称工业发展远景负荷增长A 农业用电、地方小型工业10MWB 有色金属、煤、钢铁企业120MWC 化工、纺织、水泥55MWD 钢铁、机械制造、化肥、农机厂115MWE 食品工业、农业用电、轻工业29MW(2度34.1℃,户外最低气温40.1℃;水电站装机4x15MW,最大利用小时数5000小时,110kV 出现3回,其中一回线供20MW的I类负荷,水电站附近负荷3MW(不包括自用电和枢纽用电),全系统最大负荷340MW,最小负荷225MW。

2×600MW发电厂电气部分设计

2×600MW发电厂电气部分设计

本科生毕业论文(设计)2×600MW发电厂电气部分设计摘要成都电网是四川电网的重要负荷中心,是一个典型的受端网络。

区内电源很少,目前仅有成都电厂一个中型电站作为成都地区的电源支撑点,规划建设的宝兴河梯级、瓦斯沟梯级,距成都负荷中心较远,输送距离较长。

根据四川电网目标网架的规划工作成果,到2013年成都电网将围绕成都地区形成以龙王、龙泉、华阳、崇州、彭州、德阳为核心的成都地区220kV环网。

该待建电厂位于成都市西北30~40km的金堂县境内,建厂条件优越,且靠近负荷中心和电网中心,送电距离短。

本文针对待建电厂具体情况,阐述了各种设备及接线的设计原则,分析了几种方案,结合电网的实际情况及待建电厂负荷的大小和性质,以及地理位置进行综合分析,对各种导体和主要电器进行了选择校验,从提高电网及待建电厂的供电可靠性出发,使电厂设计既满足初期负荷的适应,又考虑未来10年电网设计规划,以满足不断增长的负荷需要,综合考虑,经过比较,从中选择一种合理的方案。

该电厂的建设,对于提高成都电网的稳定性,提高成都电网运行的安全性和可靠性,会产生积极的作用。

关键词:电网电厂电力系统短路电流绝缘主接线目录前言 (4)第一章电气主接线 (8)第二章短路电流计算 (15)第三章导体及主要设备选择 (17)第四章厂用电接线和布置 (21)第五章电气设备布置 (26)第六章直流系统及交流不停电电源(UPS) (33)第七章二次线、继电保护及自动装置 (36)第八章过电压保护及接地 (44)第九章电缆及电缆设施 (45)第十章照明和检修系统供电 (48)第十一章短路电流计算过程 (53)第十二章导体和电器选择设计部分计算 (60)结束语 (69)前言1 工程概况1.1 工程项目性质待建电厂为某搬迁至金堂,易地新建一座燃煤电厂,也属于“以大代小”易地技术改造工程。

1.2 建设规模及投产进度安排新建工程本期建设规模为2×600MW燃煤发电机组,场地按6x600MW 容量规划。

发电厂电气部分课程设计任务书

发电厂电气部分课程设计任务书

发电厂电气部分课程设计任务书一、课程设计目的和要求 1.目的发电厂电气部分课程设计是在学生学习《发电厂电气部分》后的一次综合训练,通过这次训练不仅使学生复习巩固了本课程及其它课程的有关内容,而且增强学生工程观念,培养他们的电气设计能力。

2.要求1)熟悉国家能源开发策略和有关的技术规程、规定,树立供电必须安全、可靠、经济的观念;2)掌握发电厂初步设计的基本方法和主要内容; 3)熟悉发电厂初步设计的基本计算; 4)学习工程设计说明书的撰写。

1.发电厂情况:(1)类型:水电厂;水电厂机组容量与台数:4X50MW ,发电机端电压,85.0cos =ϕ;发电厂年利用小时数h T 4000max =(2)发电厂所在地最高温度40摄氏度,年平均温度20摄氏度,气象条件一般,所在地海拔高度1000m 。

2.电力系统负荷情况:(1)发电厂电压负荷:最大10MW ,最小8MW ,85.0cos =ϕ,h T 4000max =。

(2)35KV 电压负荷:最大200MW ,最小100MW ,8.0cos =ϕ,h T 3800max =。

(3)其余功率送入110KV 系统,系统容量1000MVA 。

归算到110KV 母线阻抗,其中MVA S j 100=;自用电3%(4)供电线路数目1.发电机电压,架空线路6回,每回输送容量2MW ,85.0cos =ϕ 架空线路6回,每回输送容量20MW ,85.0cos =ϕ 架空线路2回,与系统连接。

三、设计成果1.课程设计说明书一份2.发电厂电气主接线图一张3.课程设计计算书一份第一部分课程设计说明书第一章主接线的设计对原始资料的分析设计电厂为小型水电厂,器容量为4*50MW,占电力系统总容量的,以满足检修备用容量8%~15%和事故备用容量10%的限额,说明该厂在系统中作用的地位比较重要,年利用小时数4000h,承担为腰荷,该厂为水电厂,所以不考虑扩建,主要从稳定性和经济型考虑主接线形式。

水电站电气工程初步设计报告

水电站电气工程初步设计报告
保护配置容易实现;35kV电气设备少,升压站占地面积小,设备及土建投资少。
主要缺点:
枯水期单台机运行时变压器损耗大;变压器故障时全厂电能不能送出,可靠性较差;
方案Ⅱ
接线综述:
本方案采用两个发电机-变压器单元接线,经主变升压至35kV;35kV采用单母线接线;以一回35kV线路与XX宗变电站连接。
主要优点:
具体接线见:电力系统地理接线图:“大电(初)-电-01”
电力系统单线接线图:“大电(初)-电-02”
7
7.2.1
根据本阶段水文、水能部分设计结果推荐的XX电站装机2×4MW,以及XX流域水电开发电网接线方案设计该电站的电气主接线。
7.2.2
根据上述依据,初步拟定XX电站电气主接线方案两个。
详见:电气主接线方案比较图:“大电(初)—电—03”
3XX电站在XX流域水电开发的作用
按照水文、水能、水力机械等章节的论证结论,XX电站设计装机2×4MW,以一回35kV线路与XX宗变电站35kV母线连接,汇入XX电网。本电站只发不供,不承担系统调相、调频任务。
7.1.5
拟建的XX电站装机2×4MW,按照XX流域水电开发的规划,XX电站采用35kV电压等级送出电能,以一回线路与XX宗变电站相连,汇入XX电网。
0.500
其他小电站
1.050
XX流域梯级电站
18.700
XX流域梯级电站
6.000
XX电站
56.000
XX电站ห้องสมุดไป่ตู้
36.000
XX电站
30.000
XX电站
200.000
其他
5.000
XX电网新增装机进度分析:
1.2005年至2010年计划新增装机5.0万千瓦。截至2007年XX地区无大、中型水电站新建上网。没有明确XX地区哪条河、哪个流域先开发。

发电厂电气部分课程设计报告

发电厂电气部分课程设计报告

2×25MW+2×50MW 火电厂主接线设计本次设计是火电厂主接线设计。

该水电站的总装机容量为 2 ×25MW+2 ×50MW =150 MW。

高压侧为 110Kv,四回出线与系统相连,发电机电压级有10 条电缆出线,其最大输送功率为 150MW,该电厂的厂用电率为 10%。

根据所给出的原始资料拟定两种电气主接线方案,然后对这两种方案发展可靠性、经济性和灵便性比拟后,保存一种较合理的方案,最后通过定量的技术经济比拟确定最终的电气主接线方案。

在对系统各种可能发生的短路故障分析计算的根抵上,进展了电气设备和导体的选择校验设计。

在对发电厂一次系统分析的根抵上,对发电厂的配电装置布置、防雷保护做了初步简单的设计。

此次设计的过程是一次将理论与实际相结合的初步过程,起到学以致用,稳固和加深对本专业的理解,建立了工程设计的根本观念,提升了自身设计能力。

电气主接线,短路电流计算,设备选型,配电装置布置,防雷保护。

一、原始资料:某新建地方热电厂,发机电组 2 × 25MW+2 × 50MW ,cosΘ = 0.8 ,U=6.3KV,发电机电压级有10 条电缆出线,其最大综合负荷30MW,最小负荷 20MW,厂用电率 10%,高压侧为 110KV,有 4 条回路与电力系统相连,中压侧 35KV,最大综合负荷 20MW,最小负荷 15MW。

发电厂处于北方平原地带,防雷按当地平均雷暴日考虑,土壤为普通沙土。

系统容量 2000MW,电抗值 0.8 〔归算到 100KVA〕。

二、设计容:a) 设计发电厂的主接线〔两份选一〕,选择主变的型号;b) 选择短路点计算三相对称短路电流和不对称短路电流并汇总成表;c) 选择各电压等级的电气设备〔断路器、隔离开关、母线、支柱绝缘子、穿墙套管、电抗器、电流互感器、电压互感器〕并汇总成表;三、设计成果:设计说明计算书一份; 1 号图纸一。

2×200MW发电厂电气部分设计

2×200MW发电厂电气部分设计

摘要电力工业是国民经济的重要行业之一,它既为现代化工业、农业、科学技术和国防提供必不可少的动力,且和广大人民群众的日常生活有着密切的联系,我国具有丰富的能源资源,发电厂是把各种天然能源,如煤炭、水能、核能等转换为电能的工厂,以满足人民生活的需要。

基于发电厂的重要地位,在建设它之前,就要对它进行合理的规划、设计。

设计时要切合实际、安全适用、技术先进、综合经济效益好。

本次设计共分为七部分。

第一部分是厂用变压器及主变压器的选择。

根据厂用负荷情况对厂用变压器进行选择,然后再选择主变压器。

第二部分是电气主接线和厂用电接线的选择。

电气主接线我“采用双母带旁路接线,以提高供电的可靠性。

厂用电接线按照:按炉分段”原则。

第三部分是短路计算。

短路计算分为三相对称短路电流计算和不对称短路电流计算。

计算方法采用运算曲线法。

第四部分是电器设备的选择。

主要对断路器、隔离开关、电压和电流互感器和母线进行选择。

220KV 侧的母线我选用软导线;从发电机出线端子的主回路母线,自主回路母线引出至厂用高压变压器和电压互感器、避雷器等设备柜的各分支,采用封闭母线。

第五部分是对高压配电装置进行选择。

我选用分相中型。

第六部分是防雷保护设计。

全所共采用八根避雷针进行保护。

第七部分是继电保护及自动装置的配置。

关键词: 断路器, 变压器, 母线。

AbstractElectric power industry is very important in country life.Itsupplies motivit y for our industryagriculture science technique.Wehave weath y resource.Power station makes all kinds of source intoelectricsuch as coal water powernuclear energy.Because it is so important .We should plan it before builting.Itrequires factsaft yadvanced and reasonable.The paper is divided into seven parts.The first :selecting thetransformer of factory and the main transformer.According to the loadof the factory. I can select the transformer of the factory .Then I canselect the main transformer .The second:selecting the main electricalwiring and the wiring of the factory . I select two buses with bybassinthe main wiring .It can enhance the reliabilit y .According to theprinciple of boiler subsection .I select the wiring of factory. The thirdthe count of short circuit current .The count of short circuit currentinclude the s yinmetry of three-phase and uns ymmetry. I select themethod of operation curve .The fouth : selecting the equipment .I selectbreaker insulatorcurrent transformervoltage transformer and selectingthe bus . I use the soft line in the bus of 220KV. Form the high-voltagetransformer and the voltage transformer and the lightning arrest .Iselect the sealed bus.The fifth :selecting the distribution install. Ichoose divided-phase middle install in the high-voltage distributioninstall. The sisth:the design of avoiding thunderbolt .I choose eightneedles using the protection The seventh: the protection of the relay ..Key words :breaker ,transformer ,bus .目录摘要 (I)绪论 (1)第1章概述 (2)1.1概述 (2)1.2本次设计的内容 (2)1.3本次设计的任务 (3)第2章发电厂主变压器的选择 (4)2.1发电厂主变压器台数和容量的确定 (4)2.2主变压器型式的确定和调压方式的选择 (5)2.3主变压器中性点接地方式的选择 (7)第3章电气主接线的设计 (8)3.1设计电气主接线的依据和基本要求 (8)3.2发电厂电气主接线设计 (9)第4章发电厂自用电接线设计 (13)4.1厂用电设计的基本要求和原则 (13)4.2高压厂用变压器的选择 (13)第5章短路电流计算 (17)5.1短路电流计算的目的 (17)5.2短路计算点的确定及短路电流的计算 (18)第6章载流导体和电气设备的选择及校验 (20)6.1电气设备的选择原则 (20)6.2导体的选择及校验 (21)6.3高压断路器和隔离开关的选择及校验 (25)6.4互感器的选择及校验 (29)第7章发电机—变压器组保护的特点及其配置 (37)7.1发电机—变压器组保护的特点 (37)7.2发电机—变压器组保护的配置 (38)第8章发电厂防雷规划 (39)8.1发电厂的防雷保护概述 (39)8.2发电厂防雷措施 (39)第9章展望 (41)致谢 (43)参考文献 (44)附录 (45)绪论随着社会的发展,电能被日益广泛的应用于工农业生产以及人民的日常工作中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中型水力发电厂电气部分初步设计专业班级学生姓名指导教师课程设计任务书1目录1.前言 (2)21.1.变电站设计原则………………………………………………(21.2.对电气主接线的基本要求………………………………………)21.3.主接线的设计依据……………………………………………(31.4.设计题目 (3)1.5.设计内容 (3)2.课程设计的任务要求 (4)2.1.原始资料分析 (4)2.2.主接线方案的拟定 (5)2.3. 厂用电的设计…………………………………………()82.4.1.发电机的选择及参数…………………………………()82.4.2.变压器的选择及参数…………………………………()92.4.3.厂用变的选择及参数…………………………()92.5.短路电流计算………………………………()102.6.主要电气设备的选择…………………………()112.7.配电装置的选择……………………………()133.设计总结 (15)参考文献 (15)附录A………………………………………………………()16 附录B……………………………………………………()17附录C……………………………………………………………()22 31.前言变电所是接受电能、变换电压、分配电能的环节,是供配电系统的重要组成部分,它直接影响整个电力系统的安全与经济运行。

电力系统中的这些互联元件可以分为两类,一类是电力元件,它们对电能进行生产(发电机),变换(变压器,整流器,逆变器),输送和分配(电力传输线,配电网),消费(负荷);另一类是控制元件,它们改变系统的运行状态,如同步发电机的励磁调节器,调速器以及继电器等。

电气主接线是发电厂变电所的主要环节,电气主接线的拟定直接关系着全厂(所)电气设备的选择、配电装置的布置、继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素。

1.1变电站设计原则1. 必须严格遵守国家的法律、法规、标准和规范,执行国家经济建设的方针、政策和基本建设程序,特别是应贯彻执行提高综合经济效益和促进技术进步的方针。

2.必须从全局出发,按照负荷的等级、用电容量、工程特点和地区供电规划统筹规划,合理确定整体设计方案。

3.应做到供电可靠、保证人身和设备安全。

要求供电电能质量合格、优质、技术先进和经济合理。

设计应采用符合国家现行标准的效率高、能耗低、性能先进的设备。

1.2.对电气主接线的基本要求变电站的电气主接线应满足供电可靠、调度灵活、运行,检修方便且具有经济性和扩建的可能性等基本要求。

1.供电可靠性:如何保证可靠地(不断地)向用户供给符合质量的电能是发电厂和变电站的首要任务,尽量避免发电厂、变电所全部停运的可能性。

防止系统因为某设备出现故障而导致系统解裂,这是第一个基本要求。

2.灵活性:其含义是电气主接线能适应各种运行方式(包括正常、事故和检修运行方式)并能方便地通过操作实现运行方式的变换而且在基本一回路检修时,不影响其他回路继续运行,灵活性还应包括将来扩建的可能性。

43.经济性:即在满足可靠性、灵活性、操作方便安全这三个基本要求的前提下,应力求投资节省、占地面积小、电能损失少、运行维护费用低、电器数量少、选用轻型电器是节约投资的重要措施。

1.3.主接线的设计依据1.负荷大小的重要性2.系统备用容量大小(1)运行备用容量不宜少于8-10%,以适应负荷突变,机组检修和事故停运等情况的调频需要。

(2)装有两台及以上的变压器的变电所,当其中一台事故断开时,其余主变压器的容量应保证该变电所60%~70%的全部负荷,在计及过负荷能力后的允许时间内,应保证负荷的一、二级负荷供电。

1.5.设计内容1.建设规模水力发电厂,发电厂一次设计并建成,计划安装2×35+4×15 MW 的水力发电机组,利用小时数4000 小时/年。

2.系统连接情况(1)待设计发电厂接入系统电压等级为110 kV,发电厂距110 kV 系统母线45km;出线回路数为 4 回;(2)电力系统的总装机容量为2500 MVA、归算后的电抗标幺值为0.3 ,基准容量Sj=100MVA;(3)发电厂在电力系统中所处的地理位置、供电范围示意图如下所示。

53.负荷情况(1)低压负荷:厂用负荷(厂用电率)1.1 %;(2)高压负荷:110 kV 电压级,出线4 回,为I 级负荷,最大输送容量250MW,cos? = 0.8 ;4.环境条件海拔&lt; 1000m;本地区污秽等级2 级;地震裂度&lt; 7 级;最高气温36℃,最低温度?2.1°C;年平均温度18°C;最热月平均地下温度20°C;年平均雷电日T=56 日/年;其他条件不限。

2.课程设计的任务要求2.1.原始资料分析本设计水电站为中小型水力发电厂,其容量为2*35+4*15MW,最大单机容量为35MW,最小单机容量为15MW,年利用小时数为Tmax=4000小时,从水电厂接入系统中容量来看,当电厂建成投产后,其装机容量占系统总容量的(2*35+4*15)/0.8/(2500+(2*35+4*15)/0.8)=6.11%&lt;8%,说明该厂在未来电力系统中的地位并非十分重要,从而该厂主接线设计的重点应该在经济型和灵活性上。

本次设计的重点:水电厂高低两级电压电气主接线的拟定和水电厂机端10.5KV电压配电装置、110KV高压配电装置、厂用电配电装置等设备。

难点是:对电厂整个电气主接线的短路计算及各种电器的继电保护装置。

62.2.主接线方案的拟定1.主接线方案需考虑问题(1)线路、断路器、母线故障或检修时,对机组的影响,对发电机出力的影响。

(2)本水电厂有无全厂停电的可能性。

(3)主接线是否具有足够的灵活性,能适应各种运行方式的变化,且在检修事故状态下操作方便,调度灵活,检修安全等。

(4)在满足技术要求的前提下,尽可能考虑投资省、占地面积小,电能损失小和年运行费用少。

(5)是否适宜于实现自动化和实现无人值守。

通过对原始资料的分析,现将各电压等级可能的较佳方案列出,进而优化组合,形成最佳可比方案。

2.分析各电压等级(1)10.5KV 电压级:本设计水电厂装机共6 台,其中4 台单机容量为15MW,2 台单机容量35MW,除厂用电外无机端负荷。

根据《电力工程设计手册规定》,发电机电压配电装置宜采用单母分段或双母分段接线,其原则是每段母线上发电机总容量或负荷为24MW及以上时,一般采用双母线分段接线,考虑到本设计水电厂发电机较多,也可以考虑将 6 台发电机分别接成单元接线或扩大单元接线以减少断路器用量。

(2)110KV 电压级:由前水电厂出线回路数和导线选择可知,本设计110KV 出线 4 回,考虑到选用主变数量为2~4 台,110KV进出线最终为6~8回,考虑选用110KV 母线接线形式为双母线分段接线。

根据以上分析组合,本设计保留以下两种可能接线方案.7方案一:优点:(1)可靠性较高,无论检修母线或设备故障,全厂停电的概率很小。

(2)运行方式灵活,调度灵活。

(3)易于实现自动化。

缺点:(1)设备较多。

(2)主控室面积增大。

方案二:8优点:(1)可靠性高,运行方式相对简单,调度灵活。

(2)发电机侧接线简单,主控室面积小,开关设备少,操作简便。

(3)易于实现自动化和无人值守。

(4)发电机侧无电压母线,使发电机和变压器低压侧短路时短路电流较小。

缺点:运行方式过于简单。

通过上述分析对方案一、二的综合比较见下表:经过分析,本设计水电厂电气主接线方案确定为方案二。

92.3 厂用电的设计一般有重要负荷的大型变电所,380/220V系统采用单母线分段接线,两台厂用变压器各接一段母线,正常运行情况下可分列运行,分段开关设有自动投入装置。

每台厂用变压器应能担负本段负荷的正常供电,在另一台厂用变压器故障或检修停电时,工作着的厂用变压器还能担负另一段母线上的重要负荷,以保证正常运行。

本设计厂用电分别接在1#主变和4#主变低压侧上,2 台主变互为备用,0.4KV 系统按单母线分段考虑。

另外若水电厂周围有其他除本厂系统外的电源亦可考虑从其他系统接入备用电源作为厂用电。

厂用电接线图如下所示:2.4.1发电机的选择及主要参数根据设计题目所给的参数,查相关设计手册和参考资料,本设计确定发电机型式如下:102.4.2.变压器的选择及主要参数2.4.3.厂用变选择112.5 短路电流的计算在本设计中,短路电流计算只计算三相短路电流,短路电流计算的时间为:4S(∞)。

短路计算图如图所示短路计算表:122.6主要电气设备的选择2.6.1导体选择成果表2.6.2电器设备选择成果表132. 电流、电压互感器选择成果表(1)电流互感器选择一览表(2)电压互感器选择一览表143. 熔断器的选择成果表2.7 配电装置根据电气主接线和《高压配电装置设计技术规程》进行配电装置设计,确定配电装置的总体平面布置,断面结构,屋内,屋外配电装置,校验安全距离。

本次设计根据主接线设计导体选择及电器设计选择的结果,10KV 配电装置屋内式成套配电装置,是根据其10KV 设备较少和屋内式布置的特点决定;对于110KV 配电装置采用屋外式高型布置则是由于水电厂一般所处位置比较狭窄,110KV 主接线特点和高型布置的特点所确定的。

配电装置的最小安全距离按以下表格进行校验。

屋内配电装置的安全净距(mm)15屋外配电装置的安全净距(mm)163.设计总结通过这次课程设计,我受益匪浅。

本次课程设计不仅检验了我所学习的知识,同时让我对所学知识进行了融会贯通,以及学会了Microsoft Visio 软件的简单使用,这次设计过程中,我深刻体会到学以致用及团队合作的重要性,在此过程中我发现自己平时所学不够扎实,并没有很好地掌握。

在设计前抱有侥幸心理,觉得本次课设并无太多拦路虎,然而,事实并非如此。

在设计之初便无从下手,通过查阅资料和同学商量讨论后逐渐才有了头绪。

首先,对所要求的题目进行分析,找到解决问题的思路,借助资料和翻阅查找设计手册,对所要求的题目进行设计论证,得出结论选定设计方案之后便进行电气设备的选择以及计算。

这次课程设计中,大家分工明确,都按时完成自己的任务,设计很顺利地完成。

本次课程设计我学到了课本之外更多的知识,锻炼了我的独立工作和思考能力,还让我懂得了研究一个问题应该怎样做,这些将对我以后的学习和工作都有很大的帮助,同时提升了我的综合素质,使我们在基本理论的综合运用及正确解决实际问题等方面得到了一次较好的训练,提高了我们的思考、解决问题创新设计的能力,同时锻炼了团结协作的能力,为今后的工作打下了坚实的基础。

本次课程设计中仍存在很多问题,恳请老师批评指正!参考文献西北电力设计院.电力工程设计手册.中国电力出版社熊信银.发电厂电气部分. 中国电力出版社黄纯华.发电厂电气部分课程设计参考资料. 中国电力出版社王荣藩.工厂供电设计与实验[M].天津大学出版社,1998,05傅知兰.电力系统电气设备选择与计算,中国电力出版社曹绳敏.电力系统课程设计及毕业设计参考资料. 中国电力出版社,1995 西安交通大学.短路电流实用计算方法,西安交通大学出版社李瑞荣.短路电流实用计算. 中国电力出版社,200317附录附录A 完整的主接线图(VISO或CAD) 附录B 短路电流计算过程附录C 主要设备选择及校验附录A:18附录B:短路电流计算电路图图中主要元件参数如下表:19对于短路点d1:基值电压为115KV,20Х*∑=X15//X22//X23=0.0376ich= 1.414Kch I2 =1.414×1.8×13.35=33.98其中Kch=1.8,I2为有名值。

相关文档
最新文档