专题09 立体几何与空间向量(解析版)
高考数学专题:空间向量与立体几何(含解析)
立体几何中的向量方法1.(2012 年高考(重庆理))设四面体的六条棱的长分别为1,1,1,1, 2 和a , 且长为a 的棱与长为 2 的棱异面, 则a的取值范围是()A.(0, 2) B.(0, 3) C.(1, 2) D.(1, 3)[ 解析] 以O为原点, 分别以OB、OC、OA所在直线为x、y、z 轴,则cos AOP A O PO2R242 2 1 3,A ( R,0, R), P ( R,R ,0)2 2 2 22AOP arccos ,4 AP R arccos242.(2012 年高考(陕西理))如图, 在空间直角坐标系中有直三棱柱ABC A B C , CA CC1 2CB , 则直线BC1 与直线AB1 夹角的余弦值为()1 1 1A.55B.53C.2 55D.35解析: 不妨设CA CC1 2CB 2 ,AB1 = (- 2,2,1), C1B = (0,- 2,1) ,AB ×C B (- 2)? 0 2? ( 2) + 1? 1 51 1cos < AB ,C B > = = = -1 19 5 5AB C B ′1 1 , 直线B C 与直线1AB 夹角为锐角, 所以余弦值为155, 选A.3.(2012 年高考(天津理))如图, 在四棱锥P ABCD 中, PA 丄平面ABCD , AC 丄AD , AB 丄BC, 0ABC =45 , PA=AD =2 , AC=1.( Ⅰ) 证明P C 丄AD ;( Ⅱ) 求二面角A PC D 的正弦值;( Ⅲ) 设E 为棱PA上的点, 满足异面直线BE与CD所成的角为030 , 求AE的长.P【命题意图】本小题主要考查空间两条直线的位置关系, 二面角、异面直线所成的角, 直线与平面垂直等基础知识, 考查用空间向量解决立体几何问题的方法, 考查空间想象能力、运算能力和推理论证能力.方法一: (1)以AD, AC, AP 为x, y, z正半轴方向,建立空间直角左边系 A xyz则1 1D (2,0,0), C(0,1,0), B( , ,0), P(0,0,2)2 2PC (0,1, 2), AD (2,0,0) PC AD 0 PC AD(2)PC (0,1, 2), CD (2, 1,0) ,设平面PCD 的法向量n (x, y, z)则n PC 0 y 2z 0 y 2z2x y 0 x zn CD 0取z 1 n (1,2,1)AD 是平面PAC 的法向量(2,0,0)AD n 6 30 cos AD,n sin AD, n6 6AD n得:二面角A PC D 的正弦值为30 6(3)设AE h [0,2] ;则AE (0,0, 2) ,(1,1,), (2, 1,0)BE h CD2 2BE CD 3 3 10 cos BE ,CD h22 10BE CD 10 20h 即AE1010方法二:(1) 证明, 由P A 平面ABCD , 可得PA AD, 又由AD AC, PA AC A, 故AD 平面PAC , 又PC 平面PAC , 所以PC AD .(2) 解: 如图, 作AH PC 于点H , 连接DH , 由PC AD ,PC AH , 可得PC 平面ADH . 因此, DH PC , 从而AHD 为二面角A PC D 的平面角.在Rt PAC 中,PA 2, AC 1 , 由此得2AH , 由(1) 知AD AH , 故在5R t D AH 中,2 2 2 30DH AD AH , 因此5sin AHDADDH306, 所以二面角A PC D 的正弦值为306 .14.(2012 年高考(新课标理))如图, 直三棱柱ABC A1B1C1 中, AC BC AA1 , D 是2 棱A A 的中点, DC1 BD1(1) 证明: DC BC1(2) 求二面角A1 BD C1 的大小.第一问省略第二问:如图建系:A(0,0,0 ), P(0,0, 2 6 ), M( 32 ,32,0),N( 3 ,0, 0), C( 3 ,3,0).设Q( x, y, z), 则CQ ( x 3,y 3,z),CP ( 3,3,2 6) .∵CQ CP ( 3 , 3 ,2 6 ) , ∴Q( 3 3 ,3 3 ,2 6 ) .由OQ CP OQ CP 0 , 得: 13. 即 :2 3 2 6Q( ,2,) .3 3对于平面AMN: 设其法向量为n (a,b,c).∵3 3AM ( ,,0),AN =( 3,0,0) .2 2则33a3 3AM n 0 a b 0 12 2 b3AN n 03a 0 c 0. ∴3 1n ( ,,0) .3 3同理对于平面AMN得其法向量为v ( 3,1,6) . 记所求二面角A—MN—Q的平面角大小为,则cosn vn v 10 5.∴所求二面角A—MN—Q的平面角的余弦值为105.5.(2011 年安徽)如图,ABCDEFG 为多面体,平面ABED 与平面AGFD 垂直,点O 在线段AD 上,OA 1,OD 2,△OAB ,,△OAC ,△O DE ,△O DF 都是正三角形。
高考数学压轴专题最新备战高考《空间向量与立体几何》图文解析
新数学《空间向量与立体几何》专题解析(1)一、选择题1.已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误的是( ) A .若m ∥β,则m ∥lB .若m ∥l ,则m ∥βC .若m ⊥β,则m ⊥lD .若m ⊥l ,则m ⊥β【答案】D【解析】【分析】A 由线面平行的性质定理判断.B 根据两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面判断.C 根据线面垂直的定义判断.D 根据线面垂直的判定定理判断.【详解】A 选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B 选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C 选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D 选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面;故选:D.【点睛】本题主要考查线线关系和面面关系,还考查了推理论证的能力,属于中档题.2.已知圆锥SC 的高是底面半径的3倍,且圆锥SC 的底面直径、体积分别与圆柱OM 的底面半径、体积相等,则圆锥SC 与圆柱OM 的侧面积之比为( ).AB .3:1C .2:1D 2 【答案】A【解析】【分析】设圆锥SC 的底面半径为r ,可求得圆锥的母线长,根据圆锥侧面积公式求得侧面积;由圆锥体积与圆柱体积相等可构造方程求得圆柱的高,进而根据圆柱侧面积公式求得圆柱侧面积,从而求得比值.【详解】设圆锥SC 的底面半径为r ,则高为3r ,∴圆锥SC 的母线长l ==,∴圆锥SC 的侧面积为2rl r π=;圆柱OM 的底面半径为2r ,高为h , 又圆锥的体积23133V r r r ππ=⋅=,234r h r ππ∴=,4r h ∴=, ∴圆柱OM 的侧面积为2224rh rh r πππ⋅==,∴圆锥SC 与圆柱OM 的侧面积之比为2210:10:1r r ππ=.故选:A .【点睛】本题考查圆锥和圆柱侧面积的求解问题,涉及到圆锥和圆柱体积公式的应用,属于基础题.3.如图,在底面边长为4,侧棱长为6的正四棱锥P ABCD -中,E 为侧棱PD 的中点,则异面直线PB 与CE 所成角的余弦值是( )A .34B .234C .517D .317 【答案】D【解析】【分析】首先通过作平行的辅助线确定异面直线PB 与CE 所成角的平面角,在PCD ∆中利用余弦定理求出cos DPC ∠进而求出CE ,再在GFH ∆中利用余弦定理即可得解.【详解】如图,取PA 的中点F ,AB 的中点G ,BC 的中点H ,连接FG ,FH ,GH ,EF ,则//EF CH ,EF CH =,从而四边形EFHC 是平行四边形,则//EC FH , 且EC FH =.因为F 是PA 的中点,G 是AB 的中点,所以FG 为ABP ∆的中位线,所以//FG PB ,则GFH ∠是异面直线PB 与CE 所成的角.由题意可得3FG =,1222HG AC ==.在PCD ∆中,由余弦定理可得2223636167cos 22669PD PC CD DPC PD PC +-+-∠===⋅⨯⨯, 则2222cos 17CE PC PE PC PE DPC =+-⋅∠=,即17CE =. 在GFH ∆中,由余弦定理可得222cos 2FG FH GH GFH FG FH +-∠=⋅3172317==⨯⨯. 故选:D【点睛】本题考查异面直线所成的角,余弦定理解三角形,属于中档题.4.已知正方体1111ABCD A B C D -中,M ,N 分别为AB ,1AA 的中点,则异面直线1C M 与BN 所成角的大小为( )A .30°B .45︒C .60︒D .90︒【答案】D【解析】【分析】根据题意画出图形,可将异面直线转化共面的相交直线,再进行求解【详解】如图:作AN 的中点'N ,连接'N M ,1'C N 由题设可知'N M BN P ,则异面直线1C M 与BN 所成角为1'N MC ∠或其补角,设正方体的边长为4,由几何关系可得,'5N M =,16C M =,1'41C N =21122''N M M C N C =+,即1'90N MC ∠=︒ 故选D【点睛】本题考查异面直线的求法,属于基础题5.已知正方体1111ABCD A B C D -的棱长为2,点P 在线段1CB 上,且12B P PC =,平面α经过点1,,A P C ,则正方体1111ABCD A B C D -被平面α截得的截面面积为( )A .36 B.26 C .5 D .534【答案】B【解析】【分析】 先根据平面的基本性质确定平面,然后利用面面平行的性质定理,得到截面的形状再求解.【详解】如图所示:1,,A P C 确定一个平面α,因为平面11//AA DD 平面11BB CC ,所以1//AQ PC ,同理1//AP QC ,所以四边形1APC Q 是平行四边形.即正方体被平面截的截面.因为12B P PC =,所以112C B PC =,即1PC PB ==所以115,23AP PC AC ===由余弦定理得:22211111cos 25AP PC AC APC AP PC +-∠==⨯ 所以16sin 5APC ∠=所以S 四边形1APQC 1112sin 262AP PC APC =⨯⨯⨯∠= 故选:B【点睛】 本题主要考查平面的基本性质,面面平行的性质定理及截面面积的求法,还考查了空间想象和运算求解的能力,属于中档题.6.已知某几何体的三视图如图所示,则该几何体的体积为A .273B .276C .274D .272【答案】D【解析】【分析】 先还原几何体,再根据锥体体积公式求结果.【详解】 几何体为一个三棱锥,高为33333,,所以体积为1127=33333=322V ⨯⨯⨯,选D. 【点睛】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.7.四面体ABCD 的四个顶点都在球O 的表面上,AB BCD ⊥平面,BCD V 是边长为3的等边三角形,若2AB =,则球O 的表面积为( )A .16πB .323πC .12πD .32π【答案】A【解析】【分析】先求底面外接圆直径,再求球的直径,再利用表面积2S D π=求解即可.【详解】BCD V 外接圆直径23sin 32CD d CBD ===∠ , 故球的直径平方222222(23)16D AB d =+=+=,故外接球表面积216S D ππ== 故选:A【点睛】本题主要考查侧棱垂直底面的锥体外接球表面积问题,先利用正弦定理求得底面直径d ,再利用锥体高h ,根据球直径22D d h =+求解即可.属于中等题型.8.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E 、F ,且EF=12.则下列结论中正确的个数为①AC ⊥BE ;②EF ∥平面ABCD ;③三棱锥A ﹣BEF 的体积为定值;④AEF ∆的面积与BEF ∆的面积相等,A .4B .3C .2D .1【答案】B【解析】试题分析:①中AC ⊥BE ,由题意及图形知,AC ⊥面DD1B1B ,故可得出AC ⊥BE ,此命题正确;②EF ∥平面ABCD ,由正方体ABCD-A1B1C1D1的两个底面平行,EF 在其一面上,故EF 与平面ABCD 无公共点,故有EF ∥平面ABCD ,此命题正确;③三棱锥A-BEF 的体积为定值,由几何体的性质及图形知,三角形BEF 的面积是定值,A 点到面DD1B1B 距离是定值,故可得三棱锥A-BEF 的体积为定值,此命题正确;④由图形可以看出,B 到线段EF 的距离与A 到EF 的距离不相等,故△AEF 的面积与△BEF 的面积相等不正确考点:1.正方体的结构特点;2.空间线面垂直平行的判定与性质9.已知m ,l 是两条不同的直线,α,β是两个不同的平面,则下列可以推出αβ⊥的是( )A .m l ⊥,m β⊂,l α⊥B .m l ⊥,l αβ=I ,m α⊂C .//m l ,m α⊥,l β⊥D .l α⊥,//m l ,//m β【答案】D【解析】【分析】 A ,有可能出现α,β平行这种情况.B ,会出现平面α,β相交但不垂直的情况.C ,根据面面平行的性质定理判断.D ,根据面面垂直的判定定理判断.【详解】对于A ,m l ⊥,m β⊂,l α⊥,则//αβ或α,β相交,故A 错误;对于B ,会出现平面α,β相交但不垂直的情况,故B 错误;对于C ,因为//m l ,m α⊥,则l α⊥,由因为l βαβ⊥⇒∥,故C 错误; 对于D ,l α⊥,m l m α⇒⊥∥,又由m βαβ⇒⊥∥,故D 正确.故选:D【点睛】本题考查空间中的平行、垂直关系的判定,还考查学生的空间想象能力和逻辑推理能力,属于中档题.10.如下图,在正方体1111ABCD A B C D -中,点E F 、分别为棱1BB ,1CC 的中点,点O 为上底面的中心,过E F O 、、三点的平面把正方体分为两部分,其中含1A 的部分为1V ,不含1A 的部分为2V ,连接1A 和2V 的任一点M ,设1A M 与平面1111D C B A 所成角为α,则sin α的最大值为( ).A .22B 25C .65D 26 【答案】B【解析】【分析】连接EF ,可证平行四边形EFGH 为截面,由题意可找到1A M 与平面1111D C B A 所成的角,进而得到sinα的最大值.【详解】连接EF ,因为EF//面ABCD,所以过EFO 的平面与平面ABCD 的交线一定是过点O 且与EF 平行的直线,过点O 作GH//BC 交CD 于点G,交AB 于H 点,则GH//EF,连接EH ,FG,则平行四边形EFGH 为截面,则五棱柱1111A B EHA D C FGD -为1V ,三棱柱EBH-FCG 为2V ,设M 点为2V 的任一点,过M 点作底面1111D C B A 的垂线,垂足为N ,连接1A N ,则1MA N ∠即为1A M 与平面1111D C B A 所成的角,所以1MA N ∠=α,因为sinα=1MNA M,要使α的正弦最大,必须MN 最大,1A M 最小,当点M 与点H 重合时符合题意,故sinα的最大值为11=MN HN A M A H =25, 故选B【点睛】本题考查空间中的平行关系与平面公理的应用,考查线面角的求法,属于中档题.11.设A ,B ,C ,D 是同一个球面上四点,ABC ∆是斜边长为6的等腰直角三角形,若三棱锥D ABC -体积的最大值为27,则该球的表面积为( )A .36πB .64πC .100πD .144π【答案】C【解析】【分析】由题意画出图形,求出三棱锥D ABC -的外接球的半径,代入表面积公式求解.【详解】解:如图,ABC ∆是斜边BC 长为6的等腰直角三角形,则当D 位于直径的端点时,三棱锥D ABC -体积取最大值为27,由AB AC =,AB AC ⊥,6BC =,可得斜边BC 上的高3AE =,32AB AC ==由112732DE ⨯⨯=,解得9DE =, 则21AE EF DE==. ∴球O 的直径为10DE EF +=,则球O 的半径为11052⨯=. ∴该球的表面积为245100S ππ=⨯=.故选C .【点睛】本题考查多面体外接球表面积的求法,考查数形结合的解题思想方法,是中档题.12.在正方体1111ABCD A B C D -中,E 为棱1CC 上一点且12CE EC =,则异面直线AE 与1A B 所成角的余弦值为( )A.44 B.22 C.44 D.11【答案】B【解析】【分析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法能求出异面直线AE 与1A B 所成角的余弦值.【详解】解:以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系, 设3AB =,则()3,0,0A ,()0,3,2E ,()13,0,3A ,()3,3,0B,()3,3,2AE =-u u u r ,()10,3,3A B =-u u u r , 设异面直线AE 与1A B 所成角为θ,则异面直线AE 与1A B 所成角的余弦值为:11cos AE A B AE A Bθ⋅===⋅u u u r u u u r u u u r u u u r 故选:B .【点睛】本题考查利用向量法求解异面直线所成角的余弦值,难度一般.已知1l 的方向向量为a r ,2l 的方向向量为b r ,则异面直线12,l l 所成角的余弦值为a b a b⋅⋅r r r r .13.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A .122πB .12πC .82πD .10π【答案】B【解析】分析:首先根据正方形的面积求得正方形的边长,从而进一步确定圆柱的底面圆半径与圆柱的高,从而利用相关公式求得圆柱的表面积. 详解:根据题意,可得截面是边长为2 2的圆,且高为2, 所以其表面积为222)22212S πππ=+=,故选B.点睛:该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和.14.已知直三棱柱111ABC A B C -的底面为直角三角形,且两直角边长分别为13,此三棱柱的高为23A .323πB .163πC .83πD .643π 【答案】A【解析】【分析】求得该直三棱柱的底面外接圆直径为2221(3)2r =+=,再根据球的性质,求得外接球的直径2R =,利用球的体积公式,即可求解.【详解】由题意可得该直三棱柱的底面外接圆直径为2221(3)21r r =+=⇒=,根据球的性质,可得外接球的直径为22222(2)2(23)4R r h =+=+=,解得2R =,所以该三棱柱的外接球的体积为343233V R ππ==,故选A. 【点睛】本题主要考查了球的体积的计算,以及组合体的性质的应用,其中解答中找出合适的模型,合理利用球的性质求得外接球的半径是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.15.在直四棱柱1111ABCD A B C D -中,底面ABCD 是边长为4的正方形,15AA =,垂直于1AA 的截面分别与面对角线1D A ,1B A ,1B C ,1D C 相交于四个不同的点E ,F ,G ,H ,则四棱锥1A EFGH -体积的最大值为( ).A .83B .1258C .12825D .64081【答案】D【解析】【分析】由直棱柱的特点和底面为正方形可证得四边形EFGH 为矩形,设点1A 到平面EFGH 的距离为()501t t <<,可表示出,EF FG ,根据四棱锥体积公式将所求体积表示为关于t 的函数,利用导数可求得所求的最大值.【详解】Q 四棱柱1111ABCD A B C D -为直四棱柱,1AA ∴⊥平面ABCD ,1AA ⊥平面1111D C B A∴平面//EFGH 平面ABCD ,平面//EFGH 平面1111D C B A ,由面面平行性质得:11EF //B D //GH ,EH //AC//FG ,又11B D AC ⊥,EF FG ∴⊥,∴四边形EFGH 为矩形.设点1A 到平面EFGH 的距离为()501t t <<,11AC B D ==Q )1EF t ∴=-,FG =,∴四棱锥1A EFGH -的体积()()231160532133V t t t t t =⨯⨯-=-, ()2160233V t t '∴=-,∴当20,3t ⎛⎫∈ ⎪⎝⎭时,0V '>,当2,13t ⎛⎫∈ ⎪⎝⎭时,0V '<, ∴当23t =时,max 16048640392781V ⎛⎫=⨯-= ⎪⎝⎭. 故选:D .【点睛】本题考查立体几何中的体积最值的求解问题,关键是能够将所求四棱锥的体积表示为关于某一变量的函数的形式,进而利用导数来求解函数最值,从而得到所求体积的最值.16.等腰三角形ABC 的腰5AB AC ==,6BC =,将它沿高AD 翻折,使二面角B AD C --成60︒,此时四面体ABCD 外接球的体积为( )A .7πB .28πCD 【答案】D【解析】分析:详解:由题意,设BCD ∆所在的小圆为1O ,半径为r ,又因为二面角B AD C --为060,即060BDC ∠=,所以BCD ∆为边长为3的等边三角形,又正弦定理可得,032sin 60r ==BE = 设球的半径为R ,且4=AD ,在直角ADE ∆中,()2222224428R AD DE R =+⇒=+=,所以R =,所以球的体积为334433V R ππ==⨯=,故选D .点睛:本题考查了有关球的组合体问题,以及三棱锥的体积的求法,解答时要认真审题,注意球的性质的合理运用,求解球的组合体问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径.17.在空间中,下列命题正确的是A .如果一个角的两边和另一角的两边分别平行,那么这两个角相等B .两条异面直线所成的有的范围是0,2π⎡⎤⎢⎥⎣⎦C .如果两个平行平面同时与第三个平面相交,那么它们的交线平行D .如果一条直线和平面内的一条直线平行,那么这条直线和这个平面平行【答案】C【解析】【分析】根据两个角可能互补判断A ;根据两条异面直线所成的角不能是零度,判断B ;根据根据两个平面平行的性质定理知判断C ;利用直线与这个平面平行或在这个平面内判断D.【详解】如果一个角的两边和另一个角的两边分别平行,这两个角相等或互补,故A 不正确; 两条异面直线所成的角不能是零度,故B 不正确;根据两个平面平行的性质定理知C 正确;如果一条直线和一个平面内的一条直线平行,那么这条直线与这个平面平行或在这个平面内,故D 不正确,综上可知只有C 的说法是正确的,故选C.【点睛】本题考查平面的基本性质及推论,考查等角定理,考查两个平面平行的性质定理,考查异面直线所成的角的取值范围,考查直线与平面平行的判断定理,意在考查对基础知识的掌握情况,本题是一个概念辨析问题.18.已知某几何体的三视图如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为( )A .2B .5C .13D .22【答案】D【解析】【分析】 根据三视图还原出几何体,找到最大面,再求面积.【详解】由三视图可知,该几何体是一个三棱锥,如图所示,将其放在一个长方体中,并记为三棱锥P ABC -.13PAC PAB S S ∆∆==,22PAC S ∆=,2ABC S ∆=,故最大面的面积为22.选D.【点睛】本题主要考查三视图的识别,复杂的三视图还原为几何体时,一般借助长方体来实现.19.如图1,已知正方体ABCD-A 1B 1C 1D 1的棱长为2,M ,N ,Q 分别是线段AD 1,B 1C ,C 1D 1上的动点,当三棱锥Q-BMN 的正视图如图2所示时,三棱锥俯视图的面积为A .2B .1C .32D .52【答案】C【解析】【分析】判断俯视图的形状,利用三视图数据求解俯视图的面积即可.【详解】由正视图可知:M 是1AD 的中点,N 在1B 处,Q 在11C D 的中点,俯视图如图所示:可得其面积为:1113222111122222⨯-⨯⨯-⨯⨯-⨯⨯=,故选C . 【点睛】 本题主要考查三视图求解几何体的面积与体积,判断它的形状是解题的关键,属于中档题.20.如图所示,在平行六面体ABCD A B C D ''''-中1AB =,2AD =,3AA '=,90BCD ∠=︒,60BAA DAA ''∠=∠=︒,则AC '的长为( )A 13B 23C 33D 43【答案】B【解析】【分析】 由向量AC AB BC CC ''=++u u u u r u u u r u u u r u u u u r 得:()()22AC AB BC CC ''=++u u u u r u u u r u u u r u u u u r ,展开化简,再利用向量的数量积,便可得出答案.【详解】 AC AB BC CC ''=++u u u u r u u u r u u u r u u u u r Q ,()()()()()222222()AC AB BC CC AB BC CC AB BC AB CC BC CC '''''∴=++=+++⋅+⋅+⋅u u u u r u u u r u u u r u u u u r u u u r u u u r u u u u r u u u r u u u r uu u r u u u u r u u u r u u u u r ()222291232(013cos6023cos60)142232AC ︒︒'∴=+++⨯+⨯+⨯=+⨯=u u u u r . 23AC '∴=u u u u r ,即AC '23故选:B.【点睛】 本题主要考查了空间向量在立体几何中的应用,掌握向量法求线段长的方法是解题关键,属于中档题目.。
高二数学空间向量与立体几何试题答案及解析
高二数学空间向量与立体几何试题答案及解析1.长方体中,,,,则与所成角的余弦值为.【答案】【解析】以D为空间原点,DA为x轴,D为z轴,DC为y轴,建立空间直角坐标系则=(-1,2,0),=(-1,-2,3)||=,|'|=,·=-3cos<,>==,即为所求。
【考点】本题主要考查空间向量的应用,向量的数量积,向量的坐标运算。
点评:简单题,通过建立空间直角坐标系,将求异面直线的夹角余弦问题,转化成向量的坐标运算。
2.正方体的棱长为1,是底面的中心,则到平面的距离为.【答案】【解析】因为O是A1C1的中点,求O到平面ABC1D1的距离,就是A1到平面ABC1D1的距离的一半,就是A1到AD1的距离的一半.所以,连接A1D与AD1的交点为P,则A1P的距离是:O到平面ABC1D1的距离的2倍O到平面ABC1D1的距离【考点】本题主要考查空间距离的计算。
点评:本题也可以通过建立空间直角坐标系,将求角、求距离问题,转化成向量的坐标运算,是高考典型题目。
3.已知={-4,3,0},则与垂直的单位向量为= .【答案】(,,0)【解析】设与垂直的向量与垂直的向量=(x,y,0),则-4x+3y=0,,解得x= ,y=,所以=(,,0)。
【考点】本题主要考查向量的坐标运算、向量垂直的充要条件、单位向量的概念。
点评:利用向量垂直的充要条件及单位向量的概念。
4.已知向量与向量平行,则()A.B.C.D.【答案】C【解析】因为向量与向量平行,所以,,故选C。
【考点】本题主要考查平行向量及向量的坐标运算。
点评:简单题,按向量平行的充要条件计算。
5.已知点,为线段上一点,且,则的坐标为()A.B.C.D.【答案】C【解析】设C的坐标为(x,y,z)则向量=(x-4,y-1,z-3)向量=(-2,-6,-2),而即=所以x-4=-,y-1=-2,Z-3=-所以x=,y=-1,z=,C的坐标为,选C。
高中数学 2空间向量与立体几何(带答案)
空间向量与立体几何一.空间向量及其运算1.空间向量及有关概念(1)共线向量定理:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。
a 平行于b 记作a ∥b。
推论:如果l 为经过已知点A 且平行于已知非零向量a的直线,那么对任一点O ,点P 在直线l 上的充要条件是存在实数t ,满足等式 A O P O =a t+①其中向量a叫做直线l 的方向向量。
在l 上取a AB =,则①式可化为.)1(OB t OA t OP +-=②当21=t 时,点P 是线段AB 的中点,则 ).(21OB OA OP += ③①或②叫做空间直线的向量参数表示式,③是线段AB 的中点公式。
(2)向量与平面平行:如果表示向量a 的有向线段所在直线与平面α平行或a在α平面内,我们就说向量a 平行于平面α,记作a ∥α。
注意:向量a∥α与直线a ∥α的联系与区别。
共面向量:我们把平行于同一平面的向量叫做共面向量。
共面向量定理:如果两个向量a 、b 不共线,则向量p与向量a 、b 共面的充要条件是存在实数对x 、y ,使.b y a x p+=①推论:空间一点P 位于平面MAB 内的充要条件是存在有序实数对x 、y ,使,MB y MA x MP +=④或对空间任一定点O ,有.MB y MA x OM OP ++=⑤在平面MAB 内,点P 对应的实数对(x, y )是唯一的。
①式叫做平面MAB 的向量表示式。
又∵.,OM OA MA -=.,OM OB MB -=代入⑤,整理得.)1(OB y OA x OM y x OP ++--= ⑥由于对于空间任意一点P ,只要满足等式④、⑤、⑥之一(它们只是形式不同的同一等式),点P 就在平面MAB 内;对于平面MAB 内的任意一点P ,都满足等式④、⑤、⑥,所以等式④、⑤、⑥都是由不共线的两个向量MA 、MB (或不共线三点M 、A 、B )确定的空间平面的向量参数方程,也是M 、A 、B 、P 四点共面的充要条件。
空间向量与立体几何例题和知识点总结
空间向量与立体几何例题和知识点总结一、空间向量的基本知识点在立体几何中,空间向量是一个非常有力的工具。
首先,我们来了解一下空间向量的一些基本概念。
空间向量是具有大小和方向的量,它可以用有向线段来表示。
如果两个空间向量的大小和方向都相同,那么这两个向量就是相等的。
向量的加法和减法遵循三角形法则和平行四边形法则。
例如,对于向量\(\overrightarrow{a}\)和\(\overrightarrow{b}\),它们的和\(\overrightarrow{a} +\overrightarrow{b}\)可以通过将两个向量首尾相连得到,而差\(\overrightarrow{a} \overrightarrow{b}\)则是\(\overrightarrow{a}\)加上\(\overrightarrow{b}\)的相反向量。
空间向量的数量积\(\overrightarrow{a} \cdot \overrightarrow{b}\)等于\(\vert\overrightarrow{a}\vert \vert\overrightarrow{b}\vert \cos\theta\),其中\(\theta\)是\(\overrightarrow{a}\)和\(\overrightarrow{b}\)之间的夹角。
数量积的结果是一个标量。
空间向量的坐标表示:在空间直角坐标系中,向量\(\overrightarrow{a} =(x, y, z)\),其中\(x\)、\(y\)、\(z\)分别是向量在\(x\)轴、\(y\)轴、\(z\)轴上的分量。
二、空间向量在立体几何中的应用接下来,通过一些具体的例题来看看空间向量是如何解决立体几何问题的。
例 1:证明线线平行已知直线\(l_1\)和\(l_2\)的方向向量分别为\(\overrightarrow{v_1} =(2, -1, 3)\)和\(\overrightarrow{v_2} =(4, -2, 6)\),证明\(l_1 \parallel l_2\)。
空间向量与立体几何知识点和知识题(含答案解析)
§1-3 空间向量与立体几何【知识要点】1.空间向量及其运算:(1)空间向量的线性运算:①空间向量的加法、减法和数乘向量运算:平面向量加、减法的三角形法则和平行四边形法则拓广到空间依然成立.②空间向量的线性运算的运算律:加法交换律:a+b=b+a;加法结合律:(a+b+c)=a+(b+c);分配律:(+)a=a+a;(a+b)=a+b.(2)空间向量的基本定理:①共线(平行)向量定理:对空间两个向量a,b(b≠0),a∥b的充要条件是存在实数,使得a∥b.②共面向量定理:如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是存在惟一一对实数,,使得c=a+b.③空间向量分解定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在惟一的有序实数组1,2,3,使得p=1a+2b+3c.(3)空间向量的数量积运算:①空间向量的数量积的定义:a·b=|a||b|c os〈a,b〉;②空间向量的数量积的性质:a·e=|a|c os<a,e>;a⊥b a·b=0;|a|2=a·a;|a·b|≤|a||b|.③空间向量的数量积的运算律: (a )·b =(a ·b );交换律:a ·b =b ·a ;分配律:(a +b )·c =a ·c +b ·c . (4)空间向量运算的坐标表示:①空间向量的正交分解:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i ,j ,k ,则这三个互相垂直的单位向量构成空间向量的一个基底{i ,j ,k },由空间向量分解定理,对于空间任一向量a ,存在惟一数组(a 1,a 2,a 3),使a =a 1i +a 2j +a 3k ,那么有序数组(a 1,a 2,a 3)就叫做空间向量a 的坐标,即a =(a 1,a 2,a 3).②空间向量线性运算及数量积的坐标表示: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a +b =(a 1+b 1,a 2+b 2,a 3+b 3);a -b =(a 1-b 1,a 2-b 2,a 3-b 3);a =(a 1,a 2,a 3);a ·b =a 1b 1+a 2b 2+a 3b 3.③空间向量平行和垂直的条件:a ∥b (b ≠0)⇔a =b ⇔a 1=b 1,a 2=b 2,a 3=b 3(∈R );a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.④向量的夹角与向量长度的坐标计算公式: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则;||,||232221232221b b b a a a ++==++==⋅⋅b b b a a a;||||,cos 232221232221332211b b b a a a b a b a b a ++++++=>=<⋅b a ba b a在空间直角坐标系中,点A (a 1,a 2,a 3),B (b 1,b 2,b 3),则A ,B 两点间的距离是.)()()(||233222211b a b a b a AB -+-+-=2.空间向量在立体几何中的应用: (1)直线的方向向量与平面的法向量:①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定. ②如果直线l ⊥平面,取直线l 的方向向量a ,则向量a 叫做平面的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定.(2)用空间向量刻画空间中平行与垂直的位置关系: 设直线l ,m 的方向向量分别是a ,b ,平面,的法向量分别是u ,v ,则①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥⇔a ⊥u ⇔a ·u =0; ④l ⊥⇔a ∥u ⇔a =k u ,k ∈R ;⑤∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥⊥⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面的法向量是v ,直线a 与平面的夹角为,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作-l -在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB叫做二面角-l -的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角-l -的两个面内与棱l 垂直的异面直线,则二面角-l -的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面,的法向量,则〈m 1,m 2〉与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【复习要求】1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂直. 4.理解直线的方向向量与平面的法向量.5.能用向量语言表述线线、线面、面面的垂直、平行关系. 6.能用向量方法解决线线、线面、面面的夹角的计算问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2PA 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2PA 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤: (1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明.例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行.解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4),∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG , ∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是b =(b 1,b 2,b 3).由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试. 例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为,则,52||||cos ==⋅CN AM CNAM θ∴异面直线AM 和CN 所成角的余弦值是⋅52 解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a a a C 取A 1B 1的中点D ,则)2,2,0(a aD ,连接AD ,C 1D . 则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a a a C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a a a AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a 得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0).设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,AC ⊥BC ,PA =AC =1,2=BC ,求二面角A -PB -C 的平面角的余弦值.解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵PA =AC =1,PA ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E ∴)21,22,21(),43,42,41(---=--=DC EA∴⋅=>=<⋅33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面PAB 的法向量是a =(a 1,a 2,a 3), 平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.例6 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(Ⅰ)求证:BC ⊥平面PAC ;(Ⅱ)当D 为PB 的中点时,求AD 与平面PAC 所成角的余弦值;(Ⅲ)试问在棱PC 上是否存在点E ,使得二面角A -DE -P 为直二面角?若存在,求出PE ∶EC 的值;若不存在,说明理由.解:如图建立空间直角坐标系.设PA =a ,由已知可得A (0,0,0),).,0,0(),0,23,0(),0,23,21(a P a C a a B - (Ⅰ)∵),0,0,21(),,0,0(a BC a AP ==∴,0=⋅BC AP ∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .∴BC ⊥平面PAC .(Ⅱ)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点. ∴⋅-)21,43,0(),21,43,41(a a E a a a D 由(Ⅰ)知,BC ⊥平面PAC ,∴DE ⊥平面PAC , ∴∠DAE 是直线AD 与平面PAC 所成的角. ∴),21,43,0(),21,43,41(a a AE a a a AD =-= ∴,414||||cos ==∠AE AD DAE 即直线AD 与平面PAC 所成角的余弦值是⋅414 (Ⅲ)由(Ⅱ)知,DE ⊥平面PAC ,∴DE ⊥AE ,DE ⊥PE , ∴∠AEP 是二面角A -DE -P 的平面角. ∵PA ⊥底面ABC ,∴PA ⊥AC ,∠PAC =90°. ∴在棱PC 上存在一点E ,使得AE ⊥PC ,这时,∠AEP =90°,且⋅==3422AC PA EC PE 故存在点E 使得二面角A -DE -P 是直二面角,此时PE ∶EC =4∶3. 注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.练习1-3一、选择题:1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B)2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30°(B)45°(C)60°(D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B)32 (C)33 (D)32 4.如图,⊥,∩=l ,A ∈,B ∈,A ,B 到l 的距离分别是a 和b ,AB 与,所成的角分别是和ϕ,AB 在,内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)>ϕ,m >n (B)>ϕ,m <n (C)<ϕ,m <n(D)<ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______.6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,PA ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为,则cos=______.三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值.10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小.11.如图,已知直二面角-PQ-,A∈PQ,B∈,C∈,CA=CB,∠BAP =45°,直线CA和平面所成的角为30°.(Ⅰ)证明:BC⊥PQ;(Ⅱ)求二面角B-AC-P平面角的余弦值.习题1一、选择题:1.关于空间两条直线a、b和平面,下列命题正确的是( )(A)若a ∥b ,b ⊂,则a ∥ (B)若a ∥,b ⊂,则a ∥b (C)若a ∥,b ∥,则a ∥b(D)若a ⊥,b ⊥,则a ∥b2.正四棱锥的侧棱长为23,底面边长为2,则该棱锥的体积为( ) (A)8(B)38 (C)6 (D)23.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则直线AB 1与侧面ACC 1A 1所成角的正弦值等于( ) (A)46 (B)410 (C)22 (D)23 4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何 体的体积是( )(A)3cm 34000 (B)3cm 38000 (C)2000cm 3(D)4000cm 35.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60° 的菱形,则该棱柱的体积等于( ) (A)2(B)22(C)23(D)24二、填空题:6.已知正方体的内切球的体积是π34,则这个正方体的体积是______.7.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则直线AB 1和BC 1所成角的余弦值是______.8.若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是______. 9.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于3472、,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为______.10.已知AABC 是等腰直角三角形,AB =AC =a ,AD 是斜边BC 上的高,以AD 为折痕使∠BDC 成直角.在折起后形成的三棱锥A -BCD 中,有如下三个结论: ①直线AD ⊥平面BCD ; ②侧面ABC 是等边三角形; ③三棱锥A -BCD 的体积是.2423a 其中正确结论的序号是____________.(写出全部正确结论的序号) 三、解答题:11.如图,正三棱柱ABC -A 1B 1C 1中,D 是BC 的中点,AB =AA 1.(Ⅰ)求证:AD ⊥B 1D ; (Ⅱ)求证:A 1C ∥平面A 1BD ;(Ⅲ)求二面角B -AB 1-D 平面角的余弦值.12.如图,三棱锥P-ABC中,PA⊥AB,PA⊥AC,AB⊥AC,PA=AC=2,AB=1,M 为PC的中点.(Ⅰ)求证:平面PCB⊥平面MAB;(Ⅱ)求三棱锥P-ABC的表面积.13.如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=2,M、N分别是A1C1、BC1的中点.(Ⅰ)求证:BC1⊥平面A1B1C;(Ⅱ)求证:MN∥平面A1ABB1;(Ⅲ)求三棱锥M -BC 1B 1的体积.14.在四棱锥S -ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD ,DC =SD=2.点M 在侧棱SC 上,∠ABM =60°.(Ⅰ)证明:M 是侧棱SC 的中点;(Ⅱ)求二面角S -AM -B 的平面角的余弦值.练习1-3一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.54 8.42三、解答题:9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==⋅4214||||),cos(111C A C A C A n n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为,,3π,21||||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面内过点C 作CO ⊥PQ 于点O ,连结OB . ∵⊥,∩=PQ ,∴CO ⊥.又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥,∴∠CAO 是CA 和平面所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面的一个法向量.设二面角B -AC -P 的平面角为,∴,55||||cos 2121==⋅⋅n n n n θ 即二面角B -AC -P 平面角的余弦值是⋅55习题1一、选择题:1.D 2.B 3.A 4.B 5.B 二、填空题: 6.324 7.438.9 9.5 10.①、②、③三、解答题:11.(Ⅰ)证明:∵ABC -A 1B 1C 1是正三棱柱,∴BB 1⊥平面ABC ,∴平面BB 1C 1C ⊥平面ABC .∵正△ABC 中,D 是BC 的中点,∴AD ⊥BC ,∴AD ⊥平面BB 1C 1C , ∴AD ⊥B 1D .(Ⅱ)解:连接A 1B ,设A 1B ∩AB 1=E ,连接DE .∵AB =AA 1, ∴ 四边形A 1ABB 1是正方形, ∴E 是A 1B 的中点,又D 是BC 的中点,∴DE ∥A 1C . ∵DE ⊂平面A 1BD ,A 1C ⊄平面A 1BD ,∴A 1C ∥平面A 1BD .(Ⅲ)解:建立空间直角坐标系,设AB =AA 1=1, 则⋅-)1,0,21(),0,23,0(),0,0,0(1B A D 设n 1=(p ,q ,r )是平面A 1BD 的一个法向量, 则,01=⋅AD n 且,011=⋅D B n 故.021,023=-=-r P q 取r =1,得n 1=(2,0,1). 同理,可求得平面AB 1B 的法向量是).0,1,3(2-=n 设二面角B -AB 1-D 大小为,∵,515||||cos 2121==⋅n n n n θ ∴二面角B -AB 1-D 的平面角余弦值为⋅51512.(Ⅰ)∵PA ⊥AB ,AB ⊥AC ,∴AB ⊥平面PAC ,故AB ⊥PC .∵PA =AC =2,M 为PC 的中点,∴MA ⊥PC .∴PC ⊥平面MAB , 又PC ⊂平面PCB ,∴平面PCB ⊥平面MAB . (Ⅱ)Rt △PAB 的面积1211==⋅AB PA S .Rt △PAC 的面积.2212==⋅AC PA S Rt △ABC 的面积S 3=S 1=1.∵△PAB ≌△CAB ,∵PB =CB ,∴△PCB 的面积.632221214=⨯⨯==⋅MB PC S ∴三棱锥P -ABC 的表面积为S =S 1+S 2+S 3+S 4=.64+13.(Ⅰ)∵ABC -A 1B 1C 1是直三棱柱,∴BB 1⊥平面A 1B 1C 1,∴B 1B ⊥A 1B 1.又B 1C 1⊥A 1B 1,∴A 1B 1⊥平面BCC 1B 1,∴BC 1⊥A 1B 1. ∵BB 1=CB =2,∴BC 1⊥B 1C ,∴BC 1⊥平面A 1B 1C .(Ⅱ)连接A 1B ,由M 、N 分别为A 1C 1、BC 1的中点,得MN ∥A 1B , 又A 1B ⊂平面A 1ABB 1,MN ⊄平面A 1ABB 1,∴MN ∥平面A 1ABB 1.(Ⅲ)取C 1B 1中点H ,连结MH . ∵M 是A 1C 1的中点,∴MH ∥A 1B 1,又A 1B 1⊥平面BCC 1B 1,∴MH ⊥平面BCC 1B 1,∴MH 是三棱锥M -BC 1B 1的高, ∴三棱锥M -BC 1B 1的体积⋅=⨯⨯⨯==⋅⋅∆321421313111MH S V B BC 14.如图建立空间直角坐标系,设A (2,0,0),则B (2,2,0),C (0,2,0),S (0,0,2).(Ⅰ)设)0(>=λλMC SM , 则),12,12,2(),12,12,0(λλλλλ++--=++BM M 又.60,),0,2,0( >=<-=BM BA BA 故,60cos ||||.BA BM BA BM =即,)12()12()2(14222λλλ+++-+-=+解得=1.∴M 是侧棱SC 的中点.(Ⅱ)由M (0,1,1),A (2,0,0)得AM 的中点⋅)21,21,22(G 又),1,1,2(),1,1,0(),21,23,22(-=-=-=AM MS GB ∴,,,0,0AM MS AM GB AM MS AM GB ⊥⊥∴==⋅⋅ ∴cos〉MS ,G B 〈等于二面角S -AM -B 的平面角. ,36||||),cos(-==MS GB MS GB 即二面角S -AM -B 的平面角的余弦值是-36.。
(完整)空间向量与立体几何知识点和习题(含答案),推荐文档
由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.,取直线l的方向向量a,则向量及一个向量a,那么经过点A以向量用空间向量刻画空间中平行与垂直的位置关系:的方向向量分别是a,b,平面α ,β 的法向量分别是,k∈R;0;0;,k∈R;k∈R;=0.用空间向量解决线线、线面、面面的夹角问题:,b是两条异面直线,过空间任意一点分别是二面角的两个半平面α ,β 的法向量,则〈根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分.掌握空间向量的线性运算及其坐标表示..掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂.理解直线的方向向量与平面的法向量..能用向量语言表述线线、线面、面面的垂直、平行关系..能用向量方法解决线线、线面、面面的夹角的计算问题.建立空间直角坐标系,设法证明存在实数k ,使得RS k PQ =如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,1(3,0,2),B 1(0,4,2),E (3,4,0).PA 1, ∴),34,0,0()2,00(32321===AA AP ⋅)同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(2要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0)N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,,2,0),=(2,2,0),=(-1,1,4),=(-1,EF AK OG 本文下载后请自行对内容编辑修改删除,:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0)C (0,2,0),N (2,2,1).),1,0,2(),2,1,0(=CN 所成的角为θ ,则CN ,52||||cos ==⋅CN AM CN AM θ∴异面直线AM 和CN 所成角的余弦值是⋅52取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC .B P ∥MA ,B Q ∥NC ,所成的角.6,522=+==QC PC PQ Q空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成ABC -A 1B 1C 1的底面边长为a ,侧棱长为利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),取A 1B 1的中点D ,则,连接AD ,C ⋅))2,2,0(a a D ),2,0,0(),0,,0(),0,0,231a AA a AB a ==,011=⋅AA DC 本文下载后请自行对内容编辑修改删除,PB的中点D,连接CD,作AE⊥PB于E.,PA⊥AC,2,∴CD⊥PB.DC夹角的大小就是二面角A-PB-C的大小.,0(),0,0,2(),0,-==CP CB =(a 1,a 2,a 3),(b 1,b 2,b 3).=1,得).0,2,1(-=a 得取b 3=1,得⎪⎩⎪⎨⎧=+-=,0,02321b b b 3如图建立空间直角坐标系.,由已知可得A (0,0,0),),0,23,0(),0,23,21(a C a a B -),0,0,21(),,0,0a BC a =∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .,0PAC .的中点,DE ∥BC ,∴E 为PC 的中点.⋅)21,43,0(),21,3a a E a a ⊥平面PAC ,(B)θ >ϕ(D)θ <ϕ中,E,F,G,H分别为所成角的大小是______.6,且对角线与底面所成角的余弦值为D1中,AA1=2AB,则异面直线1本文下载后请自行对内容编辑修改删除,的底面是直角梯形,∠BAD=90°,,PA⊥底面ABCD,PD所成的角为θ ,则cosθ =______.C1D1中,AA1=2AB=4,点平面角的余弦值.中,底面ABCD是边长为OA的中点,N为BC的中点.OCD;所成角的大小.平面角的余弦值.习题1和平面α ,下列命题正确的是( α (B)若a ∥α (B)38000(D)4000cm 2的正方形,另外两个侧面都是有一个内角为( )(C)223本文下载后请自行对内容编辑修改删除,C11;平面角的余弦值.PA⊥AB,PA⊥AC,AB⊥AC MAB;C ;ABB 1;的体积.中,底面ABCD 为矩形,SD ⊥底面SD =2.点M 在侧棱SC 上,∠的中点;的平面角的余弦值.练习1-3D .42本文下载后请自行对内容编辑修改删除,,0),E (0,2,1),A 1).4∴A 1C ⊥BD ,A 1C ,0=⊥平面DBE .是平面DA 1E 的法向量,则,得n =(4,1,-2).14,,22(),0,22,0(-D P =-=),2,22,0(OD OP n =(x ,y ,z ),则⋅OP n 本文下载后请自行对内容编辑修改删除,是CA 和平面α 所成的角,则∠,CO =1.3=AO ABO =∠BAO =45°,∴=AO BO ).1,0,0(),0,3,0(),C A ).1,3,0(-=AC 是平面ABC 的一个法向量,取x =1,得=+=-,03,033z y y x 1=n 是平面β 的一个法向量.AB 1=E ,连接DE .四边形A 1ABB 1是正方形,是BC 的中点,∴DE ∥A 平面A 1BD ,∴A 1C ∥平面⊄解:建立空间直角坐标系,设AB =AA 1=1,⋅-)1,0,21(),01B 是平面A 1BD 的一个法向量,,01=D B 取r =1,得n 1=(2,0,1).0=1234是直三棱柱,∴BB 1⊥平面A 1B 1C 1⊥平面BCC 1B 1,∴BC 1⊥A 1⊥B 1C ,∴BC 1⊥平面A 1B 1C 分别为A 1C 1、BC 1的中点,得MN 平面A 1ABB 1,∴MN ⊄MH .MH ∥A 1B 1,,∴MH ⊥平面BCC 1B 1,∴的体积==⋅⋅∆3111MH S V B BC A (,0,0),则B (22,),12,12,2(λλ++--=BM 故.60 >=BM |.BA BM =解得λ =,)12()1222λλ+++-的中点.,0,0)得AM 的中点22(G 本文下载后请自行对内容编辑修改删除,。
高考数学压轴专题新备战高考《空间向量与立体几何》图文解析
【最新】《空间向量与立体几何》专题解析一、选择题1.三棱锥D ABC -中,CD ⊥底面,ABC ABC ∆为正三角形,若//,2AE CD AB CD AE ===,则三棱锥D ABC -与三棱锥E ABC -的公共部分构成的几何体的体积为( )A .39B .33C .13D .3【答案】B【解析】根据题意画出如图所示的几何体:∴三棱锥D ABC -与三棱锥E ABC -的公共部分构成的几何体为三棱锥F ABC - ∵ABC 为正三角形,2AB =∴132232ABC S ∆=⨯⨯⨯= ∵CD ⊥底面ABC ,//AE CD ,2CD AE ==∴四边形AEDC 为矩形,则F 为EC 与AD 的中点∴三棱锥F ABC -的高为112CD = ∴三棱锥F ABC -的体积为13313V =⨯⨯= 故选B.2.如图,直三棱柱ABC A B C '''-的侧棱长为3,AB BC ⊥,3AB BC ==,点E ,F 分别是棱AB ,BC 上的动点,且AE BF =,当三棱锥B EBF '-的体积取得最大值时,则异面直线A F '与AC 所成的角为( )A .2πB .3πC .4πD .6π 【答案】C【解析】【分析】设AE BF a ==,13B EBF EBF V S B B '-'=⨯⨯V ,利用基本不等式,确定点 E ,F 的位置,然后根据//EF AC ,得到A FE '∠即为异面直线A F '与AC 所成的角,再利用余弦定理求解.【详解】 设AE BF a ==,则()()23119333288B EBF a a V a a '-+-⎡⎤=⨯⨯⨯-⨯≤=⎢⎥⎣⎦,当且仅当3a a =-,即32a =时等号成立, 即当三棱锥B EBF '-的体积取得最大值时,点E ,F 分别是棱AB ,BC 的中点, 方法一:连接A E ',AF ,则352A E '=,352AF =,2292A F AA AF ''=+=,13222EF AC ==, 因为//EF AC ,所以A FE '∠即为异面直线A F '与AC 所成的角,由余弦定理得222819452424cos 93222222A F EF A E A FE A F EF +-''+-'∠==='⋅⋅⨯⨯, ∴4A FE π'∠=. 方法二:以B 为坐标原点,以BC 、BA 、BB '分别为x 轴、y 轴、z 轴建立空间直角坐标系,则()0,3,0A ,()3,0,0C ,()0,3,3A ',3,0,02F ⎛⎫ ⎪⎝⎭, ∴3,3,32A F ⎛⎫'=-- ⎪⎝⎭u u u u r ,()3,3,0AC =-u u u r , 所以9922cos ,92322A F AC A F AC A F AC +'⋅'==='⋅⨯u u u u r u u u r u u u u r u u u r u u u u r u u u r ,所以异面直线A F '与AC 所成的角为4π. 故选:C【点睛】 本题主要考查异面直线所成的角,余弦定理,基本不等式以及向量法求角,还考查了推理论证运算求解的能力,属于中档题.3.如图,棱长为1的正方体1111ABCD A B C D -,O 是底面1111D C B A 的中心,则O 到平面11ABC D 的距离是( )A .12B .2C .2D .3 【答案】B【解析】【分析】如图建立空间直角坐标系,可证明1A D ⊥平面11ABC D ,故平面11ABC D 的一个法向量为:1DA u u u u r ,利用点到平面距离的向量公式即得解.【详解】如图建立空间直角坐标系,则:1111(,,1),(0,0,1),(1,0,0),(1,1,0),(0,1,1)22O D A B C 111(,,0)22OD ∴=--u u u u r 由于AB ⊥平面111,ADD A AD ⊂平面11ADD A1AB A D ∴⊥,又11AD A D ⊥,1AB AD I1A D ∴⊥平面11ABC D 故平面11ABC D 的一个法向量为:1(1,0,1)DA =u u u u r O ∴到平面11ABC D 的距离为:1111||4||OD DA d DA ⋅===u u u u r u u u u r u u u u r 故选:B【点睛】本题考查了点到平面距离的向量表示,考查了学生空间想象,概念理解,数学运算的能力,属于中档题.4.已知平面α⊥平面β,l αβ=I ,a α⊂,b β⊂,则“a l ⊥”是“a b ⊥r r ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】【分析】 根据面面垂直的性质定理,以及充要条件的判定方法,即可作出判定,得到答案.【详解】由题意知,平面α⊥平面β,,,l a b αβαβ⋂=⊂⊂,当a l ⊥时,利用面面垂直的性质定理,可得a b ⊥r r 成立,反之当a b ⊥r r时,此时a 与l 不一定是垂直的, 所以a l ⊥是a b ⊥r r 的充分不必要条件,故选A.【点睛】本题主要考查了充要条件的判定,其中解答中熟记线面位置关系的判定定理与性质定理,以及充要条件的判定方法是解答的关键,着重考查了推理与论证能力,属于基础题.5.如图,在正方体1111ABCD A B C D - 中,,E F 分别为111,B C C D 的中点,点P 是底面1111D C B A 内一点,且//AP 平面EFDB ,则1tan APA ∠ 的最大值是( )A .2B .2C .22D .32【答案】C【解析】 分析:连结AC 、BD ,交于点O ,连结A 1C 1,交EF 于M ,连结OM ,则AO =PPM ,从而A 1P=C 1M ,由此能求出tan ∠APA 1的最大值.详解:连结AC 、BD ,交于点O ,连结A 1C 1,交EF 于M ,连结OM ,设正方形ABCD ﹣A 1B 1C 1D 1中棱长为1,∵在正方形ABCD ﹣A 1B 1C 1D 1中,E ,F 分别为B 1C 1,C 1D 1的中点, 点P 是底面A 1B 1C 1D 1内一点,且AP ∥平面EFDB ,∴AO =PPM ,∴A 1P=C 1M=244AC =, ∴tan ∠APA 1=11AA A P 242. ∴tan ∠APA 1的最大值是2.故选D .点睛:本题考查角的正切值的最大值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,考查运算求解能力,是中档题.6.在正方体1111ABCD A B C D -中,点E ∈平面11AA B B ,点F 是线段1AA 的中点,若1D E CF ⊥,则当EBC V 的面积取得最小值时,EBC ABCDS S =△( ) A 25 B .12 C 5 D 5 【答案】D【解析】【分析】根据1D E CF ⊥分析出点E 在直线1B G 上,当EBC V 的面积取得最小值时,线段EB 的长度为点B 到直线1B G 的距离,即可求得面积关系.【详解】先证明一个结论P :若平面外的一条直线l 在该平面内的射影垂直于面内的直线m ,则l ⊥m ,即:已知直线l 在平面内的射影为直线OA ,OA ⊥OB ,求证:l ⊥OB .证明:直线l 在平面内的射影为直线OA ,不妨在直线l 上取点P ,使得PA ⊥OB ,OA ⊥OB ,OA ,PA 是平面PAO 内两条相交直线, 所以OB ⊥平面PAO ,PO ⊂平面PAO ,所以PO ⊥OB ,即l ⊥OB .以上这就叫做三垂线定理.如图所示,取AB 的中点G ,正方体中:1111A C D B ⊥,CF 在平面1111D C B A 内的射影为11A C ,由三垂线定理可得:11CF D B ⊥,CF 在平面11A B BA 内的射影为FB ,1FB B G ⊥由三垂线定理可得:1CF B G ⊥,1B G 与11D B 是平面11B D G 内两条相交直线, 所以CF ⊥平面11B D G ,∴当点E 在直线1B G 上时,1D E CF ⊥,设BC a =,则1122EBC S EB BC EB a =⨯⨯=⨯⨯△, 当EBC V 的面积取最小值时, 线段EB 的长度为点B 到直线1B G 的距离,∴线段EB 5,2152510EBCABCDaaSS a⨯⨯∴==△.故选:D.【点睛】此题考查立体几何中的轨迹问题,通过位置关系讨论面积关系,关键在于熟练掌握线面垂直关系的判定和平面图形面积的计算.7.某四棱锥的三视图如图所示,则该四棱锥的体积等于()A.23B.13C.12D.34【答案】B【解析】分析:先还原几何体,再根据锥体体积公式求结果.详解:几何体如图S-ABCD,高为1,底面为平行四边形,所以四棱锥的体积等于21111=33⨯⨯,选B.点睛:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断求解.8.设m 、n 是两条不同的直线,α、β是两个不同的平面,给出下列四个命题: ①若m α⊥,//n α,则m n ⊥;②若//αβ,m α⊥,则m β⊥;③若//m α,//n α,则//m n ;④若m α⊥,αβ⊥,则//m β.其中真命题的序号为( )A .①和②B .②和③C .③和④D .①和④ 【答案】A【解析】【分析】逐一分析命题①②③④的正误,可得出合适的选项.【详解】对于命题①,若//n α,过直线n 作平面β,使得a αβ⋂=,则//a n ,m α⊥Q ,a α⊂,m a ∴⊥,m n ∴⊥,命题①正确;对于命题②,对于命题②,若//αβ,m α⊥,则m β⊥,命题②正确;对于命题③,若//m α,//n α,则m 与n 相交、平行或异面,命题③错误; 对于命题④,若m α⊥,αβ⊥,则m β⊂或//m β,命题④错误.故选:A.【点睛】本题考查有关线面、面面位置关系的判断,考查推理能力,属于中等题.9.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).A .130B .140C .150D .160【答案】D【解析】 设直四棱柱1111ABCD A B C D -中,对角线119,15AC BD ==, 因为1A A ⊥平面,ABCD AC Ì,平面ABCD ,所以1A A AC ⊥,在1Rt A AC ∆中,15A A =,可得AC ==同理可得BD ===,因为四边形ABCD 为菱形,可得,AC BD 互相垂直平分,所以8AB ===,即菱形ABCD 的边长为8, 因此,这个棱柱的侧面积为1()485160S AB BC CD DA AA =+++⨯=⨯⨯=, 故选D.点睛:本题考查了四棱锥的侧面积的计算问题,解答中通过给出的直四棱柱满足的条件,求得底面菱形的边长,进而得出底面菱形的底面周长,即可代入侧面积公式求得侧面积,着重考查了学生分析问题和解答问题的能力,以及空间想象能力,其中正确认识空间几何体的结构特征和线面位置关系是解答的关键.10.已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点).设SE 与BC 所成的角为α,SE 与平面ABC D 所成的角为β,二面角S-AB-C 的平面角为γ,则( )A .αβγ≤≤B .βαγ≤≤C .a βγ≤≤D .γβα≤≤【答案】C【解析】【分析】 根据题意,分别求出SE 与BC 所成的角α、SE 与平面ABC D 所成的角β、二面角S-AB-C 的平面角γ的正切值,由正四棱锥的线段大小关系即可比较大小.【详解】四棱锥S ABCD -的底面是正方形,侧棱长均相等,所以四棱锥为正四棱锥,(1)过E 作//EF BC ,交CD 于F ,过底面中心O 作ON EF ⊥交EF 于N ,连接SN ,取AB 中点M ,连接OM ,如下图(1)所示:则tan SN SN NE OMα==;(2)连接,OE 如下图(2)所示,则tan SO OE β=;(3)连接OM ,则tan SO OMγ= ,如下图(3)所示:因为,,SN SO OE OM ≥≥所以tan tan tan αγβ≥≥,而,,αβγ均为锐角,所以,αγβ≥≥故选:C. 【点睛】本题考查了异面直线夹角、直线与平面夹角、平面与平面夹角的求法,属于中档题.11.设α,β是两个不同的平面,m 是直线且m α⊂.“m βP ”是“αβP ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】 试题分析:,得不到,因为可能相交,只要和的交线平行即可得到;,,∴和没有公共点,∴,即能得到;∴“”是“”的必要不充分条件.故选B .考点:必要条件、充分条件与充要条件的判断.【方法点晴】考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念,属于基础题;并得不到,根据面面平行的判定定理,只有内的两相交直线都平行于,而,并且,显然能得到,这样即可找出正确选项.12.我国南北朝时期数学家祖暅,提出了著名的祖暅原理:“缘幂势既同,则积不容异也”.“幂”是截面积,“势”是几何体的高,意思是两等高几何体,若在每一等高处的截面积都相等,则两几何体体积相等.已知某不规则几何体与右侧三视图所对应的几何体满足“幂势既同”,其中俯视图中的圆弧为14圆周,则该不规则几何体的体积为( )A .12π+B .136π+ C .12π+D .1233π+ 【答案】B 【解析】 【分析】根据三视图知该几何体是三棱锥与14圆锥体的所得组合体,结合图中数据计算该组合体的体积即可. 【详解】解:根据三视图知,该几何体是三棱锥与14圆锥体的组合体, 如图所示;则该组合体的体积为21111111212323436V ππ=⨯⨯⨯⨯+⨯⨯⨯=+; 所以对应不规则几何体的体积为136π+. 故选B .【点睛】本题考查了简单组合体的体积计算问题,也考查了三视图转化为几何体直观图的应用问题,是基础题.13.设,为两条不同的直线,,为两个不同的平面,下列命题中,正确的是( ) A .若,与所成的角相等,则B .若,,则C .若,,则D .若,,则【答案】C 【解析】试题分析:若,与所成的角相等,则或,相交或,异面;A 错. 若,,则或,B 错. 若,,则正确. D .若,,则,相交或,异面,D 错考点:直线与平面,平面与平面的位置关系14.设三棱锥V ﹣ABC 的底面是A 为直角顶点的等腰直角三角形,VA ⊥底面ABC ,M 是线段BC 上的点(端点除外),记VM 与AB 所成角为α,VM 与底面ABC 所成角为β,二面角A ﹣VC ﹣B 为γ,则( ) A .2παββγ+<,> B .2παββγ+<,<C .2παββγ+>,>D .2παββγ+>,<【答案】C 【解析】【分析】由最小角定理得αβ>,由已知条件得AB ⊥平面VAC ,过A 作AN VC ⊥,连结BN ,得BNA γ=∠,推导出BVA γ>∠,由VA ⊥平面ABC ,得VMA β=∠,推导出MVA γ>∠,从而2πβγ+>,即可得解.【详解】由三棱锥V ABC -的底面是A 为直角顶点的等腰直角三角形,VA ⊥平面ABC ,M 是线段BC 上的点(端点除外),记VM 与AB 所成角为α,VM 与底面ABC 所成角为β,二面角A VC B --为γ,由最小角定理得αβ>,排除A 和B ; 由已知条件得AB ⊥平面VAC ,过A 作AN VC ⊥,连结BN ,得BNA γ=∠, ∴tan tan ABBNA ANγ=∠=, 而tan ABBVA AV∠=,AN AV <,∴tan tan BNA BVA ∠>∠, ∴BVA γ>∠,∵VA ⊥平面ABC ,∴VMA β=∠, ∴2MVA πβ+∠=,∵tan AMMVA AV∠=,AB AM >,∴tan tan BVA MVA ∠>∠, ∴MVA γ>∠,∴2πβγ+>.故选:C .【点睛】本题查了线线角、线面角、二面角的关系与求解,考查了空间思维能力,属于中档题.15.一个几何体的三视图如图所示,其中正视图和俯视图中的四边形是边长为2的正方形,则该几何体的表面积为( )A .132πB .7πC .152πD .8π【答案】B 【解析】 【分析】画出几何体的直观图,利用三视图的数据求解表面积即可. 【详解】由题意可知:几何体是一个圆柱与一个14的球的组合体,球的半径为:1,圆柱的高为2, 可得:该几何体的表面积为:22141212274ππππ⨯⨯+⨯⨯+⨯=.故选:B . 【点睛】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.16.在三棱锥P ABC -中,PA ⊥平面ABC ,2π,43BAC AP ∠==,23AB AC ==P ABC -的外接球的表面积为( )A .32πB .48πC .64πD .72π【答案】C 【解析】 【分析】先求出ABC V 的外接圆的半径,然后取ABC V 的外接圆的圆心G ,过G 作//GO AP ,且122GO AP ==,由于PA ⊥平面ABC ,故点O 为三棱锥P ABC -的外接球的球心,OA 为外接球半径,求解即可. 【详解】在ABC V 中,23AB AC ==,23BAC π∠=,可得6ACB π∠=, 则ABC V 的外接圆的半径2323π2sin 2sin 6AB r ACB ===,取ABC V 的外接圆的圆心G ,过G 作//GO AP ,且122GO AP ==, 因为PA ⊥平面ABC ,所以点O 为三棱锥P ABC -的外接球的球心, 则222OA OG AG =+,即外接球半径()222234R =+=,则三棱锥P ABC -的外接球的表面积为24π4π1664πR =⨯=. 故选C.【点睛】本题考查了三棱锥的外接球表面积的求法,考查了学生的空间想象能力,属于中档题.17.某几何体的三视图如图所示,三个视图中的曲线都是圆弧,则该几何体的体积为( )A .152πB .12πC .112π D .212π【答案】A 【解析】【分析】由三视图可知,该几何体为由18的球体和14的圆锥体组成,结合三视图中的数据,利用球和圆锥的体积公式求解即可. 【详解】由三视图可知,该几何体为由18的球体和14的圆锥体组成, 所以所求几何体的体积为11+84V V V =球圆锥,因为31149=3=8832V ππ⨯⨯球, 221111=34344312V r h πππ⨯⨯=⨯⨯⨯=圆锥, 所以915322V πππ=+=,即所求几何体的体积为152π. 故选:A 【点睛】本题考查三视图还原几何体及球和圆锥的体积公式;考查学生的空间想象能力和运算求解能力;三视图正确还原几何体是求解本题的关键;属于中档题、常考题型.18.在空间中,下列命题正确的是A .如果一个角的两边和另一角的两边分别平行,那么这两个角相等B .两条异面直线所成的有的范围是0,2π⎡⎤⎢⎥⎣⎦C .如果两个平行平面同时与第三个平面相交,那么它们的交线平行D .如果一条直线和平面内的一条直线平行,那么这条直线和这个平面平行 【答案】C 【解析】 【分析】根据两个角可能互补判断A ;根据两条异面直线所成的角不能是零度,判断B ;根据根据两个平面平行的性质定理知判断C ;利用直线与这个平面平行或在这个平面内判断D. 【详解】如果一个角的两边和另一个角的两边分别平行,这两个角相等或互补,故A 不正确; 两条异面直线所成的角不能是零度,故B 不正确; 根据两个平面平行的性质定理知C 正确;如果一条直线和一个平面内的一条直线平行,那么这条直线与这个平面平行或在这个平面内,故D 不正确,综上可知只有C 的说法是正确的,故选C. 【点睛】本题考查平面的基本性质及推论,考查等角定理,考查两个平面平行的性质定理,考查异面直线所成的角的取值范围,考查直线与平面平行的判断定理,意在考查对基础知识的掌握情况,本题是一个概念辨析问题.19.已知直三棱柱111ABC A B C -的所有棱长都相等,M 为11A C 的中点,则AM 与1BC 所成角的余弦值为( ) A .15 B .53C .64D .104【答案】D 【解析】 【分析】取AC 的中点N ,连接1C N ,则1//AM C N ,所以异面直线AM 与1BC 所成角就是直线AM 与1C N 所成角,在1BNC ∆中,利用余弦定理,即可求解.【详解】由题意,取AC 的中点N ,连接1C N ,则1//AM C N , 所以异面直线AM 与1BC 所成角就是直线AM 与1C N 所成角, 设正三棱柱的各棱长为2,则115,22,3C N BC BN ===, 设直线AM 与1C N 所成角为θ,在1BNC ∆中,由余弦定理可得222(5)(22)(3)10cos 2522θ+-==⨯⨯, 即异面直线AM 与1BC 所成角的余弦值为10,故选D .【点睛】本题主要考查了异面直线所成角的求解,其中解答中把异面直线所成的角转化为相交直线所成的角是解答的关键,着重考查了推理与运算能力,属于基础题.20.一个各面均为直角三角形的四面体有三条棱长为2,则该四面体外接球的表面积为( ) A .6πB .12πC .32πD .48π【答案】B【解析】【分析】先作出几何图形,确定四个直角和边长,再找到外接球的球心和半径,再计算外接球的表面积.【详解】由题得几何体原图如图所示,其中SA⊥平面ABC,BC⊥平面SAB,SA=AB=BC=2,所以2,3SC=设SC中点为O,则在直角三角形SAC中,3,在直角三角形SBC中,OB=13 2SC=所以3所以点O3所以四面体外接球的表面积为43=12ππ.故选:B【点睛】本题主要考查四面体的外接球的表面积的计算,意在考查学生对这些知识的理解掌握水平和分析推理的能力.。
十年真题(-2019)高考数学真题分类汇编 专题09 立体几何与空间向量选择填空题 理(含解析)
专题09立体几何与空间向量选择填空题历年考题细目表题型年份考点试题位置单选题2019表面积与体积2019年新课标1理科12单选题2018几何体的结构特征2018年新课标1理科07单选题2018表面积与体积2018年新课标1理科12单选题2017三视图与直观图2017年新课标1理科07单选题2016三视图与直观图2016年新课标1理科06单选题2016空间向量在立体几何中的应用2016年新课标1理科11单选题2015表面积与体积2015年新课标1理科06单选题2015三视图与直观图2015年新课标1理科11单选题2014三视图与直观图2014年新课标1理科12单选题2013表面积与体积2013年新课标1理科06单选题2013三视图与直观图2013年新课标1理科08单选题2012三视图与直观图2012年新课标1理科07单选题2012表面积与体积2012年新课标1理科11单选题2011三视图与直观图2011年新课标1理科06单选题2010表面积与体积2010年新课标1理科10填空题2017表面积与体积2017年新课标1理科16填空题2011表面积与体积2011年新课标1理科15填空题2010三视图与直观图2010年新课标1理科14历年高考真题汇编1.【2019年新课标1理科12】已知三棱锥P﹣ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为()A.8πB.4πC.2πD.π【解答】解:如图,由PA=PB=PC,△ABC是边长为2的正三角形,可知三棱锥P﹣ABC为正三棱锥,则顶点P在底面的射影O为底面三角形的中心,连接BO并延长,交AC于G,则AC⊥BG,又PO⊥AC,PO∩BG=O,可得AC⊥平面PBG,则PB⊥AC,∵E,F分别是PA,AB的中点,∴EF∥PB,又∠CEF=90°,即EF⊥CE,∴PB⊥CE,得PB⊥平面PAC,∴正三棱锥P﹣ABC的三条侧棱两两互相垂直,把三棱锥补形为正方体,则正方体外接球即为三棱锥的外接球,其直径为D.半径为,则球O的体积为.故选:D.2.【2018年新课标1理科07】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3 D.2【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:2.故选:B.3.【2018年新课标1理科12】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.【解答】解:正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:所示的正六边形平行的平面,并且正六边形时,α截此正方体所得截面面积的最大,此时正六边形的边长,α截此正方体所得截面最大值为:6.故选:A.4.【2017年新课标1理科07】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.16【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B.5.【2016年新课标1理科06】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是( )A.17πB.18πC.20πD.28π【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:,R=2.它的表面积是:4π•2217π.故选:A.6.【2016年新课标1理科11】平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.7.【2015年新课标1理科06】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛B.22斛C.36斛D.66斛【解答】解:设圆锥的底面半径为r,则r=8,解得r,故米堆的体积为π×()2×5,∵1斛米的体积约为1.62立方,∴1。
专题09 利用空间向量求空间距离(解析版)
2020年高考数学立体几何突破性讲练09利用空间向量求空间距离一、考点传真:能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用. 二、知识点梳理:空间距离的几个结论(1)点到直线的距离:设过点P 的直线l 的方向向量为单位向量n ,A 为直线l 外一点,点A 到直线l 的距离d =|P A →|2-|P A →·n |2. (2)点到平面的距离:设P 为平面α内的一点,n 为平面α的法向量,A 为平面α外一点,点A 到平面α的距离d =|P A →·n ||n |.(3)线面距离、面面距离都可以转化为点到面的距离. 三、例题:例 1.(2018天津)如图,AD BC ∥且2AD BC =,AD CD ⊥,EG AD ∥且EG AD =,CD FG ∥且2CD FG =,DG ⊥平面ABCD ,2DA DC DG ===.(1)若M 为CF 的中点,N 为EG 的中点,求证:MN ∥平面CDE ; (2)求二面角E BC F --的正弦值;(3)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60,求线段DP 的长.N ABC D EF G M例2. (2014新课标2)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D AE C --为60°,AP =1,ADE ACD -的体积.例3.(2013天津) 如图, 四棱柱1111ABCD A B C D -中,侧棱1A A ⊥底面ABCD ,AB DC ∥,AB AD ⊥,1AD CD ==,12AA AB ==,E 为棱1AA 的中点.1A 1(Ⅰ)证明11B C CE ⊥;(Ⅱ)求二面角11B CE C --的正弦值;(Ⅲ)设点M 在线段1C E 上;且直线AM 与平面11ADD A , 求线段AM 的长.例4.(2012福建)如图,在长方体1111ABCD A B C D -中11AA AD ==,E 为CD 中点.(Ⅰ)求证:11B E AD ⊥;(Ⅱ)在棱1AA 上是否存在一点P ,使得DP ∥平面1B AE ?若存在,求AP 的行;若存在,求AP 的长;若不存在,说明理由.(Ⅲ)若二面角11A B E A --的大小为30°,求AB 的长.四、巩固练习:1.如图,已知圆柱OO 1底面半径为1,高为π,平面ABCD 是圆柱的一个轴截面,动点M 从点B 出发沿着圆柱的侧面到达点D ,其运动路程最短时在侧面留下曲线Γ.将轴截面ABCD 绕着轴OO 1逆时针旋转θ(0<θ<π)后得到平面A 1B 1C 1D 1,边B 1C 1与曲线Γ相交于点P .(1)求曲线Γ的长度;(2)当θ=π2时,求点C 1到平面APB 的距离.2.如图,在多面体ABCDE 中,平面ABD ⊥平面ABC ,AB ⊥AC ,AE ⊥BD ,DE ∥12AC ,AD =BD =1.(1)求AB 的长;(2)已知2≤AC ≤4,求点E 到平面BCD 的距离的最大值.3.如图,三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD .(1)证明:DC 1⊥BC ;(2)设AA 1=2,A 1B 1的中点为P ,求点P 到平面BDC 1的距离.4.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 为直角梯形,90CDA BAD ∠=∠=︒,2AB AD DC ===E ,F分别为PD ,PB 的中点.(1)求证://CF 平面PAD ;(2)若截面CEF 与底面ABCD 所成锐二面角为4π,求PA 的长度.5.如图,在四棱锥P -ABCD 中,侧面P AD 是边长为2的正三角形,且与底面垂直,底面ABCD 是∠ABC =60°的菱形,M 为PC 的中点.(1)求证:PC ⊥AD ;(2)求点D 到平面P AM 的距离.6.如图,四棱锥P-ABCD 的底面ABCD 是矩形,PA ⊥平面ABCD,PA=AD=2,BD=2.1(1)求证:BD⊥平面PAC;(2)求二面角P-CD-B的大小;(3)求点C到平面PBD的距离.。
多选题009(立体几何与空间向量30道题+详细解析)
第9模块:立体几何与空间向量多选题(每题5分,选不全得3分,总计100分;建议完成后统计自己的正答率)1.如图,正方体1111ABCD A B C D -的棱长为1,则下列四个命题正确的是( )A .直线BC 与平面11ABC D 所成的角等于4πB .点C 到面11ABCD 的距离为22C .两条异面直线1D C 和1BC 所成的角为4π D .三棱柱1111AA D BB C -外接球半径为322.已知菱形ABCD 中,∠BAD =60°,AC 与BD 相交于点O .将△ABD 沿BD 折起,使顶点A 至点M ,在折起的过程中,下列结论正确的是( )A .BD ⊥CMB .存在一个位置,使△CDM 为等边三角形C .DM 与BC 不可能垂直D .直线DM 与平面BCD 所成的角的最大值为60°3.三棱锥P−ABC 的各顶点都在同一球面上,PC ⊥底面ABC ,若1PC AC ==,2AB =,且60BAC ∠=︒,则下列说法正确的是( )A .PAB ∆是钝角三角形B .此球的表面积等于5πC .BC ⊥平面P ACD .三棱锥A−PBC 的体积为324.沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时.如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8cm ,细沙全部在上部时,其高度为圆锥高度的23(细管长度忽略不计).假设该沙漏每秒钟漏下30.02cm 的沙,且细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆.以下结论正确的是( )A .沙漏中的细沙体积为3102481cm π B .沙漏的体积是3128cm πC .细沙全部漏入下部后此锥形沙堆的高度约为2.4cmD .该沙漏的一个沙时大约是1985秒( 3.14π≈)5.如图,正方体1111ABCD A B C D -的棱长为1,动点E 在线段11A C 上,F 、M 分别是AD 、CD 的中点,则下列结论中正确的是( )A .11//FM ACB .BM ⊥平面1CC FC .存在点E ,使得平面//BEF 平面11CCD D D .三棱锥B CEF -的体积为定值6.在棱长为1的正方体1111ABCD A B C D -中,点M 在棱1CC 上,则下列结论正确的是( )A .直线BM 与平面11ADD A 平行B .平面1BMD 截正方体所得的截面为三角形C .异面直线1AD 与11A C 所成的角为3π D .1MB MD +的最小值为5 7.如图,在棱长均相等的四棱锥P ABCD -中, O 为底面正方形的中心, M ,N 分别为侧棱PA ,PB 的中点,有下列结论正确的有:( )A .PD ∥平面OMNB .平面PCD ∥平面OMNC .直线PD 与直线MN 所成角的大小为90 D .ON PB ⊥8.在正方体1111ABCD A B C D -中,N 为底面ABCD 的中心,P 为线段11A D 上的动点(不包括两个端点),M 为线段AP 的中点,则( )A .CM 与PN 是异面直线B .CM PN >C .平面PAN ⊥平面11BDD B D .过P ,A ,C 三点的正方体的截面一定是等腰梯形9.等腰直角三角形直角边长为1 ,现将该三角形绕其某一边旋转一周 ,则所形成的几何体的表面积可以为( )A .2πB .()12π+C .22πD .()22π+ 10.若将正方形ABCD 沿对角线BD 折成直二面角,则下列结论中正确的是( )A .异面直线AB 与CD 所成的角为60︒B .AC BD ⊥ C .ACD ∆是等边三角形 D .二面角A BC D --的平面角正切值是211.已知A ,B ,C 三点不共线,O 为平面ABC 外的任一点,则“点M 与点A ,B ,C 共面”的充分条件的是( )A .2OM OA OB OC =--B .OM OA OB OC =+- C .1123OM OA OB OC =++D .111236OM OA OB OC =++ 12.已知菱形ABCD 中,60BAD ∠=︒,AC 与BD 相交于点O ,将ABD △沿BD 折起,使顶点A 至点M ,在折起的过程中,下列结论正确的是( )A .BD CM ⊥B .存在一个位置,使CDM 为等边三角形C .DM 与BC 不可能垂直D .直线DM 与平面BCD 所成的角的最大值为60︒13.如图,一个结晶体的形状为平行六面体1111ABCD A B C D -,其中,以顶点A 为端点的三条棱长都相等,且它们彼此的夹角都是60°,下列说法中正确的是( )A .()()2212AA AB AD AC ++= B .()10AC AB AD ⋅-=C .向量1B C 与1AA 的夹角是60°D .1BD 与AC 所成角的余弦值为6 14.如图,正方形ABCD 中,EF 、分别是AB BC 、的中点将,,ADE CDF BEF ∆分别沿DE DF EF 、、折起,使、、A B C 重合于点P .则下列结论正确的是( )A .PD EF ⊥B .平面PDE PDF ⊥平面C .二面角P EFD --的余弦值为13 D .点P 在平面DEF 上的投影是DEF ∆的外心15.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点,E F ,且12EF =,则下列结论中错误的是( )A .AC AF ⊥B .//EF 平面ABCDC .三棱锥A BEF -的体积为定值D .AEF ∆的面积与BEF 的面积相等16.下列命题中正确的是( ) A .,,,A B M N 是空间中的四点,若,,BA BM BN 不能构成空间基底,则,,,A B M N 共面B .已知{},,a b c 为空间的一个基底,若m a c =+,则{},,a b m 也是空间的基底C .若直线l 的方向向量为(1,0,3)e =,平面α的法向量为2(2,0,)3n =-,则直线//l αD .若直线l 的方向向量为(1,0,3)e =,平面α的法向量为(2,0,2)n =-,则直线l 与平面α所成角的正弦值为55 17.如图,在正方体1111ABCD A B C D -中,点P 在线段1B C 上运动,则 ( )A .直线1BD ⊥平面11AC DB .三棱锥11P ACD -的体积为定值C .异面直线AP 与1AD 所成角范围是[]45,90︒︒ D .直线1C P 与平面11AC D 所成角的正弦最大值为63 18.下列选项正确的为( )A .已知直线1l :()()2110a x a y ++--=,2l :()()12320a x a y -+++=,则12l l ⊥的充分不必要条件是1a =B .命题“若数列{}2n a 为等比数列,则数列{}n a 为等比数列”是假命题 C .棱长为a 正方体1111ABCD A B C D -中,平面11AC D 与平面1ACB 距离为33a D .已知P 为抛物线22y px =上任意一点且(),0M m ,若PM OM ≥恒成立,则(],m p ∈-∞19.在四面体P ABC -中,以上说法正确的有( )A .若1233AD AC AB =+,则可知3BC BD = B .若Q 为ABC ∆的重心,则111333PQ PA PB PC =++ C .若0PA BC ⋅=,0PC AB ⋅=,则0PB AC ⋅=D .若四面体P ABC -各棱长都为2,M ,N 分别为PA ,BC 的中点,则1MN =20.给出下列命题,其中正确命题有( )A .空间任意三个不共面的向量都可以作为一个基底B .已知向量//a b ,则,a b 与任何向量都不能构成空间的一个基底C .,,,A B M N 是空间四点,若,,BA BM BN 不能构成空间的一个基底,那么,,,A B M N 共面D .已知向量{},,a b c 组是空间的一个基底,若m a c =+,则{},,a b m 也是空间的一个基底21.正方体1111ABCD A B C D -的棱长为2,,,E F G 分别为11,,BC CC BB 的中点,则( )A .直线1D D 与直线AF 垂直B .直线1A G 与平面AEF 平行C .平面AEF 截正方体所得的截面面积为92D .点C 与点G 到平面AEF 的距离相等22.正方体1111ABCD A B C D -的棱长为1,,,E F G 分别为11,,BC CC BB 的中点.则( )A .直线1D D 与直线AF 垂直B .直线1A G 与平面AEF 平行C .平面AEF 截正方体所得的截面面积为98D .点C 和点G 到平面AEF 的距离相等 23.如图,梯形ABCD 中,//AD BC ,1AD AB ==,AD AB ⊥,45BCD ∠=︒,将ABD ∆沿对角线BD 折起.设折起后点A 的位置为A ',并且平面A BD '⊥平面BCD .给出下面四个命题正确的:()A .A D BC '⊥B .三棱锥A BCD '-的体积为22C .CD ⊥平面A BD ' D .平面A BC '⊥平面A DC ' 24.如图,PA 垂直于以AB 为直径的圆所在的平面,点C 是圆周上异于A ,B 的任一点,则下列结论中正确..的是( )A .PB AC ⊥ B .PC BC ⊥ C .AC ⊥平面PBCD .平面PAB ⊥平面PBC E.平面PAC ⊥平面PBC25.如图,矩形ABCD 中,M 为BC 的中点,将ABM 沿直线AM 翻折成1AB M ,连结1B D ,N 为1B D 的中点,则在翻折过程中,下列说法中所有正确的是( )A .存在某个位置,使得CN AB ⊥ B .翻折过程中,CN 的长是定值C .若AB BM =,则1AM BD ⊥D .若1AB BM ==,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -的外接球的表面积是4π 26.已知正四棱柱1111ABCD A B C D -的底面边长为2,侧棱11AA =,P 为上底面1111D C B A 上的动点,给出下列四个结论中正确结论为( )A .若3PD =,则满足条件的P 点有且只有一个B .若3PD =,则点P 的轨迹是一段圆弧C .若PD ∥平面1ACB ,则DP 长的最小值为2D .若PD ∥平面1ACB ,且3PD =,则平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形的面积为94π 27.如图,矩形ABCD ,M 为BC 的中点,将ABM ∆沿直线AM 翻折成1AB M ∆,连接1B D ,N 为1B D 的中点,则在翻折过程中,下列说法中所有正确的是( )A .存在某个位置,使得1CN AB ⊥;B .翻折过程中,CN 的长是定值;C .若AB BM =,则1AM BD ⊥;D .若1AB BM ==,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -的外接球的表面积是4π. 28.已知四棱锥P ABCD -,底面ABCD 为矩形,侧面PCD ⊥平面ABCD ,23BC =26CD PC PD ===.若点M 为PC 的中点,则下列说法正确的为( )A .BM ⊥平面PCDB .//PA 面MBDC .四棱锥M ABCD -外接球的表面积为36π D .四棱锥M ABCD -的体积为629.正方体1111ABCD A B C D -的棱长为2,已知平面1AC α⊥,则关于α截此正方体所得截面的判断正确的是( )A .截面形状可能为正三角形B .截面形状可能为正方形C .截面形状可能为正六访形D .截面面积最大值为3330.如图1,点E 为正方形ABCD 边BC 上异于点,B C 的动点,将ABE ∆沿AE 翻折,得到如图2所示-,且平面BAE⊥平面AECD,点F为线段BD上异于点,B D的动点,则在四棱锥的四棱锥B AECD-中,下列说法正确的有( )B AECDA.直线BE与直线CF必不在同一平面上B.存在点E使得直线BE⊥平面DCEC.存在点F使得直线CF与平面BAE平行D.存在点E使得直线BE与直线CD垂直第9模块:立体几何与空间向量 参考答案1.ABD 【解析】根据线面角的定义及求法,点面距的定义,异面直线所成角的定义及求法,三棱柱的外接球的半径求法,即可判断各选项的真假.【详解】正方体1111ABCD A B C D -的棱长为1,对于A ,直线BC 与平面11ABC D 所成的角为14CBC π∠=,故选项A 正确;对于B ,因为1B C ⊥面11ABC D ,点C 到面11ABC D 的距离为1B C 长度的一半,即22h =,故选项B 正确;对于C ,因为11//BC AD ,所以异面直线1D C 和1BC 所成的角为1AD C ∠,而1AD C 为等边三角形,故两条异面直线1D C 和1BC 所成的角为3π,故选项C 错误;对于D ,因为11111,,A A A B A D 两两垂直,所以三棱柱1111AA D BB C -外接球也是正方体1111ABCD A B C D -的外接球,故222111322r ++==,故选项D 正确.故选:ABD .【点睛】本题主要考查线面角的定义以及求法,点面距的定义以及求法,异面直线所成角的定义以及求法,三棱柱的外接球的半径求法的应用,属于基础题.2.ABD 【解析】【分析】画出图形,利用直线与直线的位置关系,直线与平面的位置关系判断选项的正误即可.【详解】对A ,菱形ABCD 中,60BAD ∠=︒,AC 与BD 相交于点O .将ABD ∆沿BD 折起,使顶点A 至点M ,如图:取BD 的中点E ,连接ME ,EC ,可知ME BD ⊥,EC BD ⊥,所以BD ⊥平面MCE ,可知MC BD ⊥,故A 正确;对B ,由题意可知AB BC CD DA BD ====,三棱锥是正四面体时,CDM ∆为等边三角形,故B 正确; 对C ,三棱锥是正四面体时,DM 与BC 垂直,故C 不正确;对D ,平面BDM 与平面BDC 垂直时,直线DM 与平面BCD 所成的角的最大值为60︒,故D 正确. 故选:ABD .【点睛】本题考查空间几何体的直线与直线、直线与平面的位置关系的综合判断、命题的真假的判断,考查转化与化归思想,考查空间想象能力.3.BC 【解析】【分析】根据余弦定理可得底面为直角三角形,计算出三棱锥的棱长即可判断A ,找到外接球的球心求出半径即可判断B ,根据线面垂直判定定理可判断C ,根据椎体的体积计算公式可判断D .【详解】如图,在底面三角形ABC 中,由1AC =,2AB =,60BAC ∠=︒,利用余弦定理可得:2211221232BC =+-⨯⨯⨯=∴222AC BC AB +=,即AC BC ⊥,由于PC ⊥底面ABC ,∴PC AC ⊥,PC BC ⊥,∵PC AC C =,∴BC ⊥平面P AC ,故C 正确;∴222PB PC BC AB =+==,由于2220PB AB PA +->,即PBA ∠为锐角,∴PAB ∆是顶角为锐角的等腰三角形,故A 错误;取D 为AB 中点,则D 为BAC 的外心,可得三角形ABC 外接圆的半径为1,设三棱锥P ABC -的外接球的球心为O ,连接OP ,则215122OP ⎛⎫=+= ⎪⎝⎭, 即三棱锥P ABC -的外接球的半径为52R =,∴三棱锥球的外接球的表面积等于2545ππ⨯=⎝⎭,故B 正确;11313132P ABC V -=⨯⨯=,故D 错误;故选:BC .【点睛】 本题主要考查了线面垂直的判定,椎体的体积计算以及三棱锥外接球体积的计算等等,属于中档题.4.ACD 【解析】【分析】A .根据圆锥的体积公式直接计算出细沙的体积;B .根据圆锥的体积公式直接计算出沙漏的体积;C .根据等体积法计算出沙堆的高度;D .根据细沙体积以及沙时定义计算出沙时.【详解】A .根据圆锥的截面图可知:细沙在上部时,细沙的底面半径与圆锥的底面半径之比等于细沙的高与圆锥的高之比,所以细沙的底面半径28433r cm =⨯=,所以体积23121641610243339381h V r cm πππ=⋅⋅=⋅⋅=; B .沙漏的体积2231125622483233h V h cm πππ⎛⎫=⨯⨯⨯⨯=⨯⨯⨯⨯= ⎪⎝⎭; C .设细沙流入下部后的高度为1h ,根据细沙体积不变可知:21102418132h h ππ⎛⎫⎛⎫=⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以1102416813h ππ=,所以1 2.4h cm ≈;D .因为细沙的体积为3102481cm π,沙漏每秒钟漏下30.02cm 的沙, 所以一个沙时为:10241024 3.14815019850.0281π⨯=⨯≈秒.故选:ACD.【点睛】本题考查圆锥体积有关的计算,涉及到新定义的问题,难度一般.解题的关键是对于圆锥这个几何体要有清晰的认识,同时要熟练掌握圆锥体积有关的计算公式. 5.ABD 【解析】【分析】对A,根据中位线的性质判定即可.对B,利用平面几何方法证明BM CF ⊥再证明BM ⊥平面1CC F 即可.对C,根据BF 与平面11CC D D 有交点判定即可.对D,根据三棱锥B CEF -以BCF 为底,且同底高不变,故体积不变判定即可.【详解】在A 中,因为,F M 分别是,AD CD 的中点,所以11////FM AC AC ,故A 正确;在B 中,因为tan 2BC BMC CM ∠==,tan 2CD CFD FD∠==,故BMC CFD ∠=∠, 故2BMC DCF CFD DCF π∠+∠=∠+∠=.故BM CF ⊥,又有1BM C C ⊥,所以BM ⊥平面1CC F ,故B 正确;在C 中,BF 与平面11CC D D 有交点,所以不存在点E ,使得平面//BEF 平面11CC D D ,故C 错误.在D 中,三棱锥B CEF -以面BCF 为底,则高是定值,所以三棱锥B CEF -的体积为定值,故D 正确.故选:ABD. 【点睛】本题主要考查了线面垂直平行的证明与判定,同时也考查了锥体体积等问题.属于中档题.6.ACD 【解析】【分析】根据线面平行,异面直线夹角,截面图形,线段最值的计算依次判断每个选项得到答案.【详解】如图所示:易知平面11//BCC B 平面11ADD A ,BM ⊂平面11BCC B ,故直线BM 与平面11ADD A 平行,A 正确;平面1BMD 截正方体所得的截面为1BMD N 为四边形,故B 错误;连接1BC ,1A B ,易知11//AD BC ,故异面直线1AD 与11A C 所成的角为11AC B ∠,1111A B AC BC ==,故113AC B π∠=,故C 正确;延长DC 到'B 使'1CB =,易知'BM B M =,故11'5MB MD D B +≥=,当M 为1CC 中点时等号成立,故D 正确;故选:ACD .【点睛】本题考查了异面直线夹角,截面图形,线面平行,最短距离,意在考查学生的空间想象能力和计算能力.7.ABD 【解析】【分析】选项A,利用线面平行的判定定理即可证明;选项B,先利用线面平行的判定定理证明CD ∥平面OMN ,再利用面面平行的判定定理即可证明;选项C ,平移直线,找到线面角,再计算;选项D,因为ON ∥PD ,所以只需证明PD ⊥PB ,利用勾股定理证明即可.【详解】选项A,连接BD ,显然O 为BD 的中点,又N 为PB 的中点,所以PD ∥ON,由线面平行的判定定理可得,PD ∥平面OMN ;选项B, 由M ,N 分别为侧棱PA ,PB 的中点,得MN ∥AB,又底面为正方形,所以MN ∥CD ,由线面平行的判定定理可得,CD ∥平面OMN,又选项A 得PD ∥平面OMN ,由面面平行的判定定理可得,平面PCD ∥平面OMN ;选项C,因为MN ∥CD ,所以∠ PDC 为直线PD 与直线MN 所成的角,又因为所有棱长都相等,所以∠ PDC=60,故直线PD 与直线MN 所成角的大小为60;选项D ,因底面为正方形,所以222AB AD BD +=,又所有棱长都相等,所以222PB PD BD +=,故PB PD ⊥,又PD ∥ON ,所以ON PB ⊥,故ABD 均正确.【点睛】解决平行关系基本问题的3个注意点(1)注意判定定理与性质定理中易忽视的条件,如线面平行的条件中线在面外易忽视.(2)结合题意构造或绘制图形,结合图形作出判断.(3)会举反例或用反证法推断命题是否正确.8.BCD 【解析】【分析】由,CN PM 交于点A 得共面,可判断A ,利用余弦定理把,CM PN 都用,AC AP 表示后可比较大小,证明AN 与平面11BDD B 后可得面面垂直,可判断C ,作出过P ,A ,C 三点的截面后可判断D .【详解】,,C N A 共线,即,CN PM 交于点A ,共面,因此,CM PN 共面,A 错误;记PAC θ∠=,则2222212cos cos 4PN AP AN AP AN AP AC AP AC θθ=+-⋅=+-⋅, 2222212cos cos 4CM AC AM AC AM AC AP AP AC θθ=+-⋅=+-⋅,又AP AC <, 22223()04CM PN AC AP -=->,22CM PN >,即CM PN >.B 正确; 由于正方体中,AN BD ⊥,1BB ⊥平面ABCD ,则1BB AN ⊥,1BB BD B ⋂=,可得AN ⊥平面11BB D D ,AN ⊂平面PAN ,从而可得平面PAN ⊥平面11BDD B ,C 正确;取11C D 中点K ,连接11,,KP KC AC ,易知11//PK A C ,又正方体中,11//AC AC ,∴//PK AC ,,PK AC 共面,PKCA 就是过P ,A ,C 三点的正方体的截面,它是等腰梯形.D 正确.故选:BCD.【点睛】本题考查共面,面面垂直,正方体的截面等问题,需根据各个知识点进行推理证明判断.难度较大.9.AB 【解析】【分析】分2种情况,一种是绕直角边,一种是绕斜边,分别求形成几何体的表面积.【详解】如果是绕直角边旋转,形成圆锥,圆锥底面半径为1,高为12, 所以所形成的几何体的表面积是)2212121S rl r πππππ=+=⨯⨯=.2,两个圆锥的母线都是直角三角形的直角边,母线长是1,所以写成的几何体的表面积222122S rl πππ=⨯=⨯⨯⨯=.综上可知形成几何体的表面积是()21π+或2π.故选:AB 【点睛】本题考查旋转体的表面积,意在考查空间想象能力和计算能力,属于基础题型. 10.ABCD 【解析】【分析】作出正方形ABCD 翻折后的立体几图形,再对选项进行逐个分析.【详解】如图所示,设正方形的边长为2,对A ,设三角形A 运动到'A ,连接AC 交BD 于O ,连'AA ,因为2'2'2AA AO AO =+=,所以'AA B ∆为正三角形,所以 异面直线AB 与CD 所成的角为60︒,故A 正确; 对B ,因为,,BD AO BD CO AO BO O ⊥⊥⋂=,所以BD ⊥平面AOC ,AC ⊂平面AOC ,所以AC BD ⊥,故B 正确;对C ,由A 选项的证明,同理可得2AC AD CD ===,所以可推理得ACD ∆是等边三角形,故C 正确;对D ,取BC 的中点M ,连接AM ,OM ,AB AD =,O 为BD 的中点,AO BD ∴⊥, 平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD BD =,AO ⊂平面ABD ,AO ∴⊥平面BCD ,BC ⊂平面BCD ,AO BC ∴⊥,OM BC ⊥,AO OM O =,BC ∴⊥平面AOM ,AM ⊂平面AOM ,AM BC ∴⊥,所以AMO ∠为二面角A BC D --的平面角,所以2tan 21AO AMO OM ∠===,故D 正确;故选:ABCD .【点睛】本题考查空间中图形的翻折问题、线面、面面位置关系、异面直线所成角、二面角等知识,考查转化与化归思想,考查空间想象能力和运算求解能力,求解时注意翻折前后的不变量.11.BD 【解析】【分析】根据“OM xOA yOB zOC =++时,若1x y z ++=则点M 与点,,A B C 共面”,分别判断各选项是否为充分条件.【详解】当MA mMB nMC =+时,可知点M 与点,,A B C 共面,所以()()MO OA m MO OB n MO OC +=+++,所以()1x y OM OA xOB yOC +-=-++,所以11111OA mOB nOC m n OM OA OB OC m n m n m n m n -++==-+++-+-+-+-, 不妨令11x m n -=+-,1m y m n =+-,1n z m n =+-,且此时1x y z ++=, 因为()()21101+-+-=≠,()1111++-=,111111236++=≠,1111236++=,由上可知:BD 满足要求. 故选:BD.【点睛】本题考查利用空间向量证明空间中的四点共面,难度一般.常见的证明空间中四点,,,M A B C 共面的方法有:(1)证明MA xMB yMC =+;(2)对于空间中任意一点O ,证明OM OA xMB yMC =++;(3) 对于空间中任意一点O ,证明()1OM xOA yOB zOC x y z =++++=. 12.ABD 【解析】【分析】根据线面垂直的判定定理与性质可判断A 选项;设菱形ABCD 的边长为2,根据题意,当CDM 为等边三角形时,求得二面角M BD C --存在,即可判断B 选项;用向量的方法计算DM BC ⋅,判定其能否为0,即可判断C 选项;根据线面角的概念,找到线面角的最大值,即可判断D 选项.【详解】A 选项,因为菱形ABCD 中,AC 与BD 相交于点O ,所以AO BD ⊥,CO BD ⊥;将ABD △沿BD 折起,使顶点A 至点M ,折起过程中,AO 始终与BD 垂直,因此MO BD ⊥,又MO CO ,由线面垂直的判定定理,可得:BD ⊥平面CMO ,因此BD CM ⊥,故A 正确;B 选项,因为折起的过程中,AD 边长度不变,因此MD CD =;若CDM 为等边三角形,则CM CD =;设菱形ABCD 的边长为2,因为60BAD ∠=︒,则sin 603AO AB =⋅=,即3AO MO ==,又2CM CD ==,所以3341cos 233MOC +-∠==⨯,即二面角M BD C --的余弦值为13时,CDM 为等边三角形;故B 正确; C 选项,DM OM OD =-,BC OC OB =-,由A 选项知,MO BD ⊥,CO BD ⊥,所以0OM OB OD OC ⋅=⋅=,因此()()+DM BC OM OD OC OB OM OC OD OB ⋅=-⋅-=⋅⋅,同B 选项,设菱形ABCD 的边长为2,易得3OC OM ==,1OB OD ==,所以3cos 1DM BC MOC ⋅=∠+,显然当1cos 3MOC ∠=-时,0DM BC ⋅=,即DM BC ⊥;故C 错误; D 选项,同BC 选项,设菱形ABCD 的边长为2,则3OM =,1OD =,2MD =,由几何体直观图可知,当OM ⊥平面BCD ,直线DM 与平面BCD 所成的角最大,为MDO ∠,易知60MDO ∠=︒.故选:ABD. 【点睛】本题主要考查立体几何的综合应用,熟记线面垂直的判定定理,线面角的概念,灵活运用向量的方法判定即可,属于常考题型.13.AB 【解析】【分析】直接用空间向量的基本定理,向量的运算对每一个选项进行逐一判断.【详解】以顶点A 为端点的三条棱长都相等, 它们彼此的夹角都是60°,可设棱长为1,则11111cos602AA AB AA AD AD AB ⋅=⋅=⋅=⨯⨯︒=()22221111=+2+2+2AA AB AD AA AB AD AA AB AB AD AA AD ++++⋅⋅⋅ 11113262=+++⨯⨯= 而()()()22222222AC AB AD AB AD AB AD =+=++⋅ 121122362⎛⎫=++⨯=⨯= ⎪⎝⎭, 所以A 正确.()()()11AC AB AD AA AB AD AB AD ⋅-⋅=++- 2211AA AB AA AD AB AB AD AD AB AD =⋅-⋅+-⋅+⋅- =0,所以B 正确.向量11B C A D =,显然1AA D △ 为等边三角形,则160AA D ∠=︒.所以向量1A D 与1AA 的夹角是120︒ ,向量1B C 与1AA 的夹角是120︒,则C 不正确又11=AD AA BD AB +-,AC AB AD =+ 则()211||=2AD AA A B B D =+-,()2||=3AC AB AD =+()()111AD AA AB BD AC AB AD ⋅=+-=+⋅ 所以11116cos ===6||||23BD AC BD AC BD AC ⋅⋅⨯,,所以D 不正确.故选:AB 【点睛】本题考查空间向量的运算,用向量求夹角等,属于中档题.14.ABC 【解析】【分析】对于A 选项,只需取EF 中点H ,证明EF ⊥平面PDH ;对于B 选项,知,,PE PF PD 三线两两垂直,可知正确;对于C 选项,通过余弦定理计算可判断;对于D 选项,由于PE PF PD =≠,可判断正误.【详解】对于A 选项,作出图形,取EF 中点H ,连接PH ,DH ,又原图知BEF ∆和DEF ∆为等腰三角形,故PH EF ⊥,DH EF ⊥,所以EF ⊥平面PDH ,所以PD EF ⊥,故A 正确;根据折起前后,可知,,PE PF PD 三线两两垂直,于是可证平面PDE PDF ⊥平面,故B 正确;根据A 选项可知 PHD ∠为二面角P EF D --的平面角,设正方形边长为2,因此1PE PF ==,22PH =,2322222DH =-=,222PD DF PF =-=,由余弦定理得:2221cos 23PH HD PD PHD PH HD +-∠==⋅,故C 正确;由于PE PF PD =≠,故点P 在平面DEF 上的投影不是DEF ∆的外心,即D 错误;故答案为ABC.【点睛】本题主要考查异面直线垂直,面面垂直,二面角的计算,投影等相关概念,综合性强,意在考查学生的分析能力,计算能力及空间想象能力,难度较大.15.AD 【解析】【分析】通过特殊化,点F 与点1B 重合可判定A 错误;正方体1111ABCD A B C D -的两个底面平行,判定B 正确,三角形BEF 的面积是定值,A 点到面11DD B B 距离是定值,可判定C 正确,△AEF 的面积与△BEF 的面积相等不正确,可判定D 错误.【详解】A .由题意及图形知,当点F 与点1B 重合时,160o CAB ∠=故选项A 错误;B .//EF 平面ABCD ,由正方体1111ABCD A B C D -的两个底面平行,EF ⊂平面1111D C B A ,故有//EF 平面ABCD ,此命题正确,不是正确选项;C .三棱锥A-BEF 的体积为定值,由几何体的性质及图形知,三角形BEF 的面积是定值,A 点到面11DD B B 距离是定值,故可得三棱锥A-BEF 的体积为定值,此命题正确,不是正确选项;D .由图形可以看出,B 到线段EF 的距离与A 到EF 的距离不相等,故△AEF 的面积与△BEF 的面积相等不正确,故D 是错误的.故选:AD 【点睛】本题考查直线与平面平行、垂直的判定、棱锥的体积,考查空间想象能力与运算求解能力,属于中档题.16.ABD 【解析】【分析】不共面的三个非零向量可以构成空间向量的一个基底,由此可判断A 、B ,若直线的方向向量与平面α的法向量垂直,则线面平行,可判断C ,直线的方向向量与平面的法向量夹角的余弦值的绝对值与该直线与此平面所成角的正弦值相等,由此可判断D .【详解】对于A ,,,,A B M N 是空间中的四点,若,,BA BM BN 不能构成空间基底,则,,BA BM BN 共面,则,,,A B M N 共面,故A 对;对于B ,已知{},,a b c 为空间的一个基底,则,,a b c 不共面,若m a c =+,则,,a b m 也不共面,则{},,a b m 也是空间的基底,故B 对;对于C ,因为21(2)+00+3=03e n ⋅=⨯-⨯⨯,则e n ⊥,若l α⊄,则//l α,但选项中没有条件l α⊄,有可能会出现l α⊂,故C 错;对于D ,∵cos ,e n e n e n ===,则则直线l 与平面α,故D 对;故选:ABD . 【点睛】本题主要考查命题的真假,考查空间基底的定义,考查空间向量在立体几何中的应用,属于中档题.17.ABD 【解析】【分析】利用线面垂直的性质判定可判定选项A,对三棱锥11P AC D -转化顶点可判定选项B,找到异面成角的最小值的情况即可判断选项C,转化直线1C P 与平面11AC D 所成角的正弦值的最大值为直线1C P 与直线1BD 所成角的余弦值最大,进而判断选项D 【详解】对于选项A,连接11B D ,由正方体可得1111AC B D ⊥,且1BB ⊥平面1111D C B A ,则111BB A C ⊥,所以11A C ⊥平面11BD B ,故111AC BD ⊥;同理,连接1AD ,易证得11A D BD ⊥,则1BD ⊥平面11AC D ,故A 正确;对于选项B,1111P A C DC A PD V V --=,因为点P 在线段1B C 上运动,所以1112A DP S A D AB =⋅,面积为定值,且1C 到平面11A PD 的距离即为1C 到平面11A B CD 的距离,也为定值,故体积为定值,故B 正确;对于选项C,当点P 与线段1B C 的端点重合时,AP 与1A D 所成角取得最小值为60︒,故C 错误;对于选项D,因为直线1BD ⊥平面11AC D ,所以若直线1C P 与平面11AC D 所成角的正弦值最大,则直线1C P 与直线1BD 所成角的余弦值最大,则P 运动到1B C 中点处,即所成角为11C BD ∠,设棱长为1,在11Rt D C B中,111126cos 33C B C BD BD ∠===,故D 正确故选:ABD 【点睛】本题考查线面垂直的判定,考查异面成角,线面成角,考查棱锥体积,考查转化思想和空间想象能力18.ABCD 【解析】【分析】A .分析“1a =”与“12l l ⊥”的互相推出情况,由此确定是否为充分不必要条件;B .分析特殊情况:121,2,2a a n =-=≥时,2112,4n n n n a a a a ++==,由此判断命题真假;C .将面面距离转化为点到面的距离,从而可求出面面距离并判断对错;D .根据线段长度之间的关系列出不等式,从而可求解出m 的取值范围.【详解】A .当1a =时,11:3l x =,22:5l y =-,显然12l l ⊥; 当12l l ⊥时,()()()()211230a a a a +-+-+=,解得1a =±,所以12l l ⊥的充分不必要条件是1a =正确;B .当121,2,2a a n =-=≥时,2112,4n n n n a a a a ++==,所以此时{}2n a 为等比数列, 但{}n a 不是等比数列,所以命题是假命题,故正确;C .如图所示:由图可知:111111111//,//,,AC AC B C A D AC B C C AC A D A ==,所以平面1//AB C 平面11AC D ,所以平面11AC D 与平面1ACB 距离即为1B 到平面11AC D 的距离,记为h , 由等体积可知:)21312332a a a h a ⎫⨯⨯=⨯⨯⎪⎪⎝⎭,所以3h =,故正确;D .设()00,P x y ,因为PM OM ≥,所以()2200x m y m -+≥,所以()22200x m y m -+≥且2002y px =,所以200022x px mx +≥, 当00x =时显然符合,当00x >时02x m p ≤+,所以m p ≤,综上可知:(],m p ∈-∞.故正确.故选:ABCD. 【点睛】本题考查命题真假的判断,难度一般.(1)判断命题p 是命题q 的何种条件时,注意从两方面入手:充分性、必要性;(2)立体几何中求解点到平面的距离,采用等体积法较易.19.ABC 【解析】【分析】根据向量的线性运算与数量积一一判断即可.【详解】解:对于A ,1233AD AC AB =+,32AD AC AB ∴=+,22AD AB AC AD ∴-=- ,2BD DC ∴=,3BD BD DC ∴=+即3BD BC =,故A 正确;对于B ,若Q 为ABC ∆的重心,则0QA QB QC ++=,33PQ QA QB QC PQ ∴+++=3PQ PA PB PC ∴=++即111333PQ PA PB PC =++,故B 正确;对于C ,若0PA BC ⋅=,0PC AB ⋅=,则PA BC PC AB ⋅=⋅0PA BC PC AB ∴⋅+⋅=()0PA BC PC AC CB ∴⋅+⋅+=0PA BC PC AC PC CB ∴⋅+⋅+⋅=0PA BC PC AC PC BC ∴⋅+⋅-⋅=()0PA PC BC PC AC ∴-⋅+⋅= 0CA BC PC AC ∴⋅+⋅=0AC CB PC AC ∴⋅+⋅=()0AC CB PC ∴⋅+=0AC PB ∴⋅= 故C 正确; 对于D ,()()111222MN PN PM PB PC PA PB PC PA =-=+-=+- 12MN PA PB PC ∴=--222222PA PB PC PA PB PC PA PB PA PC PB PC --=++-⋅-⋅+⋅==4=2MN ∴=故D 错误.故选:ABC 【点睛】本题考查向量的线性运算,向量的数量积及利用向量的数量积求向量的模,属于中档题.20.ABCD 【解析】【分析】根据空间基底的概念,结合向量的共面定量,逐项判定,即可求解,得到答案.【详解】选项A 中,根据空间基底的概念,可得任意三个不共面的向量都可以作为一个空间基底,所以A 正确;选项B 中,根据空间基底的概念,可得B 正确;选项C 中,由,,BA BM BN 不能构成空间的一个基底,可得,,BA BM BN 共面,又由,,BA BM BN 过相同点B ,可得,,,A B M N 四点共面,所以C 正确;选项D 中:由{},,a b c 是空间的一个基底,则基向量,a b 与向量m a c =+一定不共面,所以可以构成空间另一个基底,所以D 正确.故选:ABCD.【点睛】本题主要考查了空间基底的概念及其判定,其中解答中熟记空间基底的概念,合理利用共面向量定量进行判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.21.BC 【解析】【分析】A .利用线面垂直的定义进行分析;B .作出辅助线利用面面平行判断;C .作出截面然后根据线段长度计算出截面的面积;D .通过等体积法进行判断.【详解】A .若1D D AF ⊥,又因为1D D AE⊥且AE AF A ⋂=,所以1DD ⊥平面AEF ,所以1DD EF ⊥,所以1CC EF ⊥,显然不成立,故结论错误; B .如图所示,取11B C 的中点Q ,连接1,A Q GQ ,。
立体几何的空间向量例题以及解答与考点总结
D. 166a2
上一页
返回导航
下一页
第八章 立体几何与空间向量
32
解析:选 D.如图①②所示的实际图形和直观图,
由②可知,A′B′=AB=a,O′C′=12OC= 43a,在图②中作 C′D′⊥A′B′于 D′, 则 C′D′= 22O′C′= 86a.所以 S△A′B′C′=12A′B′·C′D′=12×a× 86a=166a2.故选 D.
3
上一页
返回导航
下一页
第八章 立体几何与空间向量
4
2.直观图 (1)画法:常用斜二测画法. (2)规则:①原图形中 x 轴、y 轴、z 轴两两垂直,直观图中,x′轴,y′轴的夹角为 __4_5_°__(_或__1_3_5_°__)___,z′轴与 x′轴和 y′轴所在平面垂直.②原图形中平行于坐标轴的线段, 直观图中仍平行于坐标轴.平行于 x 轴和 z 轴的线段在直观图中保持原长度不变,平行 于 y 轴的线段长度在直观图中_变__为__原__来__的__一__半___.
答案:②③④
上一页
返回导航
下一页
第八章 立体几何与空间向量
26
空间几何体概念辨析问题的常用方法
上一页
返回导航
下一页
第八章 立体几何与空间向量
27
考点二 空间几何体的直观图(基础型)
复习指导
会用斜二测法画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易
组合)的直观图.
核心素养:直观想象
上一页
答案:③⑤
上一页
返回导航
下一页
第八章 立体几何与空间向量
11
2.已知圆锥的表面积等于 12π cm2,其侧面展开图是一个半圆,则底面圆的半径为 ________cm. 解析:由题意,得 S 表=πr2+πrl=πr2+πr·2r=3πr2=12π,解得 r2=4,所以 r=2(cm). 答案:2
高二数学 专题 空间向量与立体几何(六个混淆易错点)(解析版)
专题空间向量与立体几何(六个混淆易错点)易错点1对空间向量的运算理解不清1.在棱长为1的正四面体A BCD -中,点M 满足()1AM xAB y AC x y AD =++--,点N 满足()1DN DB DC λλ=-- ,当线段AM 、DN 的长度均最短时,AM AN ⋅= ()A .23B .23-C .43D .43-【答案】A【分析】根据题意得到M ∈平面BCD ,N ∈直线BC ,从而求得,AM DN 最短时,得到M 为BCD △的中心,N 为BC 的中点,求得AM 的长,结合向量的运算公式,即可求得AM AN ⋅的值.【详解】解:如图所示,因为(1)AM x AB y AC x y AD =++-- ,()1DN DB DC λλ=--,可得M ∈平面BCD ,N ∈直线BC ,当,AM DN 最短时,AM ⊥平面BCD ,且DN BC ⊥,所以M 为BCD △的中心,N 为BC 的中点,如图所示,又由正四面体的棱长为1,所以13NM DN ==AN =所以3AM =,因为AM ⊥平面BCD ,所以AM MN ⊥,所以Rt ANM △中,6223cos 332AM MAN AN ∠===,所以326222cos 333AM AN AM AN MAN ⋅=⋅∠=⨯=⨯ 故选:A2.下列命题中正确的个数是().①若a 与b 共线,b 与c 共线,则a 与c共线.②向量a ,b ,c共面,即它们所在的直线共面.③如果三个向量a ,b ,c不共面,那么对于空间任意一个向量p ,存在有序实数组(),,x y z ,使得p xa yb zc =++.④若a ,b 是两个不共线的向量,而c a b λμ=+(,λμ∈R 且0λμ≠),则{},,a b c 是空间向量的一组基底.A .0B .1C .2D .3【答案】B【分析】举例0b =,判断①,由向量共面的定义判断②,由空间向量基本定理判断③,由共面向量定理和空间向量基本定理判断④.【详解】①当0b = 时,a 与c不一定共线,故①错误;②当a ,b ,c共面时,它们所在的直线平行于同一平面,或在同一平面内,故②错误;由空间向量基本定理知③正确;④当a ,b 不共线且c a b λμ=+时,a ,b ,c 共面,故④错误.故选:B .3.以下命题:①若//a b r r ,则存在唯一的实数λ,使得λa b = ;②若a b b c ⋅=⋅r r r r,则a c = 或0b = ;③若{},,a b c为空间的一个基底,则{},,a b b c c a +++构成空间的另一个基底;④()()()()a b c d d c b a ⋅⋅⋅=⋅⋅⋅ 一定成立.则其中真命题的个数为()A .4B .3C .2D .1【答案】C【分析】由共线向量的基本定理判断①;由数量积判断②;由基底的概念判断③;由数量积的性质判断④【详解】对于①:根据共线向量的基本定理,//a b r r 的充要条件是存在唯一的实数λ,使得λa b = ,其中0b ≠r r;这里没有限制b,所以①错误;对于②:cos ,,cos ,a b a b a b b c b c b c ⋅=⋅⋅=⋅r r r r r r r r r r r r ,若a b b c ⋅=⋅r r r r ,则cos ,cos ,a a b c b c ⋅=r r r r r r ,即只要a 在b 上的投影与c 在b 上的投影相等即可,故②错误;对于③:若{},,a b c 为空间的一个基底,则,,a b c不共面,则,,a b b c c a +++ 也不共面,则{},,a b b c c a +++构成空间的另一个基底,故③正确;对于④:因为,a b b a c d d c ⋅=⋅⋅=⋅,所以()()()()a b c d d c b a ⋅⋅⋅=⋅⋅⋅ ,故④正确;所以正确的有2个,故选:C4.下面四个结论正确的个数是()①空间向量(),0,0a b a b ≠≠ ,若a b ⊥ ,则0a b ⋅=;②若空间四个点P ,A ,B ,C ,1344PC PA PB =+,则A ,B ,C 三点共线;③已知向量(1,1,)a x = ,(3,,9)b x =- ,若310x <,则,a b 〈〉为钝角;④任意向量,,a b c 满足()()a b c a b c ⋅⋅=⋅⋅.A .4B .3C .2D .1【答案】C【分析】根据空间向量的线性运算、向量平行的意义及坐标表示、数量积的定义、性质对各命题逐一判断即可.【详解】对于①,因0,0a b ≠≠ ,a b ⊥ ,则·0a b =,①正确;对于②,因1344PC PA PB =+ ,则1144PC PA - =3344PB PC -,即3AC CB = ,即A 、B 、C 三点共线,②正确;对于③,a b ⋅ =10x -3,若,a b 〈〉 为钝角,则0a b ⋅< ,且a 与b 不共线,由0a b ⋅<得310x <,当//a b 时,1139xx ==-,即3x =-,由a 与b 不共线得3x ≠-,于是得当310x <且3x ≠-时,,a b 〈〉为钝角,③错误;对于④,()a b c ⋅⋅ 是c 的共线向量,而()a b c ⋅⋅是a 的共线向量,④错误,综上可知,①②正确.故选:C5.(多选)给出下列命题,其中正确的是()A .若{},,a b c是空间的一个基底,则{},,a b b c +r r r r 也是空间的一个基底B .在空间直角坐标系中,点()2,4,3P -关于坐标平面yOz 的对称点是()2,4,3---C .若空间四个点P ,A ,B ,C 满足1344PC PA PB =+,则A ,B ,C 三点共线D .平面α的一个法向量为()1,3,4m =-u r ,平面β的一个法向量为()2,6,n k =--r.若//αβ,则8k =【答案】ACD【分析】根据三个向量是否共面判断A ,由点关于坐标面的对称判断B ,由向量的运算确定三点共线可判断C ,根据向量共线求参数可判断D 。
高考数学必做题--立体几何与空间向量 (后附参考答案与详解)
立体几何与空间向量-高考必做题123平行的截面,则截得的三;截得的平面图形中,面积最大的值是.4的中点,为线段上的动点,过点,,则下列命题正确的是.5与四棱锥的表面的交线,并写出作图的步骤.7是正方体棱上一点(不包括棱的端点),.,则的取值范围是.8的最大值为满足9的中点,沿将矩形折起使得分别为中点.10C.3个D.4个分别为棱,上的点. 已知下列判断:上的正投影是面积为定值的三角形;平行的直线;所成的二面角(锐角)的大小与点的位置有关,与点的位置无关.11,,,与平面所12的位置,使得平面,并证明你的13,坐标平面上的一组正投影图像如.14如图是圆的直径,垂直圆所在的平面,是圆上的点.求证:平面平面.(1)15 16 17 18椭圆的一部分 D.抛物线的一部分19 D.,所成角都相等的直线条数为所成角都相等的直线的条数为,则下面结论正确的是(20分别是棱的中点,是侧面长度的取值范围是().21D.D.③④分别是棱,的中点,过直线,,给出以下四个命题:22为正方形,,则三棱锥2324 2526 272829 30A. B.C. D.立体几何与空间向量-高考必做题123为边长为的等边三角形,面积为截得的平面图形中,正六边形如图所示分别为各边中点,边长为,面积为.故答案为;.立体几何与空间向量立体几何初步空间几何体4如图,在棱长为的正方体的中点,点在线段上.点到直线的距离的最小值为.∵,底面,∴四边形是矩形.∴,又平面,平面∴平面.∴直线上任一点到平面的距离是两条异面直线∵平面平面.5当时,为中点,此时可得截面为等腰梯形;当点向移动时,满足即可得截面为四边形,①正确;对于②,当时,如图所示,延长至,使,连接交于,连接可证,由可得故可得,∴截面对于③,由②知当此时的截面形状仍然为上图所示的五边形对于④,当时,与可证,且,可知截面故答案为:①②④.立体几何与空间向量立体几何初步空间几何体点、直线、平面间的位置关系6与四棱锥的表面的交线,并写出作图的步骤.为平面与四棱锥的表面的交线.分别是线段,上的,的菱形,,,,,,所以,设平面的法向量为,则由可得令因为,所以直线与平面的成角的正弦值为法1:延长,分别交,延长线于,,连接,,则四边形为平面法2:记平面与直线的交点为,设由.所以即为点.所以连接,,则四边形为平面平面向量平面向量的基本概念向量的加法与减法平面向量的数量积数量积立体几何与空间向量立体几何初步点、直线、平面间的位置关系空间中的平行空间向量空间直角坐标系空间向量的应用789的最大值为满足,所以,所以.,接下来研究这个二次函数的性质可函数函数的概念与表示最值单调性对称性二次函数立体几何与空间向量立体几何初步空间几何体点、直线、平面间的位置关系空间中的垂直10,,则中位线且又且,所以且所以四边形是平行四边形,所以,又平面,法二:如图,延长因为且,所以为中点,所以中位线,又平面,面,所以法一:如图,因为,所以又.所以∴,∴,又∵,,∴平面,面,∴又,所以平面,又为中点,所以所以平面,,所以中,,,∴二面角的余弦值为法二:如图,∵,∴∴,∴∴,∴,,又∵,,∴平面,面,∴,又,所以平面,面,∴则,,,而是平面的一个法向量,设平面的法向量为则令,则,面的一个法向量为所以所以,二面角的余弦值为立体几何与空间向量立体几何初步点、直线、平面间的位置关系空间中的平行空间中的垂直空间向量空间直角坐标系空间向量及其运算空间向量的应用11中,,分别为棱D.4个平面,而两个平面面与面上的正投影是面积为定值的三角形,此是一个正确的结点在面上的投影到此棱的距离是定平行的直线,此两平面相交,一个面内平行于两个平面的交线一定平行于另一个平面,此结论正确;所成的二面角(锐角)的大小与点的位置有关,与点的位置无关,此结论不对,与两者都有关系,可代入几个特殊点进行验证,如与重重合时的情况就不一样,故此命题不正点、直线、平面间的位置关系空间中的平行空间中的垂直12的位置,使得平面,并证明你的,∵与平面所成角为,即,∴,由,知,,则,,,∴,,设平面的法向量为,则,即,令,则,∵平面,∴为平面的法向量,∴又∵二面角为锐角,∴二面角的余弦值为.点是线段上一个动点,设,则,∵平面,∴,即,解得:,此时,点坐标为,.平面向量平面向量的基本定理及坐标表示平面向量的坐标运算用坐标表示平面向量共线的条件立体几何与空间向量立体几何初步点、直线、平面间的位置关系空间中的平行空间中的垂直空间向量空间向量及其运算空间向量的应用答案解析该几何体还原如图所示,易得体积为.立体几何与空间向量立体几何初步空间几何体体积和表面积的计算三视图14是圆的直径,垂直圆所在的平面,是圆上的点.求证:平面平面.,,,求:二面角的余弦值.(1)答案见解析.(2)答案见解析.(1)由是圆的直径,得.由平面,平面,得.在中,∵,,∴立体几何初步空间中的垂直空间向量空间向量的应用1516三角函数与解三角形解三角形立体几何与空间向量立体几何初步空间几何体点、直线、平面间的位置关系17动点从到,再到,到再回到,,则经过的最短路径为:一个半圆和一个即.立体几何与空间向量立体几何初步空间几何体18如图,三棱锥的顶点、、等边三角形,点,分别为线段体积的最大值为19椭圆的一部分 D.抛物线的一部分的交线的距离分别为和.,D.,所成角都相等的直线条数为所成角都相等的直线的条数为,则下面结论正确的是(2021D.连结,可以证明平面,所以点位于线段上,把三角形拿到平面上,则有,所以当点位于时,最大,当位于中点时,最小,此时所以,即所以线段长度的取值范围是22D.③④在正方体中,平面,∴平面平面,①正确;②连接,∵平面,四边形的对角线是固定的,要使面积最小,只需的长度最小即可,此时为棱中点,,长度最小,对应四边形②正确;③∵,∴四边形是菱形,当时,长度由大变小,当时,长度由小变大,∴函数不是单调函数,③错误;④连接,,,四棱锥分割成两个小三棱锥,以为底,分别以、为顶点,∵面积是个常数,、到平面的距离是个常数,2324函数图象的交点函数的零点三角函数与解三角形三角函数任意角与弧度制三角函数的定义立体几何与空间向量立体几何初步空间几何体解析几何曲线与方程25)成。
高中数学空间向量与立体几何(解析版)
重难点03 空间向量与立体几何【高考考试趋势】立体几何在高考数学是一个必考知识点,一直在高中数学中占有很大的分值,未来的高考中立体几何也会持续成为高考的一个热点,理科高考中立体几何主要考查三视图的相关性质利用,简单几何体的体积,表面积以及外接圆问题.另外选择部分主要考查在点线面位置关系,简单几何体三视图.选择题主要还是以几何体的基本性质为主,解答题部分主要考查平行,垂直关系以及二面角问题.前面的重点专题已经对立体几何进行了一系列详细的说明,本专题继续加强对高考中立体几何出现的习题以及对应的题目类型进行必要的加强.本专题包含了高考中几乎所有题型,学完本专题以后,对以后所有的立体几何你将有一个更加清晰的认识.【知识点分析以及满分技巧】基础知识点考查:一般来说遵循三短一长选最长.要学会抽象问题具体会,将题目中的直线转化成显示中的具体事务,例如立体坐标系可以看做是一个教室的墙角有关外接圆问题:一般图形可以采用补形法,将几何体补成正方体或者是长方体,再利用不在同一个平面的四点确定一个立体平面原理,从而去求. 内切圆问题:转化成正方体的内切圆去求. 求点到平面的距离问题:采用等体积法.求几何体的表面积体积问题:应注意巧妙选取底面积与高.对于二面角问题应采用建立立体坐标系去求.但是坐标系要注意采用左手系务必要标记准确对应点以及法向量对应的坐标.【常见题型限时检测】(建议用时:35分钟) 一、单选题1.(2020·全国高三专题练习(理))已知三棱锥O ABC ,点M ,N 分别为AB ,OC 的中点,且,,OA a OB b OC c ===,用,,a b c 表示MN ,则MN 等于( )A .()12b c a +- B .()12a b c ++ C .()12a b c -+ D .()12c a b -- 【答案】D【分析】MN MA AO ON =++1122BA OA OC =-+ ()1122OA OB OA OC =--+ 111222OA OB OC =--+()12c a b =--. 故选:D2.(2020·全国高三专题练习(理))如图所示,正方体1111ABCD A B C D -的棱长为1,E 、F 、G 分别为BC 、1CC 、1BB 的中点,则( )A .直线1D D 与直线AF 垂直B .直线1A G 与平面AEF 平行C .平面AEF 截正方体所得的截面面积为1D .点C 和点G 到平面AEF 的距离相等 【答案】B【分析】以D 点为坐标原点,DA 、DC 、1DD 为x ,y ,z 轴建系,则(000)D ,,、(100)A ,,、()010C ,,、1(101)A ,,、1(001)D ,,、 1(10)2E ,,、1(01)2F ,,,1(11)2G ,,, 则()1001DD =,,、1112AF ⎛⎫=- ⎪⎝⎭,,,则112DD AF ⋅=, ∴直线1D D 与直线AF 不垂直,A 错误;则11012A G ⎛⎫=- ⎪⎝⎭,,,1102AE ⎛⎫=- ⎪⎝⎭,,,1112AF ⎛⎫=- ⎪⎝⎭,,,设平面AEF 的法向量为()n x y z =,,,则10021002x y AE n AF n x y z ⎧-+=⎪⎧⋅=⎪⎪⇒⎨⎨⋅=⎪⎪⎩-++=⎪⎩,令2x =,则1y =,2z =,则(212)n =,,,10AG n ⋅=,∴直线1A G 与平面AEF 平行,B 正确; 易知四边形1AEFD 为平面AEF 截正方体所得的截面,且1D F 、DC 、AE 共点于H,1D H AH ==1AD =∴11322AD H S ∆==,则113948AD HAEFD S S=⋅=四边形,C 错误; (110)AC =-,,,点C 到平面AEF 的距离113AC n d n⋅==, 1012AG ⎛⎫= ⎪⎝⎭,,,点G 到平面AEF 的距离223AG n d n ⋅==,则12d d ≠,D 错误;故选:B .3.(2020·黑龙江哈尔滨市·哈师大附中高三期中(理))如图,在底面为正方形的四棱锥P -ABCD 中,已知P A ⊥平面ABCD ,且P A =AB .若点M 为PD 中点,则直线CM 与PB 所成角的大小为( )A.60° B .45° C .30° D .90°【答案】C【分析】如图所示:以A 为坐标原点,以AB ,AD ,AP 为单位向量建立空间直角坐标系A xyz -,设1PA =,则()0,0,0A ,()1,1,0C ,110,,22M ⎛⎫⎪⎝⎭,()0,0,1P ,()1,0,0B , 故()1,0,1PB =-,111,,22MC ⎛⎫=-⎪⎝⎭,故11cos ,1PB MC PB MC PB MC+⋅===⋅ 由异面直线夹角的范围是(]0,90︒︒,故直线CM 与PB 所成角的大小为30. 故选:C.4.(2020·涡阳县育萃高级中学高三月考(理))边长为4的正方形ABCD 的四个顶点都在球O 上,OA 与平面ABCD 所成角为4π,则球O 的表面积为() A .64π B .32πC .16πD .128π【答案】A【分析】如图,设正方形ABCD 外接圆的圆心为1O ,由题意,14OAO π∠=,则1cossin444AO AO AD AO AD ππ=⋅=⋅⇒==,球的表面积24464S ππ=⋅=. 故选:A.5.(2020·广东湛江市·高三二模(理))已知正方体1111-ABCD A B C D 的棱长为2,E 为11A B 的中点,下列说法中正确的是( ) A .1ED 与1B C 所成的角大于60 B .点E 到平面11ABC D 的距离为1C .三棱锥1E ABC -D .直线CE 与平面1ADB 所成的角为4π 【答案】D【分析】:如图,对于A ,取DC 的中点F ,连接EF ,1D F ,则1D EF ∠为1ED 与1B C 所成的角,∵11D F D E =EF = 1tan D EF ∴∠=<A 错误; 对于B ,由于11A B 平面11ABC D ,故1B 到平面11ABC D 的距离即点E 到平面11ABC D 的距离, 连接1B C 交1BC 于G ,可得1B G ⊥平面11ABC D ,而1BG =,∴点E 到平面11ABC D ,故B 错误;对于C ,三棱锥1E ABC -的外接球即四棱锥11E ABC D -的外接球,∵11ABC D 为矩形,且2AB =,1BC = 11EA EB EC ED ====11E ABC D -,设四棱锥11E ABC D -的外接球的半径为R ,则222)R R =+,解得4=R .∴三棱锥的外接球的表面积2254(42S ππ=⨯=,故C 错误; 对于D ,连接1DC ,取1DC 的中点H ,连接1DB 交EC 于K ,连接CH ,HK ,∵1EB DC ,∴CKH ∠是直线CE 与平面1ADB 所成的角,在直角三角形CKH 中,223CK CE ==, CH =∴sin CH CKH CK ∠==,故D 正确. 故选:D6.(2020·四川凉山彝族自治州·高三一模(理))日常生活中,有各式各样精美的糖果包装礼盒某个铁皮包装礼盒的平面展开图是由两个全等的矩形,两个全等的三角形和一个正方形所拼成的多边形(如图),矩形的长为12cm ,矩形的宽和正方形的边长均为8cm .若该包装盒内有一颗球形硬糖的体积为V 3cm ,则V 的最大值为( )A .3B .3C .32πD .2563π 【答案】A【分析】根据题意作出礼盒的直观图如下图所示:由图可知该几何体为直三棱柱,设等腰三角形的内切圆半径为R =所以根据等面积法可知:12128822R ++⨯⋅=R =又因为正方形的边长为8,所以842R =<=,所以球形硬糖的半径最大值为V 的最大值为(34=33π, 故选:A.7.(2020·上海长宁区·高三一模)设m 、n 为两条直线,α、β为两个平面,则下列命题中假命题是( )A .若m n ⊥,m α⊥,n β⊥,则αβ⊥B .若//m n ,m α⊥,//n β,则αβ⊥C .若m n ⊥,//m α,//n β,则//αβD .若//m n ,m α⊥,n β⊥,则//αβ 【答案】C【分析】A .若m n ⊥,m α⊥,n β⊥,相当于两平面的法向量垂直,两个平面垂直,A 正确;B .若//m n ,m α⊥,则n α⊥,又//n β,则平面β内存在直线//c n ,所以c α⊥,所以αβ⊥,B 正确;C .若m n ⊥,//m α,//n β,则,αβ可能相交,可能平行,C 错;D .若//m n ,m α⊥,n β⊥,则,αβ的法向量平行,所以//αβ,D 正确. 故选:C .8.(2020·四川省泸县第一中学高三月考(理))棱长为2的正方体1111ABCD A B C D -内有一个内切球O ,过正方体中两条异面直线AB ,11A D 的中点,P Q 作直线,则该直线被球面截在球内的线段的长为( )A .2B 1 CD .1【答案】C 【分析】如图,MN 为该直线被球面截在球内的线段 连结并延长PO ,交对棱C 1D 1于R ,则R 为对棱的中点,取MN 的中点H ,则OH ⊥MN ,∴OH ∥RQ ,且OH =12RQ ,∴MH 2,∴MN =2MH =故选:C .二、填空题9.(2020·四川凉山彝族自治州·高三一模(理))在空间中,过A 点作平面γ的垂线,垂足为B ,记作:()γB f A =.关于两个不同的平面α,β有如下四个命题: ∴若//αβ,则存在点P 满足()()αβf P f P =. ∴若αβ⊥,则存在点P 满足()()αβf P f P =.∴若//αβ,则不存在点P 满足()()()()αββαf f P f f P =. ∴若对空间任意一点P ,恒有()()()()αββαf f P f f P =,则αβ⊥.其中所有真命题的序号是______. 【答案】∴∴ ∴【分析】∴设()()12,αβP f P αP f P β=∈=∈∴因为//αβ,所以αβ=∅,则()()αβf P f P ≠,故错误;∴设()()12,αβP f P αP f P β=∈=∈,若αβ⊥,当点P l αβ∈=⋂时,满足()()αβf P f P =,故正确;∴设()()12,αβP f P αP f P β=∈=∈,则()()()(),αββαf f P αf f P β∈∈,. 因为//αβ,所以αβ=∅,则()()()()αββαf f P f f P ≠,故正确;∴设()()12,αβP f P αP f P β=∈=∈,则()()()()()()1221,αβαβαβQ f f P f P Q f f P f P ====,因为恒有()()()()αββαf f P f f P =,则12,Q Q 重合与一点Q ,则12PPP Q 为矩形,所以αβ⊥,故正确;故答案为:∴∴ ∴10.(2020·全国高三专题练习(理))如图,正三棱柱ABC A 1B 1C 1的所有棱长都相等,E ,F ,G 分别为AB ,AA 1,A 1C 1的中点,则B 1F 与平面GEF 所成角的正弦值为________.【答案】35【分析】设正三棱柱的棱长为2,取AC 的中点D ,连接DG ,DB ,分别以DA ,DB ,DG 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B 1(02),F (1,0,1),E 1(2,G (0,0,2),1B F =(1,-1),1(,,1)22EF =-,(1,0,1)GF =-. 设平面GEF 的法向量为(,,)n x y z =,则0,0,EF n GF n ⎧⋅=⎨⋅=⎩即10,20,x y z x z ⎧+=⎪⎨⎪-=⎩取x =1,则z =1,y,故(1,3,1)n =为平面GEF 的一个法向量,所以1|cos ,|n B F <>=|=35,所以B 1F 与平面GEF 所成角的正弦值为35. 故答案为:35. 11.(2020·安徽六安市·六安一中高三月考(理))一个几何体的三视图如图所示,该几何体体积为__________.【解析】该几何体可以看作是一个四棱锥,四棱锥底面是边长为221233V =⨯=.三、解答题12.(2020·四川凉山彝族自治州·高三一模(理))如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,//AD BC ,2ABC π∠=,122AB BC AD ===,且PA a =,E ,F 分别为PC ,PB 的中点.(1)若2a =,求证:PB ⊥平面ADEF ;(2)若四棱锥P ABCD -的体积为2,求二面角A PD C --的余弦值.【答案】(1)详见解析;(2)6. 【分析】(1)当2a =时,AP AB =,点F 是BP 的中点,AF BP ∴⊥,又AP ⊥平面ABCD ,AD AP ∴⊥,且AD AB ⊥,APAB A =,AD ∴⊥平面PAB ,BP ⊂平面PAB ,AD BP ∴⊥,又AFA AD =,BP ∴⊥平面ADEF ;(2)()1112422332P ABCD ABCD V S AP AP -=⨯⨯=⨯⨯+⨯⨯=, 解得:1AP =,如图,以A 为原点,,,AB AD AP ,为,,x y z 轴的正方向,建立空间直角坐标系,()0,0,0A ,()0,0,1P ,()2,2,0C ,()0,4,0D ,()2,2,1PC =-,()0,4,1PD =-,设平面PCD 的法向量(),,m x y z =,则00m PC m PD ⎧⋅=⎨⋅=⎩,即22040x y z y z +-=⎧⎨-=⎩,令1y =,则1,4x z ==,()1,1,4m ∴=,显然AB ⊥平面PAD ,设平面PAD 的法向量()1,0,0n =,1cos ,11m n m n m n ⋅<>===+,二面角A PD C --是锐二面角,∴二面角A PD C --的余弦值是6. 13.(2020·全国高三专题练习(理))如图所示,在梯形ABCD 中,AB ∥CD ,∠BCD =120°,四边形ACFE 为矩形,且CF ⊥平面ABCD ,AD =CD =BC =CF .(1)求证:EF ⊥平面BCF ;(2)点M 在线段EF 上运动,当点M 在什么位置时,平面MAB 与平面FCB 所成的锐二面角最大,并求此时二面角的余弦值.【答案】(1)证明见解析;(2)点M 与点F . 【分析】(1)证明:设AD =CD =BC =1, ∵AB ∥CD ,∠BCD =120°,∴AB =2, ∴AC 2=AB 2+BC 2-2AB ·BC ·cos 60°=3,∴AB 2=AC 2+BC 2,则BC ⊥AC . ∵CF ⊥平面ABCD ,AC ⊂平面ABCD ,∴AC ⊥CF ,而CF ∩BC =C ,CF ,BC ⊂平面BCF , ∴AC ⊥平面BCF .∵EF ∥AC ,∴EF ⊥平面BCF .(2)以C 为坐标原点,分别以直线CA ,CB ,CF 为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,设FM =λ(0≤λ),则C (0,0,0),A0,0),B (0,1,0),M (λ,0,1),∴AB =(1,0),BM =(λ,-1,1). 设n =(x ,y ,z )为平面MAB 的法向量,由00n AB n BM ⎧⋅=⎨⋅=⎩得00y x y z λ⎧+=⎪⎨-+=⎪⎩ 取x =1,则n =(1-λ).易知m =(1,0,0)是平面FCB 的一个法向量,∴cos ,13n mn m nm⋅<>===+∵0≤λλ=0时,cos ,n m <>,∴当点M 与点F 重合时,平面MAB 与平面FCB 所成的锐二面角最大,此时二面角的余弦. 14.(2020·河北邯郸市·高三期末)如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,四边形ABCD 是等腰梯形//,2,4,,AB DC BC CD AD AB M N ====分别是,AB AD 的中点.(1)证明:平面PMN ⊥平面PAD ;(2)若二面角C PN D --的大小为60°,求四棱锥P ABCD -的体积. 【答案】(1)证明见解析;(2)1.【分析】(1)连接DM ,显然//DC BM 且DC BM =, ∴四边形BCDM 为平行四边形,//DM BC ∴且DM BC =,AMD ∴△是正三角形,MN AD ∴⊥,又PD ⊥平面,ABCD MN ⊂平面,ABCD PD MN ∴⊥,,PD AD D MN ⋂=∴⊥平面PAD ,又MN ⊂平面PMN ,∴平面PMN ⊥平面PAD .(2)连接BD ,易知//,,BD MN BD AD BD PD ∴⊥⊥.建立如图所示的空间直角坐标系,则(0,0,0),(1,0,0),(D N C -,设(0,0,)(0)P m m >,(1,0,),(2,PN m CN ∴=-=.设平面PNC 的法向量为(,,)a x y z =,00a PN a CN ⎧⋅=∴⎨⋅=⎩,即0,20,x mz x -=⎧⎪⎨-=⎪⎩令(3,2z a m m =,而平面PND 的一个法向量为(0,1,0)b =,1|cos ,|cos 602a b ︒〈〉===解得m =,所以11(24)132V =⨯⨯+=.15.(2020·广东高三一模)如图,在四棱柱1111ABCD A B C D -中,1AA ⊥底面ABCD ,AD AB ⊥,//AD BC ,且112AB AD BC ===,1AA DC ==.(1)求证:平面11BDD B ⊥平面11CDD C ; (2)求二面角11C BD C --所成角的余弦值.【答案】(1)证明见解析;(2)3. 【分析】(1)证明:因为AD AB ⊥,112AB AD BC ===,所以2BC =,BD =,因为DC =222BD DC BC +=,所以90BDC ∠=︒,即BD CD ⊥. 因为1AA ⊥底面ABCD ,所以1DD ⊥底面ABCD ,所以1BD DD ⊥.因为1DD CD D =,所以BD ⊥平面11CDD C ,又BD ⊂平面11BDD B ,所以平面11BDD B ⊥平面11CDD C . (2)解:如图,分别以DB ,DC ,1DD 为x ,y ,z 轴,建立空间直角坐标系D xyz -,则()0,0,0D,)B,()C,(1D,(1C .所以(1BD =-,()110,D C =,(1D C =, 设平面1CBD 的法向量为(),,m x y z =,则1120,20,BD m x D C m y ⎧⋅=-+=⎪⎨⋅==⎪⎩令1x =,得()1,1,1m =. 设平面11C BD 的法向量为(),,n a b c =, 则11120,20,BD n a D C n b ⎧⋅=-+=⎪⎨⋅==⎪⎩令1a =,得()1,0,1n =, 所以2cos ,3||||3m n m n m n ⋅===⋅⨯, 由图知二面角11C BD C --为锐角,所以二面角11C BD C --。
高二数学空间向量与立体几何试题答案及解析
高二数学空间向量与立体几何试题答案及解析1.在正三棱柱ABC—A1B1C1中,若AB=BB1,则AB1与C1B所成的角的大小为()A.60°B.90°C.105°D.75°【答案】B【解析】用立体几何方法。
作BC中点D,连AD, D,易得AD垂直于BC,AD垂直于平面BC, D为A在平面BC上的射影,易证D垂直于B,所以A垂直于B,A与B所成角为90度,故选B。
【考点】本题主要考查正三棱柱的几何性质及异面直线所成角的求法。
点评:根据题目特点,可灵活采用不同方法,这里运用几何方法,使问题得解,体现解题的灵活性。
2.正四棱锥的高,底边长,则异面直线和之间的距离()A.B.C.D.【答案】C【解析】建立如图所示的直角坐标系,则,,,,.,.令向量,且,则,,,,.异面直线和之间的距离为:.【考点】本题主要考查空间向量的应用,综合考查向量的基础知识。
点评:通过建立空间直角坐标系,将立体几何问题转化成空间向量问题.3.已知是各条棱长均等于的正三棱柱,是侧棱的中点.点到平面的距离()A.B.C.D.【答案】A【解析】为正方形,,又平面平面,面,是平面的一个法向量,设点到平面的距离为,则===.【考点】本题主要考查空间向量的应用,综合考查向量的基础知识。
点评:通过建立空间直角坐标系,将立体几何问题转化成空间向量问题.4.在三棱锥P-ABC中,AB⊥BC,AB=BC=PA,点O、D分别是AC、PC的中点,OP⊥底面ABC,则直线OD与平面PBC所成角的正弦值()A. B. C. D.【答案】D【解析】题目中给出了建立空间直角坐标系的条件。
以O为原点,射线OP为非负z轴,建立空间直角坐标系(如图),利用向量知识可计算得到直线OD与平面PBC所成角的正弦值为,故选D。
【考点】本题主要考查空间向量的应用,综合考查向量的基础知识。
点评:通过建立空间直角坐标系,将立体几何问题转化成空间向量问题.5.已知棱长为1的正方体ABCD-A1B1C1D1中,E是A1B1的中点,求直线AE与平面ABC1D1所成角的正弦值.【答案】【解析】解:如图建立空间直角坐标系,=(0,1,0),=(-1,0,1),=(0,,1)设平面ABC1D1的法向量为=(x,y,z),由可解得=(1,0,1)设直线AE与平面ABC1D1所成的角为θ,则,【考点】本题主要考查空间向量的应用,综合考查向量的基础知识。
专题09 立体几何与空间向量-高考数学复习必备之2015-2019年浙江省高考试题分项解析(解析版)
第九章 立体几何与空间向量一、选择题1.(2019年浙江卷)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( ) A. ,βγαγ<<B. ,βαβγ<<C.,βαγα<<D.,αβγβ<<【答案】B 【解析】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O ,则P 在底面投影D 在线段AO 上,过D 作DE 垂直AE ,易得//PE VG ,过P 作//PF AC 交VG 于F ,过D 作//DH AC ,交BG 于H ,则,,BPF PBD PED α=∠β=∠γ=∠,则cos cos PF EG DH BDPB PB PB PBα===<=β,即αβ>,tan tan PD PDED BDγ=>=β,即y >β,综上所述,答案为B.方法2:由最小角定理βα<,记V AB C --的平面角为γ'(显然γ'=γ) 由最大角定理β<γ'=γ,故选B.法2:(特殊位置)取V ABC -为正四面体,P 为VA 中点,易得cos sin sin α=⇒α=β=γ=B. 2.(2019年浙江卷)祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高,若某柱体的三视图如图所示,则该柱体的体积是()A. 158B. 162C. 182D. 32【答案】B【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为2646336162 22++⎛⎫⨯+⨯⨯=⎪⎝⎭.3.(2018年浙江卷)已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则A.θ1≤θ2≤θ3 B.θ3≤θ2≤θ1 C.θ1≤θ3≤θ2 D.θ2≤θ3≤θ1【答案】D【解析】设O为正方形ABCD的中心,M为AB中点,过E作BC的平行线EF,交CD于F,过O作ON垂直EF于N,连接SO,SN,OM,则SO垂直于底面ABCD,OM垂直于AB,因此从而因为,所以即,选D.4.(2018年浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A .2B .4C .6D .8 【答案】C 【解析】根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1,2,梯形的高为2,因此几何体的体积为选C.5.(2018年浙江卷)已知直线,和平面,,则“”是“”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】D 【解析】 直线,平面,且,若,当时,,当时不能得出结论,故充分性不成立;若,过作一个平面,若时,则有,否则不成立,故必要性也不成立.由上证知“”是“”的既不充分也不必要条件,故选D .6.(2017年浙江卷)如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CRQC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为α,β,γ,则A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α【答案】B【解析】设O 为三角形ABC 中心,则O 到PQ 距离最小,O 到PR 距离最大,O 到RQ 距离居中,而高相等,因此αγβ<<,所以选B .7.(2017年浙江卷)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:)是A .B .C .D .【答案】A【解析】由三视图可知几何体为半个圆锥和一个三棱锥的组合体,∴=,故选A.8.(2016年浙江文)已知互相垂直的平面αβ, 交于直线l.若直线m ,n 满足m∥α,n⊥β,则 A .m∥l B.m∥n C.n⊥l D.m⊥n 【答案】C 【解析】 由题意知,l l αββ=∴⊂,,n n l β⊥∴⊥.故选C.9.(2016年浙江理)已知互相垂直的平面αβ,交于直线l.若直线m ,n 满足,m n αβ∥⊥, 则 A .m ∥l B .m ∥n C .n ⊥l D .m ⊥n 【答案】C 【解析】 由题意知,l l αββ=∴⊂,,n n l β⊥∴⊥.故选C .10.(2015年浙江文)如图,斜线段与平面所成的角为,为斜足,平面上的动点满足,则点的轨迹是A .直线B .抛物线C .椭圆D .双曲线的一支 【答案】C【解析】由题可知,当点运动时,在空间中,满足条件的绕旋转形成一个圆锥,用一个与圆锥高成角的平面截圆锥,所得图形为椭圆.故选C.11.(2015年浙江文)设,是两个不同的平面,,是两条不同的直线,且,( )A .若,则B .若,则C .若,则D .若,则【答案】A【解析】由面面垂直的判定定理:如果一个平面经过另一平面的一条垂线,则两面垂直,可得,可得12.(2015年浙江文)某几何体的三视图如图所示(单位: cm ),则该几何体的体积是( )A .8 3cmB .12 3cm C .323 3cm D .4033cm 【答案】C【解析】由三视图可知,该几何体是一个棱长为2的正方体与一个底面边长为2,高为2的正四棱锥的组合体,故其体积为32313222233V cm =+⨯⨯=.故选C. 13.(2015年浙江理)某几何体的三视图如图所示(单位:),则该几何体的体积是( )A .B .C .D .【答案】C【解析】由三视图可知该几何体是四棱柱与同底的四棱锥的组合体,所以其体积为,故应选C.14.(2015年浙江理)如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CD B '--的平面角为α,则( )A.A DB α'∠≤B.A DB α'∠≥C.A CB α'∠≤D.A CB α'∠≤ 【答案】B. 【解析】设ADC θ∠=,设2AB =,则由题意1AD BD ==,在空间图形中,设A B t '=,在A CB '∆中,2222222112cos 22112A D DB AB t t A DB A D DB '+-+--'∠==='⨯⨯⨯,在空间图形中,过A '作AN DC ⊥,过B 作BM DC ⊥,垂足分别为N ,M ,过N 作//NP MB ,连结A P ',∴NP DC ⊥,则A NP '∠就是二面角A CD B '--的平面角,∴A NP α'∠=,在Rt A ND '∆中,cos cos DN A D A DC θ''=∠=,sin sin A N A D A DC θ'''=∠=, 同理,sin BM PN θ==,cos DM θ=,故2cos BP MN θ==, 显然BP ⊥面A NP ',故BP A P '⊥,在Rt A BP '∆中,2222222(2cos )4cos A P A B BP t t θθ''=-=-=-,在A NP '∆中,222cos cos 2A N NP A P A NP A N NP α''+-'=∠='⨯2222sin sin (4cos )2sin sin t θθθθθ+--=⨯222222222222cos 2cos 1cos cos 2sin 2sin sin sin sin t t A DB θθθθθθθθ+--'==+=∠+, ∵210sin θ>,22cos 0sin θθ≥,∴cos cos A DB α'≥∠(当2πθ=时取等号), ∵α,[0,]A DB π'∠∈,而cos y x =在[0,]π上为递减函数,∴A DB α'≤∠,故选B.二、填空题15.(2016年浙江文)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______cm 2,体积是______cm 3.【答案】80,40【解析】由三视图知该组合体是一个长方体上面放置了一个小正方体,22262244242280S =⨯+⨯+⨯⨯-⨯=表,3244240V =+⨯⨯=.16.(2016年浙江文)如图,已知平面四边形ABCD ,AB=BC=3,CD=1,,∠ADC=90°.沿直线AC 将ACD 翻折成ACD',直线AC 与BD' 所成角的余弦的最大值是______.【解析】如图,连接BD′,设直线AC 与'BD 所成的角为θ.O 是AC 的中点.由已知得AC =,以OB 为x 轴, OA 为y 轴,过O 与平面ABC 垂直的直线为z 轴,建立空间直角坐标系,则A ⎛⎫ ⎪ ⎪⎝⎭, B ⎫⎪⎪⎝⎭, 0,C ⎛⎫⎪ ⎪⎝⎭.作DH AC ⊥于H ,连接D′H翻折过程中, 'D H 始终与AC 垂直, 则2CD CH CA ===则OH = DH ==因此'cos ,sin 636D αα⎛⎫-- ⎪ ⎪⎝⎭(设∠DHD′=α),则'BD αα⎛⎫= ⎪ ⎪⎝⎭,与CA 平行的单位向量为()0,1,0n =,所以cos cos ',BD n θ= ''BD n BD n⋅==,所以cos 1α=-时, cos θ取得最大值,为6.17.(2016年浙江理)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2,体积是 cm 3.【答案】72 ,32 【解析】几何体为两个相同长方体组合,长方体的长、宽、高分别为4,2,2,所以体积为32(224)32cm ⨯⨯⨯=,由于两个长方体重叠的部分为一个边长为2的正方形,所以表面积为2(222⨯⨯⨯+244)2(22)72⨯⨯-⨯=2cm .18.(2016年浙江理)如图,在ABC 中,AB=BC=2,∠ABC=120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD=DA ,PB=BA ,则四面体PBCD 的体积的最大值是 .【答案】【解析】中,因为,所以.由余弦定理可得,所以.设,则,.在中,由余弦定理可得.故.在中,,.由余弦定理可得,所以.由此可得,将ABD沿BD翻折后可与PBD重合,无论点D在任何位置,只要点D的位置确定,当平面PBD⊥平面BDC时,四面体PBCD的体积最大(欲求最大值可不考虑不垂直的情况).过作直线的垂线,垂足为.设,则,即,解得.而的面积.当平面PBD⊥平面BDC时:四面体的体积.观察上式,易得,当且仅当,即时取等号,同时我们可以发现当时,取得最小值,故当时,四面体的体积最大,为19.(2015年浙江理)如图,三棱锥A BCD -中, 3,2AB AC BD CD AD BC ======,点,M N 分别是,AD BC 的中点,则异面直线,AN CM 所成的角的余弦值是________.【答案】78【解析】如下图,连结DN ,取DN 中点P ,连结PM , PC ,则可知即为异面直线,所成角(或其补角)易得,,,∴,即异面直线,所成角的余弦值为.三、解答题20.(2019年浙江卷)如图,已知三棱柱111ABC A B C -,平面11A AC C ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是11,AC A B 的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面1A BC 所成角的余弦值.【答案】(1)证明见解析;(2)35. 【解析】(1)如图所示,连结11,A E B E ,等边1AAC △中,AE EC =,则sin 0sin 2B A ,≠∴= 平面ABC ⊥平面11A ACC ,且平面ABC ∩平面11A ACC AC =, 由面面垂直的性质定理可得:1A E ⊥平面ABC ,故1A E BC ⊥,由三棱柱的性质可知11A B AB ∥,而AB BC ⊥,故11A B BC ⊥,且1111A B A E A =,由线面垂直的判定定理可得:BC ⊥平面11A B E ,结合EF ⊆平面11A B E ,故EF BC ⊥.(2)在底面ABC 内作EH ⊥AC ,以点E 为坐标原点,EH ,EC ,1EA 方向分别为x ,y ,z 轴正方向建立空间直角坐标系E xyz -.设1EH =,则AE EC ==11AA CA ==3BC AB ==,据此可得:()()()130,,,0,0,3,2A B A C ⎛⎫ ⎪ ⎪⎝⎭,由11AB A B =可得点1B的坐标为132B ⎛⎫ ⎪⎝⎭,利用中点坐标公式可得:34F ⎛⎫ ⎪⎝⎭,由于()0,0,0E , 故直线EF的方向向量为:34EF ⎛⎫=⎪⎝⎭ 设平面1A BC 的法向量为(),,m x y z =,则:()()133,,,330222233,,,02222m A B x y z x y z m BC x y z x y ⎧⎛⎫⋅=⋅-=+-=⎪ ⎪ ⎪⎪⎝⎭⎨⎛⎫⎪⋅=⋅-=-+= ⎪⎪ ⎪⎝⎭⎩, 据此可得平面1A BC 的一个法向量为()1,3,1m =,34EF ⎛⎫= ⎪⎝⎭此时4cos ,5EF mEF m EF m ⋅===⨯,设直线EF与平面1A BC所成角为θ,则43 sin cos,,cos55EF mθθ===.21.(2018年浙江卷)如图,已知多面体ABCA 1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.【答案】(Ⅰ)见解析;(Ⅱ).【解析】方法一:(Ⅰ)由得,所以.故.由,得,由得,由,得,所以,故.因此平面.(Ⅱ)如图,过点作,交直线于点,连结.由平面得平面平面,由得平面,所以是与平面所成的角.学科.网由得,所以,故.因此,直线与平面所成的角的正弦值是.方法二:(Ⅰ)如图,以AC的中点O为原点,分别以射线OB,OC为x,y轴的正半轴,建立空间直角坐标系O-xyz.由题意知各点坐标如下:因此由得.由得.所以平面.(Ⅱ)设直线与平面所成的角为.由(Ⅰ)可知设平面的法向量.由即可取.所以.因此,直线与平面所成的角的正弦值是.22.(2017年浙江卷)如图,已知四棱锥P-ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(I)证明:CE∥平面PAB;(II)求直线CE与平面PBC所成角的正弦值【答案】(I)见解析;(II).8【解析】(Ⅰ)如图,设PA 中点为F ,连接EF ,FB .因为E ,F 分别为PD ,PA 中点,所以//EF AD 且12EF AD =, 又因为//BC AD , 12BC AD =,所以//EF BC 且EF BC =, 即四边形BCEF 为平行四边形,所以//CE BF ,因此//CE 平面PAB .(Ⅱ)分别取BC ,AD 的中点为M ,N .连接PN 交EF 于点Q ,连接MQ .因为E ,F ,N 分别是PD ,PA ,AD 的中点,所以Q 为EF 中点,在平行四边形BCEF 中,MQ//CE .由△PAD 为等腰直角三角形得PN ⊥AD .由DC ⊥AD ,N 是AD 的中点得BN ⊥AD .所以AD ⊥平面PBN ,由BC //AD 得BC ⊥平面PBN ,那么平面PBC ⊥平面PBN .过点Q 作PB 的垂线,垂足为H ,连接MH .MH 是MQ 在平面PBC 上的射影,所以∠QMH 是直线CE 与平面PBC 所成的角.设CD =1.在△PCD 中,由PC =2,CD =1,得CE ,在△PBN 中,由PN =BN =1,PB QH =14,在Rt△MQH 中,QH=14,MQ ,所以sin∠QMH =8,所以直线CE 与平面PBC 23.(2016年浙江文)如图,在三棱台ABC –DEF 中,平面BCFE⊥平面ABC ,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD ;(Ⅱ)求直线BD 与平面ACFD 所成角的余弦值.【答案】(1)证明详见解析;(2)7. 【解析】(Ⅰ)延长,,AD BE CF 相交于一点K ,如图所示.因为平面BCFE ⊥平面ABC ,且AC BC ⊥,所以 AC ⊥平面BCK ,因此, BF AC ⊥.又因为//EF BC , 1BE EF FC ===, 2BC =,所以 BCK 为等边三角形,且F 为CK 的中点,则BF CK ⊥所以BF ⊥平面ACFD .(Ⅱ)因为BF ⊥平面ACK ,所以BDF ∠是直线BD 与平面ACFD 所成的角.在Rt BFD 中, 32BF DF ==,得cos 7BDF ∠=.所以,直线BD 与平面ACFD 所成的角的余弦值为7.24.(2016年浙江理)如图,在三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,=90ACB ∠︒,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD ;(Ⅱ)求二面角B -AD -F 的平面角的余弦值.【答案】(Ⅰ)证明见解析;(Ⅱ) 4.【解析】(Ⅰ)延长AD , BE , CF 相交于一点K ,如图所示.因为平面BCFE ⊥平面ABC ,且AC BC ⊥,所以AC ⊥平面BCK ,因此BF AC ⊥. 又因为//EF BC , 1BE EF FC ===, 2BC =,所以BCK 为等边三角形,且F 为CK 的中点,则F C B ⊥K .所以F B ⊥平面ACFD .(Ⅱ)方法一:过点F 作FQ AK ⊥于Q ,连结BQ .因为F B ⊥平面ACK ,所以BF AK ⊥,则AK ⊥平面BQF ,所以BQ AK ⊥.所以BQF ∠是二面角B AD F --的平面角.在Rt ACK 中, 3AC =, 2CK =,得FQ =在Rt BQF 中, 13FQ = BF =cos 4BQF ∠=.所以二面角B AD F -- 方法二:如图,延长AD , BE , CF 相交于一点K ,则BCK 为等边三角形.取BC 的中点O ,则KO BC ⊥,又平面BCFE ⊥平面ABC ,所以, KO ⊥平面ABC .以点O 为原点,分别以射线OB , OK 的方向为x , z 的正方向,建立空间直角坐标系Oxyz .由题意得()1,0,0B , ()1,0,0C -,(K , ()1,3,0A --,12E ⎛ ⎝⎭,1F(,0,22-. 因此, ()0,3,0AC =,(AK =, ()2,3,0AB =. 设平面ACK 的法向量为,平面ABK 的法向量为. 由0{ 0AC m AK m ⋅=⋅=,得111130{ 30y x y =++=,取)1m =-; 由0{ 0AB n AK n ⋅=⋅=,得22222230{ 30x y x y +=++=,取. 于是,cos ,m n m n m n ⋅〈〉==⋅. 所以,二面角B AD F --25.(2015年浙江文)如图,在三棱锥中,在底面ABC 的射影为BC 的中点,D 为的中点.(1)证明:; (2)求直线和平面所成的角的正弦值.【答案】(1)见解析;(2)【解析】(1)设为中点,由题意得平面,所以. 因为,所以.所以平面.由,分别为的中点,得且,从而且, 所以是平行四边形,所以. 因为平面,所以平面.(2)作,垂足为,连结. 因为平面,所以. 因为,所以平面. 所以平面. 所以为直线与平面所成角的平面角.由,得.由平面,得.由,得. 所以 26.(2015年浙江理)如图,在三棱柱111ABC A B C --中,90BAC ∠=,2AB AC ==,14A A =,1A 在底面ABC 的射影为BC 的中点,D 为11B C 的中点.(1)证明:1A D ⊥平面1A B C ;(2)求二面角1A -BD-1B 的平面角的余弦值.【答案】(1)详见解析;(2)18-. 【解析】(1)设E 为BC 的中点,由题意得1A E ⊥平面ABC ,∴1A E AE ⊥,∵AB AC =, ∴AE BC ⊥,故AE ⊥平面1A BC ,由D ,E 分别11B C ,BC 的中点,得1//DE B B 且 1DE B B =,从而1//DE A A ,∴四边形1A AED 为平行四边形,故1//A D AE ,又∵AE ⊥ 平面11A BC ,∴1A D ⊥平面11A BC ;(2)作1A F BD ⊥,且1A F BD F =,连结1B F ,由AE EB ==1190A EA A EB ∠=∠=,得114A B A A ==,由11A D B D =, 11A B B B =,得11A DB B DB ∆≅∆,由1A F BD ⊥,得1B F BD ⊥,因此11A FB ∠为二面角11A BD B --的平面角,由1A D =14A B =,190DA B ∠=,得BD = 1143A FB F ==,由余弦定理得,111cos 8A FB ∠=-.。
高考数学压轴专题新备战高考《空间向量与立体几何》图文解析
【高中数学】单元《空间向量与立体几何》知识点归纳一、选择题1.如图,在正方体1111ABCD A B C D -,点P 在线段1BC 上运动,则下列判断正确的是( )①平面1PB D ⊥平面1ACD ②1//A P 平面1ACD③异面直线1A P 与1AD 所成角的取值范围是0,3π⎛⎤ ⎥⎝⎦④三棱锥1D APC -的体积不变 A .①② B .①②④C .③④D .①④【答案】B 【解析】 【分析】由面面垂直的判定定理判断①,由面面平行的性质定理判断②,求出P 在特殊位置处时异面直线所成的角,判断③,由换底求体积法判断④. 【详解】正方体中易证直线AC ⊥平面11BDD B ,从而有1AC B D ⊥,同理有11B D AD ^,证得1B D ⊥平面1ACD ,由面面垂直判定定理得平面1PB D ⊥平面1ACD ,①正确;正方体中11//A B CD ,11//BC AD ,从而可得线面平行,然后可得面面平行,即平面11A BC //平面1ACD ,而1A P ⊂平面11A BC ,从而得1//A P 平面1ACD ,②正确;当P 是1BC 中点时,1A P 在平面11A B CD 内,正方体中仿照上面可证1AD ⊥平面11A B CD ,从而11AD A P ⊥,1A P 与1AD 所成角为90︒.③错;∵11D APC P AD C V V --=,由1//BC 平面1ACD ,知P 在线段1BC 上移动时,P 到平面1ACD 距离相等,因此1P AD C V -不变,④正确. 故选:B . 【点睛】本题考查面面垂直的判定定理、面面平行的性质定理、异面直线所成的角、棱锥的体积等知识,考查学生的空间想象能力,属于中档题.2.如图所示是一个组合几何体的三视图,则该几何体的体积为( )A .163π B .643 C .16643π+ D .1664π+ 【答案】C【解析】由三视图可知,该几何体是有一个四棱锥与一个圆锥的四分之一组成,其中四棱锥的底面是边长为4 的正方形,高为4 ,圆锥的底面半径为4 ,高为4,该几何体的体积为, 221116644444333V ππ+=⨯⨯+⨯⨯⨯=, 故选C.3.已知某几何体的三视图如图所示,则该几何体的体积为A .273B .276C .274D .272【答案】D 【解析】【分析】先还原几何体,再根据锥体体积公式求结果.【详解】几何体为一个三棱锥,高为33,底为一个直角三角形,直角边分别为333,,所以体积为1127=33333=322V⨯⨯⨯⨯,选D.【点睛】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.4.已知一个几何体的三视图如图所示(正方形边长为1),则该几何体的体积为()A.34B.78C.1516D.2324【答案】B【解析】【分析】【详解】由三视图可知:该几何体为正方体挖去了一个四棱锥A BCDE-,该几何体的体积为1111711132228⎛⎫-⨯⨯+⨯⨯= ⎪⎝⎭ 故选B点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.5.如图,在长方体1111ABCD A B C D -中,13,1AB AD AA ===,而对角线1A B 上存在一点P ,使得1AP D P +取得最小值,则此最小值为( )A .7B .3C .1+3D .2【答案】A 【解析】 【分析】把面1AA B 绕1A B 旋转至面1BA M 使其与对角面11A BCD 在同一平面上,连接1MD 并求出,就 是最小值. 【详解】把面1AA B 绕1A B 旋转至面1BA M 使其与对角面11A BCD 在同一平面上,连接1MD .1MD 就是1||||AP D P +的最小值,Q ||||3AB AD ==,1||1AA =,∴0113tan 3,60AA B AA B ∠==∴∠=.所以11=90+60=150MA D ∠o o o2211111111132cos 13223()72MD A D A M A D A M MA D ∴=+-∠=+-⨯⨯-⋅⨯=故选A . 【点睛】本题考查棱柱的结构特征,考查计算能力,空间想象能力,解决此类问题常通过转化,转化为在同一平面内两点之间的距离问题,是中档题.6.一个几何体的三视图如图所示,其中正视图和俯视图中的四边形是边长为2的正方形,则该几何体的表面积为( )A .132πB .7πC .152πD .8π【答案】B 【解析】 【分析】画出几何体的直观图,利用三视图的数据求解表面积即可. 【详解】由题意可知:几何体是一个圆柱与一个14的球的组合体,球的半径为:1,圆柱的高为2, 可得:该几何体的表面积为:22141212274ππππ⨯⨯+⨯⨯+⨯=.故选:B . 【点睛】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.7.如图,直三棱柱ABC A B C '''-的侧棱长为3,AB BC ⊥,3AB BC ==,点E ,F 分别是棱AB ,BC 上的动点,且AE BF =,当三棱锥B EBF '-的体积取得最大值时,则异面直线A F '与AC 所成的角为( )A .2π B .3π C .4π D .6π 【答案】C 【解析】【分析】设AE BF a ==,13B EBF EBF V S B B '-'=⨯⨯V ,利用基本不等式,确定点 E ,F 的位置,然后根据//EF AC ,得到A FE '∠即为异面直线A F '与AC 所成的角,再利用余弦定理求解. 【详解】设AE BF a ==,则()()23119333288B EBFa a V a a '-+-⎡⎤=⨯⨯⨯-⨯≤=⎢⎥⎣⎦,当且仅当3a a =-,即32a =时等号成立, 即当三棱锥B EBF '-的体积取得最大值时,点E ,F 分别是棱AB ,BC 的中点, 方法一:连接A E ',AF ,则352A E '=,352AF =,2292A F AA AF ''=+=,13222EF AC ==, 因为//EF AC ,所以A FE '∠即为异面直线A F '与AC 所成的角,由余弦定理得222819452424cos 93222222A F EF A E A FE A F EF +-''+-'∠==='⋅⋅⨯⨯,∴4A FE π'∠=.方法二:以B 为坐标原点,以BC 、BA 、BB '分别为x 轴、y 轴、z 轴建立空间直角坐标系,则()0,3,0A ,()3,0,0C ,()0,3,3A ',3,0,02F ⎛⎫⎪⎝⎭,∴3,3,32A F ⎛⎫'=-- ⎪⎝⎭u u u u r ,()3,3,0AC =-u u u r ,所以9922cos ,92322A F AC A F AC A F AC +'⋅'==='⋅⨯u u u u r u u u r u u u u r u u u r u u u u r u u u r ,所以异面直线A F '与AC 所成的角为4π. 故选:C 【点睛】本题主要考查异面直线所成的角,余弦定理,基本不等式以及向量法求角,还考查了推理论证运算求解的能力,属于中档题.8.一个几何体的三视图如图所示,则该几何体的体积为A .383+B .823+C .283D .10【答案】A 【解析】 【分析】根据三视图可知该几何体为一组合体,是一个棱长为2的正方体与三棱锥的组合体,根据体积公式分别计算即可. 【详解】几何体为正方体与三棱锥的组合体,由正视图、俯视图可得该几何体的体积为311232+2328323V =⨯⨯=+, 故选A. 【点睛】本题主要考查了三视图,正方体与三棱锥的体积公式,属于中档题.9.如图,在直三棱柱111ABC A B C -中,4AC BC ==,AC BC ⊥,15CC =,D 、E 分别是AB 、11B C 的中点,则异面直线BE 与CD 所成的角的余弦值为( )A .3 B .13C .58 D .387【答案】C 【解析】 【分析】取11A C 的中点F ,连接DF 、EF 、CF ,推导出四边形BDFE 为平行四边形,可得出//BE DF ,可得出异面直线BE 与CD 所成的角为CDF ∠,通过解CDF V ,利用余弦定理可求得异面直线BE 与CD 所成的角的余弦值. 【详解】取11A C 的中点F ,连接DF 、EF 、CF .易知EF 是111A B C △的中位线,所以11//EF A B 且1112EF A B =.又11//AB A B 且11AB A B =,D 为AB 的中点,所以11//BD A B 且1112BD A B =,所以//EF BD 且EF BD =.所以四边形BDFE 是平行四边形,所以//DF BE ,所以CDF ∠就是异面直线BE 与CD 所成的角.因为4AC BC ==,AC BC ⊥,15CC =,D 、E 、F 分别是AB 、11B C 、11A C 的中点, 所以111122C F AC ==,111122B E BC ==且CD AB ⊥. 由勾股定理得224442AB =+=,所以2242AC BC CD AB ⋅===. 由勾股定理得2222115229CF CC C F =+=+=,2222115229DF BE BB B E ==+=+=.在CDF V 中,由余弦定理得())()22229222958cos 2922922CDF +-∠==⨯⨯.故选:C. 【点睛】本题考查异面直线所成角的余弦值的计算,一般利用平移直线法找出异面直线所成的角,考查计算能力,属于中等题.10.如图,在正三棱柱111ABC A B C -中,2AB =,123AA =,D ,F 分别是棱AB ,1AA 的中点,E 为棱AC 上的动点,则DEF ∆的周长的最小值为()A .222B .232C 62+D 72【答案】D 【解析】 【分析】根据正三棱柱的特征可知ABC ∆为等边三角形且1AA ⊥平面ABC ,根据1AA AD ⊥可利用勾股定理求得2DF =;把底面ABC 与侧面11ACC A 在同一平面展开,可知当,,D E F 三点共线时,DE EF +取得最小值;在ADF ∆中利用余弦定理可求得最小值,加和得到结果. 【详解】Q 三棱柱111ABC A B C -为正三棱柱 ABC ∆∴为等边三角形且1AA ⊥平面ABCAD ⊂Q 平面ABC 1AA AD ∴⊥ 132DF ∴=+=把底面ABC 与侧面11ACC A 在同一平面展开,如下图所示:当,,D E F 三点共线时,DE EF +取得最小值 又150FAD ∠=o ,3AF =1AD =()22min 32cos 42372DE EF AF AD AF AD FAD ⎛⎫∴+=+-⋅∠=-⨯-= ⎪ ⎪⎝⎭DEF ∴∆72+本题正确选项:D 【点睛】本题考查立体几何中三角形周长最值的求解问题,关键是能够将问题转化为侧面上两点间最短距离的求解问题,利用侧面展开图可知三点共线时距离最短.11.如图,在棱长为2的正方体1111ABCD A B C D -中,点M 是AD 的中点,动点P 在底面ABCD 内(不包括边界),若1B P P 平面1A BM ,则1C P 的最小值是( )A .305B .2305 C .275D .475【答案】B 【解析】 【分析】在11A D 上取中点Q ,在BC 上取中点N ,连接11,,,DN NB B Q QD ,根据面面平行的判定定理可知平面1//B QDN 平面1A BM ,从而可得P 的轨迹是DN (不含,D N 两点);由垂直关系可知当CP DN ⊥时,1C P 取得最小值;利用面积桥和勾股定理可求得最小值. 【详解】如图,在11A D 上取中点Q ,在BC 上取中点N ,连接11,,,DN NB B Q QD//DN BM Q ,1//DQ A M 且DN DQ D =I ,1BM A M M =I∴平面1//B QDN 平面1A BM ,则动点P 的轨迹是DN (不含,D N 两点)又1CC ⊥平面ABCD ,则当CP DN ⊥时,1C P 取得最小值此时,22512CP ==+ 221223025C P ⎛⎫∴≥+= ⎪⎝⎭本题正确选项:B 【点睛】本题考查立体几何中动点轨迹及最值的求解问题,关键是能够通过面面平行关系得到动点的轨迹,从而找到最值取得的点.12.某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大A.169πB.89πC.1627πD.827π【答案】A【解析】【分析】根据条件求出圆柱的体积,利用基本不等式研究函数的最值即可.【详解】解:设圆柱的半径为r,高为x,体积为V,则由题意可得323r x-=,332x r∴=-,∴圆柱的体积为23()(3)(02)2V r r r rπ=-<<,则33333163331616442()(3)()9442939r r rV r r r rπππ++-=-=g g g g….当且仅当33342r r=-,即43r=时等号成立.∴圆柱的最大体积为169π,故选:A.【点睛】本题考查圆柱的体积和基本不等式的实际应用,利用条件建立体积函数是解决本题的关键,是中档题.13.已知m,l是两条不同的直线,α,β是两个不同的平面,则下列可以推出αβ⊥的是()A.m l⊥,mβ⊂,lα⊥B.m l⊥,lαβ=I,mα⊂C.//m l,mα⊥,lβ⊥D.lα⊥,//m l,//mβ【答案】D【解析】A ,有可能出现α,β平行这种情况.B ,会出现平面α,β相交但不垂直的情况.C ,根据面面平行的性质定理判断.D ,根据面面垂直的判定定理判断. 【详解】对于A ,m l ⊥,m β⊂,l α⊥,则//αβ或α,β相交,故A 错误; 对于B ,会出现平面α,β相交但不垂直的情况,故B 错误;对于C ,因为//m l ,m α⊥,则l α⊥,由因为l βαβ⊥⇒∥,故C 错误; 对于D ,l α⊥,m l m α⇒⊥∥,又由m βαβ⇒⊥∥,故D 正确. 故选:D 【点睛】本题考查空间中的平行、垂直关系的判定,还考查学生的空间想象能力和逻辑推理能力,属于中档题.14.若a ,b 是不同的直线,α,β是不同的平面,则下列四个命题:①若a P α,b β∥,a b ⊥r r,则αβ⊥;②若a P α,b β∥,a b ∥,则αβ∥;③若a α⊥,b β⊥,a b ∥,则αβ∥;④若a P α,b β⊥,a b ⊥r r,则αβ∥.正确的个数为( ) A .0 B .1C .2D .3【答案】B 【解析】 【分析】对每一个选项逐一分析得解. 【详解】命题①中α与β还有可能平行或相交; 命题②中α与β还有可能相交; 命题④中α与β还有可能相交;∵a b P ,a α⊥,∴b α⊥,又b β⊥,∴αβP .故命题③正确. 故选B . 【点睛】本题主要考查空间直线平面位置关系的判断,意在考查学生对这些知识的理解掌握水平和空间想象能力.15.已知正三棱柱111ABC A B C -的所有棱长都相等,D 是11A B 的中点,则AD 与平面11BCC B 所成角的正弦值为( )A B C D 【答案】D【分析】先找出直线AD 与平面11BCC B 所成角,然后在1B EF V 中,求出1sin EB F ∠,即可得到本题答案. 【详解】如图,取AB 中点E ,作EF BC ⊥于F ,连接11,B E B F ,则1EB F ∠即为AD 与平面11BCC B 所成角. 不妨设棱长为4,则1,2BF BE ==,13,25EF B E ∴=1315sin 25EB F ∴∠==. 故选:D 【点睛】本题主要考查直线与平面所成角的求法,找出线面所成角是解决此类题目的关键.16.在正四面体A BCD -中,P 是AB 的中点,Q 是直线BD 上的动点,则直线PQ 与AC 所成角可能为( )A .12πB .4π C .512π D .2π 【答案】C 【解析】 【分析】根据题意,取BC 的中点M ,连接MQ ,则//AC MQ ,所以QPM ∠为异面直线PQ 与AC 所成角,在利用余弦定理可得242MQ x x =+-,易知PQ MQ =,所以在等腰三角形PMQ 中()2cos 0442QPM x x x∠=≤≤+-,即可求出33cos QPM ∠∈⎣⎦,,进而求出结果.【详解】取BC 的中点M ,连接MQ ,则//AC MQ ,所以QPM ∠为异面直线PQ 与AC 所成角,如下图所示:设正四面体A BCD -的棱长为4,()04BQ x x =≤≤,,在BMQ ∆中,22222cos 6042MQ BM BQ BM BQ x x =+-⋅︒=+-, 在正四面体A BCD -中,易知PQ MQ =, 所以在等腰三角形PMQ 中,()2cos 0442QPM x x x∠=≤≤+-所以33cos 123QPM ∠∈⎣⎦,,所以异面直线PQ 与AC 所成角可能为512π. 故选:C. 【点睛】本题主要考查了异面直线成角,余弦定理的应用,考查了空间几何中的动态问题,考查学生的应用能力和空间想象能力,属于中档题.17.在三棱锥P ABC -中,PA ⊥平面ABC ,2π,43BAC AP ∠==,23AB AC ==P ABC -的外接球的表面积为( )A .32πB .48πC .64πD .72π【答案】C 【解析】 【分析】先求出ABC V 的外接圆的半径,然后取ABC V 的外接圆的圆心G ,过G 作//GO AP ,且122GO AP ==,由于PA ⊥平面ABC ,故点O 为三棱锥P ABC -的外接球的球心,OA 为外接球半径,求解即可. 【详解】在ABC V 中,23AB AC ==23BAC π∠=,可得6ACB π∠=, 则ABC V 的外接圆的半径323π2sin 2sin6AB r ACB ===ABC V 的外接圆的圆心G ,过G 作//GO AP ,且122GO AP ==, 因为PA ⊥平面ABC ,所以点O 为三棱锥P ABC -的外接球的球心, 则222OA OG AG =+,即外接球半径()222234R =+=,则三棱锥P ABC -的外接球的表面积为24π4π1664πR =⨯=. 故选C.【点睛】本题考查了三棱锥的外接球表面积的求法,考查了学生的空间想象能力,属于中档题.18.在正方体1111ABCD A B C D -中,E 为棱1CC 上一点且12CE EC =,则异面直线AE 与1A B 所成角的余弦值为( ) A 11B 11 C 211D 11【答案】B 【解析】 【分析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法能求出异面直线AE 与1A B 所成角的余弦值. 【详解】解:以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系, 设3AB =,则()3,0,0A ,()0,3,2E ,()13,0,3A ,()3,3,0B,()3,3,2AE =-u u u r ,()10,3,3A B =-u u u r,设异面直线AE 与1A B 所成角为θ, 则异面直线AE 与1A B 所成角的余弦值为:1111cos 222218AE A B AE A Bθ⋅===⋅⋅u u u r u u u r u u u r u u u r .故选:B .【点睛】本题考查利用向量法求解异面直线所成角的余弦值,难度一般.已知1l 的方向向量为a r,2l 的方向向量为b r,则异面直线12,l l 所成角的余弦值为a b a b⋅⋅r r r r .19.已知正方体1111A B C D ABCD -的棱1AA 的中点为E ,AC 与BD 交于点O ,平面α过点E 且与直线1OC 垂直,若1AB =,则平面α截该正方体所得截面图形的面积为( ) A 6B 6C 3D 3【答案】A 【解析】 【分析】根据正方体的垂直关系可得BD ⊥平面11ACC A ,进而1BD OC ⊥,可考虑平面BDE 是否为所求的平面,只需证明1OE OC ⊥即可确定平面α. 【详解】如图所示,正方体1111ABCD A B C D -中,E 为棱1AA 的中点,1AB =,则2113122OC =+=,2113424OE =+=,2119244EC =+=,∴22211OC OE EC +=,1OE OC ∴⊥;又BD ⊥平面11ACC A ,1BD OC ∴⊥,且OE BD O =I ,1OC ∴⊥平面BDE ,且1136222BDE S BD OE ∆==g , 即α截该正方体所得截面图形的面积为64故选:A .【点睛】本题考查线面垂直的判定,考查三角形面积的计算,熟悉正方体中线面垂直关系是解题的关键,属于中档题.20.已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别是边OA ,CB 的中点,点G 在线段MN 上,且使2MG GN =,用向量OA u u u v ,OB uuu v ,OC u u u v 表示向量OG u u u v是( )A .2233OG OA OB OC =++u u u v u u u v u u u v u u u vB .122233OG OA OB OC u u u vu u uv u u u v u u u v =++ C .111633OG OA OB OC =++u u u v u u u v u u u v u u u vD .112633OG OA OB OC =++u u u v u u u v u u u v u u u v【答案】C 【解析】 【分析】根据所给的图形和一组基底,从起点O 出发,把不是基底中的向量,用是基底的向量来表示,就可以得到结论. 【详解】2OG OM MG OM MN 3=+=+u u u r u u u u r u u Q u u r u u u u r u u u u r,()()2121111OM MO OC CN OM OC OB OC OA OB OC 3333633u u u u r u u u u r u u u r u u u r u u u u r u u u r u u u r u u u r u u ur u u u r u u u r =+++=++-=++111OG OA OB OC 633u u u r u u u r u u u r u u u r ∴=++ ,故选:C . 【点睛】本题考查向量的基本定理及其意义,解题时注意方法,即从要表示的向量的起点出发,沿着空间图形的棱走到终点,若出现不是基底中的向量的情况,再重复这个过程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年高考数学压轴必刷题(第一辑)专题09立体几何与空间向量1.【2020年全国1卷文科12】已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆,若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π【答案】A【解析】设圆O1半径为r,球的半径为R,依题意,得πr2=4π,∴r=2,由正弦定理可得AB=2rsin60°=2√3,∴OO1=AB=2√3,根据圆截面性质OO1⊥平面ABC,∴OO1⊥O1A,R=OA=√OO12+O1A2=√OO12+r2=4,∴球O的表面积S=4πR2=64π.故选:A2.【2020年全国2卷文科11】已知△ABC是面积为9√34的等边三角形,且其顶点都在球O的球面上.若球O 的表面积为16π,则O到平面ABC的距离为()A.√3B.32C.1D.√32【答案】C【解析】设球O的半径为R,则4πR2=16π,解得:R=2.设△ABC外接圆半径为r,边长为a,∵△ABC是面积为9√34的等边三角形,∴12a2×√32=9√34,解得:a=3,∴r=23×√a2−a24=23×√9−94=√3,∴球心O到平面ABC的距离d=√R2−r2=√4−3=1.故选:C.3.【2020年上海卷15】在棱长为10的正方体ABCD﹣A1B1C1D1中,P为左侧面ADD1A1上一点,已知点P 到A1D1的距离为3,P到AA1的距离为2,则过点P且与A1C平行的直线相交的面是()A.AA1B1B B.BB1C1C C.CC1D1D D.ABCD【答案】解:如图,由点P到A1D1的距离为3,P到AA1的距离为2,可得P在△AA1D内,过P作EF∥A1D,且EF∩AA1于E,EF∩AD于F,在平面ABCD中,过F作FG∥CD,交BC于G,则平面EFG∥平面A1DC.连接AC,交FG于M,连接EM,∵平面EFG∥平面A1DC,平面A1AC∩平面A1DC=A1C,平面A1AC∩平面EFM=EM,∴EM∥A1C.在△EFM中,过P作PN∥EM,且PN∩FM于N,则PN∥A1C.∵线段FM在四边形ABCD内,N在线段FM上,∴N在四边形ABCD内.∴过点P 且与A 1C 平行的直线相交的面是ABCD .故选:D .4.【2019年新课标1理科12】已知三棱锥P ﹣ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .8√6πB .4√6πC .2√6πD .√6π【答案】解:如图,由P A =PB =PC ,△ABC 是边长为2的正三角形,可知三棱锥P ﹣ABC 为正三棱锥,则顶点P 在底面的射影O 为底面三角形的中心,连接BO 并延长,交AC 于G ,则AC ⊥BG ,又PO ⊥AC ,PO ∩BG =O ,可得AC ⊥平面PBG ,则PB ⊥AC ,∵E ,F 分别是P A ,AB 的中点,∴EF ∥PB ,又∠CEF =90°,即EF ⊥CE ,∴PB ⊥CE ,得PB ⊥平面P AC ,∴正三棱锥P ﹣ABC 的三条侧棱两两互相垂直,把三棱锥补形为正方体,则正方体外接球即为三棱锥的外接球,其直径为D =√PA 2+PB 2+PC 2=√6.半径为√62,则球O 的体积为43π×(√62)3=√6π.故选:D .5.【2019年浙江08】设三棱锥V ﹣ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P ﹣AC ﹣B 的平面角为γ,则( )A .β<γ,α<γB .β<α,β<γC .β<α,γ<αD .α<β,γ<β【答案】解:方法线段AO 上,作DE ⊥AC 于E ,易得PE ∥VG ,过P 作PF ∥AC 于F ,过D 作DH ∥AC ,交BG 于H ,则α=∠BPF ,β=∠PBD ,γ=∠PED ,则cos α=PF PB =EG PB =DH PB <BD PB =cos β,可得β<α;tan γ=PD ED >PD BD =tan β,可得β<γ,方法由最大角定理可得β<γ'=γ;方法易得cos α=123=√36,可得sin α=√336,sin β=√633=√23,sin γ=√6332=2√23, 故选:B .6.【2018年新课标1理科12】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A .3√34B .2√33C .3√24D .√32【答案】解:正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:所示的正六边形平行的平面,并且正六边形时,α截此正方体所得截面面积的最大,此时正六边形的边长√22, α截此正方体所得截面最大值为:6×√34×(√22)2=3√34.故选:A .7.【2018年新课标3理科10】设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且面积为9√3,则三棱锥D ﹣ABC 体积的最大值为( )A .12√3B .18√3C .24√3D .54√3 【答案】解:△ABC 为等边三角形且面积为9√3,可得√34×AB 2=9√3,解得AB =6, 球心为O ,三角形ABC 的外心为O ′,显然D 在O ′O 的延长线与球的交点如图: O ′C =23×√32×6=2√3,OO ′=√42−(2√3)2=2,则三棱锥D ﹣ABC 高的最大值为:6,则三棱锥D ﹣ABC 体积的最大值为:13×√34×63=18√3. 故选:B .8.【2018年新课标3文科12】设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且面积为9√3,则三棱锥D ﹣ABC 体积的最大值为( )A .12√3B .18√3C .24√3D .54√3【答案】解:△ABC 为等边三角形且面积为9√3,可得√34×AB 2=9√3,解得AB =6, 球心为O ,三角形ABC 的外心为O ′,显然D 在O ′O 的延长线与球的交点如图:O ′C =23×√32×6=2√3,OO ′=√42−(2√3)2=2,则三棱锥D ﹣ABC 高的最大值为:6,则三棱锥D ﹣ABC 体积的最大值为:13×√34×63=18√3. 故选:B .9.【2018年浙江08】已知四棱锥S ﹣ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点).设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S ﹣AB ﹣C 的平面角为θ3,则( )A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ1【答案】解:∵由题意可知S 在底面ABCD 的射影为正方形ABCD 的中心.过E 作EF ∥BC ,交CD 于F ,过底面ABCD 的中心O 作ON ⊥EF 交EF 于N ,连接SN ,取AB 中点M ,连接SM ,OM ,OE ,则EN =OM ,则θ1=∠SEN ,θ2=∠SEO ,θ3=∠SMO .显然,θ1,θ2,θ3均为锐角.∵tanθ1=SNNE=SNOM,tanθ3=SOOM,SN≥SO,∴θ1≥θ3,又sinθ3=SOSM,sinθ2=SOSE,SE≥SM,∴θ3≥θ2.故选:D.10.【2018年上海15】《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4B.8C.12D.16【答案】解:根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×4=8,当A1ACC1为底面矩形,有4个满足题意,当A1AEE1为底面矩形,有4个满足题意,故有8+4+4=16故选:D.11.【2017年新课标2理科10】已知直三棱柱ABC ﹣A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( )A .√32B .√155C .√105D .√33【答案】解:【解法一】如图所示,设M 、N 、P 分别为AB ,BB 1和B 1C 1的中点,则AB 1、BC 1夹角为MN 和NP 夹角或其补角(因异面直线所成角为(0,π2]),可知MN =12AB 1=√52,NP =12BC 1=√22;作BC 中点Q ,则△PQM 为直角三角形;∵PQ =1,MQ =12AC ,△ABC 中,由余弦定理得AC 2=AB 2+BC 2﹣2AB •BC •cos ∠ABC=4+1﹣2×2×1×(−12)=7,∴AC =√7,∴MQ =√72;在△MQP 中,MP =√MQ 2+PQ 2=√112;在△PMN 中,由余弦定理得cos ∠MNP =MN 2+NP 2−PM 22⋅MN⋅NP =(√52)2+(√22)2−(√112)22×√52×√22=−√105;又异面直线所成角的范围是(0,π2],∴AB 1与BC 1所成角的余弦值为√105.【解法二】如图所示,补成四棱柱ABCD ﹣A 1B 1C 1D 1,求∠BC 1D 即可;BC 1=√2,BD =√22+12−2×2×1×cos60°=√3,C 1D =√5,∴BC 12+BD 2=C 1D 2,∴∠DBC 1=90°,∴cos ∠BC 1D =√2√5=√105.故选:C .12.【2017年新课标3文科10】在正方体ABCD ﹣A 1B 1C 1D 1中,E 为棱CD 的中点,则() A .A 1E ⊥DC 1 B .A 1E ⊥BD C .A 1E ⊥BC 1 D .A 1E ⊥AC【答案】解:法一:连B 1C ,由题意得BC 1⊥B 1C ,∵A 1B 1⊥平面B 1BCC 1,且BC 1⊂平面B 1BCC 1,∴A 1B 1⊥BC 1,∵A 1B 1∩B 1C =B 1,∴BC 1⊥平面A 1ECB 1,∵A 1E ⊂平面A 1ECB 1,∴A 1E ⊥BC 1.故选:C .法二:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,设正方体ABCD ﹣A 1B 1C 1D 1中棱长为2,则A 1(2,0,2),E (0,1,0),B (2,2,0),D (0,0,0),C 1(0,2,2),A (2,0,0),C (0,2,0),A 1E →=(﹣2,1,﹣2),DC 1→=(0,2,2),BD →=(﹣2,﹣2,0),BC 1→=(﹣2,0,2),AC →=(﹣2,2,0),∵A 1E →•DC 1→=−2,A 1E →⋅BD →=2,A 1E →⋅BC 1→=0,A 1E →⋅AC →=6,∴A 1E ⊥BC 1.故选:C .13.【2017年浙江09】如图,已知正四面体D ﹣ABC (所有棱长均相等的三棱锥),P 、Q 、R 分别为AB 、BC 、CA 上的点,AP =PB ,BQ QC =CR RA =2,分别记二面角D ﹣PR ﹣Q ,D ﹣PQ ﹣R ,D ﹣QR ﹣P 的平面角为α、β、γ,则( )A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α【答案】解法一:如图所示,建立空间直角坐标系.设底面△ABC 的中心为O .不妨设OP =3.则O (0,0,0),P (0,﹣3,0),C (0,6,0),D (0,0,6√2),B (3√3,﹣3,0).Q (√3,3,0),R (−2√3,0,0),PR →=(−2√3,3,0),PD →=(0,3,6√2),PQ →=(√3,6,0),QR →=(−3√3,−3,0),QD →=(−√3,−3,6√2).设平面PDR 的法向量为n →=(x ,y ,z ),则{n →⋅PR →=0n →⋅PD →=0,可得{−2√3x +3y =03y +6√2z =0, 可得n →=(√6,2√2,−1),取平面ABC 的法向量m →=(0,0,1).则cos <m →,n →>=m →⋅n →|m →||n →|=15,取α=arccos √15. 同理可得:β=arccos√681.γ=arccos √2√95. ∵√15√2√95√681. ∴α<γ<β.解法二:如图所示,连接OP ,OQ ,OR ,过点O 分别作垂线:OE ⊥PR ,OF ⊥PQ ,OG ⊥QR ,垂足分别为E ,F ,G ,连接DE ,DF ,DG .设OD =h .则tan α=ODOE .同理可得:tan β=OD OF ,tan γ=OD OG .由已知可得:OE >OG >OF .∴tan α<tan γ<tan β,α,β,γ为锐角.∴α<γ<β. 故选:B .14.【2016年新课标1理科11】平面α过正方体ABCD ﹣A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m 、n 所成角的正弦值为( )A .√32B .√22C .√33D .13【答案】解:如图:α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABA 1B 1=n ,可知:n ∥CD 1,m ∥B 1D 1,∵△CB 1D 1是正三角形.m 、n 所成角就是∠CD 1B 1=60°.则m 、n 所成角的正弦值为:√32. 故选:A .15.【2016年新课标1文科11】平面α过正方体ABCD ﹣A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m 、n 所成角的正弦值为( )A .√32B .√22C .√33D .13【答案】解:如图:α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABA 1B 1=n ,可知:n ∥CD 1,m ∥B 1D 1,∵△CB 1D 1是正三角形.m 、n 所成角就是∠CD 1B 1=60°.则m 、n 所成角的正弦值为:√32. 故选:A .16.【2016年新课标3理科10】在封闭的直三棱柱ABC ﹣A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB .9π2C .6πD .32π3【答案】解:∵AB ⊥BC ,AB =6,BC =8,∴AC =10.故三角形ABC 的内切圆半径r =6+8−102=2, 又由AA 1=3,故直三棱柱ABC ﹣A 1B 1C 1的内切球半径为32, 此时V 的最大值43π⋅(32)3=9π2,故选:B .17.【2016年新课标3文科11】在封闭的直三棱柱ABC ﹣A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB .9π2C .6πD .32π3【答案】解:∵AB ⊥BC ,AB =6,BC =8,∴AC =10.故三角形ABC 的内切圆半径r =6+8−102=2, 又由AA 1=3,故直三棱柱ABC ﹣A 1B 1C 1的内切球半径为32, 此时V 的最大值43π⋅(32)3=9π2,故选:B .18.【2015年新课标1文科11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8【答案】解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:12×4πr 2+12×πr 2+12×2r ×2πr +2r ×2r +12×πr 2=5πr 2+4r 2, 又∵该几何体的表面积为16+20π,∴5πr 2+4r 2=16+20π,解得r =2,故选:B .19.【2015年新课标2文科10】已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点,若三棱锥O ﹣ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π【答案】解:如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ﹣ABC 的体积最大,设球O 的半径为R ,此时V O ﹣ABC =V C ﹣AOB =13×12×R 2×R =16R 3=36,故R =6,则球O 的表面积为4πR 2=144π, 故选:C .20.【2015年浙江理科08】如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()A.∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α【答案】解:①当AC=BC时,∠A′DB=α;②当AC≠BC时,如图,点A′投影在AE上,α=∠A′OE,连结AA′,易得∠ADA′<∠AOA′,∴∠A′DB>∠A′OE,即∠A′DB>α综上所述,∠A′DB≥α,故选:B.21.【2014年新课标1理科12】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6√2B.6C.4√2D.4【答案】解:几何体的直观图如图:AB=4,BD=4,C到BD的中点的距离为:4,∴BC=CD=√22+42=2√5.AC=√42+(2√5)2=6,AD=4√2,显然AC最长.长为6.故选:B.22.【2014年新课标2理科11】直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A.110B.25C.√3010D.√22【答案】解:直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,如图:BC的中点为O,连结ON,MN=∥12B1C1=OB,则MN0B是平行四边形,BM与AN所成角就是∠ANO,∵BC=CA=CC1,设BC=CA=CC1=2,∴CO=1,AO=√5,AN=√5,MB=√B1M2+BB12=√(√2)2+22=√6,在△ANO中,由余弦定理可得:cos∠ANO=AN2+NO2−AO22AN⋅NO=2×5×6=√3010.故选:C.23.【2014年上海理科16】如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,P i (i =1,2,…8)是上底面上其余的八个点,则AB →•AP i →(i =1,2,…,8)的不同值的个数为( )A .1B .2C .3D .4 【答案】解:AP i →=AB →+BP i →,则AB →•AP i →=AB →(AB →+BP i →)=|AB →|2+AB →⋅BP i →,∵AB →⊥BP i →,∴AB →•AP i →=|AB →|2=1,∴AB →•AP i →(i =1,2,…,8)的不同值的个数为1,故选:A .24.【2014年北京理科07】在空间直角坐标系Oxyz 中,已知A (2,0,0),B (2,2,0),C (0,2,0),D (1,1,√2),若S 1,S 2,S 3分别表示三棱锥D ﹣ABC 在xOy ,yOz ,zOx 坐标平面上的正投影图形的面积,则( )A .S 1=S 2=S 3B .S 2=S 1且S 2≠S 3C .S 3=S 1且S 3≠S 2D .S 3=S 2且S 3≠S 1【答案】解:设A (2,0,0),B (2,2,0),C (0,2,0),D (1,1,√2),则各个面上的射影分别为A ',B ',C ',D ',在xOy 坐标平面上的正投影A '(2,0,0),B '(2,2,0),C '(0,2,0),D '(1,1,0),S 1=12×2×2=2.在yOz 坐标平面上的正投影A '(0,0,0),B '(0,2,0),C '(0,2,0),D '(0,1,√2),S 2=.12×2×√2=√2 在zOx 坐标平面上的正投影A '(2,0,0),B '(2,0,0),C '(0,0,0),D '(0,1,√2),S 3=12×2×√2=√2, 则S 3=S 2且S 3≠S 1,故选:D . 25.【2013年新课标1文科11】某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π【答案】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积=12×22×π×4=8π 所以这个几何体的体积是16+8π;故选:A .26.【2013年浙江理科10】在空间中,过点A 作平面π的垂线,垂足为B ,记B =f π(A ).设α,β是两个不同的平面,对空间任意一点P ,Q 1=f β[f α(P )],Q 2=f α[f β(P )],恒有PQ 1=PQ 2,则( )A .平面α与平面β垂直B.平面α与平面β所成的(锐)二面角为45°C.平面α与平面β平行D.平面α与平面β所成的(锐)二面角为60°【答案】解:设P1=fα(P),则根据题意,得点P1是过点P作平面α垂线的垂足∵Q1=fβ[fα(P)]=fβ(P1),∴点Q1是过点P1作平面β垂线的垂足同理,若P2=fβ(P),得点P2是过点P作平面β垂线的垂足因此Q2=fα[fβ(P)]表示点Q2是过点P2作平面α垂线的垂足∵对任意的点P,恒有PQ1=PQ2,∴点Q1与Q2重合于同一点由此可得,四边形PP1Q1P2为矩形,且∠P1Q1P2是二面角α﹣l﹣β的平面角∵∠P1Q1P2是直角,∴平面α与平面β垂直故选:A.27.【2013年北京文科08】如图,在正方体ABCD﹣A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有()A.3个B.4个C.5个D.6个【答案】解:建立如图所示的空间直角坐标系,不妨设正方体的棱长|AB|=3,则A(3,0,0),B(3,3,0),C(0,3,0),D(0,0,0),A1(3,0,3),B1(3,3,3),C1(0,3,3),D 1(0,0,3),∴BD 1→=(﹣3,﹣3,3),设P (x ,y ,z ),∵BP →=13BD 1→=(﹣1,﹣1,1), ∴DP →=DB →+(−1,−1,1)=(2,2,1).∴|P A |=|PC |=|PB 1|=√12+22+12=√6,|PD |=|P A 1|=|PC 1|=√22+22+12=3,|PB |=√3,|PD 1|=√22+22+22=2√3.故P 到各顶点的距离的不同取值有√6,3,√3,2√3共4个.故选:B .28.【2012年新课标1理科11】已知三棱锥S ﹣ABC 的所有顶点都在球O 的表面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此三棱锥的体积为( )A .14B .√24C .√26D .√212【答案】解:根据题意作出图形:设球心为O ,过ABC 三点的小圆的圆心为O 1,则OO 1⊥平面ABC ,延长CO 1交球于点D ,则SD ⊥平面ABC .∵CO 1=23×√32=√33,∴OO 1=√1−13=√63,∴高SD =2OO 1=2√63,∵△ABC 是边长为1的正三角形,∴S△ABC=√3 4,∴V三棱锥S﹣ABC=13×√34×2√63=√26.故选:C.29.【2012年浙江理科10】已知矩形ABCD,AB=1,BC=√2.将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中()A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直【答案】解:如图,AE⊥BD,CF⊥BD,依题意,AB=1,BC=√2,AE=CF=√63,BE=EF=FD=√33,A,若存在某个位置,使得直线AC与直线BD垂直,则∵BD⊥AE,∴BD⊥平面AEC,从而BD⊥EC,这与已知矛盾,排除A;B,若存在某个位置,使得直线AB与直线CD垂直,则CD⊥平面ABC,平面ABC⊥平面BCD取BC中点M,连接ME,则ME⊥BD,∴∠AEM就是二面角A﹣BD﹣C的平面角,此角显然存在,即当A 在底面上的射影位于BC的中点时,直线AB与直线CD垂直,故B正确;C,若存在某个位置,使得直线AD与直线BC垂直,则BC⊥平面ACD,从而平面ACD⊥平面BCD,即A 在底面BCD上的射影应位于线段CD上,这是不可能的,排除CD ,由上所述,可排除D故选:B .30.【2010年新课标1理科10】设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2B .73πa 2C .113πa 2D .5πa 2【答案】解:根据题意条件可知三棱柱是棱长都为a 的正三棱柱,上下底面中心连线的中点就是球心,则其外接球的半径为R =√(a 2)2+(a 2sin60°)2=√712a 2, 球的表面积为S =4π⋅7a 212=73πa 2,故选:B .31.【2010年北京理科08】如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,动点E 、F 在棱A 1B 1上,动点P ,Q 分别在棱AD ,CD 上,若EF =1,A 1E =x ,DQ =y ,DP =z (x ,y ,z 大于零),则四面体PEFQ 的体积( )A .与x ,y ,z 都有关B .与x 有关,与y ,z 无关C .与y 有关,与x ,z 无关D .与z 有关,与x ,y 无关【答案】解:从图中可以分析出,△EFQ 的面积永远不变,为面A 1B 1CD 面积的14, 而当P 点变化时,它到面A 1B 1CD 的距离是变化的,因此会导致四面体体积的变化.故选:D .32.【2010年北京文科08】如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,动点E 、F 在棱A 1B 1上.点Q 是CD 的中点,动点P 在棱AD 上,若EF =1,DP =x ,A 1E =y (x ,y 大于零),则三棱锥P ﹣EFQ 的体积( )A.与x,y都有关B.与x,y都无关C.与x有关,与y无关D.与y有关,与x无关【答案】解:三棱锥P﹣EFQ的体积与点P到平面EFQ的距离和三角形EFQ的面积有关,由图形可知,平面EFQ与平面CDA1B1是同一平面,故点P到平面EFQ的距离是P到平面CDA1B1的距离,且该距离就是P到线段A1D的距离,此距离只与x有关,因为EF=1,点Q到EF的距离为线段B1C的长度,为定值,综上可知所求三棱锥的体积只与x有关,与y无关.故选:C.33.【2020年全国1卷理科16】如图,在三棱锥P–ABC的平面展开图中,AC=1,AB=AD=√3,AB⊥AC,AB⊥AD,∠CAE=30°,则cos∠FCB=______________.【答案】−14【解析】∵AB⊥AC,AB=√3,AC=1,由勾股定理得BC=√AB2+AC2=2,同理得BD=√6,∴BF=BD=√6,在△ACE中,AC=1,AE=AD=√3,∠CAE=30∘,=1,由余弦定理得CE2=AC2+AE2−2AC⋅AEcos30∘=1+3−2×1×√3×√32∴CF=CE=1,在△BCF中,BC=2,BF=√6,CF=1,由余弦定理得cos∠FCB=CF 2+BC2−BF22CF⋅BC=1+4−62×1×2=−14.故答案为:−14.34.【2020年全国2卷理科16】设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.p2:过空间中任意三点有且仅有一个平面.p3:若空间两条直线不相交,则这两条直线平行.p4:若直线l⊂平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是__________.①p1∧p4②p1∧p2③¬p2∨p3④¬p3∨¬p4【答案】①③④【解析】对于命题p1,可设l1与l2相交,这两条直线确定的平面为α;若l3与l1相交,则交点A在平面α内,同理,l3与l2的交点B也在平面α内,所以,AB⊂α,即l3⊂α,命题p1为真命题;对于命题p2,若三点共线,则过这三个点的平面有无数个,命题p2为假命题;对于命题p3,空间中两条直线相交、平行或异面,命题p3为假命题;对于命题p4,若直线m⊥平面α,则m垂直于平面α内所有直线,∵直线l⊂平面α,∴直线m⊥直线l,命题p4为真命题.综上可知,p1∧p4为真命题,p1∧p2为假命题,¬p2∨p3为真命题,¬p3∨¬p4为真命题.故答案为:①③④.35.【2020年全国2卷文科16】设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.p2:过空间中任意三点有且仅有一个平面.p3:若空间两条直线不相交,则这两条直线平行.p4:若直线l⊂平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是__________.①p1∧p4②p1∧p2③¬p2∨p3④¬p3∨¬p4【答案】①③④【解析】对于命题p1,可设l1与l2相交,这两条直线确定的平面为α;若l3与l1相交,则交点A在平面α内,同理,l3与l2的交点B也在平面α内,所以,AB⊂α,即l3⊂α,命题p1为真命题;对于命题p2,若三点共线,则过这三个点的平面有无数个,命题p2为假命题;对于命题p3,空间中两条直线相交、平行或异面,命题p3为假命题;对于命题p4,若直线m⊥平面α,则m垂直于平面α内所有直线,∵直线l⊂平面α,∴直线m⊥直线l,命题p4为真命题.综上可知,p1∧p4为真命题,p1∧p2为假命题,¬p2∨p3为真命题,¬p3∨¬p4为真命题.故答案为:①③④.36.【2020年全国3卷理科15】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【答案】√23π【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中BC=2,AB=AC=3,且点M为BC边上的中点,设内切圆的圆心为O,由于AM=√32−12=2√2,故S△ABC=12×2×2√2=2√2,设内切圆半径为r,则:S△ABC=S△AOB+S△BOC+S△AOC=12×AB×r+12×BC×r+12×AC×r=12×(3+3+2)×r=2√2,解得:r=√22,其体积:V=43πr3=√23π.故答案为:√23π.37.【2020年全国3卷文科16】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【答案】√23π【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中BC=2,AB=AC=3,且点M为BC边上的中点,设内切圆的圆心为O,由于AM=√32−12=2√2,故S△ABC=12×2×2√2=2√2,设内切圆半径为r,则:S△ABC=S△AOB+S△BOC+S△AOC=12×AB×r+12×BC×r+12×AC×r=12×(3+3+2)×r=2√2,解得:r=√22,其体积:V=43πr3=√23π.故答案为:√23π.38.【2020年山东卷16】已知直四棱柱ABCD–A1B1C1D1的棱长均为2,∠BAD=60°.以D1为球心,√5为半径的球面与侧面BCC1B1的交线长为________.【答案】√22π.【解析】如图:取B1C1的中点为E,BB1的中点为F,CC1的中点为G,因为∠BAD=60°,直四棱柱ABCD−A1B1C1D1的棱长均为2,所以△D1B1C1为等边三角形,所以D1E=√3,D1E⊥B1C1,又四棱柱ABCD −A 1B 1C 1D 1为直四棱柱,所以BB 1⊥平面1111D C B A ,所以BB 1⊥B 1C 1,因为BB 1∩B 1C 1=B 1,所以D 1E ⊥侧面B 1C 1CB ,设P 为侧面B 1C 1CB 与球面的交线上的点,则D 1E ⊥EP ,因为球的半径为√5,D 1E =√3,所以|EP|=√|D 1P|2−|D 1E|2=√5−3=√2,所以侧面B 1C 1CB 与球面的交线上的点到E 的距离为√2,因为|EF|=|EG|=√2,所以侧面B 1C 1CB 与球面的交线是扇形EFG 的弧FG⌢, 因为∠B 1EF =∠C 1EG =π4,所以∠FEG =π2,所以根据弧长公式可得FG ⌢=π2×√2=√22π. 故答案为:√22π.39.【2019年新课标3文科16】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体ABCD ﹣A 1B 1C 1D 1挖去四棱锥O ﹣EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,AB =BC =6cm ,AA 1=4cm .3D 打印所用原料密度为0.9g /cm 3.不考虑打印损耗,制作该模型所需原料的质量为 g .【答案】解:该模型为长方体ABCD ﹣A 1B 1C 1D 1,挖去四棱锥O ﹣EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H ,分别为所在棱的中点,AB =BC =6cm ,AA 1=4cm ,∴该模型体积为:V ABCD−A 1B 1C 1D 1−V O ﹣EFGH=6×6×4−13×(4×6−4×12×3×2)×3=144﹣12=132(cm 3),∵3D 打印所用原料密度为0.9g /cm 3,不考虑打印损耗,∴制作该模型所需原料的质量为:132×0.9=118.8(g ).故答案为:118.8.40.【2019年新课标1文科16】已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为√3,那么P到平面ABC的距离为.【答案】解:∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为√3,过点P作PD⊥AC,交AC于D,作PE⊥BC,交BC于E,过P作PO⊥平面ABC,交平面ABC于O,连结OD,OC,则PD=PE=√3,∴CD=CE=OD=OE=√22−(√3)2=1,∴PO=√PD2−OD2=√3−1=√2.∴P到平面ABC的距离为√2.故答案为:√2.41.【2019年新课标3理科16】学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD﹣A1B1C1D1挖去四棱锥O﹣EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6cm,AA1=4cm.3D打印所用原料密度为0.9g/cm3.不考虑打印损耗,制作该模型所需原料的质量为g.【答案】解:该模型为长方体ABCD ﹣A 1B 1C 1D 1,挖去四棱锥O ﹣EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H ,分别为所在棱的中点,AB =BC =6cm ,AA 1=4cm ,∴该模型体积为:V ABCD−A 1B 1C 1D 1−V O ﹣EFGH=6×6×4−13×(4×6−4×12×3×2)×3=144﹣12=132(cm 3),∵3D 打印所用原料密度为0.9g /cm 3,不考虑打印损耗,∴制作该模型所需原料的质量为:132×0.9=118.8(g ).故答案为:118.8.42.【2018年新课标2理科16】已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若△SAB 的面积为5√15,则该圆锥的侧面积为 .【答案】解:圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,可得sin ∠ASB =√1−(78)2=√158. △SAB 的面积为5√15,可得12SA 2sin ∠ASB =5√15,即12SA 2×√158=5√15,即SA =4√5. SA 与圆锥底面所成角为45°,可得圆锥的底面半径为:√22×4√5=2√10. 则该圆锥的侧面积:12×4√10×4√5π=40√2π.故答案为:40√2π.43.【2018年新课标2文科16】已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30°.若△SAB 的面积为8,则该圆锥的体积为 .【答案】解:圆锥的顶点为S ,母线SA ,SB 互相垂直,△SAB 的面积为8,可得:12SA 2=8,解得SA =4, SA 与圆锥底面所成角为30°.可得圆锥的底面半径为:2√3,圆锥的高为:2,则该圆锥的体积为:V =13×π×(2√3)2×2=8π.故答案为:8π.44.【2017年新课标1理科16】如图,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D 、E 、F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为 .【答案】解法一:由题意,连接OD ,交BC 于点G ,由题意得OD ⊥BC ,OG =√36BC ,即OG 的长度与BC 的长度成正比,设OG =x ,则BC =2√3x ,DG =5﹣x ,三棱锥的高h =√DG 2−OG 2=√25−10x +x 2−x 2=√25−10x ,S △ABC =12×√32×(2√3x)2=3√3x 2,则V =13S △ABC ×ℎ=√3x 2×√25−10x =√3⋅√25x 4−10x 5,令f (x )=25x 4﹣10x 5,x ∈(0,52),f ′(x )=100x 3﹣50x 4, 令f ′(x )≥0,即x 4﹣2x 3≤0,解得x ≤2,则f (x )≤f (2)=80,∴V ≤√3×√80=4√15cm 3,∴体积最大值为4√15cm 3.故答案为:4√15cm 3.解法二:如图,设正三角形的边长为x ,则OG =13×√32x =√36x ,∴FG=SG=5−√36x,SO=h=√SG2−GO2=(5−√36x)2−(√36x)2=5(5−√33),∴三棱锥的体积V=13S△ABC⋅ℎ=13×√34×5(5−33x)=√15125x4−33x5,令b(x)=5x4−√33x5,则b′(x)=20x3−5√33x4,令b′(x)=0,则4x343=0,解得x=4√3,∴V max=√7512×48×√5−4=4√15(cm3).故答案为:4√15cm3.45.【2017年新课标1文科16】已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O的表面积为.【答案】解:三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径,若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,可知三角形SBC与三角形SAC都是等腰直角三角形,设球的半径为r,可得13×12×2r ×r ×r =9,解得r =3.球O 的表面积为:4πr 2=36π. 故答案为:36π.46.【2017年新课标3理科16】a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最小值为60°;其中正确的是 .(填写所有正确结论的编号)【答案】解:由题意知,a 、b 、AC 三条直线两两相互垂直,画出图形如图, 不妨设图中所示正方体边长为1, 故|AC |=1,|AB |=√2,斜边AB 以直线AC 为旋转轴,则A 点保持不变, B 点的运动轨迹是以C 为圆心,1为半径的圆,以C 坐标原点,以CD 为x 轴,CB 为y 轴,CA 为z 轴,建立空间直角坐标系, 则D (1,0,0),A (0,0,1),直线a 的方向单位向量a →=(0,1,0),|a →|=1, 直线b 的方向单位向量b →=(1,0,0),|b →|=1,设B 点在运动过程中的坐标中的坐标B ′(cos θ,sin θ,0), 其中θ为B ′C 与CD 的夹角,θ∈[0,2π),∴AB ′在运动过程中的向量,AB ′→=(cos θ,sin θ,﹣1),|AB ′→|=√2,设AB ′→与a →所成夹角为α∈[0,π2],则cos α=|(−cosθ,−sinθ,1)⋅(0,1,0)||a →|⋅|AB′→|=√22|sin θ|∈[0,√22], ∴α∈[π4,π2],∴③正确,④错误.设AB ′→与b →所成夹角为β∈[0,π2],cos β=|AB′→⋅b →||AB′→|⋅|b →|=|(−cosθ,sinθ,1)⋅(1,0,0)||b →|⋅|AB′→|=√22|cos θ|,当AB ′→与a →夹角为60°时,即α=π3, |sin θ|=√2cosα=√2cos π3=√22, ∵cos 2θ+sin 2θ=1,∴cos β=√22|cos θ|=12,∵β∈[0,π2],∴β=π3,此时AB ′→与b →的夹角为60°,∴②正确,①错误. 故答案为:②③.47.【2016年浙江理科14】如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是 .【答案】解:如图,M 是AC 的中点.①当AD =t <AM =√3时,如图,此时高为P 到BD 的距离,也就是A 到BD 的距离,即图中AE ,DM =√3−t ,由△ADE ∽△BDM ,可得ℎ1=√(√3−t)2+1,∴h =√(√3−t)+1,V =13⋅12⋅(2√3−t)⋅1t √√3−t)2=163−(√3−t)2√(√3−t)+1,t ∈(0,√3)②当AD =t >AM =√3时,如图,此时高为P 到BD 的距离,也就是A 到BD 的距离,即图中AH ,DM =t −√3,由等面积,可得12⋅AD ⋅BM =12⋅BD ⋅AH ,∴12⋅t ⋅1=12√√∴h =t√(√3−t)2+1,∴V =13⋅12⋅(2√3−t)⋅1√√3−t)2=16⋅√3−t)2√(√3−t)+1,t ∈(√3,2√3)综上所述,V =16⋅√3−t)2√(√3−t)+1,t ∈(0,2√3)令m =√(√3−t)2+1∈[1,2),则V =16⋅4−m 2m ,∴m =1时,V max =12.另解:由于PD =DA ,PB =BA ,则对于每一个确定的AD ,都有△PDB 绕DB 在空间中旋转, 则PD ⊥AC 时体积最大,则只需考察所有PD ⊥AC 时的最大, 设PD =DA =h ,则V =13S 底h =13h •12sin30°•(2√3−h )•2,二次函数求最值可知h =√3时体积最大为12.故答案为:12.48.【2015年浙江理科13】如图,三棱锥A ﹣BCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别是AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是 .【答案】解:连结ND ,取ND 的中点为:E ,连结ME ,则ME ∥AN ,异面直线AN ,CM 所成的角就是∠EMC , ∵AN =2√2,∴ME =√2=EN ,MC =2√2,又∵EN ⊥NC ,∴EC =√EN 2+NC 2=√3,∴cos ∠EMC =EM 2+MC 2−EC 22EM⋅MC =2×2×22=78.故答案为:78.49.【2014年浙江理科17】如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若AB =15m ,AC =25m ,∠BCM =30°,则tan θ的最大值是 .(仰角θ为直线AP 与平面ABC 所成角)【答案】解:∵AB =15m ,AC =25m ,∠ABC =90°, ∴BC =20m ,过P 作PP ′⊥BC ,交BC 于P ′,连接AP ′,则tan θ=PP′AP′, 设BP ′=x ,则CP ′=20﹣x ,由∠BCM =30°,得PP ′=CP ′tan30°=√33(20﹣x ),在直角△ABP ′中,AP ′=√225+x 2, ∴tan θ=√33•√225+x 2,令y =20−x√225+x ,则函数在x ∈[0,20]单调递减,∴x =0时,取得最大值为20√345=4√39. 若P ′在CB 的延长线上,PP ′=CP ′tan30°=√33(20+x ), 在直角△ABP ′中,AP ′=√225+x 2, ∴tan θ=√33•√225+x 2,令y =(20+x)2225+x 2,则y ′=0可得x =454时,函数取得最大值5√39, 故答案为:5√39.50.【2013年新课标1文科15】已知H 是球O 的直径AB 上一点,AH :HB =1:2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为 .【答案】解:设球的半径为R ,∵AH :HB =1:2,∴平面α与球心的距离为13R ,∵α截球O 所得截面的面积为π, ∴d =13R 时,r =1,故由R 2=r 2+d 2得R 2=12+(13R )2,∴R 2=98∴球的表面积S =4πR 2=9π2. 故答案为:9π2.51.【2013年上海理科13】在xOy 平面上,将两个半圆弧(x ﹣1)2+y 2=1(x ≥1)和(x ﹣3)2+y 2=1(x ≥3),两条直线y =1和y =﹣1围成的封闭图形记为D ,如图中阴影部分,记D 绕y 轴旋转一周而成的几何体为Ω.过(0,y)(|y|≤1)作Ω的水平截面,所得截面积为4π√1−y2+8π.试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为.【答案】解:因为几何体为Ω的水平截面的截面积为4π√1−y2+8π,该截面的截面积由两部分组成,一部分为定值8π,看作是截一个底面积为8π,高为2的长方体得到的,对于42径为1,高为2π的圆柱平放得到的,如图所示,这两个几何体与Ω放在一起,根据祖暅原理,每个平行水平面的截面积相等,故它们的体积相等,即Ω的体积为π•12•2π+2•8π=2π2+16π.故答案为2π2+16π.52.【2013年北京理科14】如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为.【答案】解:如图所示,取B1C1的中点F,连接EF,ED1,∴CC1∥EF,又EF⊂平面D1EF,CC1⊄平面D1EF,∴CC1∥平面D1EF.∴直线C1C上任一点到平面D1EF的距离是两条异面直线D1E与CC1的距离.过点C1作C1M⊥D1F,∵平面D1EF⊥平面A1B1C1D1.。