离散数学第10章
离散数学(第三版)陈建明-刘国荣课后习题答案
离散数学辅助教材概念分析结构思想与推理证明第一部分集合论刘国荣交大电信学院计算机系离散数学习题解答习题一(第一章集合)1. 列出下述集合的全部元素:1)A={x | x ∈N∧x是偶数∧x<15}2)B={x|x∈N∧4+x=3}3)C={x|x是十进制的数字}[解] 1)A={2,4,6,8,10,12,14}2)B=3)C={0,1,2,3,4,5,6,7,8,9}2. 用谓词法表示下列集合:1){奇整数集合}2){小于7的非负整数集合}3){3,5,7,11,13,17,19,23,29}[解] 1){n n I(m I)(n=2m+1)};2){n n I n0n<7};3){p p N p>2p<30(d N)(d1d p(k N)(p=k d))}。
3. 确定下列各命题的真假性:1)2)∈3){}4)∈{}5){a,b}{a,b,c,{a,b,c}}6){a,b}∈(a,b,c,{a,b,c})7){a,b}{a,b,{{a,b,}}}8){a,b}∈{a,b,{{a,b,}}}[解]1)真。
因为空集是任意集合的子集;2)假。
因为空集不含任何元素;3)真。
因为空集是任意集合的子集;4)真。
因为是集合{}的元素;5)真。
因为{a,b}是集合{a,b,c,{a,b,c}}的子集;6)假。
因为{a,b}不是集合{a,b,c,{a,b,c}}的元素;7)真。
因为{a,b}是集合{a,b,{{a,b}}}的子集;8)假。
因为{a,b}不是集合{a,b,{{a,b}}}的元素。
4. 对任意集合A,B,C,确定下列命题的真假性:1)如果A∈B∧B∈C,则A∈C。
2)如果A∈B∧B∈C,则A∈C。
3)如果A B∧B∈C,则A∈C。
[解] 1)假。
例如A={a},B={a,b},C={{a},{b}},从而A∈B∧B∈C但A∈C。
2)假。
例如A={a},B={a,{a}},C={{a},{{a}}},从而A∈B∧B∈C,但、A∈C。
离散数学答案 第十章 格和布尔代数
第十章格和布尔代数习题10.1 1.解 ⑴不是,因为L 中的元素对{2,3}没有最小上界;⑵是,因为L={1,2,3,4,6,9,12,18,36}任何一对元素a ,b ,都有最小上界和最大下界;⑶是,与⑵同理;⑷不是,因为L 中的元素对{6,7}没有最小上界不存在最小上界。
2.证明 ⑴因为,a ≤b,所以,a ∨b=b ;又因为,b ≤c,所以,b ∧c=b 。
故a ∨b=b ∧c ;⑵因为,a ≤b ≤c,所以,a ∧b=a,b ∧c=b,而a ∨b=b ,因此,(a ∧b )∨(b ∧c )=b ;又a ∨b=b,b ∨c=c,而b ∧c=b, 因此,(a ∨b )∧(b ∨c )=b 。
即(a ∧b)∨(b ∧c)=(a ∨b)∧(b ∨c)。
习题10.21.解 由图1知:<S 1,≤>不是<L,≤>的子格,这是因为,e ∨f=g ∉S 1;<S 2,≤>不是<L,≤>的子格, ∵e ∧f=c ∉S 2;<S 3,≤>是<L,≤>的子格.2.解 S 24的包含5个元素的子格有如下的8个:S 1={1,3,6,12,24}, S 2={1,2,6,12,24}, S 3={1,2,4,12,24}, S 4={1,2,4,8,24},S 5={1,2,3,6,12}, S 6={1,2,4,6,12}, S 7={2,4,6,12,24}, S 7={2,4,8,12,24}.3.证明 因为,一条线上的任何两个元素都有(偏序)关系,所以,都有最大下界和最小上界,故它是格,又因为它是<L ,∨,∧>的子集,即是<L ,∨,∧>的子代数,故是子格。
4.证明 由(10-4)有,a ∧b ≤a ,由已知a ≤c ,由偏序关系的传递性有,a ∧b ≤c ;同理 a ∧b ≤d 。
由(10-5)和以上两式有,a ∧b ≤c ∧d .5.证明 因为由(10-4)有,a ∧b ≤a ,因此,(a ∧b )∨(c ∧d )≤a ∨(c ∧d ) ①由分配不等式有,a ∨(c ∧d )≤(a ∨c )∧(a ∨d ) ②再由由(10-4)有,(a ∨c )∧(a ∨d ) ≤a ∨c ③由偏序关系的传递性和①②③则有,(a ∧b )∨(c ∧d )≤a ∨c同理 (a ∧b )∨(c ∧d )≤b ∨d因此有, (a ∧b )∨(c ∧d )≤(a ∨c ) ∧(b ∨d )。
离散数学知识点总结
总结离散数学知识点第二章命题逻辑1.→,前键为真,后键为假才为假;<—>,相同为真,不同为假;2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积;3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反;4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假;5.求范式时,为保证编码不错,命题变元最好按P,Q,R的顺序依次写;6.真值表中值为1的项为极小项,值为0的项为极大项;7.n个变元共有n2个极小项或极大项,这n2为(0~n2-1)刚好为化简完后的主析取加主合取;8.永真式没有主合取范式,永假式没有主析取范式;9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假)10.命题逻辑的推理演算方法:P规则,T规则①真值表法;②直接证法;③归谬法;④附加前提法;第三章谓词逻辑1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质;多元谓词:谓词有n个个体,多元谓词描述个体之间的关系;2.全称量词用蕴含→,存在量词用合取^;3.既有存在又有全称量词时,先消存在量词,再消全称量词;第四章集合1.N,表示自然数集,1,2,3……,不包括0;2.基:集合A中不同元素的个数,|A|;3.幂集:给定集合A,以集合A的所有子集为元素组成的集合,P(A);4.若集合A有n个元素,幂集P(A)有n2个元素,|P(A)|=||2A=n2;5.集合的分划:(等价关系)①每一个分划都是由集合A的几个子集构成的集合;②这几个子集相交为空,相并为全(A);6.集合的分划与覆盖的比较:分划:每个元素均应出现且仅出现一次在子集中;覆盖:只要求每个元素都出现,没有要求只出现一次;第五章关系1.若集合A有m个元素,集合B有n个元素,则笛卡尔A×B的基数为2种不同的关系;mn,A到B上可以定义mn2.若集合A有n个元素,则|A×A|=2n,A上有22n个不同的关系;3.全关系的性质:自反性,对称性,传递性;空关系的性质:反自反性,反对称性,传递性;全封闭环的性质:自反性,对称性,反对称性,传递性;4.前域(domR):所有元素x组成的集合;后域(ranR):所有元素y组成的集合;5.自反闭包:r(R)=RUI;x对称闭包:s(R)=RU1-R;传递闭包:t(R)=RU2R U3R U……6.等价关系:集合A上的二元关系R满足自反性,对称性和传递性,则R称为等价关系;7.偏序关系:集合A上的关系R满足自反性,反对称性和传递性,则称R是A上的一个偏序关系;8.covA={<x,y>|x,y属于A,y盖住x};9.极小元:集合A中没有比它更小的元素(若存在可能不唯一);极大元:集合A中没有比它更大的元素(若存在可能不唯一);最小元:比集合A中任何其他元素都小(若存在就一定唯一);最大元:比集合A中任何其他元素都大(若存在就一定唯一);10.前提:B是A的子集上界:A中的某个元素比B中任意元素都大,称这个元素是B的上界(若存在,可能不唯一);下界:A中的某个元素比B中任意元素都小,称这个元素是B的下界(若存在,可能不唯一);上确界:最小的上界(若存在就一定唯一);下确界:最大的下界(若存在就一定唯一);第六章函数2种不同的关系,有m n种不同的函1.若|X|=m,|Y|=n,则从X到Y有mn数;2.在一个有n个元素的集合上,可以有22n种不同的关系,有n n种不同的函数,有n!种不同的双射;3.若|X|=m,|Y|=n,且m<=n,则从X到Y有A m n种不同的单射;4.单射:f:X-Y,对任意x,2x属于X,且1x≠2x,若f(1x)≠f(2x);1满射:f:X-Y,对值域中任意一个元素y在前域中都有一个或多个元素对应;双射:f:X-Y,若f既是单射又是满射,则f是双射;5.复合函数:fºg=g(f(x));6.设函数f:A-B,g:B-C,那么①如果f,g都是单射,则fºg也是单射;②如果f,g都是满射,则fºg也是满射;③如果f,g都是双射,则fºg也是双射;④如果fºg是双射,则f是单射,g是满射;第七章代数系统1.二元运算:集合A上的二元运算就是2A到A的映射;2.集合A上可定义的二元运算个数就是从A×A到A上的映射的个数,即从从A×A到A上函数的个数,若|A|=2,则集合A上的二元运算的个数为2*22=42=16种;3.判断二元运算的性质方法:①封闭性:运算表内只有所给元素;②交换律:主对角线两边元素对称相等;③幂等律:主对角线上每个元素与所在行列表头元素相同;④有幺元:元素所对应的行和列的元素依次与运算表的行和列相同;⑤有零元:元素所对应的行和列的元素都与该元素相同;4.同态映射:<A,*>,<B,^>,满足f(a*b)=f(a)^f(b),则f为由<A,*>到<B,^>的同态映射;若f是双射,则称为同构;第八章群1.广群的性质:封闭性;半群的性质:封闭性,结合律;含幺半群(独异点):封闭性,结合律,有幺元;群的性质:封闭性,结合律,有幺元,有逆元;2.群没有零元;3.阿贝尔群(交换群):封闭性,结合律,有幺元,有逆元,交换律;4.循环群中幺元不能是生成元;5.任何一个循环群必定是阿贝尔群;第十章格与布尔代数1.格:偏序集合A中任意两个元素都有上、下确界;2.格的基本性质:1) 自反性a≤a 对偶: a≥a2) 反对称性a≤b ^ b≥a => a=b对偶:a≥b ^ b≤a => a=b3) 传递性a≤b ^ b≤c => a≤c对偶:a≥b ^ b≥c => a≥c4) 最大下界描述之一a^b≤a 对偶 avb≥aA^b≤b 对偶 avb≥b5)最大下界描述之二c≤a,c≤b => c≤a^b对偶c≥a,c≥b =>c≥avb6) 结合律a^(b^c)=(a^b)^c对偶 av(bvc)=(avb)vc7)等幂律a^a=a 对偶 ava=a8) 吸收律a^(avb)=a 对偶 av(a^b)=a9) a≤b <=> a^b=a avb=b10) a≤c,b≤d => a^b≤c^d avb≤cvd11) 保序性b≤c => a^b≤a^c avb≤avc12)分配不等式av(b^c)≤(avb)^(avc)对偶 a^(bvc)≥(a^b)v(a^c)13)模不等式a≤c <=> av(b^c)≤(avb)^c3.分配格:满足a^(bvc)=(a^b)v(a^c)和av(b^c)=(avb)^(avc);4.分配格的充要条件:该格没有任何子格与钻石格或五环格同构;5.链格一定是分配格,分配格必定是模格;6.全上界:集合A中的某个元素a大于等于该集合中的任何元素,则称a为格<A,<=>的全上界,记为1;(若存在则唯一)全下界:集合A中的某个元素b小于等于该集合中的任何元素,则称b为格<A,<=>的全下界,记为0;(若存在则唯一)7.有界格:有全上界和全下界的格称为有界格,即有0和1的格;8.补元:在有界格内,如果a^b=0,avb=1,则a和b互为补元;9.有补格:在有界格内,每个元素都至少有一个补元;10.有补分配格(布尔格):既是有补格,又是分配格;11.布尔代数:一个有补分配格称为布尔代数;第十一章图论1.邻接:两点之间有边连接,则点与点邻接;2.关联:两点之间有边连接,则这两点与边关联;3.平凡图:只有一个孤立点构成的图;4.简单图:不含平行边和环的图;5.无向完全图:n个节点任意两个节点之间都有边相连的简单无向图;有向完全图:n个节点任意两个节点之间都有边相连的简单有向图;6.无向完全图有n(n-1)/2条边,有向完全图有n(n-1)条边;7.r-正则图:每个节点度数均为r的图;8.握手定理:节点度数的总和等于边的两倍;9.任何图中,度数为奇数的节点个数必定是偶数个;10.任何有向图中,所有节点入度之和等于所有节点的出度之和;11.每个节点的度数至少为2的图必定包含一条回路;12.可达:对于图中的两个节点v,j v,若存在连接i v到j v的路,则称i vi与v相互可达,也称i v与j v是连通的;在有向图中,若存在i v到j v的j路,则称v到j v可达;i13.强连通:有向图章任意两节点相互可达;单向连通:图中两节点至少有一个方向可达;弱连通:无向图的连通;(弱连通必定是单向连通)14.点割集:删去图中的某些点后所得的子图不连通了,如果删去其他几个点后子图之间仍是连通的,则这些点组成的集合称为点割集;割点:如果一个点构成点割集,即删去图中的一个点后所得子图是不连通的,则该点称为割点;15.关联矩阵:M(G),m是i v与j e关联的次数,节点为行,边为列;ij无向图:点与边无关系关联数为0,有关系为1,有环为2;有向图:点与边无关系关联数为0,有关系起点为1终点为-1,关联矩阵的特点:无向图:①行:每个节点关联的边,即节点的度;②列:每条边关联的节点;有向图:③所有的入度(1)=所有的出度(0);16.邻接矩阵:A(G),a是i v邻接到j v的边的数目,点为行,点为列;ij17.可达矩阵:P(G),至少存在一条回路的矩阵,点为行,点为列; P(G)=A(G)+2A(G)+3A(G)+4A(G)可达矩阵的特点:表明图中任意两节点之间是否至少存在一条路,以及在任何节点上是否存在回路;A(G)中所有数的和:表示图中路径长度为1的通路条数;2A(G)中所有数的和:表示图中路径长度为2的通路条数;3A(G)中所有数的和:表示图中路径长度为3的通路条数;4A(G)中所有数的和:表示图中路径长度为4的通路条数;P(G)中主对角线所有数的和:表示图中的回路条数;18.布尔矩阵:B(G),v到j v有路为1,无路则为0,点为行,点为列;i19.代价矩阵:邻接矩阵元素为1的用权值表示,为0的用无穷大表示,节点自身到自身的权值为0;20.生成树:只访问每个节点一次,经过的节点和边构成的子图;21.构造生成树的两种方法:深度优先;广度优先;深度优先:①选定起始点v;②选择一个与v邻接且未被访问过的节点1v;③从v出发按邻接方向继续访问,当遇到一个节点所1有邻接点均已被访问时,回到该节点的前一个点,再寻求未被访问过的邻接点,直到所有节点都被访问过一次;广度优先:①选定起始点v;②访问与v邻接的所有节点1v,2v,……,k v,这些作为第一层节点;③在第一层节点中选定一个节点v为起点;1④重复②③,直到所有节点都被访问过一次;22.最小生成树:具有最小权值(T)的生成树;23.构造最小生成树的三种方法:克鲁斯卡尔方法;管梅谷算法;普利姆算法;(1)克鲁斯卡尔方法①将所有权值按从小到大排列;②先画权值最小的边,然后去掉其边值;重新按小到大排序;③再画权值最小的边,若最小的边有几条相同的,选择时要满足不能出现回路,然后去掉其边值;重新按小到大排序;④重复③,直到所有节点都被访问过一次;(2)管梅谷算法(破圈法)①在图中取一回路,去掉回路中最大权值的边得一子图;②在子图中再取一回路,去掉回路中最大权值的边再得一子图;③重复②,直到所有节点都被访问过一次;(3)普利姆算法①在图中任取一点为起点v,连接边值最小的邻接点2v;1②以邻接点v为起点,找到2v邻接的最小边值,如果最小边值2比v邻接的所有边值都小(除已连接的边值),直接连接,否则退回1v,1连接v现在的最小边值(除已连接的边值);1③重复操作,直到所有节点都被访问过一次;24.关键路径例2 求PERT图中各顶点的最早完成时间, 最晚完成时间, 缓冲时间及关键路径.解:最早完成时间TE(v1)=0TE(v2)=max{0+1}=1TE(v3)=max{0+2,1+0}=2TE(v4)=max{0+3,2+2}=4TE(v5)=max{1+3,4+4}=8TE(v6)=max{2+4,8+1}=9TE(v7)=max{1+4,2+4}=6TE(v8)=max{9+1,6+6}=12 最晚完成时间TL(v8)=12TL(v7)=min{12-6}=6TL(v6)=min{12-1}=11TL(v5)=min{11-1}=10TL(v4)=min{10-4}=6TL(v3)=min{6-2,11-4,6-4}=2 TL(v2)=min{2-0,10-3,6-4}=2 TL(v1)=min{2-1,2-2,6-3}=0 缓冲时间TS(v1)=0-0=0TS(v2)=2-1=1TS(v3)=2-2=0TS(v4)=6-4=2TS(v5=10-8=2TS(v6)=11-9=2TS(v7)=6-6=0TS(v8)=12-12=0关键路径: v1-v3-v7-v825.欧拉路:经过图中每条边一次且仅一次的通路;欧拉回路:经过图中每条边一次且仅一次的回路;欧拉图:具有欧拉回路的图;单向欧拉路:经过有向图中每条边一次且仅一次的单向路;欧拉单向回路:经过有向图中每条边一次且仅一次的单向回路;26.(1)无向图中存在欧拉路的充要条件:①连通图;②有0个或2个奇数度节点;(2)无向图中存在欧拉回路的充要条件:①连通图;②所有节点度数均为偶数;(3)连通有向图含有单向欧拉路的充要条件:①除两个节点外,每个节点入度=出度;②这两个节点中,一个节点的入度比出度多1,另一个节点的入;度比出度少1;(4)连通有向图含有单向欧拉回路的充要条件:图中每个节点的出度=入度;27.哈密顿路:经过图中每个节点一次且仅一次的通路;哈密顿回路:经过图中每个节点一次且仅一次的回路;哈密顿图:具有哈密顿回路的图;28.判定哈密顿图(没有充要条件)必要条件:任意去掉图中n个节点及关联的边后,得到的分图数目小于等于n;充分条件:图中每一对节点的度数之和都大于等于图中的总节点数;29.哈密顿图的应用:安排圆桌会议;方法:将每一个人看做一个节点,将每个人与和他能交流的人连接,找到一条经过每个节点一次且仅一次的回路(哈密顿图),即可;30.平面图:将图形的交叉边进行改造后,不会出现边的交叉,则是平面图;31.面次:面的边界回路长度称为该面的次;32.一个有限平面图,面的次数之和等于其边数的两倍;33.欧拉定理:假设一个连通平面图有v个节点,e条边,r个面,则 v-e+r=2;34.判断是平面图的必要条件:(若不满足,就一定不是平面图)设图G是v个节点,e条边的简单连通平面图,若v>=3,则e<=3v-6;35.同胚:对于两个图G1,G2,如果它们是同构的,或者通过反复插入和除去2度节点可以变成同构的图,则称G1,G2是同胚的;36.判断G是平面图的充要条件:图G不含同胚于K3.3或K5的子图;37.二部图:①无向图的节点集合可以划分为两个子集V1,V2;②图中每条边的一个端点在V1,另一个则在V2中;完全二部图:二部图中V1的每个节点都与V2的每个节点邻接;判定无向图G为二部图的充要条件:图中每条回路经过边的条数均为偶数;38.树:具有n个顶点n-1条边的无回路连通无向图;39.节点的层数:从树根到该节点经过的边的条数;40.树高:层数最大的顶点的层数;41.二叉树:①二叉树额基本结构状态有5种;②二叉树内节点的度数只考虑出度,不考虑入度;③二叉树内树叶的节点度数为0,而树内树叶节点度数为1;④二叉树内节点的度数=边的总数(只算出度);握手定理“节点数=边的两倍”是在同时计算入度和出度的时成立;⑤二叉树内节点的总数=边的总数+1;⑥位于二叉树第k层上的节点,最多有12 k个(k>=1);⑦深度为k的二叉树的节点总数最多为k2-1个,最少k个(k>=1);⑧如果有n个叶子,2n个2度节点,则0n=2n+1;42.二叉树的节点遍历方法:先根顺序(DLR);中根顺序(LDR);后根顺序(LRD);43.哈夫曼树:用哈夫曼算法构造的最优二叉树;44.最优二叉树的构造方法:①将给定的权值按从小到大排序;②取两个最小值分支点的左右子树(左小右大),去掉已选的这两个权值,并将这两个最小值加起来作为下一轮排序的权值;③重复②,直达所有权值构造完毕;45.哈夫曼编码:在最优二叉树上,按照左0右1的规则,用0和1代替所有边的权值;每个节点的编码:从根到该节点经过的0和1组成的一排编码;欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求。
离散数学答案 第二版 课后答案--
离散数学答案屈婉玲版第二版高等教育出版社课后答案第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”答:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q)⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q)⇔ (⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p))⇔1∧(p ∨⌝q)⇔(p ∨⌝q) ⇔ M 1⇔∏(1)(2) 主合取范式为:⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x): 2=(x+)(x).G(x): x+5=9.(1)在两个个体域中都解释为)∀,在(a)中为假命题,在(b)中为真命题。
《离散数学》刘任任版第十章
习题十1.证明:若G 是简单图,则()()q p p G 2/22-≥χ.分析:()G χ指G 的点色数,显然如果()G χ=k ,则G 的顶点集可以划分为k 个独立集。
设每个独立集的顶点数为p i ,则∑=ki i p 1=p ,由柯西-施瓦丝不等式有: 且由于每个独立集中的任意两个点不邻接,所以第i 个独立集中任何一点的度不会大于p-p i ,本题的关键是利用这两个结论。
2.()k G =χ的临界图G 称为k 临界图. 证明:唯一的1临界图是1K ,唯一的2临界图是2K ,仅有的3临界图是长度为奇数3≥k 的回路.分析:若G 的每个点都是临界点,则G 称为临界图。
由于1-色图是零图,因此1-临界图仅能是1K ,2-色图是2部图,因此2-临界图仅能是2K ,3-色图恒含奇圈,且奇圈至少是3-色才能正常着色,因此3-临界图仅能是长度为奇数3≥k 的回路.证明:(1)()11=K χ,且()01=-v K χ<1,故K1是1临界图;反之,G 是1-临界图,若|V(G)|>1,则G 是零图,()1=-v G χ,所以|V(G)|=1,从而G 是平凡图K1。
(2)()22=K χ,且()1),(22=-∈∀v K K V v χ,故K2是2临界图;反之,G 是2-临界图,即()2=G χ,于是G 的顶点可划分为两个极大独立集V1和V2,若|V1|>1,则())(2),(1G v G G V V v χχ==-⊆∈∀,与G 是临界图矛盾,因此|V1|=1,同理|V2|=1。
因此G=K2。
(3)因为不含奇回路的图是二分图)2)((=G χ。
故3-色图必含奇回路。
显然,奇回路必是3-临界图。
设G 是含奇回路的3-临界图。
若G 不是奇回路,则可分两种情况讨论:)2/()( 2 2 )()(2 ,,1,| | ,, ,)( 2222221222211112221121q p p G x q p p k k p q p k p p p p p p p p p p v d q p p V k p k p p k i p V V V k G k G x ki i p i k i k i k i i i i i i i i k i i k i i i i k -≥-≥≥--≤-=-=-≤=-=⎪⎭⎫ ⎝⎛≥===∑∑∑∑∑∑∑=======故,即从而而个顶点相邻,每个顶点最多与其它且),(柯西-施瓦丝不等式因为。
离散数学第10章习题答案
第10章习题答案1.解 (1)设G 有m 条边,由握手定理得2m =∑∈Vv v d )(=2+2+3+3+4=14,所以G 的边数7条。
(2)由于这两个序列中有奇数个是奇数,由握手定理的推论知,它们都不能成为图的度数列。
(3) 由握手定理得∑∈Vv v d )(=2m =24,度数为3的结点有6个占去18度,还有6度由其它结点占有,其余结点的度数可为0、1、2,当均为2时所用结点数最少,所以应由3个结点占有这6度,即图G 中至多有9个结点。
2.证明 设1v 、2v 、…、n v 表示任给的n 个人,以1v 、2v 、…、n v 为结点,当且仅当两人为朋友时其对应的结点之间连一条边,这样得到一个简单图G 。
由握手定理知∑=nk kv d 1)(=3n 必为偶数,从而n 必为偶数。
3. 解 由于非负整数列d =(d 1,d 2,…,d n )是可图化的当且仅当∑=ni i d 1≡0(mod 2),所以(1)、(2)、(3)、(5)能构成无向图的度数列。
(1)、(2)、(3)是可简单图化的。
其对应的无向简单图如图所示。
(5)是不可简单图化的。
若不然,存在无向图G 以为1,3,3,3度数列,不妨设G 中结点为1v 、2v 、3v 、4v ,且d(1v )=1,d(2v )=d(3v )=d(4v )=3。
而1v 只能与2v 、3v 、4v 之一相邻,设1v 与2v 相邻,于是d(3v )=d(4v )=3不成立,矛盾。
4.证明 因为两图中都有4个3度结点,左图中每个3度结点均与2个2度结点邻接,而右图中每个3度结点均只与1个2度结点邻接,所以这两个无向图是不同构的。
5. 解 具有三个结点的所有非同构的简单有向图共16个,如图所示,其中(8)~(16)为其生成子图。
6. 解 (1)G 的所有子图如图所示。
(1)(3)(5)(6)(9)(10)(13)(14)(2)图(8)~(18)是G 的所有生成子图。
离散数学-第10章 树
避圈法
1
1
2
6
5
2
6
5
3
4
3
4
➢ 由于生成树的形式不惟一,故上述两棵生成树 都是所求的。
➢ 破圈法和避圈法的计算量较大,主要是需要找 出回路或验证不存在回路。
2023/11/30
算法10.2.3
求连通图G = <V, E>的生成树的广度优先搜索算法: (1)任选s∈V,将s标记为0,令L = {s},V = V-
(a)
(b)
(c)
(d)
(e)
2023/11/30
定义10.3.2
一棵非平凡的有向树,如果恰有一个结点的入度为 0,其余所有结点的入度均为1,则称之为根树 (Root Tree)或外向树(Outward Tree)。入度为0的 结点称为根(Root);出度为0的结点称为叶(Leaf); 入度为1,出度大于 0的结点称为内点(Interior Point) ; 又 将 内 点 和 根 统 称 为 分 支 点 (Branch Point)。在根树中,从根到任一结点v的通路长度, 称为该结点的层数(Layer Number);称层数相同的 结点在同一层上;所有结点的层数中最大的称为根 树的高(Height)。
2023/11/30
例10.2.5
利用广度优先搜索算法求下图的生成树。
1(a) 3(e) bd
4(gd1)(a) 3(e) bd
4(gh)
0(a-)
2e(b0)(a-)
h 3(e)
4(jh2e)(b)
h
4(h) j
3(e)
cf 1(a) 2(c)
3(ie1)(ca)
f 2(c)
离散数学第10章-树
10.2 生成树与割集(续)
• 2 定义10.3(秩,零度) 设图G有n个顶点,e条边,ω个分支, 称n-ω为图G的秩,称e-n+ω为图G的零度。 • G的秩是G的各分支中生成树的枝数之和。 • G的零度是G的各分支中生成树的连枝数 之和。
10.2 生成树与割集(续)
• 二、割集与断集 • 1 定义10.4(割集) 设D是图G的一个边集,若在G中删去 D的全部边后所得图的秩减少1,而D的 任何真子集均无此性质,则称D为G的割 集。 • 例 图10.2
10.2 生成树与割集(续)
• 5 定义10.7(基本回路/基本回路组) 设连通图G中给定生成树T,在T中加一条弦, 恰产生一条回路,称此回路为关于T的基本回 路。 连通图G有e条边,n个顶点,给定的生成树T 应有n-1条枝,e-n+1条弦,所以恰有e-n+1条基 本回路,这些回路的全体称为生成树T的基本 回路组。 给出生成树,求基本割集和基本回路。
10.3 最小生成树(续)
• 克鲁斯科尔算法 • 定理10.8 克鲁斯科尔算法所得到的图T是最小生 成树。
10.1 树及其性质(续)
• 推论 若G是n个顶点,ω个分枝的森林,则G 有n-ω条边。 • 定理10.2 在任一棵非平凡树T中,至少有两片树 叶。 • 证明
10.2 生成树与割集
• 一、生成树 • 1 定义10.2(生成树) 图G的生成子图是树T,称T为G的生成 树。 从G中删去T的边,得到的图称G的余枝, 记为Ť。 T中的边称为树枝(或枝)。 Ť中的边称为G的弦(或连枝)。 • 定理10.
• 四、树的基本变换 • 图10.4 • 1 定义10.8(树的基本变换) 设连通图G的生成树T,通过上述加一弦,再 G T 删去一枝得到另一棵生成树,这种变换称为树 的基本变换。 • 2 定义10.9(距离) 设连通图G的生成树Ti和Tj,出现在Ti而不出 现在Tj的边数称为Ti和Tj的距离,记为d(Ti, Tj)。
离散数学必备知识点总结汇总
总结离散数学知识点第二章命题逻辑1.→,前键为真,后键为假才为假;<—>,相同为真,不同为假;2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积;3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反;4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假;5.求范式时,为保证编码不错,命题变元最好按P,Q,R的顺序依次写;6.真值表中值为1的项为极小项,值为0的项为极大项;7.n个变元共有n2个极小项或极大项,这n2为(0~n2-1)刚好为化简完后的主析取加主合取;8.永真式没有主合取范式,永假式没有主析取范式;9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假)10.命题逻辑的推理演算方法:P规则,T规则①真值表法;②直接证法;③归谬法;④附加前提法;第三章谓词逻辑1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质;多元谓词:谓词有n个个体,多元谓词描述个体之间的关系;2.全称量词用蕴含→,存在量词用合取^;3.既有存在又有全称量词时,先消存在量词,再消全称量词;第四章集合1.N,表示自然数集,1,2,3……,不包括0;2.基:集合A中不同元素的个数,|A|;3.幂集:给定集合A,以集合A的所有子集为元素组成的集合,P(A);4.若集合A有n个元素,幂集P(A)有n2个元素,|P(A)|=||2A=n2;5.集合的分划:(等价关系)①每一个分划都是由集合A的几个子集构成的集合;②这几个子集相交为空,相并为全(A);6.集合的分划与覆盖的比较:分划:每个元素均应出现且仅出现一次在子集中;覆盖:只要求每个元素都出现,没有要求只出现一次;第五章关系1.若集合A有m个元素,集合B有n个元素,则笛卡尔A×B的基数2种不同的关系;为mn,A到B上可以定义mn2.若集合A有n个元素,则|A×A|=2n,A上有22n个不同的关系;3.全关系的性质:自反性,对称性,传递性;空关系的性质:反自反性,反对称性,传递性;全封闭环的性质:自反性,对称性,反对称性,传递性;4.前域(domR):所有元素x组成的集合;后域(ranR):所有元素y组成的集合;5.自反闭包:r(R)=RUI;x对称闭包:s(R)=RU1-R;传递闭包:t(R)=RU2R U3R U……6.等价关系:集合A上的二元关系R满足自反性,对称性和传递性,则R称为等价关系;7.偏序关系:集合A上的关系R满足自反性,反对称性和传递性,则称R是A上的一个偏序关系;8.covA={<x,y>|x,y属于A,y盖住x};9.极小元:集合A中没有比它更小的元素(若存在可能不唯一);极大元:集合A中没有比它更大的元素(若存在可能不唯一);最小元:比集合A中任何其他元素都小(若存在就一定唯一);最大元:比集合A中任何其他元素都大(若存在就一定唯一);10.前提:B是A的子集上界:A中的某个元素比B中任意元素都大,称这个元素是B的上界(若存在,可能不唯一);下界:A中的某个元素比B中任意元素都小,称这个元素是B的下界(若存在,可能不唯一);上确界:最小的上界(若存在就一定唯一);下确界:最大的下界(若存在就一定唯一);第六章函数1.若|X|=m,|Y|=n,则从X到Y有mn2种不同的关系,有m n种不同的函数;2.在一个有n个元素的集合上,可以有22n种不同的关系,有n n种不同的函数,有n!种不同的双射;3.若|X|=m,|Y|=n,且m<=n,则从X到Y有A m n种不同的单射;4.单射:f:X-Y,对任意x,2x属于X,且1x≠2x,若f(1x)≠f(2x);1满射:f:X-Y,对值域中任意一个元素y在前域中都有一个或多个元素对应;双射:f:X-Y,若f既是单射又是满射,则f是双射;5.复合函数:fºg=g(f(x));6.设函数f:A-B,g:B-C,那么①如果f,g都是单射,则fºg也是单射;②如果f,g都是满射,则fºg也是满射;③如果f,g都是双射,则fºg也是双射;④如果fºg是双射,则f是单射,g是满射;第七章代数系统1.二元运算:集合A上的二元运算就是2A到A的映射;2. 集合A上可定义的二元运算个数就是从A×A到A上的映射的个数,即从从A×A到A上函数的个数,若|A|=2,则集合A上的二元运算的个数为2*22=42=16种;3. 判断二元运算的性质方法:①封闭性:运算表内只有所给元素;②交换律:主对角线两边元素对称相等;③幂等律:主对角线上每个元素与所在行列表头元素相同;④有幺元:元素所对应的行和列的元素依次与运算表的行和列相同;⑤有零元:元素所对应的行和列的元素都与该元素相同;4.同态映射:<A,*>,<B,^>,满足f(a*b)=f(a)^f(b),则f为由<A,*>到<B,^>的同态映射;若f是双射,则称为同构;第八章群1.广群的性质:封闭性;半群的性质:封闭性,结合律;含幺半群(独异点):封闭性,结合律,有幺元;群的性质:封闭性,结合律,有幺元,有逆元;2.群没有零元;3.阿贝尔群(交换群):封闭性,结合律,有幺元,有逆元,交换律;4.循环群中幺元不能是生成元;5.任何一个循环群必定是阿贝尔群;第十章格与布尔代数1.格:偏序集合A中任意两个元素都有上、下确界;2.格的基本性质:1) 自反性a≤a 对偶: a≥a2) 反对称性a≤b ^ b≥a => a=b对偶:a≥b ^ b≤a => a=b3) 传递性a≤b ^ b≤c => a≤c对偶:a≥b ^ b≥c => a≥c4) 最大下界描述之一a^b≤a 对偶avb≥aA^b≤b 对偶avb≥b5)最大下界描述之二c≤a,c≤b => c≤a^b对偶c≥a,c≥b => c≥avb6) 结合律a^(b^c)=(a^b)^c对偶av(bvc)=(avb)vc7) 等幂律a^a=a 对偶ava=a8) 吸收律a^(avb)=a 对偶av(a^b)=a9) a≤b <=> a^b=a avb=b10) a≤c,b≤d => a^b≤c^d avb≤cvd11) 保序性b≤c => a^b≤a^c avb≤avc12)分配不等式av(b^c)≤(avb)^(avc)对偶a^(bvc)≥(a^b)v(a^c)13)模不等式a≤c <=> av(b^c)≤(avb)^c3.分配格:满足a^(bvc)=(a^b)v(a^c)和av(b^c)=(avb)^(avc);4.分配格的充要条件:该格没有任何子格与钻石格或五环格同构;5.链格一定是分配格,分配格必定是模格;6.全上界:集合A中的某个元素a大于等于该集合中的任何元素,则称a为格<A,<=>的全上界,记为1;(若存在则唯一)全下界:集合A中的某个元素b小于等于该集合中的任何元素,则称b为格<A,<=>的全下界,记为0;(若存在则唯一)7.有界格:有全上界和全下界的格称为有界格,即有0和1的格;8.补元:在有界格内,如果a^b=0,avb=1,则a和b互为补元;9.有补格:在有界格内,每个元素都至少有一个补元;10.有补分配格(布尔格):既是有补格,又是分配格;11.布尔代数:一个有补分配格称为布尔代数;第十一章图论1.邻接:两点之间有边连接,则点与点邻接;2.关联:两点之间有边连接,则这两点与边关联;3.平凡图:只有一个孤立点构成的图;4.简单图:不含平行边和环的图;5.无向完全图:n个节点任意两个节点之间都有边相连的简单无向图;有向完全图:n个节点任意两个节点之间都有边相连的简单有向图;6.无向完全图有n(n-1)/2条边,有向完全图有n(n-1)条边;7.r-正则图:每个节点度数均为r的图;8.握手定理:节点度数的总和等于边的两倍;9.任何图中,度数为奇数的节点个数必定是偶数个;10.任何有向图中,所有节点入度之和等于所有节点的出度之和;11.每个节点的度数至少为2的图必定包含一条回路;12.可达:对于图中的两个节点v,j v,若存在连接i v到j v的路,则称i vi与v相互可达,也称i v与j v是连通的;在有向图中,若存在i v到j v的j路,则称v到j v可达;i13.强连通:有向图章任意两节点相互可达;单向连通:图中两节点至少有一个方向可达;弱连通:无向图的连通;(弱连通必定是单向连通)14.点割集:删去图中的某些点后所得的子图不连通了,如果删去其他几个点后子图之间仍是连通的,则这些点组成的集合称为点割集;割点:如果一个点构成点割集,即删去图中的一个点后所得子图是不连通的,则该点称为割点;15.关联矩阵:M(G),m是i v与j e关联的次数,节点为行,边为列;ij无向图:点与边无关系关联数为0,有关系为1,有环为2;有向图:点与边无关系关联数为0,有关系起点为1终点为-1,关联矩阵的特点:无向图:①行:每个节点关联的边,即节点的度;②列:每条边关联的节点;有向图:③所有的入度(1)=所有的出度(0);16.邻接矩阵:A(G),a是i v邻接到j v的边的数目,点为行,点为列;ij17.可达矩阵:P(G),至少存在一条回路的矩阵,点为行,点为列;P(G)=A(G)+2A(G)+3A(G)+4A(G)可达矩阵的特点:表明图中任意两节点之间是否至少存在一条路,以及在任何节点上是否存在回路;A(G)中所有数的和:表示图中路径长度为1的通路条数;2A(G)中所有数的和:表示图中路径长度为2的通路条数;3A(G)中所有数的和:表示图中路径长度为3的通路条数;4A(G)中所有数的和:表示图中路径长度为4的通路条数;P(G)中主对角线所有数的和:表示图中的回路条数;18.布尔矩阵:B(G),v到j v有路为1,无路则为0,点为行,点为列;i19.代价矩阵:邻接矩阵元素为1的用权值表示,为0的用无穷大表示,节点自身到自身的权值为0;20.生成树:只访问每个节点一次,经过的节点和边构成的子图;21.构造生成树的两种方法:深度优先;广度优先;深度优先:①选定起始点v;②选择一个与v邻接且未被访问过的节点1v;③从v出发按邻接方向继续访问,当遇到一个节点所1有邻接点均已被访问时,回到该节点的前一个点,再寻求未被访问过的邻接点,直到所有节点都被访问过一次;广度优先:①选定起始点v;②访问与v邻接的所有节点1v,2v,……,k v,这些作为第一层节点;③在第一层节点中选定一个节点v为起点;1④重复②③,直到所有节点都被访问过一次;22.最小生成树:具有最小权值(T)的生成树;23.构造最小生成树的三种方法:克鲁斯卡尔方法;管梅谷算法;普利姆算法;(1)克鲁斯卡尔方法①将所有权值按从小到大排列;②先画权值最小的边,然后去掉其边值;重新按小到大排序;③再画权值最小的边,若最小的边有几条相同的,选择时要满足不能出现回路,然后去掉其边值;重新按小到大排序;④重复③,直到所有节点都被访问过一次;(2)管梅谷算法(破圈法)①在图中取一回路,去掉回路中最大权值的边得一子图;②在子图中再取一回路,去掉回路中最大权值的边再得一子图;③重复②,直到所有节点都被访问过一次;(3)普利姆算法①在图中任取一点为起点v,连接边值最小的邻接点2v;1②以邻接点v为起点,找到2v邻接的最小边值,如果最小边值2比v邻接的所有边值都小(除已连接的边值),直接连接,否则退回1v,1连接v现在的最小边值(除已连接的边值);1③重复操作,直到所有节点都被访问过一次;24.关键路径例2 求PERT图中各顶点的最早完成时间, 最晚完成时间, 缓冲时间及关键路径.解:最早完成时间TE(v1)=0TE(v2)=max{0+1}=1TE(v3)=max{0+2,1+0}=2TE(v4)=max{0+3,2+2}=4TE(v5)=max{1+3,4+4}=8TE(v6)=max{2+4,8+1}=9TE(v7)=max{1+4,2+4}=6TE(v8)=max{9+1,6+6}=12 最晚完成时间TL(v8)=12TL(v7)=min{12-6}=6TL(v6)=min{12-1}=11TL(v5)=min{11-1}=10TL(v4)=min{10-4}=6TL(v3)=min{6-2,11-4,6-4}=2TL(v2)=min{2-0,10-3,6-4}=2TL(v1)=min{2-1,2-2,6-3}=0 缓冲时间TS(v1)=0-0=0TS(v2)=2-1=1TS(v3)=2-2=0TS(v4)=6-4=2TS(v5=10-8=2TS(v6)=11-9=2TS(v7)=6-6=0TS(v8)=12-12=0关键路径: v1-v3-v7-v825.欧拉路:经过图中每条边一次且仅一次的通路;欧拉回路:经过图中每条边一次且仅一次的回路;欧拉图:具有欧拉回路的图;单向欧拉路:经过有向图中每条边一次且仅一次的单向路;欧拉单向回路:经过有向图中每条边一次且仅一次的单向回路;26.(1)无向图中存在欧拉路的充要条件:①连通图;②有0个或2个奇数度节点;(2)无向图中存在欧拉回路的充要条件:①连通图;②所有节点度数均为偶数;(3)连通有向图含有单向欧拉路的充要条件:①除两个节点外,每个节点入度=出度;②这两个节点中,一个节点的入度比出度多1,另一个节点的入;度比出度少1;(4)连通有向图含有单向欧拉回路的充要条件:图中每个节点的出度=入度;27.哈密顿路:经过图中每个节点一次且仅一次的通路;哈密顿回路:经过图中每个节点一次且仅一次的回路;哈密顿图:具有哈密顿回路的图;28.判定哈密顿图(没有充要条件)必要条件:任意去掉图中n个节点及关联的边后,得到的分图数目小于等于n;充分条件:图中每一对节点的度数之和都大于等于图中的总节点数;29.哈密顿图的应用:安排圆桌会议;方法:将每一个人看做一个节点,将每个人与和他能交流的人连接,找到一条经过每个节点一次且仅一次的回路(哈密顿图),即可;30.平面图:将图形的交叉边进行改造后,不会出现边的交叉,则是平面图;31.面次:面的边界回路长度称为该面的次;32.一个有限平面图,面的次数之和等于其边数的两倍;33.欧拉定理:假设一个连通平面图有v个节点,e条边,r个面,则v-e+r=2;34.判断是平面图的必要条件:(若不满足,就一定不是平面图)设图G是v个节点,e条边的简单连通平面图,若v>=3,则e<=3v-6;35.同胚:对于两个图G1,G2,如果它们是同构的,或者通过反复插入和除去2度节点可以变成同构的图,则称G1,G2是同胚的;36.判断G是平面图的充要条件:图G不含同胚于K3.3或K5的子图;37.二部图:①无向图的节点集合可以划分为两个子集V1,V2;②图中每条边的一个端点在V1,另一个则在V2中;完全二部图:二部图中V1的每个节点都与V2的每个节点邻接;判定无向图G为二部图的充要条件:图中每条回路经过边的条数均为偶数;38.树:具有n个顶点n-1条边的无回路连通无向图;39.节点的层数:从树根到该节点经过的边的条数;40.树高:层数最大的顶点的层数;41.二叉树:①二叉树额基本结构状态有5种;②二叉树内节点的度数只考虑出度,不考虑入度;③二叉树内树叶的节点度数为0,而树内树叶节点度数为1;④二叉树内节点的度数=边的总数(只算出度);握手定理“节点数=边的两倍”是在同时计算入度和出度的时成立;⑤二叉树内节点的总数=边的总数+1;⑥位于二叉树第k层上的节点,最多有12 k个(k>=1);⑦深度为k的二叉树的节点总数最多为k2-1个,最少k个(k>=1);⑧如果有n个叶子,2n个2度节点,则0n=2n+1;42.二叉树的节点遍历方法:先根顺序(DLR);中根顺序(LDR);后根顺序(LRD);43.哈夫曼树:用哈夫曼算法构造的最优二叉树;44.最优二叉树的构造方法:①将给定的权值按从小到大排序;②取两个最小值分支点的左右子树(左小右大),去掉已选的这两个权值,并将这两个最小值加起来作为下一轮排序的权值;③重复②,直达所有权值构造完毕;45.哈夫曼编码:在最优二叉树上,按照左0右1的规则,用0和1代替所有边的权值;每个节点的编码:从根到该节点经过的0和1组成的一排编码;。
离散数学10 树
第十章 树10.1画出所有不同构的,有5个顶点的树。
解图10.1 习题1图10.2 证明:一棵树的顶点度数之和为)1 |(|2-V ,其中V 是顶点集。
证明一棵树的所有顶点的度数之和∑==ni iE v 1||2)deg(,因为树的1||||-=V E ,所以)1|(|2||2)deg(1-==∑=V E v ni i。
故一棵树的顶点度数之和为)1 |(|2-V 。
10.3 一棵树有3个2度顶点,5个3度顶点,8个4度顶点,问有几个一度顶点?解设树T 有n 个一度顶点,则∑)deg(v =)1853(21483523-+++=⨯+⨯+⨯+⨯n n ,从而有23=n 。
即该棵树有23个一度顶点。
10.4 一棵树2n 个顶点的度数为2,3n 个顶点的度数为3,…,k n 个顶点度数为k ,问有几个顶点度数为1个顶点。
解设有1n 个度数为1的顶点。
顶点数k n n n v +++=...21,边数1)...(121-+++=-=k n n n v e 。
由握手定理知:∑==-=ni i v v e 1)deg()1(22,故k n n n n n n k k ⨯++⨯+⨯=-+++...212) (22121)因此,2)2(...2431+-+++=k n k n n n10.5 证明:一棵树若有三片树叶,则至少有一个顶点度数大于等于3。
证明反证法。
设),(E V T =且没有一个顶点度数大于等于3,则对于V v ∈∀,有2)de g (≤v ,从而有:∑-+≤)3|(|23)deg(V v||21)1|(|2E V <--=与握手定理矛盾。
故至少有一个顶点度数大于等于3。
10.6 ),(E V T =是一棵树,证明:若T 仅有两个1度顶点,则T 是一条直线。
证明假设T 不是一条直线,因为T 仅有两个1度顶点,所以树中至少存在一个顶点,其度数3≥。
从而有:∑-++⨯≥)3|(|2312)deg(V v1)1|(|2+-=V 1||2+=E ||2E > 与握手定理矛盾。
离散数学 图论
第10章 图论(Graph Theory )
G1、G2是多重图 G3是线图
G4是简单图
第10章 图论(Graph Theory )
10.1 图的基本概念
(3)按G的边有序、无序分为有向图、无向图和混合图;
有向图:每条边都是有向边的图称为有向图
(图 10 .1.4 (b));
无向图:每条边都是无向边的图称为无向图;
度, 记为 d (v) 。结点v的入度与出度之和称为结 点v的度数,记为 d(v)或deg(v)。
第10章 图论(Graph Theory )
定义:
在无向图中,图中结点v所关联的边数
(有环时计算两次)称为结点v 的度数,记为d(v)
或deg(v) 。
最大度 (G) max{ (v) | v V } d 最小度 (G) min{d (v) | v V }
证明: 设V1和V2分别是G中奇数度数和偶数度数的结
点集。 由定理10.1.1知
vV1
deg(v) deg(v) 2是偶数之和, 必为偶数,
而2|E|也为偶数, 故 |V1|必为偶数。
V1
是偶数。 由此 deg( )
第10章 图论(Graph Theory )
第10章 图论(Graph Theory )
10.1 图的基本概念
证明: 设G=〈V ,E〉, |V|=6, v是G中一结点。 因为v 与G的其余5个结点或者在 G 中邻接, 或者在G 中邻接。 故不失一般性可假定, 有3个结点v1, v2, v3在G中与v邻接。 如果这3个结点中有两个结点(如v1 , v2 )邻接, 则它们与v 就是G中一个三角形的3个顶点。 如果这3 个结点中任意两个在G中均不邻接, 则v1, v2, v3就
离散数学第四版课后标准答案
离散数学第四版课后标准答案离散数学第四版课后答案第1章习题解答1.1 除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9),(10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。
分析⾸先应注意到,命题是陈述句,因⽽不是陈述句的句⼦都不是命题。
本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句,所以它们都不是命题。
其次,4)这个句⼦是陈述句,但它表⽰的判断结果是不确定。
⼜因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因⽽作为命题,它们都是简单命题。
(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,⽽(13)是由联结词“且”联结起来的复合命题。
这⾥的“且”为“合取”联结词。
在⽇常⽣活中,合取联结词有许多表述法,例如,“虽然……,但是……”、“不仅……,⽽且……”、“⼀⾯……,⼀⾯……”、“……和……”、“……与……”等。
但要注意,有时“和”或“与”联结的是主语,构成简单命题。
例如,(14)、(15)中的“与”与“和”是联结的主语,这两个命题均为简单命题,⽽不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。
1.2 (1)p: 2是⽆理数,p为真命题。
(2)p:5能被2整除,p为假命题。
(6)p→q。
其中,p:2是素数,q:三⾓形有三条边。
由于p与q都是真命题,因⽽p→q为假命题。
(7)p→q,其中,p:雪是⿊⾊的,q:太阳从东⽅升起。
由于p为假命题,q为真命题,因⽽p→q为假命题。
(8)p:2000年10⽉1⽇天⽓晴好,今⽇(1999年2⽉13⽇)我们还不知道p的真假,但p的真值是确定的(客观存在的),只是现在不知道⽽已。
(9)p:太阳系外的星球上的⽣物。
它的真值情况⽽定,是确定的。
1(10)p:⼩李在宿舍⾥. p的真值则具体情况⽽定,是确定的。
离散数学课后习题答案
第一章命题逻辑基本概念课后练习题答案1.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.2.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;3.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;.4.因为p与q不能同时为真.5.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)p q,真值为1;(4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1.返回第二章命题逻辑等值演算本章自测答案5.(1):∨∨,成真赋值为00、10、11;(2):0,矛盾式,无成真赋值;(3):∨∨∨∨∨∨∨,重言式,000、001、010、011、100、101、110、111全部为成真赋值;7.(1):∨∨∨∨⇔∧∧;(2):∨∨∨⇔∧∧∧;8.(1):1⇔∨∨∨,重言式;(2):∨⇔∨∨∨∨∨∨;(3):∧∧∧∧∧∧∧⇔0,矛盾式.11.(1):∨∨⇔∧∧∧∧;(2):∨∨∨∨∨∨∨⇔1;(3):0⇔∧∧∧.12.A⇔∧∧∧∧⇔∨∨.第三章命题逻辑的推理理论本章自测答案6.在解本题时,应首先将简单陈述语句符号化,然后写出推理的形式结构*,其次就是判断*是否为重言式,若*是重言式,推理就正确,否则推理就不正确,这里不考虑简单语句之间的内在联系(1)、(3)、(6)推理正确,其余的均不正确,下面以(1)、(2)为例,证明(1)推理正确,(2)推理不正确(1)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*1)在本推理中,从p与q的内在联系可以知道,p与q的内在联系可以知道,p与q不可能同时为真,但在证明时,不考虑这一点,而只考虑*1是否为重言式.可以用多种方法(如真值法、等值演算法、主析取式)证明*1为重言式,特别是,不难看出,当取A为p,B为q时,*1为假言推理定律,即(p→q)∧p→q ⇒ q(2)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*2)可以用多种方法证明*2不是重言式,比如,等值演算法、主析取范式(主和取范式法也可以)等(p→q)∧q→p⇔(┐p∨q) ∧q →p⇔q →p⇔┐p∨┐q⇔⇔∨∨从而可知,*2不是重言式,故推理不正确,注意,虽然这里的p与q同时为真或同时为假,但不考虑内在联系时,*2不是重言式,就认为推理不正确.9.设p:a是奇数,q:a能被2整除,r:a:是偶数推理的形式结构为(p→q┐)∧(r→q)→(r→┐p) (记为*)可以用多种方法证明*为重言式,下面用等值演算法证明:(p→┐q)∧(r→q)→(r→┐p)⇔(┐p∨┐q) ∨(q∨┐r)→(┐q∨┐r) (使用了交换律)⇔(p∨q)∨(┐p∧r)∨┐q∨┐r⇔(┐p∨q)∨(┐q∧┐r)⇔┐p∨(q∨┐q)∧┐r⇔110.设p:a,b两数之积为负数,q:a,b两数种恰有一个负数,r:a,b都是负数.推理的形式结构为(p→q)∧┐p→(┐q∧┐r)⇔(┐p∨q) ∧┐p→(┐q∧┐r)⇔┐p→(┐q∧┐r) (使用了吸收律)⇔p∨(┐q∧┐r)⇔∨∨∨由于主析取范式中只含有5个W极小项,故推理不正确.11.略14.证明的命题序列可不惟一,下面对每一小题各给出一个证明① p→(q→r)前提引入② P前提引入③ q→r①②假言推理④ q前提引入⑤ r③④假言推理⑥ r∨s前提引入(2)证明:① ┐(p∧r)前提引入② ┐q∨┐r①置换③ r前提引入④ ┐q ②③析取三段论⑤ p→q前提引入⑥ ┐p④⑤拒取式(3)证明:① p→q前提引入② ┐q∨q①置换③ (┐p∨q)∧(┐p∨p) ②置换④ ┐p∨(q∧p③置换⑤ p→(p∨q) ④置换15.(1)证明:① S结论否定引入② S→P前提引入③ P①②假言推理④ P→(q→r)前提引入⑤ q→r③④假言推论⑥ q前提引入⑦ r⑤⑥假言推理(2)证明:① p附加前提引入② p∨q①附加③ (p∨q)→(r∧s)前提引入④ r∧s②③假言推理⑤ s④化简⑥ s∨t⑤附加⑦ (s∨t)→u前提引入⑧ u⑥⑦拒取式16.(1)证明:① p结论否定引入② p→ ┐q前提引入③ ┐q ①②假言推理④ ┐r∨q前提引入⑤ ┐r③④析取三段论⑥ r∧┐s前提引入⑦ r⑥化简⑧ ┐r∧r⑤⑦合取(2)证明:① ┐(r∨s)结论否定引入② ┐r∨┐s①置换③ ┐r②化简④ ┐s②化简⑤ p→r前提引入⑥ ┐p③⑤拒取式⑦ q→s前提引入⑧ ┐q④⑦拒取式⑨ ┐p∧┐q⑥⑧合取⑩ ┐(p∨q)⑨置换口p∨q前提引入⑾①口┐(p∨q) ∧(p∨q) ⑩口合取17.设p:A到过受害者房间,q: A在11点以前离开,r:A犯谋杀罪,s:看门人看见过A。
《离散数学》 第10章 代数系统
10.1 二元运算及其性质
10.1.2 二元运算的性质
定义10.1.7 设 ,*为集合A上的两个可交换二元运算, 若对任意x,y∈A,都有x (x*y)=x和x* (x y)=x,则 称运算 和运算*是可吸收的,或称运算 和运算*满足
例如,A={所有整数},B={所有不等于零的整
数},C={所有有理数},则
f: A×B→C,
(a,b) a b
是一个A×B到C的代数运算,也就是普通的除法。
10.1 二元运算及其性质
10.1.1 二元运算
定义10.1.2 设A为集合,如果f是A×A到A的代数运算,则称f 是A上的一个二元运算,也称作集合A对于代数运算f来说是 封闭的。
10.1 二元运算及其性质
10.1.2 二元运算的性质
例10.1.7 设R为实数集, 为集合R上的二元运算,对任意
的a,b∈R,a b=a+2b,问这个运算满足交换律、结合律
吗?
解 因为2 3=2+2×3=8,而3 2=3+2×2=7,2 3≠3 2,故
该运算不满足交换律。
又=2因+2为×((23+32)×44)=(=223+,2×(32)3+)2×44≠=216(,3而42)(,3故4)该运
算也不满足结合律。
10.1 二元运算及其性质
10.1.2 二元运算的性质
定义10.1.6 设 ,*为集合A上的两个二元运算,若对任意 x,y,z∈A,有x(y*z) = (x y)*(x z)和(y*z) x的=,(或y称x运)算*(z对x)运成算立*满,足则分称配运律算。 对运算*是可分配
离散数学第10章——半群与群
e a b c
e e a b c
a a e c b
b c b c c b e a a e
特征: 1. 满足交换律 2. 每个元素都是自己的逆元 3. a, b, c中任何两个元素运算结 果都等于剩下的第三个元素
二、群的定义、术语、实例
定义10.2 (1) 若群G是有穷集,则称G是有限群,否则称为无 限群. (2) 只含单位元的群称为平凡群. (3) 若群G中的二元运算是可交换的,则称G为交换 群或阿贝尔 (Abel) 群.
方法:根据定义验证,注意运算的封闭性
2. 设V1= <Z, +>, V2 = <Z, >,其中Z为整数集合, + 和 分别代表普通加法和乘法. 判断下述集合S 是否构成V1和V2的子半群和子独异点. (1) S= {2k | kZ} (2) S= {2k+1 | kZ} (3) S= {1, 0, 1}
定义10.4 设G是群,a∈G,使得等式 ak=e 成立的最
小正整数k 称为a 的阶,记作|a|=k,称 a 为 k 阶元.
若不存在这样的正整数 k,则称 a 为无限阶元. 例如,在<Z6,>中, 2和4是3阶元, 3是2阶元, 1和5是6阶元, 0是1阶元. 在<Z,+>中,0是1阶元,其它整数的阶都不存在.
(3) 集合的幂集P(B)关于集合的对称差运算和交运算 构成环. (4) 设Zn={0,1, ... , n-1},和分别表示模n的加 法和乘 法,则<Zn,,>构成环,称为模 n的整数 环.
定义10.13 设<R,+,· >是环
(1) 若环中乘法 · 适合交换律,则称R是交换环 (2) 若环中乘法 · 存在单位元,则称R是含幺环 (3) 若a,b∈R,ab=0 a=0∨b=0,则称R是无零因 子环 (4) 若R既是交换环、含幺环、无零因子环,则称R 是整环
离散数学的基础知识点总结
离散数学的基础知识点总结第一章命题逻辑1.→,前键为真,后键为假才为假;<—>,相同为真,不同为假;2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积;3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反;4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假;5.求范式时,为保证编码不错,命题变元最好按P,Q,R的顺序依次写;6.真值表中值为1的项为极小项,值为0的项为极大项;7.n个变元共有n2个极小项或极大项,这n2为(0~n2-1)刚好为化简完后的主析取加主合取;8.永真式没有主合取范式,永假式没有主析取范式;9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假)10.命题逻辑的推理演算方法:P规则,T规则①真值表法;②直接证法;③归谬法;④附加前提法;第二章谓词逻辑1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质;多元谓词:谓词有n个个体,多元谓词描述个体之间的关系;2.全称量词用蕴含→,存在量词用合取^;3.既有存在又有全称量词时,先消存在量词,再消全称量词;第四章集合1.N,表示自然数集,1,2,3……,不包括0;2.基:集合A中不同元素的个数,|A|;3.幂集:给定集合A,以集合A的所有子集为元素组成的集合,P(A);4.若集合A有n个元素,幂集P(A)有n2个元素,|P(A)|=||2A=n2;5.集合的分划:(等价关系)①每一个分划都是由集合A的几个子集构成的集合;②这几个子集相交为空,相并为全(A);6.集合的分划与覆盖的比较:分划:每个元素均应出现且仅出现一次在子集中;覆盖:只要求每个元素都出现,没有要求只出现一次;第五章关系1.若集合A有m个元素,集合B有n个元素,则笛卡尔A×B的基数2种不同的关系;为mn,A到B上可以定义mn2.若集合A有n个元素,则|A×A|=2n,A上有22n个不同的关系;3.全关系的性质:自反性,对称性,传递性;空关系的性质:反自反性,反对称性,传递性;全封闭环的性质:自反性,对称性,反对称性,传递性;4.前域(domR):所有元素x组成的集合;后域(ranR):所有元素y组成的集合;5.自反闭包:r(R)=RUI;x对称闭包:s(R)=RU1-R;传递闭包:t(R)=RU2R U3R U……6.等价关系:集合A上的二元关系R满足自反性,对称性和传递性,则R称为等价关系;7.偏序关系:集合A上的关系R满足自反性,反对称性和传递性,则称R是A上的一个偏序关系;8.covA={<x,y>|x,y属于A,y盖住x};9.极小元:集合A中没有比它更小的元素(若存在可能不唯一);极大元:集合A中没有比它更大的元素(若存在可能不唯一);最小元:比集合A中任何其他元素都小(若存在就一定唯一);最大元:比集合A中任何其他元素都大(若存在就一定唯一);10.前提:B是A的子集上界:A中的某个元素比B中任意元素都大,称这个元素是B的上界(若存在,可能不唯一);下界:A中的某个元素比B中任意元素都小,称这个元素是B的下界(若存在,可能不唯一);上确界:最小的上界(若存在就一定唯一);下确界:最大的下界(若存在就一定唯一);第六章函数2种不同的关系,有m n种不同的函数;1.若|X|=m,|Y|=n,则从X到Y有mn2.在一个有n个元素的集合上,可以有22n种不同的关系,有n n种不同的函数,有n!种不同的双射;3.若|X|=m,|Y|=n,且m<=n,则从X到Y有A m n种不同的单射;4.单射:f:X-Y,对任意x,2x属于X,且1x≠2x,若f(1x)≠f(2x);1满射:f:X-Y,对值域中任意一个元素y在前域中都有一个或多个元素对应;双射:f:X-Y,若f既是单射又是满射,则f是双射;5.复合函数:fºg=g(f(x));6.设函数f:A-B,g:B-C,那么①如果f,g都是单射,则fºg也是单射;②如果f,g都是满射,则fºg也是满射;③如果f,g都是双射,则fºg也是双射;④如果fºg是双射,则f是单射,g是满射;第七章代数系统1.二元运算:集合A上的二元运算就是2A到A的映射;2. 集合A上可定义的二元运算个数就是从A×A到A上的映射的个数,即从从A×A到A上函数的个数,若|A|=2,则集合A上的二元运算的个数为2*22=42=16种;3. 判断二元运算的性质方法:①封闭性:运算表内只有所给元素;②交换律:主对角线两边元素对称相等;③幂等律:主对角线上每个元素与所在行列表头元素相同;④有幺元:元素所对应的行和列的元素依次与运算表的行和列相同;⑤有零元:元素所对应的行和列的元素都与该元素相同;4.同态映射:<A,*>,<B,^>,满足f(a*b)=f(a)^f(b),则f为由<A,*>到<B,^>的同态映射;若f是双射,则称为同构;第八章群1.广群的性质:封闭性;半群的性质:封闭性,结合律;含幺半群(独异点):封闭性,结合律,有幺元;群的性质:封闭性,结合律,有幺元,有逆元;2.群没有零元;3.阿贝尔群(交换群):封闭性,结合律,有幺元,有逆元,交换律;4.循环群中幺元不能是生成元;5.任何一个循环群必定是阿贝尔群;第十章格与布尔代数1.格:偏序集合A中任意两个元素都有上、下确界;2.格的基本性质:1) 自反性a≤a 对偶: a≥a2) 反对称性a≤b ^ b≥a => a=b对偶:a≥b ^ b≤a => a=b3) 传递性a≤b ^ b≤c => a≤c对偶:a≥b ^ b≥c => a≥c4) 最大下界描述之一a^b≤a 对偶avb≥aA^b≤b 对偶avb≥b5)最大下界描述之二c≤a,c≤b => c≤a^b对偶c≥a,c≥b =>c≥avb6) 结合律a^(b^c)=(a^b)^c对偶av(bvc)=(avb)vc7) 等幂律a^a=a 对偶ava=a8) 吸收律a^(avb)=a 对偶av(a^b)=a9) a≤b <=> a^b=a avb=b10) a≤c,b≤d => a^b≤c^d avb≤cvd11) 保序性b≤c => a^b≤a^c avb≤avc12)分配不等式av(b^c)≤(avb)^(avc)对偶a^(bvc)≥(a^b)v(a^c)13)模不等式a≤c <=>av(b^c)≤(avb)^c3.分配格:满足a^(bvc)=(a^b)v(a^c)和av(b^c)=(avb)^(avc);4.分配格的充要条件:该格没有任何子格与钻石格或五环格同构;5.链格一定是分配格,分配格必定是模格;6.全上界:集合A中的某个元素a大于等于该集合中的任何元素,则称a为格<A,<=>的全上界,记为1;(若存在则唯一)全下界:集合A中的某个元素b小于等于该集合中的任何元素,则称b为格<A,<=>的全下界,记为0;(若存在则唯一)7.有界格:有全上界和全下界的格称为有界格,即有0和1的格;8.补元:在有界格内,如果a^b=0,avb=1,则a和b互为补元;9.有补格:在有界格内,每个元素都至少有一个补元;10.有补分配格(布尔格):既是有补格,又是分配格;11.布尔代数:一个有补分配格称为布尔代数;第十一章图论1.邻接:两点之间有边连接,则点与点邻接;2.关联:两点之间有边连接,则这两点与边关联;3.平凡图:只有一个孤立点构成的图;4.简单图:不含平行边和环的图;5.无向完全图:n个节点任意两个节点之间都有边相连的简单无向图;有向完全图:n个节点任意两个节点之间都有边相连的简单有向图;6.无向完全图有n(n-1)/2条边,有向完全图有n(n-1)条边;7.r-正则图:每个节点度数均为r的图;8.握手定理:节点度数的总和等于边的两倍;9.任何图中,度数为奇数的节点个数必定是偶数个;10.任何有向图中,所有节点入度之和等于所有节点的出度之和;11.每个节点的度数至少为2的图必定包含一条回路;12.可达:对于图中的两个节点v,j v,若存在连接i v到j v的路,则称i vi与v相互可达,也称i v与j v是连通的;在有向图中,若存在i v到j v的j路,则称v到j v可达;i13.强连通:有向图章任意两节点相互可达;单向连通:图中两节点至少有一个方向可达;弱连通:无向图的连通;(弱连通必定是单向连通)14.点割集:删去图中的某些点后所得的子图不连通了,如果删去其他几个点后子图之间仍是连通的,则这些点组成的集合称为点割集;割点:如果一个点构成点割集,即删去图中的一个点后所得子图是不连通的,则该点称为割点;15.关联矩阵:M(G),m是i v与j e关联的次数,节点为行,边为列;ij无向图:点与边无关系关联数为0,有关系为1,有环为2;有向图:点与边无关系关联数为0,有关系起点为1终点为-1,关联矩阵的特点:无向图:①行:每个节点关联的边,即节点的度;②列:每条边关联的节点;有向图:③所有的入度(1)=所有的出度(0);16.邻接矩阵:A(G),a是i v邻接到j v的边的数目,点为行,点为列;ij17.可达矩阵:P(G),至少存在一条回路的矩阵,点为行,点为列;P(G)=A(G)+2A(G)+3A(G)+4A(G)可达矩阵的特点:表明图中任意两节点之间是否至少存在一条路,以及在任何节点上是否存在回路;A(G)中所有数的和:表示图中路径长度为1的通路条数;2A(G)中所有数的和:表示图中路径长度为2的通路条数;3A(G)中所有数的和:表示图中路径长度为3的通路条数;4A(G)中所有数的和:表示图中路径长度为4的通路条数;P(G)中主对角线所有数的和:表示图中的回路条数;18.布尔矩阵:B(G),v到j v有路为1,无路则为0,点为行,点为列;i19.代价矩阵:邻接矩阵元素为1的用权值表示,为0的用无穷大表示,节点自身到自身的权值为0;20.生成树:只访问每个节点一次,经过的节点和边构成的子图;21.构造生成树的两种方法:深度优先;广度优先;深度优先:①选定起始点v;②选择一个与v邻接且未被访问过的节点1v;③从v出发按邻接方向继续访问,当遇到一个节点所1有邻接点均已被访问时,回到该节点的前一个点,再寻求未被访问过的邻接点,直到所有节点都被访问过一次;广度优先:①选定起始点v;②访问与v邻接的所有节点1v,2v,……,k v,这些作为第一层节点;③在第一层节点中选定一个节点v为起点;1④重复②③,直到所有节点都被访问过一次;22.最小生成树:具有最小权值(T)的生成树;23.构造最小生成树的三种方法:克鲁斯卡尔方法;管梅谷算法;普利姆算法;(1)克鲁斯卡尔方法①将所有权值按从小到大排列;②先画权值最小的边,然后去掉其边值;重新按小到大排序;③再画权值最小的边,若最小的边有几条相同的,选择时要满足不能出现回路,然后去掉其边值;重新按小到大排序;④重复③,直到所有节点都被访问过一次;(2)管梅谷算法(破圈法)①在图中取一回路,去掉回路中最大权值的边得一子图;②在子图中再取一回路,去掉回路中最大权值的边再得一子图;③重复②,直到所有节点都被访问过一次;(3)普利姆算法①在图中任取一点为起点v,连接边值最小的邻接点2v;1②以邻接点v为起点,找到2v邻接的最小边值,如果最小边值2比v邻接的所有边值都小(除已连接的边值),直接连接,否则退回1v,1连接v现在的最小边值(除已连接的边值);1③重复操作,直到所有节点都被访问过一次;24.关键路径例2 求PERT图中各顶点的最早完成时间, 最晚完成时间, 缓冲时间及关键路径.解:最早完成时间TE(v1)=0TE(v2)=max{0+1}=1TE(v3)=max{0+2,1+0}=2TE(v4)=max{0+3,2+2}=4TE(v5)=max{1+3,4+4}=8TE(v6)=max{2+4,8+1}=9TE(v7)=max{1+4,2+4}=6TE(v8)=max{9+1,6+6}=12 最晚完成时间TL(v8)=12TL(v7)=min{12-6}=6TL(v6)=min{12-1}=11TL(v5)=min{11-1}=10TL(v4)=min{10-4}=6TL(v3)=min{6-2,11-4,6-4}=2TL(v2)=min{2-0,10-3,6-4}=2TL(v1)=min{2-1,2-2,6-3}=0 缓冲时间TS(v1)=0-0=0TS(v2)=2-1=1TS(v3)=2-2=0TS(v4)=6-4=2TS(v5=10-8=2TS(v6)=11-9=2TS(v7)=6-6=0TS(v8)=12-12=0关键路径: v1-v3-v7-v825.欧拉路:经过图中每条边一次且仅一次的通路;欧拉回路:经过图中每条边一次且仅一次的回路;欧拉图:具有欧拉回路的图;单向欧拉路:经过有向图中每条边一次且仅一次的单向路;欧拉单向回路:经过有向图中每条边一次且仅一次的单向回路;26.(1)无向图中存在欧拉路的充要条件:①连通图;②有0个或2个奇数度节点;(2)无向图中存在欧拉回路的充要条件:①连通图;②所有节点度数均为偶数;(3)连通有向图含有单向欧拉路的充要条件:①除两个节点外,每个节点入度=出度;②这两个节点中,一个节点的入度比出度多1,另一个节点的入;度比出度少1;(4)连通有向图含有单向欧拉回路的充要条件:图中每个节点的出度=入度;27.哈密顿路:经过图中每个节点一次且仅一次的通路;哈密顿回路:经过图中每个节点一次且仅一次的回路;哈密顿图:具有哈密顿回路的图;28.判定哈密顿图(没有充要条件)必要条件:任意去掉图中n个节点及关联的边后,得到的分图数目小于等于n;充分条件:图中每一对节点的度数之和都大于等于图中的总节点数;29.哈密顿图的应用:安排圆桌会议;方法:将每一个人看做一个节点,将每个人与和他能交流的人连接,找到一条经过每个节点一次且仅一次的回路(哈密顿图),即可;30.平面图:将图形的交叉边进行改造后,不会出现边的交叉,则是平面图;31.面次:面的边界回路长度称为该面的次;32.一个有限平面图,面的次数之和等于其边数的两倍;33.欧拉定理:假设一个连通平面图有v个节点,e条边,r个面,则v-e+r=2;34.判断是平面图的必要条件:(若不满足,就一定不是平面图)设图G是v个节点,e条边的简单连通平面图,若v>=3,则e<=3v-6;35.同胚:对于两个图G1,G2,如果它们是同构的,或者通过反复插入和除去2度节点可以变成同构的图,则称G1,G2是同胚的;36.判断G是平面图的充要条件:图G不含同胚于K3.3或K5的子图;37.二部图:①无向图的节点集合可以划分为两个子集V1,V2;②图中每条边的一个端点在V1,另一个则在V2中;完全二部图:二部图中V1的每个节点都与V2的每个节点邻接;判定无向图G为二部图的充要条件:图中每条回路经过边的条数均为偶数;38.树:具有n个顶点n-1条边的无回路连通无向图;39.节点的层数:从树根到该节点经过的边的条数;40.树高:层数最大的顶点的层数;41.二叉树:①二叉树额基本结构状态有5种;②二叉树内节点的度数只考虑出度,不考虑入度;③二叉树内树叶的节点度数为0,而树内树叶节点度数为1;④二叉树内节点的度数=边的总数(只算出度);握手定理“节点数=边的两倍”是在同时计算入度和出度的时成立;⑤二叉树内节点的总数=边的总数+1;⑥位于二叉树第k层上的节点,最多有12 k个(k>=1);⑦深度为k的二叉树的节点总数最多为k2-1个,最少k个(k>=1);⑧如果有n个叶子,2n个2度节点,则0n=2n+1;42.二叉树的节点遍历方法:先根顺序(DLR);中根顺序(LDR);后根顺序(LRD);43.哈夫曼树:用哈夫曼算法构造的最优二叉树;44.最优二叉树的构造方法:①将给定的权值按从小到大排序;②取两个最小值分支点的左右子树(左小右大),去掉已选的这两个权值,并将这两个最小值加起来作为下一轮排序的权值;③重复②,直达所有权值构造完毕;45.哈夫曼编码:在最优二叉树上,按照左0右1的规则,用0和1代替所有边的权值;每个节点的编码:从根到该节点经过的0和1组成的一排编码;。
离散数学第10章 图的概念与表示_OK
2021/6/28
31
• 定义10.2.5 若图G只有一个连通分图,则称G是连通图;否则,称图G为 非连通图或分离图。
• 在图的研究中,常常需要考虑删去与增加结点、结点集、边和边集(或 弧集)的问题。所谓从图G=<V,E>中删去结点集S,是指作V-S以及从E 中 删 去 与 S 中 的 全 部 结 点 相 联 结 的 边 而 得 到 的 子 图 , 记 作 G-S ; 特 别 当 S=|v|时,简记为G-v;所谓从图G=<V,E>中删去边集(或弧集)T,是 指作E-T,且T中的全部边所关联的结点仍在V中而得到的子图,记为G-T; 特别当T={e}时,简记作G-e。
• 显然,G与
互为补图。
2021/6/28
18
• 在图的定义中,强调的是结点集、边集以及边与结点的关联关系,既没 有涉及到联结两个结点的边的长度、形状和位置,也没有给出结点的位 置或者规定任何次序。因此,对于给定的两个图,在它们的图形表示中, 即在用小圆圈表示结点和用直线或曲线表示联结两个结点的边的图解中, 看起来很不一样,但实际上却是表示同一个图。因而,引入两图的同构 概念便是十分必要的了。
例如图例如图1011410114中中aa与与bb202182423图图1011310113返回返回202182424返回返回图图11141114202182425102在无向图或有向图的研究中常常考虑从一个结点出发沿着一些边或弧连续移动而达到另一个指定结点这种依次由结点和边或弧组成的序列便形成了链或路的概念
2021/6/28
10
• 定义10.1.6 在有向图G=<V,E>中,对任意结点v∈V,以v为始结点的弧 的条数,称为结点v的出度,记为d+(v);以v为终结点的弧的条条数,称 为v的入度,记作d-(v);结点v的出度与入度之和,称为结点的度数,记 为d(v),显然d(v)=d+(v)+d-(v)。
离散数学 第十章、群与环
子群判定定理3 子群判定定理
定理10.7 (判定定理三) 判定定理三) 定理 为群, 是 的非空有穷子集 的非空有穷子集, 设G为群,H是G的非空有穷子集,则H是G的子群当且仅当 为群 是 的子群当且仅当 ∀a,b∈H有ab∈H. ∈ 有 ∈ 必要性显然. 为证充分性, 证 必要性显然 为证充分性,只需证明 a∈H有a−1∈H. ∈ 有 任取a∈ 任取 ∈H, 若a = e, 则a−1 = e∈H. ∈ 若a≠e,令S={a,a2,…},则S⊆H. , , ⊆ 由于H是有穷集 必有a 是有穷集, 由于 是有穷集,必有 i = aj(i<j). ) 根据G中的消去律得 aj−i = e,由a ≠ e可知 j−i>1,由此得 根据 中的消去律得 − , 可知 − , −− −− a j−i−1a = e 和 a a j−i−1 = e −− 从而证明了a 从而证明了 −1 = a j−i−1∈H.
8
群的性质: 群的性质:幂运算规则
定理10.1 设G 为群,则G中的幂运算满足: 为群, 中的幂运算满足: 定理 中的幂运算满足 (1) ∀a∈G,(a−1)−1=a ∈ , (2) ∀a,b∈G,(ab)−1=b−1a−1 ∈ , (3) ∀a∈G,anam = an+m,n, m∈Z ∈ , ∈ (4) ∀a∈G,(an)m = anm,n, m∈Z ∈ , ∈ (5) 若G为交换群,则 (ab)n = anbn. 为交换群, 为交换群 的逆元, 也是 的逆元. 也是a 证 (1) (a−1)−1是a−1的逆元,a也是 −1的逆元 根据逆元唯一 等式得证. 性,等式得证 (2) (b−1a−1)(ab)= b−1(a−1a)b = b−1b = e, (ab)( b−1a−1)=e, 同理 , 的逆元. 故b−1a−1是ab的逆元 根据逆元的唯一性等式得证 的逆元 根据逆元的唯一性等式得证.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定理1的证明(续)
7
因为对于任意的v∊V,原图是连通的,所以在原图中存 在 v到u’的通路,也存在v到v’的通路,且都是初等通路。 若这两条通路都经过边e,则原图中一定有圈,故 V=V1∪V2 。如果存在v ∊ V1∩V2,则原图中存在 v到u’、 v到v’的两条不经过边e的初等通路,加上边e后, 原图中 一定有圈,故V1∩V2 =Ø。 以上证明说明新图分为两个连通的子图,设为T1和T2 ,且 原图无圈,子图也不会有圈,即两棵不相交的树(顶点的交 集为空集)。 设T1=(V1,E1),T2=(V2,E2),由归纳假定有 |V1|-1=|E1|,|V2|-1=|E2|。 又|V|=|V1|+|V2|,|E|=|E1|+|E2|+1。所以有定理得证。
定理2的证明
12
③① 已知T中无圈且|V|-1=|E|。若T不连通,设 T有 k个连通分枝:T1,T2,…,Tk,Ti=(Vi, Ei )(1≤i≤k)。对于每一个i (1≤i≤k), Ti是连通的 且无圈,故Ti是树。由定理1知,|Vi|-1=|Ei|, 1≤i≤k。又
∑|Vi|=|V|, ∑|Ei|=|E|
v0 v0
v2
v5
v8
23
v4
v7
v9
v1 v2
v3 v5 v4
v6
v8 v7
v9
4
v6
v8 v7
v9
v1
v3
v6
例(续)
在图10.2中, TG=(V,D), 其中D由红线组成。 取枝e={v7,v8} V1={v0,v1,v2,v3,v4,v6,v7,v9} V2={v5,v7,v8} D’={{u,v}∊E│u∊V1, v∊V2} 由右下图中4根绿线组成。
定理4的证明(续)
i=1 i=1
n
n
所以|V|-k=|E|,而已知|V|-1=|E|,即有 |V|-k=|V|-1,故 k=1,即T是连通图。
例题
画出具有7个顶点的所有非同构的树。
13
解:所画出的树有6条边,因而7个顶点的度数之和应为12。 由于每个顶点的度数均大于等于1,因而可以产生一 下7种度数序列: (1) 1 1 1 1 1 1 6, 产生1棵非同构的树T1 (2) 1 1 1 1 1 2 5, 产生1棵非同构的树T2 (3) 1 1 1 1 1 3 4, 产生1棵非同构的树T3 (4) 1 1 1 1 2 2 4, 产生1棵非同构的树T4、T5 (5) 1 1 1 1 2 3 3, 产生1棵非同构的树T6、T7 (6) 1 1 1 2 2 2 3, 产生1棵非同构的树T8、T9、T10 (7) 1 1 2 2 2 2 2, 产生1棵非同构的树T11
基本圈系统
对于 TG的每一个弦,对应于G中的唯一的一个圈。 G中由所有弦所分别对应的圈组成了G关于TG的基本圈 系统。 例: 在图10.2中, 细蓝线为弦。
v0 v2 v5 v4 v7 v9 v8
19
v1
v3
v6
{ v0v1v2v1, v1v3v4v2v1, v1v4v2v1, v2v4v5v2, v3v4v6v3, v4v5v8v7v4, v4v6v7v4, v6v7v8v9v6}
T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T 11
10.2
连通图的生成树和带权连通图的最小生成树
15
例 假设有分布在不同建筑物中 的5台计算机。计算机连接 的可能方案如右图所示。
实际上,不会同时安装所有的连接,保证计算机之间能 够连通可能一些安装方案有:
这些可能安装方案都是生成子图,并具有树的结构。
v6 v8 v7 v9
v0
v1
v3
v6
定理4的证明
31
证明:设D是一个割集,擦去D后图G的顶点分为两个不 连通的部分分别为V1与V2。设C为图中一个圈, 不妨设 C=(v1,v2,…,vn,v1),并假定圈中边按圈走动方向定向为有 向边。若有 {vi1,vi1+1},{vi2,vi2+1},…,{vik,vik+1} 是k条圈中边, 沿圈行进方向从vij到vij+1,其中vij∊V1,vij+1∊V2, (1≤j≤k), 则一定存在k条圈中边{vl1,vl1+1},{vl2,vl2+1},…,{vlk,vlk+1} , 沿圈行进方向从vlj到vlj+1,其中vlj∊V2,vlj+1∊V1, (1≤j≤k)。 否则圈C的起点v1与终点v1各在V1与V2两个子集之一中, 与C是一个圈矛盾。图10.3所示,圈C为用粗黑线表示。
生成树
16
定义:设G=(V,E)是一个连通图, G的一个生成子图若本 身是一棵树,我们称它为G的一棵生成树。 定理1 任何连通图都有生成树。
证明:设G=(V,E)是一个简单连通图,若G中无圈,则G 本身是G的一棵生成树。 若G中有圈,拿去圈中一条边,原图仍连通。若 再有圈,再拿去圈中一条边,直到G中无圈为止。 因为G中顶点与边均为有限数,故上述工作一定 可以在有限步内结束。 G的这个无圈的连通子图 就是G中一颗生成树。
证明:用反证法。 设生成树的补包含割,则 删除该割集,生成树仍 然存在,即图仍然连通, 这与割集的定义矛盾。 故任何生成树的补不包含割 ,换句话说,任何生 成树都至少包含了割集的一条边。
27
例
生成树
生成树的补
割集
定理3的推论2
证明一个割集的补不含生成树。
28
证明: 从图中去掉任何一个割集后,图就不连通了,所以 一个割集的补是不连通的, 所以不含生成树。
10
定理2的证明
11
②③ 已知T连通且 |V|-1=|E| 。若 T中有圈,拿去圈 中的一条边, T仍连通。我们继续这样的工作,直 到 T中无圈。由于顶点与边都是有限集,上面的工 作一定可以在有限步内终止。 设T中共拿走L条边,由于每次拿去的边都是圈中的 边,不影响 T的连通性,所以剩下的子图T’是连通 且无圈的图,即T’是一棵树。由定理1知, |V’|-1=|E’|,其中V’,E’分别是T’的顶点和边 集。由T’的产生方法,有|V’|=|V|, |E’|=|E| -L。所以|V|-1 =|E|-L。由于 |V|-1=|E|,所以 |E|=|E|-L,即L=0,原 图无圈。
例
割集
割集的补
生成树
例 练习十
(p135)
29
10.11 G是一个连通图,G=(V,E),v∊V,deg(v)=1, e∊E是关联定点v的一条边。证明e一定是任何一 棵生成树的枝。 证明:假设e不是任何一棵生成树的枝, 则e一定是弦。 根据弦的定义,则e一定对应于一个圈(否则,可以加 入生成树)。 则e关联顶点v的度数至少为2。 这与deg(V)=1矛盾, 所以e一定是任何一棵生成树 的枝。
例1
G=(V,E)是如图10.2中的图,图中红线的边,即为G中 的一棵生成树。
17
显然,G若有生成树,一般不唯一。
生成树的枝、弦
设G=(V,E)是一个图,TG=(V,D)是G的一棵生成树。 称e∊D为TG的枝, 称e∊E但e∉D为TG的弦。 设|V| =n,则TG有 n-1个枝。
18
例: 在图10.2中,粗红线为枝,细蓝线为弦。
定理1的证明
6
证明:用对顶点集V的元素个数归纳法来证。 当|V|=1时,T是一个仅有一个顶点且没有边的图。显 然,|E|=0, 命题成立。 归纳假设若|V|≤k时,命题成立。考察|V|=k+1时的情 况。设{u’,v’} ∊E ,我们擦去边e, 得T的一个子图。 令 V1={v∊V│子图中存在u’到v的通路}, V2={v∊V│子图中存在v’到v的通路}。 例
v0 v0
v2
v5
v8
24
v4
v7
v9
v1 v2
v3 v5 v4
v6
v8 v7
v9
v0
v1 v2
v3 v5 v4
v6
v8 v7
v9
v1
v3
v6
生成树与圈的关系
25
定理2 一个连通图的任何一个圈与任意一棵生成树的补, 至少有一条公共边。 证明 如果有一个圈,它与一棵生成树的补没有公共边, 即圈中的边全是生成树的枝,与一棵树不含圈矛盾, 矛盾说明一个圈与一棵生成树的补至少有一条公共 边。
基本割集
G=(V,E)是一个图,TG是G的一棵生成树。 e={u0,v0} ∊D是TG的枝。令 V1={v∊V │v=u0或在 TG中 v与u0之间有不经过边 e的通路}, V2={v∊V │v=v0或在 TG中 v与v0之间有不经过边 e的通路}, 则 D’={ {u,v} ∊E│u∊V1, v∊V2}是G的一个割集。
3
例 判断下图是否为树。
例1
画出所有5个顶点的树。
4
解:见图10.1所示。
定理1
设 T=(V,E)是一棵树,则有 |E|=|V|-1。
5
分析:对顶点数|V|进行归纳法证明。 当|V|=1和|V|=2时,定理显然是成立的。 归纳假设当|V|≤k时,定理成立。考察|V|=k+1时的情 况。因为树无圈,所以从T中去掉任何一条边,都会 使T变成具有两个连通分支的不连通图。这两个连通 分支也必然是树,譬如说是T1=(V1,E1)和T2=(V2,E2)。 显然,|V1| ≤k, |V2| ≤k。根据归纳假设,有 |E1|=|V1|-1, |E2|=|V2|-1。而|V|=|V1|+|V2|, |E|=|E1|+|E2|-1, 所以|E|=|V|-1, 即定理得证。
9
5•4+3•3+3•2+1•x
= ∑ d(v) =2|E| =2(|V|-1) =2(5+3+3+ x-1)