(完整)初中因式分解的常用方法—特色专题详解

合集下载

因式分解的十二种方法

因式分解的十二种方法

因式分解的十二种方法因式分解是代数中的一个非常重要的概念,它可以帮助我们将一个复杂的代数表达式简化为更简单的乘积形式。

在因式分解的过程中,有许多不同的方法可以使用。

下面将介绍因式分解的十二种常见方法。

一、公因式提取法(通用方法):公因式提取法是因式分解中最基础也是最常见的一种方法。

它的基本思想是通过提取出一个或多个公因式,将原表达式分解为因子相乘的形式。

例如,对于表达式6x+9y,可以提取出3作为公因式,从而得到3(2x+3y)。

二、配方法(分组法):配方法是一种将高次项与低次项相乘的方法。

通过将原表达式分组,然后将每组中的项相乘,最后将各组之间的结果相加。

例如,对于表达式x^2+5x+6,可以将其写成(x^2+2x)+(3x+6),然后将每组中的项相乘,即得到x(x+2)+3(x+2),再进行合并得到(x+2)(x+3)。

三、分解差平方:分解差平方是一种将平方差分解为两个因数相乘的方法。

它的基本思想是将一项的平方与另一项的平方的差分解为两个因数的乘积。

例如,对于表达式x^2-4,可以将其分解为(x+2)(x-2)。

四、分解和差平方:分解和差平方是一种将平方和分解为两个因数相乘的方法。

它的基本思想是将一项的平方与另一项的平方的和分解为两个因数的乘积。

例如,对于表达式x^2+4,可以将其分解为(x+2i)(x-2i),其中i是虚数单位。

五、完全平方差公式:完全平方差公式是一种将二次三项式分解为两个完全平方的差的方法。

它的基本形式可以表示为a^2-b^2,其中a和b可以是任意代数式。

根据完全平方差公式,可以将a^2-b^2分解为(a+b)(a-b)。

例如,对于表达式x^2-4,可以将其分解为(x+2)(x-2)。

六、分组分解法:分组分解法是一种将多项式分解为若干个二次三项式相加的方法。

它的基本思想是通过分组,将多项式分成多个二次三项式的和,然后对每个二次三项式进行因式分解。

例如,对于表达式x^3+x^2+x+1,可以将其分为(x^3+x^2)+(x+1),然后对每个二次三项式进行因式分解,得到x^2(x+1)+1(x+1),再进行合并得到(x^2+1)(x+1)。

因式分解的方法和技巧

因式分解的方法和技巧

因式分解的方法和技巧因式分解是代数中常见的一种运算,它将一个多项式表达式分解成若干个乘积的形式。

因式分解方法和技巧有很多,在这里我将为您详细介绍。

1. 提取公因式法:提取公因式法是最基本的因式分解方法,它适用于多项式的各项都含有相同的因子。

具体步骤如下:(1) 将各项中的公因式提取出来,形成公因式乘以括号内的剩余部分;(2) 讲提取出来的公因式与括号内的剩余部分相乘即得因式分解的结果。

例如,要将多项式2x + 4y分解因式,公因式为2,提取后可得:2x + 4y = 2(x + 2y)2. 完全平方式:完全平方式适用于二次多项式。

具体操作如下:(1) 将多项式进行配方,使其成为一个完全平方;(2) 对完全平方进行因式分解。

例如,要将多项式x^2 + 4x + 4分解因式,可以将其配方为(x + 2)^2,然后可以得到:x^2 + 4x + 4 = (x + 2)^23. 分组分解法:分组分解法适用于多项式中含有四项且存在两项可以合并成完全平方式。

具体步骤如下:(1) 先将多项式分成两组,并在每组内部因式相同的项;(2) 对每组进行提取公因式,并根据需要进行配方等操作;(3) 将提取出来的公因式相乘,并加上适当的括号。

例如,要将多项式x^3 + x^2 + 2x + 2分解因式,可以将其分成两组(x^3 + x^2) + (2x + 2),然后可以得到:x^3 + x^2 + 2x + 2 = x^2(x + 1) + 2(x + 1) = (x^2 + 2)(x + 1)4. 和差化积法:和差化积法适用于差分方程形式的多项式。

具体步骤如下:(1) 找到平方差公式或立方差公式,然后应用到多项式中;(2) 对多项式进行因式分解。

例如,要将多项式x^2 - y^2分解因式,可以将其应用平方差公式(x - y)(x + y),然后可以得到:x^2 - y^2 = (x - y)(x + y)5. 特殊因式分解法:特殊因式分解法适用于一些特殊的多项式形式。

中考数学专题复习第4讲因式分解(含详细答案)

中考数学专题复习第4讲因式分解(含详细答案)

第四讲 因式分解 【基础知识回顾】一、因式分解的定义:1、把一个 式化为几个整式 的形式,叫做把一个多项式因式分解。

2、因式分解与整式乘法是 运算,即:多项式 整式的积 【名师提醒:判断一个运算是否是因式分解或判断因式分解是否正确,关键看等号右边是否为 的形式。

】二、因式分解常用方法:1、提公因式法:公因式:一个多项式各项都有的因式叫做这个多项式各项的公因式。

提公因式法分解因式可表示为:ma+mb+mc= 。

【名师提醒:1、公因式的选择可以是单项式,也可以是 ,都遵循一个原则:取系数的 ,相同字母的 。

2、提公因式时,若有一项被全部提出,则括号内该项为 ,不能漏掉。

3、提公因式过程中仍然要注意符号问题,特别是一个多项式首项为负时,一般应先提取负号,注意括号内各项都要 。

】2、运用公式法:将乘法公式反过来对某些具有特殊形式的多项式进行因式分解,这种方法叫做公式法。

①平方差公式:a 2-b 2= ,②完全平方公式:a 2±2ab+b 2= 。

【名师提醒:1、运用公式法进行因式分解要特别掌握两个公式的形式特点,找准里面的a 与b 。

如:x 2-x+14符合完全平方公式形式,而x 2- x+12就不符合该公式的形式。

】三、因式分解的一般步骤1、 一提:如果多项式的各项有公因式,那么要先 。

2、 二用:如果各项没有公因式,那么可以尝试运用 法来分解。

3、 三查:分解因式必须进行到每一个因式都不能再分解为止。

【名师提醒:分解因式不彻底是因式分解常见错误之一,中考中的因式分解题目一般为两步,做题时要特别注意,另外分解因式的结果是否正确可以用整式乘法来检验】【重点考点例析】考点一:因式分解的概念例1 (•株洲)多项式x 2+mx+5因式分解得(x+5)(x+n ),则m= ,n= .思路分析:将(x+5)(x+n )展开,得到,使得x 2+(n+5)x+5n 与x 2+mx+5的系数对应相等即可.解:∵(x+5)(x+n )=x 2+(n+5)x+5n ,∴x 2+mx+5=x 2+(n+5)x+5n ∴555n m n +=⎧⎨=⎩,∴16n m =⎧⎨=⎩, 故答案为6,1.点评:本题考查了因式分解的意义,使得系数对应相等即可.对应训练1.(•河北)下列等式从左到右的变形,属于因式分解的是( )( ) ( )A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3 D.x3-x=x(x+1)(x-1)1.D考点二:因式分解例2 (•无锡)分解因式:2x2-4x= .思路分析:首先找出多项式的公因式2x,然后提取公因式法因式分解即可.解:2x2-4x=2x(x-2).故答案为:2x(x-2).点评:此题主要考查了提公因式法分解因式,关键是掌握找公因式的方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.例3 (•南昌)下列因式分解正确的是()A.x2-xy+x=x(x-y)B.a3-2a2b+ab2=a(a-b)2C.x2-2x+4=(x-1)2+3 D.ax2-9=a(x+3)(x-3)思路分析:利用提公因式法分解因式和完全平方公式分解因式进行分解即可得到答案.解:A、x2-xy+x=x(x-y+1),故此选项错误;B、a3-2a2b+ab2=a(a-b)2,故此选项正确;C、x2-2x+4=(x-1)2+3,不是因式分解,故此选项错误;D、ax2-9,无法因式分解,故此选项错误.故选:B.点评:此题主要考查了公式法和提公因式法分解因式,关键是注意口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.例4 (•湖州)因式分解:mx2-my2.思路分析:先提取公因式m,再对余下的多项式利用平方差公式继续分解.解:mx2-my2,=m(x2-y2),=m(x+y)(x-y).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.对应训练2.(•温州)因式分解:m2-5m= .2.m(m-5)3.(•西宁)下列分解因式正确的是()A.3x2-6x=x(3x-6)B.-a2+b2=(b+a)(b-a)C.4x2-y2=(4x+y)(4x-y)D.4x2-2xy+y2=(2x-y)23.B4.(•北京)分解因式:ab2-4ab+4a= .4.a(b-2)2考点三:因式分解的应用例5 (•宝应县一模)已知a+b=2,则a2-b2+4b的值为.思路分析:把所给式子整理为含(a+b)的式子的形式,再代入求值即可.解:∵a+b=2,∴a2-b2+4b=(a+b)(a-b)+4b=2(a-b)+4b=2a+2b=2(a+b)=2×2=4.故答案为:4. 点评:本题考查了利用平方差公式分解因式,利用平方差公式和提公因式法整理出a+b 的形式是求解本题的关键,同时还隐含了整体代入的数学思想.对应训练5.(•鹰潭模拟)已知ab=2,a-b=3,则a 3b-2a 2b 2+ab 3= .5.18【聚焦山东中考】1.(•临沂)分解因式4x-x 2= .1.x (4-x )2.(•滨州)分解因式:5x 2-20= .2.5(x+2)(x-2)3.(•泰安)分解因式:m 3-4m= .3.m (m-2)(m+2)4.(•莱芜)分解因式:2m 3-8m= .4.2m (m+2)(m-2)5.(•东营)分解因式:2a 2-8b 2= .5.2(a-2b )(a+2b )6.(•烟台)分解因式:a 2b-4b 3= .6.b (a+2b )(a-2b )7.(•威海)分解因式:-3x 2+2x-13= . 7.21(31)3x --8.(•菏泽)分解因式:3a 2-12ab+12b 2= .8.3(a-2b )2【备考真题过关】一、选择题1.(•张家界)下列各式中能用完全平方公式进行因式分解的是() A .x 2+x+1 B .x 2+2x-1 C .x 2-1D .x 2-6x+9 1.D2.(•佛山)分解因式a 3-a 的结果是( )A .a (a 2-1)B .a (a-1)2C .a (a+1)(a-1)D .(a 2+a )(a-1) 2.C3.(•恩施州)把x 2y-2y 2x+y 3分解因式正确的是( )A .y (x 2-2xy+y 2)B .x 2y-y 2(2x-y )C .y (x-y )2D .y (x+y )23.C二、填空题4.(•自贡)多项式ax 2-a 与多项式x 2-2x+1的公因式是 .4.x-15.(•太原)分解因式:a 2-2a= .5.a (a-2)6.(•广州)分解因式:x 2+xy= .6.x (x+y )7.(2013•盐城)因式分解:a 2-9= .7.(a+3)(a-3)8.(•厦门)x2-4x+4=()2.8.x-29.(•绍兴)分解因式:x2-y2= .9.(x+y)(x-y)10.(•邵阳)因式分解:x2-9y2= .11.(x+3y)(x-3y)12.(•南充)分解因式:x2-4(x-1)= .12.(x-2)213.(•遵义)分解因式:x3-x= .13.x(x+1)(x-1)14.(•舟山)因式分解:ab2-a= .14.a(b+1)(b-1)15.(•宜宾)分解因式:am2-4an2= .15.a(m+2n)(m-2n)16.(•绵阳)因式分解:x2y4-x4y2= .16.x2y2(y-x)(y+x)17.(•内江)若m2-n2=6,且m-n=2,则m+n= .17.318.(•廊坊一模)已知x+y=6,xy=4,则x2y+xy2的值为.18.2419.(•凉山州)已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b= .19.-31。

八年级因式分解的四种方法

八年级因式分解的四种方法

一对一个性化辅导讲义学科:数学任课教师:授课时间:年月日(星期 )3.因式分解(公式法):(1) 4x2-9;解:原式二(2) 16x2 + 24x + 9 ; 解:原式二(3) -4x2 + 4xy -y2 ;解:原式二 (4) 9(m + n)2 - (m - n)2 ; 解:原式二1.下列由左到右的变形,是因式分解的是 ________________ .①-3x2y2 --3-X2 - y2 ; (2)((2 + 3)(〃 - 3) = "2 一9 ; ④ 2mR + 2mr = 2m(R + r);③ “2 — Z?2 +1 = (〃 + b)(a -Z?) + l ; (S)x2 -xy + x = x(x - y);⑦尸4y + 4 = (y-2)2.2.因式分解(提公因式法):(1) 12a2b - 24ab2 + 6ab ;解:原式二- 4 = (m + 2)(m - 2); (2)一“3 — a2 + Cl ; 解:原式二 (3) (a-Z?)(m + l)-(Z?-a)(M-l);解:原式二⑷ x(x-y)2-y(y-x)2 ;解:原式二(5 ) Xm + Xm-1 . 解:原式二(5)(x + 3y)2 -2(x + 3y)(4x-3y) + (4x-3y)2 ;解:原式二(6) x2(2x-5) + 4(5 -2x);解:原式二(7) -8ax2 +16axy - 8ay2 ;(8) x4 - y4 ;解:原式二解:原式二(9) a4 -2a2 +1 ;(10) (a2 + b2)2 -4a2b2.解:原式二解:原式二4.因式分解(分组分解法):(1) 2ax -10ay + 5by - bx;(2) m2 —5m一mn +5n;解:原式二解:原式二(3) 1 -4a2 -4ab-b2 ;(4) a2 + 6a + 9-9b2 ;解:原式二解:原式二♦【典型例题】因式分解(十字相乘法):(1) x 2 + 4 x + 3 ;解:原式二(2) x2 + x一6 ;解:原式二(3) -x2 + 2x + 3 ;解:原式二(4) 2x2 + x-1 ;解:原式二(5) 3x2 + xy -2y2 ;解:原式二(6) 2x2 +13xy +15y2 ;解:原式二【巩固练习】1.因式分解(分组分解法):(1)9 ax 2 + 9 bx 2 - a一b;解:原式二(2) a2 -2a + 4b-4b2. 解:原式二2.因式分解(十字相乘法):(1)x 3 - 2 x 2 - 8 x;解:原式二33) x4 -6x2 -27 . 解:原式二(2) x4 一7x2 +12 ;解:原式二三、随堂检测用适当的方法因式分解:(1) (2a一b)2 + 8ab;解:原式二(2) x2 - 2xy + y2 - 2x + 2y +1.解:原式二四、课堂小结五、课后作业用适当的方法因式分解:(1) a 2 - 8 ab +16b 2一c2 ;解:原式二(2) 4xy2 -4x2y- y3 ;解:原式二(3) 2(a -1)2 -12(a-1) +16 ;(4) (x +1)(x + 2) -12 ;解:原式二解:原式二因式分解拓展提高板块一:因式分解知识回顾1、列式子从左边到右边的变形中是分解因式的是( )A. x2 - x + 2 = x(x -1)+ 2 C. x2 -1 =(x + 1)Q -1)B. (a +b)aD. x -1 = x-b)=(.(1 \1 -72-b 2提公因式法一形如ma+mb+mc=m(a+b+c)分解因式:(1) 2a2bc2 + 8ac2 -4abc(2) m(m + n)3 + m(m + n)2 一m(m + n)(m 一n)运用公式法一平方差:a2 - b2 = (a + b)(a - b)完全平方公式:a2 土2ab+b2 = (a土b)2(1) a8 -1 (2) 4a2 +12ab + 9b2(3) 16(2m + n)2 一8n(2m + n) + n2 (4)(x2 + 4y2)2-16x2y2十字相乘法:x 2 + (p + q) x + pq = (x + p)(x + q)(1) x2 + 3x + 2 (2) 6a4 + 11a2b2 + 3b2 (3) x2 -(2m + 1)x + m2 + m - 2分组分解法:分组后能提取公因式,分组后能直接运用公式分解因式(1)3ax+4by+4ay+3bx (2)4x2 -4x- y2 + 4y-3板块二:综合应用例 1 ① x (x -1) + y (y +1) - 2 xy②(xy -1)2 + (x + y - 2)( x + y - 2 xy)③(x+y)(x+y+2xy)+(xy+1) (xy-1)例 2 x 3 - 3 x 2 + 4 x 3+6 x 2 +11 x + 6板块三:实际应用例3求证:一个三位数的百位数字与个位数字交换后,得到的数与原数之差能被99整除。

因式分解专题复习及讲解(很详细)

因式分解专题复习及讲解(很详细)

因式分解的常用方法第一部分:方法介绍多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a 2-b 2=(a+b)(a -b);(2) a 2±2ab+b 2=(a ±b)2;(3) a 3+b 3=(a+b)(a 2-ab+b 2);(4) a 3-b 3=(a -b)(a 2+ab+b 2).(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6) a 3±3a 2b+3ab 2±b 3=(a±b)3.例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

因式分解的常用方法(最全版)

因式分解的常用方法(最全版)

因式分解的常用方法第一部分:方法介绍因式分解:因式分解是指将一个多项式化成几个整式的积的形式,主要有提公因式法,公式法,十字相乘法,分组分解法,换元法等因式分解的一般步骤是:(1 )通常采用一“提”、二“公”、三“分”、四“变”的步骤。

即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;(2 )若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;。

注意:将一个多项式进行因式分解应分解到不能再分解为止。

一、提公因式法. :ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:( 1 ) (a+b)(a - b) = a 2 - b 2 ----------- a 2 - b 2 =(a+b)(a - b) ;(2) (a ± b) 2 = a 2 ± 2ab+b 2 --------- a 2 ± 2ab+b 2 =(a ± b) 2 ;(3) (a+b)(a 2 - ab+b 2 ) = a 3 +b 3 --------- a 3 +b 3 =(a+b)(a 2 - ab+b 2 ) ;(4) (a - b)(a 2 +ab+b 2 ) = a 3 - b 3 -------- a 3 - b 3 =(a - b)(a 2 +ab+b2 ) .下面再补充两个常用的公式:(5)a 2 +b 2 +c 2 +2ab+2bc+2ca=(a+b+c) 2 ;(6)a 3 +b 3 +c 3 - 3abc=(a+b+c)(a 2 +b 2 +c 2 - ab - bc - ca) ;例. 已知是的三边,且,则的形状是()A. 直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:三、分组分解法.(一)分组后能直接提公因式例1 、分解因式:分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有 a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

八年级数学上册-因式分解的方法汇总.ppt

八年级数学上册-因式分解的方法汇总.ppt
因式分解的方法
一、提公因式法; 二、公式法; 三、十字相乘法; 四、换元法; 五、分组分解法; 六、拆项、添项法; 七、配方法; 八、待定系数法。
方法一:提分因式法
这是因式分解的首选方法。也是最基本 的方法。在分解因式时一定要首先认真 观察等分解的代数式,尽可能地找出它 们的分因数(式)
方法二:公式法
(12)原式= a4 2a2b2 b4 2ab(a2 b2 ) a2b2
(a2 b2 )2 2ab(a2 b2 ) a2b2
(a2 ab b2)2
(13)证明:a4 2a2b2 b4 (a2 2ab b2 )2 2a2b2
(a2 b2 )2 (a2 b2 )2 4ab(a2 b2 ) 2a2b2 2[(a2 b2 )2 2ab(a2 b2 ) a 2b2 ] 2(a2 ab b2 )2
(3)原式=
x4 2x2 1 (x2 1) x2 (x2 1)2 2x(x2 1) x2 (x2 x 1)2
方法八:待定系数法
对所给的数学问题,根据已知条件和要求,先设出问题 的多项式表达形式(含待定的字母系数),然后利用已 知条件,确定或消去所设待定系数,使问题获解的这种 方法叫待定系数法,用待定系数法解题目的一般步骤是:
则原式=
(a 2)(a 3) 12 a2 5a 6
(a 6)(a 1)
(2)解: 原式= (x2 7x 6)( x2 5x 6) x2
(x2 6x 6 x)( x2 6x 6 x) x2
(x2 6x 6)2
(3)设x+y=a,xy=b,则原式 =a(a+2b)+(b+1)(b-1)
( y z)[x2 ( y z)x yz]
(y z)(x y)(x z)

因式分解常用方法(方法最全最详细)

因式分解常用方法(方法最全最详细)

因式分解的常用方法第一部分:方法介绍因式分解:因式分解是指将一个多项式化成几个整式的积的形式,主要有提公因式法,公式法,十字相乘法,分组分解法,换元法等因式分解的一般步骤是:(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。

即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;。

注意:将一个多项式进行因式分解应分解到不能再分解为止。

一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1) (a+b)(a-b) = a2-b2 -----------a2-b2=(a+b)(a-b);(2) (a±b)2 = a2±2ab+b2 ---------a2±2ab+b2=(a±b)2;(3) (a+b)(a2-ab+b2) =a3+b3---------a3+b3=(a+b)(a2-ab+b2);(4) (a-b)(a2+ab+b2) = a3-b3 --------a3-b3=(a-b)(a2+ab+b2).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++, 则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形 解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

完整版因式分解的常用方法方法最全最详细

完整版因式分解的常用方法方法最全最详细

因式分解的常用方法第一部分:方法介绍因式分解:因式分解是指将一个多项式化成几个整式的积的形式, 主要有提公因式法,公式法,十字相乘法,分组分解法,换元法等 因式分解的一般步骤是:(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。

即首先看有 无公因式可提,其次看能否直接利用乘法公式; 如前两个步骤都不能实施, 可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法 继续分解;(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数 法、试除法、拆项(添项)等方法;。

注意:将一个多项式进行因式分解应分解到不能再分解为止。

、提公因式法.:ma+mb+mc=m (a+b+c ) 、运用公式法•2 2 2在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因 式分解中常用的公式,例如:2 2(1) (a+b)(a-b) = a -b -2 2 2(2) (a ±b) = a ±2ab+b ------------- a 22 33(3) (a+b)(a -ab+b ) =a +b -------------- 2233(4) (a-b)(a +ab+b ) = a -b -------------- 下面再补充两个常用的公式:22 2(5) a +b +c +2ab+2bc+2ca=(a+b+c) 33 322 (6) a +b3 3+c -3abc=(a+b+c)(a 例.已知a ,2 2-b =(a+b)(a-b);2 2 2±2ab+b =(a ±b);3322+b =(a+b)(a -ab+b );3 3 2-b =(a-b)(a +ab+b 2 )•2;— 2+b +c -ab-bc-ca)b, c 是ABC 的三边,且a 2 b 2 c 2 ab bc ca ,ABC 的形状是()A.直角三角形B 等腰三角形C 等边三角形D 等腰直角三角形2 2 2解:a b c ab bc ca2 2 22a 2b 2c 2ab 2bc 2ca(a b) (b c) (c a) 0三、分组分解法•(一)分组后能直接提公因式例1、分解因式:am an bm bn分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

因式分解最全方法归纳

因式分解最全方法归纳

因式分解最全方法归纳因式分解是代数运算中的重要内容,它可以将一个复杂的多项式化为几个简单因式的乘积形式,有助于解决各种数学问题。

下面为大家归纳总结因式分解的常用方法。

一、提公因式法如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式化成两个或多个因式乘积的形式。

例如,对于多项式$6x + 9$,各项的公因式是 3,分解因式可得:$6x + 9 = 3(2x + 3)$再比如,$4x^2y 6xy^2$,公因式是$2xy$,分解因式为:$4x^2y 6xy^2 = 2xy(2x 3y)$提公因式法是因式分解的基础,很多多项式都需要先通过提公因式来简化式子。

二、公式法常用的公式有平方差公式:$a^2 b^2 =(a + b)(a b)$;完全平方公式:$a^2 ± 2ab + b^2 =(a ± b)^2$例如,$9 x^2$可以利用平方差公式分解为:$(3 + x)(3 x)$而对于$x^2 + 6x + 9$,则可以使用完全平方公式分解为:$(x+ 3)^2$三、十字相乘法对于二次三项式$ax^2 + bx + c$($a ≠ 0$),如果能找到两个数$p$和$q$,使得$p + q = b$,$pq = ac$,那么就可以将式子分解为$(x + p)(x + q)$例如,对于$x^2 + 5x + 6$,因为$2 + 3 = 5$,$2×3 = 6$,所以可以分解为:$(x + 2)(x + 3)$再看$2x^2 5x 3$,我们要找到两个数$m$和$n$,使得$m + n =-5$,$mn =-6$,可以得到$m =-6$,$n = 1$,分解因式为:$(2x + 1)(x 3)$四、分组分解法当多项式不能直接运用上述方法分解时,可以将多项式适当分组,再分别对每一组进行分解,最后综合起来得到分解结果。

例如,$am + an + bm + bn$,可以分组为$(am + an) +(bm+ bn)$,然后分别提公因式得到:$a(m + n) + b(m + n) =(m +n)(a + b)$又如,$x^2 y^2 + 2x + 1$,可以分组为$(x^2 + 2x + 1) y^2$,先利用完全平方公式,再用平方差公式,分解为:$(x + 1)^2 y^2=(x + 1 + y)(x + 1 y)$五、拆项、添项法在多项式中添加或减去一项,使得式子可以运用上述方法进行分解。

因式分解最全方法归纳

因式分解最全方法归纳

因式分解最全方法归纳因式分解是代数学习中的重要内容,它可以帮助我们简化复杂的代数表达式,解决方程和不等式等问题。

下面就为大家归纳一下因式分解的各种方法。

一、提公因式法如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。

例如,对于多项式 6x + 9,6 和 9 都有公因数 3,所以可以提出 3 得到:3(2x + 3)。

提公因式法的关键在于准确找出多项式各项的公因式。

公因式的系数应取各项系数的最大公约数,字母应取各项都含有的相同字母,字母的指数取次数最低的。

二、运用公式法(1)平方差公式:a² b²=(a + b)(a b)例如,分解 9x² 25,可写成(3x)² 5²,然后利用平方差公式得到:(3x + 5)(3x 5)(2)完全平方公式:a² ± 2ab + b²=(a ± b)²比如,对于 x²+ 6x + 9,可以将其写成 x²+ 2×3×x + 3²,符合完全平方公式,分解为(x + 3)²三、分组分解法将多项式分组后,组与组之间能提公因式或运用公式进行分解。

例如,对于多项式 am + an + bm + bn,可以将其分组为(am +an) +(bm + bn),然后分别提公因式得到:a(m + n) + b(m + n),再提公因式(m + n) 得到:(m + n)(a + b)四、十字相乘法对于二次三项式 ax²+ bx + c,如果存在两个数 p、q,使得 a =p×q,c = m×n,且 b = p×n + q×m,那么 ax²+ bx + c =(px + m)(qx + n)比如,分解 6x²+ 5x 6,将 6 分解为 2×3,-6 分解为-2×3,交叉相乘 2×3 + 3×(-2) = 0,所以可以分解为(2x 1)(3x + 6)五、拆项、添项法把多项式的某一项拆开或加上互为相反数的两项,使原式适合于提公因式法、运用公式法或分组分解法进行分解。

因式分解的十大方法讲解

因式分解的十大方法讲解

因式分解的十大方法讲解因式分解是代数学中十分重要且常用的方法,在数学学习中,因式分解通常是一个非常基础且常见的内容。

因式分解是一种能够将一个代数式表示成乘积的过程,其重要性不言而喻。

在学习因式分解的过程中,我们会遇到各种各样的方法来进行因式分解。

本文将介绍因式分解的十大方法,帮助大家更好地理解和掌握这一重要的数学技能。

一、提公因式法提公因式法是一种将多项式提取公因式的方法。

通过找到多项式中的公因式,并将其提取出来,可以简化多项式的运算和化简。

二、分组分解法分组分解法适用于四次或更高次的多项式。

通过将多项式按照一定规则进行分组,使得每组内部出现公因式,然后再提取公因式进行分解。

这种方法在解决高次多项式因式分解问题时非常有效。

三、换元法换元法是一种通过引入变量来简化多项式的方法。

通过引入合适的变量进行变换,可以使得多项式的结构更加清晰,从而更容易进行因式分解。

四、平方法平方法是一种用于因式分解完全平方的方法。

当多项式为完全平方时,可以通过这种方法快速进行因式分解。

五、辗转相除法辗转相除法是一种可以求得多项式的不可约因式的方法。

通过反复进行辗转相除的运算,可以得到多项式的所有实根和不可约因式。

六、提公式法提公式法是一种用于将多项式提取公式进行因式分解的方法。

通过找到多项式中的公式,并进行提取,可以更快速地进行因式分解。

七、分圆法分圆法是一种用于因式分解一元高次多项式的方法。

通过对多项式进行分圆,可以得到多项式的所有根和不可约因式。

八、差减法差减法是一种用于将多项式化为差或差的方法。

通过将多项式进行差减,可以得到多项式的不可约因式。

九、提多项式法提多项式法是一种用于将多项式提取多项式的方法。

通过找到多项式中的多项式,并进行提取,可以更快速地进行因式分解。

十、其他方法除了以上介绍的十种方法外,还有一些其他的因式分解方法,例如配方法、公因式提取等。

虽然这些方法在实际应用中使用较少,但在特定的问题中仍然有其独特的作用。

因式分解的常用方法(方法最全最详细)

因式分解的常用方法(方法最全最详细)

因式分解的常用方法(方法最全最详细)因式分解的常用方法方法介绍因式分解是将一个多项式化成几个整式的积的形式。

常用的因式分解方法有提公因式法、公式法、十字相乘法、分组分解法和换元法等。

一般的因式分解步骤是先提公因式,再利用乘法公式,若不能实施则采用分组分解法或其他方法。

将一个多项式进行因式分解应分解到不能再分解为止。

提公因式法提公因式法是将多项式中的公因式提取出来,例如ma+mb+mc=m(a+b+c)。

公式法公式法是将整式的乘、除中的乘法公式反向使用,例如(a+b)(a-b) = a^2-b^2,(a±b)^2= a^2±2ab+b^2等。

分组分解法分组分解法是将多项式分为若干组,使得每组都含有公因式,然后再进行因式分解。

换元法换元法是将多项式中的一部分用一个新的变量代替,然后再进行因式分解。

注意:因式分解应分解到不能再分解为止。

例题已知a,b,c是三角形ABC的三边,且a+b+c=ab+bc+ca,则三角形ABC的形状是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形解:a+b+c=ab+bc+ca,移项得2a+2b+2c=2ab+2bc+2ca,化简得(a+b+c)^2=4(ab+bc+ca),即(a-b)^2+(b-c)^2+(c-a)^2=0.因为三角形ABC的三边不全为零,所以(a-b)^2≥0,(b-c)^2≥0,(c-a)^2≥0.所以(a-b)^2=(b-c)^2=(c-a)^2=0,即a=b=c,所以三角形ABC是等边三角形。

以上是因式分解的常用方法,希望对大家有所帮助。

凡是能十字相乘的二次三项式ax^2+bx+c,都要求Δ=b^2-4ac>0且是一个完全平方数。

因此,Δ=9-8a为完全平方数,故a=1.对于分解因式x+5x+6,我们可以将6分解成两个数相乘,且这两个数的和要等于 5.由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),我们可以发现只有2×3的分解适合,即2+3=5.因此,x+5x+6=(x+2)(x+3)。

初中数学因式分解方法汇总(共12种,中考必背,全掌握计算题不再怕)

初中数学因式分解方法汇总(共12种,中考必背,全掌握计算题不再怕)

初中数学因式分解方法汇总1提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.例1、分解因式x -2x -xx -2x -x=x(x -2x-1)2 应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式.例2、分解因式a +4ab+4ba +4ab+4b =(a+2b)3分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5mm +5n-mn-5m= m -5m -mn+5n= (m -5m )+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4 十字相乘法对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x -19x-6分析:1 -37 22-21=-197x -19x-6=(7x+2)(x-3)5配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解.例5、分解因式x +3x-40解x +3x-40=x +3x+( ) -( ) -40=(x+ ) -( )=(x+ + )(x+ - )=(x+8)(x-5)6拆、添项法可以把多项式拆成若干部分,再用进行因式分解.例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)7换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来.例7、分解因式2x -x -6x -x+22x -x -6x -x+2=2(x +1)-x(x +1)-6x=x [2(x + )-(x+ )-6令y=x+ ,x [2(x + )-(x+ )-6= x [2(y -2)-y-6]= x (2y -y-10)=x (y+2)(2y-5)=x (x+ +2)(2x+ -5)= (x +2x+1) (2x -5x+2)=(x+1) (2x-1)(x-2)8求根法令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )例8、分解因式2x +7x -2x -13x+6令f(x)=2x +7x -2x -13x+6=0通过综合除法可知,f(x)=0根为 ,-3,-2,1则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1)9图象法令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x )例9、因式分解x +2x -5x-6令y= x +2x -5x-6作出其图象,见右图,与x轴交点为-3,-1,2则x +2x -5x-6=(x+1)(x+3)(x-2)10 主元法先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解.例10、分解因式a (b-c)+b (c-a)+c (a-b)分析:此题可选定a为主元,将其按次数从高到低排列a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b)=(b-c) [a -a(b+c)+bc]=(b-c)(a-b)(a-c)11利用特殊值法将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式.例11、分解因式x +9x +23x+15令x=2,则x +9x +23x+15=8+36+46+15=105将105分解成3个质因数的积,即105=3×5×7注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值则x +9x +23x+15=(x+1)(x+3)(x+5)12待定系数法首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解.例12、分解因式x -x -5x -6x-4分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式.设x -x -5x -6x-4=(x +ax+b)(x +cx+d)= x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd所以解得则x -x -5x -6x-4 =(x +x+1)(x -2x-4)。

(完整版)因式分解的常用方法(方法最全最详细)

(完整版)因式分解的常用方法(方法最全最详细)

因式分解的常用方法第一部分:方法介绍因式分解:因式分解是指将一个多项式化成几个整式的积的形式,主要有提公因式法,公式法,十字相乘法,分组分解法,换元法等因式分解的一般步骤是:(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。

即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;。

注意:将一个多项式进行因式分解应分解到不能再分解为止。

一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1) (a+b)(a-b) = a 2-b 2 -----------a 2-b 2=(a+b)(a-b);(2) (a ±b)2 = a 2±2ab+b 2 ---------a 2±2ab+b 2=(a ±b)2;(3) (a+b)(a 2-ab+b 2) =a 3+b 3---------a 3+b 3=(a+b)(a 2-ab+b 2);(4) (a-b)(a 2+ab+b 2) = a 3-b 3 --------a 3-b 3=(a-b)(a 2+ab+b 2).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);例.已知a bc ,,是ABC ∆的三边,且222a b c ab bc ca ++=++, 则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形 解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

因式分解的方法与技巧有哪些

因式分解的方法与技巧有哪些

因式分解的方法与技巧有哪些知识从来不是死的,知识学习都是有技巧和方法的。

例如因式分解的方法与技巧。

下面是由小编为大家整理的“因式分解的方法与技巧有哪些”,仅供参考,欢迎大家阅读。

因式分解的方法与技巧有哪些一、分解因式技巧1.分解因式与整式乘法是互为逆变形。

2.分解因式技巧掌握:①等式左边必须是多项式;②分解因式的结果必须是以乘积的形式表示;③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;④分解因式必须分解到每个多项式因式都不能再分解为止。

注意:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。

3.提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数再确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式。

③提完公因式后,另一因式的项数与原多项式的项数相同。

二、因式分解方法分类把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。

因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。

而在竞赛上,又有拆项和添减项法、分组分解法和十字相乘法、待定系数法、双十字相乘法、对称多项式轮换对称多项式法、余数定理法、求根公式法、换元法、长除法、除法等。

(1)提公因式法几个多项式的各项都含有的公共的因式叫做这个多项式各项的公因式。

如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。

如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。

提出“-”号时,多项式的各项都要变号。

口诀:找准公因式,一次要提净;全家都搬走,留1把家守。

因式分解初中数学知识点之因式分解的方法与应用

因式分解初中数学知识点之因式分解的方法与应用

因式分解初中数学知识点之因式分解的方法与应用因式分解是初中数学中的一个重要知识点,它在代数运算中具有广泛的应用。

因式分解的核心思想是将一个多项式拆解成一系列乘积的形式,以便于进一步研究和计算。

本文将介绍因式分解的方法及其应用。

一、因式分解的基本方法因式分解有多种方法,我们将重点介绍以下五种常用的因式分解方法:1. 公因式提取法公因式提取法是最基本的因式分解方法。

它基于一个数学原理:如果一个多项式的各项都有相同的因子,那么这个公因式可以从多项式中提取出来。

例如,对于多项式6x + 9y,我们可以提取公因式3,得到3(2x + 3y)。

2. 分组分解法分组分解法常用于四项以上的多项式因式分解。

它的基本思路是将多项式中的项进行分组,找出每个组内的公因式,然后通过提取公因式进行因式分解。

例如,对于多项式x^2 + 4xy + 4y^2 + 2x + 6y,我们可以将其分组为 (x^2 + 4xy + 4y^2) + (2x + 6y),进而分别提取公因式得到 (x + 2y)^2 + 2(x + 3y)。

3. 公式法公式法是一种通过运用特定的公式进行因式分解的方法。

其中,最常用的公式包括二次差、二次和、二次平方差、立方差等。

例如,对于多项式x^2 - 4y^2,我们可以运用差平方公式(x - 2y)(x + 2y)进行因式分解。

4. 定积分法定积分法是一种对多项式进行因式分解的高级方法。

它基于一个数学概念:多项式在某一区间上的定积分等于这一区间上的导函数的原函数的差。

通过对多项式进行定积分,我们可以得到多项式的因式分解式。

例如,对于多项式x^3 - 2x^2 + x - 2,我们可以对其进行定积分,得到(x - 1)(x - 2)^2。

5. 根与系数定理根与系数定理是一种通过根和系数的关系进行因式分解的方法。

它利用多项式根与系数之间的特定关系,通过找到多项式的根来进一步进行因式分解。

例如,对于二次多项式x^2 - 5x + 6,我们可以使用根与系数定理得出它的因式分解式为(x - 2)(x - 3)。

因式分解的12种方法的详细解析

因式分解的12种方法的详细解析

因式分解的12种方法的详细解析因式分解是将一个多项式写成几个较简单的乘积的形式。

在数学中,因式分解是一项重要的基础技能,常用于求解方程、化简表达式和研究多项式的性质等方面。

以下是因式分解的12种常见方法的详细解析。

1.提取公因式法:当多项式的各项中存在公共因子时,可以提取出这个公因式,例如,对于多项式2x+6,可以提取出公因式2,得到2(x+3)。

这种方法常用于求解关系式和化简分式等问题。

2.公式法:利用一些常用的公式进行因式分解。

例如,二次平方差公式(x^2-y^2)=(x+y)(x-y),互补公式a^2-b^2=(a+b)(a-b)等。

这种方法常用于解决关于二次方程、三角函数等问题。

3.配方法:对于二次型的多项式,可以利用配方法进行因式分解。

例如,对于多项式x^2+3x+2,可以进行配方法得到(x+1)(x+2)。

这种方法需要将多项式转化为二次型形式,然后利用配方法进行分解。

4.求因子法:当多项式为多个因子的乘积时,可以用求因子的方法进行因式分解。

例如,对于多项式x^3-8,可以将8进行因式分解为2^3,然后利用立方差公式进行因式分解,即x^3-8=(x-2)(x^2+2x+4)。

5.幂的分解法:当多项式中有幂函数时,可以利用幂的分解法进行因式分解。

例如,对于多项式x^3-y^3,可以利用立方差公式进行因式分解,即x^3-y^3=(x-y)(x^2+xy+y^2)。

6.多项式整除法:当多项式可以被另一个多项式整除时,可以利用多项式整除法进行因式分解。

例如,对于多项式x^3-1,可以利用x-1整除得到(x-1)(x^2+x+1)。

7.韦达定理:韦达定理是将多项式表示为二次型的形式,然后利用二次型进行因式分解。

例如,对于多项式x^3+y^3+z^3-3xyz,可以将其表示为(x+y+z)(x^2+y^2+z^2-xy-xz-yz)。

8.根的关系法:利用多项式的根的关系进行因式分解。

例如,对于一元二次多项式ax^2+bx+c,可以利用二次方程求根公式进行因式分解,即ax^2+bx+c=a(x-x1)(x-x2),其中x1和x2为多项式的根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中因式分解的常用方法—特色专题详解一、提公因式法.如多项式),(c b a m cm bm am ++=++其中m 叫做这个多项式各项的公因式, m 既可以是一个单项式,也可以是一个多项式.二、运用公式法.运用公式法,即用))((,)(2),)((223322222b ab a b a b a b a b ab a b a b a b a +±=±±=+±-+=-写出结果. 三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++例2、分解因式:bx by ay ax -+-5102对应练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy(二)分组后能直接运用公式例3、分解因式:ay ax y x ++-22例4、分解因式:2222c b ab a -+-对应练习:分解因式3、y y x x 3922--- 4、yz z y x 2222---综合练习:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22(3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++-(5)92234-+-a a a (6)y b x b y a x a 222244+--(7)222y yz xz xy x ++-- (8)122222++-+-ab b b a a(9))1)(1()2(+---m m y y (10))2())((a b b c a c a -+-+(11)abc b a c c a b c b a 2)()()(222++++++ (12)abc c b a 3333-++四、十字相乘法.(一)二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解。

特点:(1)二次项系数是1; (2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。

例5、分解因式:652++x x例6、分解因式:672+-x x对应练习5、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x对应练习6、分解因式(1)22-+x x (2)1522--y y (3)24102--x x(二)二次项系数不为1的二次三项式——c bx ax ++2 条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c (3)1221c a c a b += 1221c a c a b += 分解结果:c bx ax ++2=))((2211c x a c x a ++ 例7、分解因式:101132+-x x对应练习7、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y (三)二次项系数为1的齐次多项式 例8、分解因式:221288b ab a --对应练习8、分解因式(1)2223y xy x +-(2)2286n mn m +-(3)226b ab a --(四)二次项系数不为1的齐次多项式例9、22672y xy x +- 例10、2322+-xy y x对应练习9、分解因式:(1)224715y xy x -+ (2)8622+-ax x a综合练习10、(1)17836--x x (2)22151112y xy x --(3)10)(3)(2-+-+y x y x (4)344)(2+--+b a b a(5)222265x y x y x -- (6)2634422++-+-n m n mn m(7)3424422---++y x y xy x (8)2222)(10)(23)(5b a b a b a ---++(9)10364422-++--y y x xy x (10)2222)(2)(11)(12y x y x y x -+-++思考:分解因式:abc x c b a abcx +++)(2222五、主元法.例11、分解因式:2910322-++--y x y xy x对应练习11、分解因式(1)56422-++-y x y x (2)67222-+--+y x y xy x(3)613622-++-+y x y xy x (4)36355622-++-+b a b ab a六、双十字相乘法。

定义:双十字相乘法用于对F Ey Dx Cy Bxy Ax +++++22型多项式的分解因式。

条件:(1)21a a A =,21c c C =,21f f F =(2)B c a c a =+1221,E f c f c =+1221,D f a f a =+1221 即: 1a 1c 1f2a 2c 2fB c a c a =+1221,E f c f c =+1221,D f a f a =+1221则=+++++F Ey Dx Cy Bxy Ax 22))((222111f c x a f y c x a ++++例12、分解因式(1)2910322-++--y x y xy x (2)613622-++-+y x y xy x对应练习12、分解因式(1)67222-+--+y x y xy x (2)22227376z yz xz y xy x -+---七、换元法。

例13、分解因式(1)2005)12005(200522---x x (2)2)6)(3)(2)(1(x x x x x +++++对应练习13、分解因式(1))(4)(22222y x xy y xy x +-++(2)90)384)(23(22+++++x x x x (3)222222)3(4)5()1(+-+++a a a例14、分解因式(1)262234+---x x x x观察:此多项式的特点——是关于x 的降幂排列,每一项的次数依次少1,并且系数成“轴对称”。

这种多项式属于“等距离多项式”。

对应练习14、(1)673676234+--+x x x x (2))(2122234x x x x x +++++八、添项、拆项、配方法。

例15、分解因式(1)4323+-x x对应练习15、分解因式(1)893+-x x (2)4224)1()1()1(-+-++x x x(3)1724+-x x (4)22412a ax x x -+++(5)444)(y x y x +++ (6)444222222222c b a c b c a b a ---++九、待定系数法。

例16、分解因式613622-++-+y x y xy x例17、(1)当m 为何值时,多项式6522-++-y mx y x 能分解因式,并分解此多项式。

(2)如果823+++bx ax x 有两个因式为1+x 和2+x ,求b a +的值。

对应练习17、(1)分解因式2910322-++--y x y xy x(2)分解因式6752322+++++y x y xy x(3)已知:p y x y xy x +-+--1463222能分解成两个一次因式之积,求常数p 并且分解因式。

(4)k 为何值时,253222+-++-y x ky xy x 能分解成两个一次因式的乘积,并分解此多项式。

初中阶段因式分解的常用方法(例题再详解)把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。

因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下:一、提公因式法.如多项式),(c b a m cm bm am ++=++其中m 叫做这个多项式各项的公因式, m 既可以是一个单项式,也可以是一个多项式.二、运用公式法.运用公式法,即用))((,)(2),)((223322222b ab a b a b a b a b ab a b a b a b a +±=±±=+±-+=-写出结果.三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

解:原式=)()(bn bm an am +++=)()(n m b n m a +++ 每组之间还有公因式!=))((b a n m ++思考:此题还可以怎样分组?此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提。

例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。

第二、三项为一组。

解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+-=)5()5(2y x b y x a --- =)2(5)2(b a y b a x ---=)2)(5(b a y x -- =)5)(2(y x b a --练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy(二)分组后能直接运用公式例3、分解因式:ay ax y x ++-22分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。

解:原式=)()(22ay ax y x ++-=)())((y x a y x y x ++-+=))((a y x y x +-+例4、分解因式:2222c b ab a -+-解:原式=222)2(c b ab a -+-=22)(c b a --=))((c b a c b a +---注意这两个例题的区别!练习:分解因式3、y y x x 3922--- 4、yz z y x 2222---综合练习:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22(3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++-(5)92234-+-a a a (6)y b x b y a x a 222244+--(7)222y yz xz xy x ++-- (8)122222++-+-ab b b a a(9))1)(1()2(+---m m y y (10))2())((a b b c a c a -+-+(11)abc b a c c a b c b a 2)()()(222++++++(12)abc c b a 3333-++四、十字相乘法.(一)二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解。

相关文档
最新文档