导数的几何意义说课PPT课件
合集下载
导数的几何意义课件
6
(2)求曲线y=f(x)=x2+1在点P(1,2)处的切
线方程.
y |x1
lim [(1
x0
x)2
1] (12 x
1)
lim
x0
2x x2 x
2
y 2 2(x 1)
2x y 0
例2.在函数 h(t) 4.9t 2 6.5t 10 的
回 顾
(2)求平均变化率 y f (x 0 x) f (x0 ) ;
x
x
(3)取极限,得导数f
( x0
)
lim
x0
y x
.
你能借助函数 f (x)的图象说说平均变化率
f x0 x f (x0 )表示什么吗?请在函数
x 图象中画出来.
平均变化率表示的是割线 PPn 的斜率
t0 附近比较平坦,几乎没有升降.
h / (t1 ), h / (t2 ) 0
曲线在
t1 ,
t3 ,
t2
t4
处切线 l1 ,
l3 ,
l2
l4
的斜率 小于0 大于
h/ (t3 ), h/ (t4 ) 0
在 t1 , t2 附近,曲线下降 ,函数在 t1 , t2
t3, t4
附近单调 递减
上升
t3, t4
圆的切线
割线斜率
在 x 0的过程中,割线PPn的的变化情况 你能描述一下吗? 请在函数图象中画出来.
曲线的切线定义
当点 Pn (x0 x , f (x0 x)) 沿着曲线 f (x) 逼近点 P(x0 , f (x0 )) 时,即x 0,割线 PPn 趋近于确定的位置,这个确定位置上
高三数学导数的几何意义ppt课件.ppt
通过讨论、交流、合作、实验操作等活动激发 学生学习数学的兴趣;培养学生合作学习和数 学交流的能力。
四. 教学过程
(一)教学流程图 (二)教学过程与设计思路
(一)教学流程图
问题 系列
几何 意义
具体 应用
概念 建构
复习 引入
演 练 拓
小结
作业
类似“卡通形象” 的教学流程图以 “模块”为基本单 元,从新课引入到 概念建构,从技能 演练到小结作业。 层层展开,逐层突 破。
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
一. 教材分析 (二)重点与难点
教学重点:运用导数的几何意义研究函数 教学难点:导数几何意义的推导思路
一. 教材分析
(三)课时安排
导数的几何意义可安排两课时。本节作为 第一课时,重在探求曲线上某点处切线的斜率 和导数的关系,理解导数的几何意义,体会几 何意义在研究函数性质应用中的作用。
学生分组讨论交流,计算切 观,易于突破难点;学生在过程中,
点的导数值,自主合作探求 可以体会逼近的思想方法。最后的
导数与斜率的关系,教师请 证明环节,能够同时从数与形两个 学生证明导数就是切线斜率。 角度强化学生对导数概念的理解。
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
教材分析
教法分析
教学目标
教学过程
评价反思
一. 教材分析
(1) 教材的地位和作用 (2)重点难点 (3) 课时安排
一. 教材分析
(一)教材的地位和作用
微积分学是人类思维的伟大成果之一,是人类经历 了2500多年震撼人心的智力奋斗的结果,它开创了 向近代数学过渡的新时期 ,为研究变量和函数提 供了重要的方法。导数是微积分的核心概念之一, 有极其丰富的实际背景和广泛的应用。导数的几何 意义是学生在学习了瞬时变化率就是导数之后的内 容,通过这部分内容的学习,可以帮助学生更好的 理解导数的概念及导数是研究函数的单调性、变化 快慢和极值等性质最有效的工具,是本章的关键内 容。
四. 教学过程
(一)教学流程图 (二)教学过程与设计思路
(一)教学流程图
问题 系列
几何 意义
具体 应用
概念 建构
复习 引入
演 练 拓
小结
作业
类似“卡通形象” 的教学流程图以 “模块”为基本单 元,从新课引入到 概念建构,从技能 演练到小结作业。 层层展开,逐层突 破。
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
一. 教材分析 (二)重点与难点
教学重点:运用导数的几何意义研究函数 教学难点:导数几何意义的推导思路
一. 教材分析
(三)课时安排
导数的几何意义可安排两课时。本节作为 第一课时,重在探求曲线上某点处切线的斜率 和导数的关系,理解导数的几何意义,体会几 何意义在研究函数性质应用中的作用。
学生分组讨论交流,计算切 观,易于突破难点;学生在过程中,
点的导数值,自主合作探求 可以体会逼近的思想方法。最后的
导数与斜率的关系,教师请 证明环节,能够同时从数与形两个 学生证明导数就是切线斜率。 角度强化学生对导数概念的理解。
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
教材分析
教法分析
教学目标
教学过程
评价反思
一. 教材分析
(1) 教材的地位和作用 (2)重点难点 (3) 课时安排
一. 教材分析
(一)教材的地位和作用
微积分学是人类思维的伟大成果之一,是人类经历 了2500多年震撼人心的智力奋斗的结果,它开创了 向近代数学过渡的新时期 ,为研究变量和函数提 供了重要的方法。导数是微积分的核心概念之一, 有极其丰富的实际背景和广泛的应用。导数的几何 意义是学生在学习了瞬时变化率就是导数之后的内 容,通过这部分内容的学习,可以帮助学生更好的 理解导数的概念及导数是研究函数的单调性、变化 快慢和极值等性质最有效的工具,是本章的关键内 容。
1.1.3导数的几何意义课件共35张PPT
(3)设切点为(a,b),则 y′|x=a=a2=1, ∴a=±1, 当 a=1 时,b=53,切点为1,53, 当 a=-1 时,b=1,切点为(-1,1), ∴切线方程为 3x-3y+2=0 或 x-y+2=0. ………………………………………………………………………………12 分
[反思提升] (1)求“在某点处”的切线:该点必在曲线上且是切点,而求“过某 点”的切线该点不一定在曲线上,且该点不一定是切点. (2)求“过某点”的切线方程的步骤 ①设“过某点”的切线 l 与曲线相切的切点坐标为(x0,y0). ②用“在点(x0,y0)处”的切线求法,写出切线 l 的方程. ③利用切线“过某点”,其坐标满足切线方程,求出 x0 与 y0. ④将(x0,y0)代入②中的切线 l 化简即求出“过某点”的切线方程. (3)求“过某点”的曲线的切线方程中,该点在曲线上时,所求点的切线中一定包 括“在该点”处曲线的切线.
∴曲线 y=1x在点(1,1)处的切线方程为 y-1=-(x-1),即 y=-x+2. 曲线 y=x2 在点(1,1)处的切线斜率为
f′(1)=liΔmx→0 1+ΔΔxx2-12=liΔmx→0 2Δx+ΔxΔx2=liΔmx→0 (2+Δx)=2, ∴曲线 y=x2 在点(1,1)处的切线方程为 y-1=2(x-1),即 y= 2x-1. 两条切线方程 y=-x+2 和 y=2x-1 与 x 轴所围成的图形如图 所示, ∴S=12×1×2-12=34,即三角形的面积为34.
导数几何意义应用问题的解题策略: (1)导数几何意义的应用问题往往涉及解析几何的相关知识,如直线斜率与方 程以及直线间的位置关系等,因此要综合应用所学知识解题. (2)解题的关键是函数在某点处的导数,已知切点可以求斜率,已知斜率也可 以求切点,切点的坐标是常设的未知量. (3)一定要区分曲线 y=f(x)在点 P(x0,f(x0))处的切线与过点 P(x0,f(x0))的切线 的不同,前者 P 为切点,后者 P 不一定为切点.
导数的几何意义 课件
2.(变条件)求曲线y=f(x)=x2+1过点P(1,0)的切线方程.
[解]
设切点为Q(a,a2+1),
fa+Δx-fa Δx
=
a+Δx2+1-a2+1 Δx
=2a+
Δx,当Δx趋于0时,(2a+Δx)趋于2a,所以所求切线的斜率为2a.因此,
a2+a-11-0=2a,解得a=1± 2,所求的切线方程为y=(2+2_x_______.
思考: f′(x0)与 f′(x)有什么区别? [提示] f′(x0)是一个确定的数,而f′(x)是一个函数.
导数几何意义的应用
(1)已知y=f(x)的图象如图1-1-7所示,则f′(xA)与f′(xB)的大小关系 是( )
A.f′(xA)>f′(xB) B.f′(xA)<f′(xB) C.f′(xA)=f′(xB) D.不能确定
3.曲线在某点处的切线是否与曲线只有一个交点? 提示:不一定.曲线y=f(x)在点P(x0,y0)处的切线l与曲线y=f(x)的交点个 数不一定只有一个,如图所示.
已知曲线C:y=x3. (1)求曲线C在横坐标为x=1的点处的切线方程; (2)求曲线C过点(1,1)的切线方程. [思路探究] (1) 求y′|x=1 ―→ 求切点 ―→ 点斜式方程求切线
求切点坐标
过曲线y=x2上某点P的切线满足下列条件,分别求出P点.
(1) 平行于直线y=4x-5;
(2)垂直于直线2x-6y+5=0;
(3)与x轴成135°的倾斜角.
[解]
f′(x)= lim
Δx→0
fx+Δx-fx Δx
=
lim
Δx→0
x+Δx2-x2 Δx
=2x,设P(x0,y0)是满
足条件的点.
导数的几何意义ppt课件
∴y0=4,∴点 P 的坐标为(2,4),
∴切线方程为 y-4=4(x-2),即 4x-y-4=0.
问题导入
知识探究
巩固练习
课堂小结
布置作业
1.与导数的几何意义相关的题目往往涉及解析几何的相关知 识,如直线间的位置关系,因此要善于综合应用所学知识解题.
2.与导数的几何意义相关的综合问题解题的关键是函数在某 点处的导数,已知切点可以求斜率,已知斜率也可以求切点,切点 的坐标是常设的未知量.
问题导入
知识探究
巩固练习
课堂小结
布置作业
求切线的解题步骤
1.已知切点(x0,f(x0))
①求斜率,求出曲线在点(x0,f(x0))处的切线斜率 f′(x0)
②写方程,y- f(x0)=f′(x0)(x-x0),化为一般式。
2.经过(x1,y1),切点未知
①设切点(x0,f(x0)) ②求斜率,k= f′(x0) ③写出含参 x0 的切线方程,得到 y- f(x0)=f′(x0)(x-x0) ④将已知点代入得 y1- f(x0)=f′(x0)(x1-x0)解出切点坐标 ⑤将切点坐标代入 y- f(x0)=f′(x0)(x-x0),并化为一般式
课堂小结
布置作业
(2)由3y=x-x3y,-2=0, 可得(x-1)2(x+2)=0, 解得 x1=1,x2=-2. 从而求得公共点为 P(1,1)或 P(-2,-8).
说明切线与曲线 C 的公共点除了切点外,还有另外的点(-2, -8).
问题导入
知识探究
【易错题解析】
巩固练习
课堂小结
布置作业
已知曲线 y=2x2-7,求曲线过点 P(3,9)的切线方程.
设所求切线的切点为 A(x0,y0),则切线的斜率 k=4x0,
第一章1.1.3导数的几何意义ppt课件
+4=0平行,求P点的坐标及切线方程.
上
页
导 数 及 其
【分析】 解答本题可先设切点坐标,再利用 切线斜率及切点在抛物线上列方程组求解.
下 页
应
用
规律方法总结 随堂即时巩固 课时活页训练
基础知识梳理 课堂互动讲练
【解】 设点 P(x0,y0).由
第 一 章
y′=li m Δx→ 0
Δy Δx
=li m Δx→ 0
基础知识梳理 课堂互动讲练
课堂互动讲练
第 一
题型一 导数定义的应用
章
例1 设函数 f(x)在点 x0 处可导,试求下列各极限的值. 上
导 数
(1) lim Δx→0
fx0-Δx-fx0; Δx
及 其
(2)lim h→0
fx0+h2-hfx0-h.
页
下 页
应
用
规律方法总结 随堂即时巩固 课时活页训练
基础知识梳理 课堂互动讲练
第 一 章
解析:选 D.lim h→0
fa+3h-fa-h 2h
=lim h→0
fa+3h-fa+fa-fa-h 2h
上 页
导
数 及
=lim h→0
f a+33hh-fa·32+f a--hh-fa·12
其
下 页
应 用
=32·f′(a)+12f′(a)=2f′(a).
规律方法总结 随堂即时巩固 课时活页训练
基础知识梳理 课堂互动讲练
第
一 章
【点评】 求曲线的切线要注意“过点P的切线”
与“P点处的切线”的差异:过点P的切线中,点
上
页
导 P不一定是切点,点P也不一定在曲线上;而在点
导数的几何意义 课件
x0
x
=lim[(x)2+3x x+3x2]=3x2. x0
令3x2=3,得x=±1,
所以点P的坐标为(1,1)或(-1,-1).
答案:(1,1)或(-1,-1)
2.(1)设直线l与曲线C的切点为(x0,y0),
因为 y=lim (x+x)3-(x+x)2+1-(x3-x2+1)=3x2-2x,
x0
3
lim
x0
1 3
(
x
0
x)3 x
1 3
x
3 0
x 0 2,
所以切线方程为
y
1 3
x
3 0
x
2 0
(x
x0 ),
又因为切线过点A(1,0),所以
0
1 3
x
3 0
x
2 0
(1
x0 ),
化简得
2 3
x
3 0
x0解2 得0,x0=0或
x0
3 2
.
①当x0=0时,所求的切线方程为:y=0;
②当x0
时3 ,
【解题探究】1.曲线上一点切线的斜率与该点的导数有什么 关系? 2.切点的坐标满足切线方程吗?是否也满足曲线的方程? 探究提示: 1.曲线上一点切线的斜率就是该点的导数. 2.切点的坐标既满足切线方程,同时也满足曲线的方程.
【解析】1.因为y=x3,所以 y=lim (x+x)3-x3
x0
x
=lim (x)3+3x (x)2+3x2 x
3 27
将切点坐标 (-1,2代3入) 直线y=x+a,
3 27
得 a= 23+1故=32, a=32 .
27 3 27
27
(2)由(1)知切点坐标是 (-1,23).
导数的几何意义ppt
导数的物理意义
80%
速度
导数可以用来描述物理量随时间 的变化速率,例如速度是位移对 时间的导数。
100%
斜率
在物理量中,导数可以表示斜率 ,例如加速度是速度对时间的导 数。
80%
变化率
导数可以用来描述物理量的变化 率,例如电流强度是电荷对时间 的导数。
02
导数与切线斜率
切线的定义
பைடு நூலகம்01
切线是过曲线上某一点的直线, 该点称为切点。
导数在经济问题中的应用
边际分析与决策
导数可以用来描述边际成本、边际收益和边际利润等概念,帮助 企业做出最优的决策。
供需关系
导数可以用来分析市场的供需关系,例如通过分析需求函数和供给 函数的导数,可以了解市场均衡点的变化趋势。
经济增长与人口变化
导数可以用来描述经济增长和人口变化的趋势,例如通过分析GDP 和人口增长率的导数,可以了解经济和人口的发展趋势。
04
导数在实际问题中的应用
导数在物理问题中的应用
速度与加速度
导数可以用来描述物体运动的速度和加速度,通过分析导 数可以了解物体的运动状态和变化趋势。
斜率与曲线
导数可以用来描述曲线的斜率,例如在分析弹性、阻力和 引力等物理现象时,导数可以帮助我们理解物体在曲线上 的运动状态。
能量与功率
在物理中,导数可以用来描述能量和功率的变化,例如在 分析电路、热传导和流体动力学等问题时,导数可以帮助 我们建立数学模型并求解。
导数与函数极值
总结词
导数可以用来确定函数的极值点。
详细描述
函数的极值点出现在导数为零或变号的点上。在极值点处,函数值可能达到最大或最小。因此,通过求函数的导 数并找到导数为零的点,可以确定函数的极值点。
第五章5.1.2第2课时 导数的几何意义课件(人教版)
解析 设切点坐标为(x0,y0),
则
y
|x=x0
= lim Δx→0
x0+Δx3-2x0+Δx-x30-2x0 Δx
=3x20-2=tan π4=1,
所以x0=±1, 当x0=1时,y0=-1. 当x0=-1时,y0=1.
当t=t1时,函数的图象在t=t1处的切线l1的斜率h′(t1)<0,这时,在t =t1附近曲线降落,即函数在t=t1附近单调递减. 当t=t2时,函数的图象在t=t2处的切线l2的斜率h′(t2)<0,这时,在t =t2附近曲线降落,即函数在t=t2附近单调递减. 通过研究t=t1和t=t2发现直线l1的倾斜程度小于直线l2的倾斜程度,这 说明函数在t=t1附近比在t=t2附近降落的缓慢.
内容索引
一、导数的几何意义 二、函数的单调性与导数的关系 三、导函数(导数)
随堂演练
课时对点练
一、导数的几何意义
问题1 导数f′(x0)的几何意义是什么? 提示 我们知道导数f′(x0)表示函数y=f(x)在x=x0处的瞬时变化率, 反应了函数y=f(x)在x=x0附近的变化情况,如下图.
容易发现,平均变化率ΔΔyx=fx0+ΔΔxx-fx0表示的是割线 P0P 的斜率,当
跟踪训练 3 已知函数 f(x)=x2-12x.求 f′(x).
解 ∵Δy=f(x+Δx)-f(x)
=(Δx)2+2x·Δx-12Δx,
∴ΔΔyx=2x+Δx-12.
∴f′(x)= lim Δx→0
ΔΔyx=2x-12.
课堂小结
1.知识清单: (1)导数的几何意义. (2)函数的单调性与导数的关系. (3)导函数的概念. 2.方法归纳:方程思想、数形结合. 3.常见误区:切线过某点,这点不一定是切点.
导数的几何意义 课件
1 85
,
6 12
.
(2)因为切线平行于直线6x-y-2=0,
所以切线的斜率为6,即f'(x0)=6x0=6,得x0=1.
所以该点的坐标为(1,10).
(3)因为切线与直线x+12y-3=0垂直,
所以切线的斜率为12,即f'(x0)=6x0=12,得x0=2.
所以该点的坐标为(2,19).
反思解答此类题目,所给的直线的倾斜角或斜率是解题的关键,由
切线与x轴正方向的夹角为钝角;若f'(x0)=0,则切线与x轴平行或重
合.
2.“用割线的极限位置来定义切线”和“与曲线只有一个公共点的
直线是切线”的区别是什么?
剖析:在初中我们学习过圆的切线:当直线和圆有唯一公共点时,
我们称直线和圆相切,这时直线叫做圆的切线,唯一的公共点叫做
切点,圆是一种特殊的曲线.如果将圆的切线推广为一般曲线的切
点斜式方程求切线方程;解答第(2)小题,可把第(1)小题中求得的直
线方程与已知的曲线方程组成方程组,求方程组的解.
解:(1)将 x=2 代入曲线 C 的方程,得 y=4,
∴切点的坐标为(2,4).
y
Δx→0 x
∴y'|x=2= lim
=
1 (2 + Δx)3 + 4 - 1 × 23 - 4
需注意f'(x0)与f'(x)的意义不同,f'(x)为f(x)的导函数,而f'(x0)为f(x)在
x=x0处的导函数值.
区别
f'(x0)是具体的值,是数
值
f'(x)是 f(x)在某区间 I
f'(x) 上每一点都存在导数
《导数的几何意义》课件
热量与温度
在热传导问题中,导数的几何意义可以帮助 理解热量在物体中的传递和分布。温度是热 量的度量,而物体中的温度梯度(即温度随
位置的变化率)可以用导数来表示。
经济问题
要点一
供需关系
在经济学中,导数可以用来分析供需关系的变化。需求函 数或供给函数的导数可以描述价格与需求量或供给量之间 的变化率,帮助理解市场的均衡状态和价格调整机制。
隐函数求导
方法
通过对方程两边求导来求解隐函数的导数。
注意事项
在求导过程中,需要保持方程两边的等价关 系,并注意复合函数的求导法则。
04
导数在实际问题中的应用
物理问题
速度与加速度
在物理学中,导数被广泛应用于描述物体的 运动状态。速度是位置函数的导数,表示物 体在单位时间内通过的距离;而加速度是速 度函数的导数,表示物体速度变化的快慢。
02 导数可以用来求解微分方程,通过对方程进行求 导和积分,可以得到微分方程的解。
03 微分方程是描述物理现象的重要工具,通过求解 微分方程,可以了解物理现象的变化规律。
THANKS
感谢观看
信号处理
在信号处理和图像处理中,导数起着关键作用。信号的强度随时间的变化率可以用导数 来描述,而图像的边缘和轮廓可以通过求导来检测。此外,导数还可以用于图像的锐化
和模糊处理等操作。
05
导数的扩展知识
高阶导数
01
定义
高阶导数是函数导数的连续函数 ,表示函数在某一点的n阶导数 。
02
03
应用
计算方法
导数的性质
总结词
导数具有一些基本的性质,如可加性、可乘性、链式法则等。
详细描述
导数具有可加性、可乘性和链式法则等基本性质。这些性质是导数运算的基础,有助于理解和计算复杂的导数表 达式。
导数的几何意义课件.ppt
曲线y=f(x)过点P(x0,y0)的切线,是指切线经过P点,点 P可以是切点,也可以不是切点,且这样的直线可能有多条
三、曲线的切线的求法 若已知曲线过点 P(x0,y0),求曲线的切线则需分点 P(x0,y0)是
切点和不是切点两种情况求解. (1)点 P(x0,y0)是切点的切线方程 y-y0=f′(x0)(x-x0). (2)当点 P(x0,y0)不是切点时可分以下几步完成:
第一步:设出切点坐标 P′(x1,f(x1)). 第二步:写出过 P′(x1,f(x1))的切线方程为 y-f(x1)=f′(x1)(x-x1). 第三步:将点 P 的坐标(x0,y0)代入切线方程求出 x1. 第四步:将 x1 的值代入方程 y-f(x1)=f′(x1)(x-x1)可得过点 P(x0,y0)
考纲要求
1、了解导数概念的实际背景. 2、理解导数的几何意义. 3、能根据导数定义,求函数 y=c(c)为常数,y=x,y=x2,y=x3,
y=1x,y= x的导数. 4、能利用给出的基本初等函数的导数公式和导数的四则运算法则求
简单函数的导数,能求简单的复合函数(仅限于形如 f(ax+b)的复 合函数)的导数.
的切线方程.
(一)导数与斜率
例 1、曲线 y=sinxs+ inxcosx-12在点 M(π4,0)处的切线的斜率为___.
例 2、(2010 年辽宁)已知点 P 在曲线 y=ex+4 1上,α 为曲线在点 P 处 的切线的倾斜角,则 α 的取值范围是( ) A.[0,π4) B.[π4,π2) C.(π2,34π] D.[34π,π)
位移函数 s(t)对时间 t 的导数).相应地,切线方程为.
y-f(x0)=f′(x0)(x-x0)
二、曲线y=f(x)“在”点P(x0,y0)处的切线与“过”点P(x0,y0) 的切线的区别:
三、曲线的切线的求法 若已知曲线过点 P(x0,y0),求曲线的切线则需分点 P(x0,y0)是
切点和不是切点两种情况求解. (1)点 P(x0,y0)是切点的切线方程 y-y0=f′(x0)(x-x0). (2)当点 P(x0,y0)不是切点时可分以下几步完成:
第一步:设出切点坐标 P′(x1,f(x1)). 第二步:写出过 P′(x1,f(x1))的切线方程为 y-f(x1)=f′(x1)(x-x1). 第三步:将点 P 的坐标(x0,y0)代入切线方程求出 x1. 第四步:将 x1 的值代入方程 y-f(x1)=f′(x1)(x-x1)可得过点 P(x0,y0)
考纲要求
1、了解导数概念的实际背景. 2、理解导数的几何意义. 3、能根据导数定义,求函数 y=c(c)为常数,y=x,y=x2,y=x3,
y=1x,y= x的导数. 4、能利用给出的基本初等函数的导数公式和导数的四则运算法则求
简单函数的导数,能求简单的复合函数(仅限于形如 f(ax+b)的复 合函数)的导数.
的切线方程.
(一)导数与斜率
例 1、曲线 y=sinxs+ inxcosx-12在点 M(π4,0)处的切线的斜率为___.
例 2、(2010 年辽宁)已知点 P 在曲线 y=ex+4 1上,α 为曲线在点 P 处 的切线的倾斜角,则 α 的取值范围是( ) A.[0,π4) B.[π4,π2) C.(π2,34π] D.[34π,π)
位移函数 s(t)对时间 t 的导数).相应地,切线方程为.
y-f(x0)=f′(x0)(x-x0)
二、曲线y=f(x)“在”点P(x0,y0)处的切线与“过”点P(x0,y0) 的切线的区别:
导数的几何意义 课件
[例 3] 若曲线 y=x2+6 在点 P 处的切线垂直于直线 2x-
y+5=0,求点 P 的坐标及 f′(x0)=Δlixm→0
fx0+Δx-fx0 Δx
=Δlixm→0
x0+Δx2+6-x20+6 Δx
=Δlixm→0 (2x0+Δx)=2x0,
导数的几何意义 函数f(x)在x=x0处的导数就是切线PT的 斜率 k ,即k= f′(x0)=Δlixm→0 fx0+ΔΔxx-fx0.
导数与函数图象升降的关系 若函数y=f(x)在x=x0处的导数存在且f′(x0)>0(即切 线的斜率大于零),则函数y=f(x)在x=x0附近的图象是上升 的;若f′(x0)<0(即切线的斜率小于零),则函数y=f(x)在x =x0附近的图象是下降的.导数绝对值的大小反映了曲线 上升和下降的快慢.
f′(x0) f′(x)
f′(x0)与f′(x)的异同 区别
联系
f′(x0)是具体的值,是 在 x=x0 处的导数 f′(x0)
数值
是导函数 f′(x)在 x=x0 处
f′(x)是 f(x)在某区间 I 的函数值,因此求函数在
上每一点都存在导数 某一点处的导数,一般先
而定义的一个新函数, 求导函数,再计算导函数
(1)求Δy=f(x+Δx)-f(x);
(2)求ΔΔxy=fx+ΔΔxx-fx;
(3)计算f′(x)=Δlixm→0
Δy Δx.
求曲线的切线方程
[例 2] 已知曲线 y=13x3 上一点 P 2,83.
(1)求点 P 处切线的斜率;
(2)写出点 P 处的切线方程. 解:(1)∵y=13x3,
∴y′=Δlixm→0 ΔΔxy=Δlixm→0
(2)∵Δy=x+3Δx2+a-x32-a =-6xx2·Δxx+-Δ3xΔ2 x2, ∴ΔΔxy=-x62xx·Δ+x-Δx32ΔΔxx2=-x26xx+-Δ3xΔx2 , ∴Δlixm→0 ΔΔxy=Δlixm→0 -x26xx+-Δ3xΔx2 =-x63, 即y′=-x63.
导数的几何意义课件(共28张PPT)
y
y f x
P1
T P
y
y f x
P2
T
n 1, 2, 3, 4
O
x
O
x
1
y f x
y
2
y f x
时, 割线PPn的 变 化 趋势 是 什么?
P
P3
T
T
P4 P
O
x
O
x
3
4
图1.1 2
新 授
1、曲线上一点的切线的定义
y=f(x) y Q 割 线 T 切线
当点Q沿着曲线无限接近点P即Δ x→0时,割线PQ有一个 极限位置PT.则我们把直线PT称为曲线在点P处的切线. 设切线的倾斜角为α ,那么当Δx→0时,割线PQ的斜率, 称为曲线在点P处的切线的斜率.
f ( x0 x ) f ( x0 ) y 即: k切线 tan lim lim x 0 x x 0 x
题型三:导数的几何意义的应用
例1:(1)求函数y=3x2在点(1,3)处的导数.
2 3(1 x) 2 3 12 3 x 6x 解:y |x 1 lim lim x 0 x x 0 x
lim 3( x 2) 6
x 0
(2)求曲线y=f(x)=x2+1在点P(1,2)处的切线方程.
C
割线与切线的斜率有何关系呢?
k PQ
y=f(x) y Q(x1,y1)
△y
y f ( x x ) f ( x ) = x x
即:当△x→0时,割线 PQ的斜率的极限,就是曲线 在点P处的切线的斜率,
P(x0,y0)
△x
M
o
x
y f x
P1
T P
y
y f x
P2
T
n 1, 2, 3, 4
O
x
O
x
1
y f x
y
2
y f x
时, 割线PPn的 变 化 趋势 是 什么?
P
P3
T
T
P4 P
O
x
O
x
3
4
图1.1 2
新 授
1、曲线上一点的切线的定义
y=f(x) y Q 割 线 T 切线
当点Q沿着曲线无限接近点P即Δ x→0时,割线PQ有一个 极限位置PT.则我们把直线PT称为曲线在点P处的切线. 设切线的倾斜角为α ,那么当Δx→0时,割线PQ的斜率, 称为曲线在点P处的切线的斜率.
f ( x0 x ) f ( x0 ) y 即: k切线 tan lim lim x 0 x x 0 x
题型三:导数的几何意义的应用
例1:(1)求函数y=3x2在点(1,3)处的导数.
2 3(1 x) 2 3 12 3 x 6x 解:y |x 1 lim lim x 0 x x 0 x
lim 3( x 2) 6
x 0
(2)求曲线y=f(x)=x2+1在点P(1,2)处的切线方程.
C
割线与切线的斜率有何关系呢?
k PQ
y=f(x) y Q(x1,y1)
△y
y f ( x x ) f ( x ) = x x
即:当△x→0时,割线 PQ的斜率的极限,就是曲线 在点P处的切线的斜率,
P(x0,y0)
△x
M
o
x
导数的几何意义ppt1(说课) 人教课标版
3、小组讨论分析以上问题。
圆是一种特殊的曲线,这种定义并不适用于一般曲线的切线. 如图曲线c,直线l3虽然与曲线c有惟一公共点,但它与曲线c不 相切;而另一条直线l2,虽然与曲线c有两个公共点B和C,但与 曲线c相切于点B.因此,直线与曲线的公共点的个数不能用来定 义一般曲线的切线.我必须用新的方法来定义曲线的 切线.
一、教学目标
1、知识与技能目标: (1)使学生掌握函数f(x)在x=x0处的导数f´(x0)的几何意义就 是函数f(x)的图像在x=x0处的切线的斜率。(数形结合),即 : =切线的斜率 (2)会利用导数的几何意义解释实际生活问题,体会“以直代 曲”的数学思想方法。
t2
2、过程与方法目标: (1)回顾曲线的切线的概念,复习导数概念,寻找 f x 在 x0处的瞬时变化率的几何意义; (2)观察P7上探究问题,利用几何画板进行探究,由学生 参与操作,发现割线 PP n 变化趋势,分析整理成结论; (3)通过学生经历或观察感知由割线逼近“变成”切线的过 程,理解导数的几何意义; (4)高台跳水模型中,利用导数的几何意义,描述比较h t 在 t 0 ,t1, t 2 处的变化情况,达到梳理新知的目的,渗透“以直代 曲”的数学思想; (5)通过分析导数的几何意义,研究在实际生活问题中, 用区间较小的范围的平均变化率,来解决实际问题的瞬时变化率.
/ 3、导数 f (x 0 ) lim
Δy 2、Δx
处瞬时变化率,它反映的函数 y f(x) 在x0点处变化的快 慢程度,它的几何意义是曲线 y f(x) 上点(x0 , f(x0 ) 处的切 线的斜率。因此,如果在 x0 点可导,则曲线在点(x0 , f(x0 ) / 处的切线方程为 y f(x0 ) f (x0 )(x x0 ) 。 4、导数是一个局部概念,它只与函数 y f(x) 在 x0 及其附 近的函数值有关,与 Δx无关。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生分组讨论交流,计算切 观,易于突破难点;学生在过程中,
点的导数值,自主合作探求 可以体会逼近的思想方法。最后的
导数与斜率的关系,教师请 证明环节,能够同时从数与形两个 学生证明导数就是切线斜率。 角度强化学生对导数概念的理解。
2020年10月2日
20
2020年10月2日
1
教材分析
教法分析
教学目标
教学过程
评价反思
一. 教材分析
(1) 教材的地位和作用 (2)重点难点 (3) 课时安排
一. 教材分析
(一)教材的地位和作用
微积分学是人类思维的伟大成果之一,是人类经历 了2500多年震撼人心的智力奋斗的结果,它开创了 向近代数学过渡的新时期 ,为研究变量和函数提 供了重要的方法。导数是微积分的核心概念之一, 有极其丰富的实际背景和广泛的应用。导数的几何 意义是学生在学习了瞬时变化率就是导数之后的内 容,通过这部分内容的学习,可以帮助学生更好的 理解导数的概念及导数是研究函数的单调性、变化 快慢和极值等性质最有效的工具,是本章的关键内 容。
2020年10月2日
10
二. 教法分析
(四)具体措施
根据以上的分析,本节课采用教师引导与学生 自主探究相结合,交流与练习相穿插的活动课 形式,以学生为主体,教师创设和谐、愉悦的 环境及辅以适当的引导。同时,利用多媒体形 象动态的演示功能提高教学的直观性和趣味性, 以提高课堂效率。教学中注重数形结合,从形 的角度对概念理解和运用。在这个过程中培养 学生分析解决问题的能力,培养学生讨论交流 的合作意识。
二. 教法分析
(二)教学方法
1、多媒体辅助教学 借助多媒体教学手段引导学生发现切线斜率 与该点导数值之间的关系,使问题变得直观,易 于突破难点;利用多媒体向学生展示导数就是切 线斜率的过程,体会逼近的思想方法。 2、探究发现法教学 让学生通过动手操作课件经历“实验、探索、论 证、应用”的过程,体验从特殊到一般的认识规 律,通过学生“动手、动脑、讨论、演练”增加 学生的参与机会,增强参与意识,教给学生获取 知识的途径,思考问题的方法,使学生真正成为 教学主体。
14
四. 教学过程
(一)教学流程图 (二)教学过程与设计思路
(一)教学流程图
问题 系列
几何 意义
具体 应用
概念 建构
复习 引入
演 练 拓
小结
作业
类似“卡通形象” 的教学流程图以 “模块”为基本单 元,从新课引入到 概念建构,从技能 演练到小结作业。 层层展开,逐层突 破。
教学程序及设计意图
教学过程
三. 教学目标
知识与技能
通过实验探求和理解导数的几何意义, 理解导数在研究函数性质中的作用, 培养学生分析、抽象、概括等思维能力。
三. 教学目标
过程与方法
在寻找切线新定义的过程中,使学生通过有 限认识无限,发现数学的美; 通过“以直代曲”思想的具体运用,使学生 达到思维方式的迁移,了解科学的思维方法。
找呢?
探究进行思考展开讨论。
4、复习引导
利用认知迁移规律,从学生的
a 圆的割线与切线有何关系
“最近发展区”出发,引导学生 利用已有的知识尝试解决问题,
b 导数的定义
在学生已有的认知结构基础上进
行新概念的建构。
f(x0) lixm 0f(x0 xx )f(x0)
lim y x 0 x
2020年10月2日
二. 教法分析
(一)学情分析 (二)教学方法 (三)学法分析 (四)具体措施
二. 教法分析
(一)学情分析
学生已经通过实例经历了由平均变化率到瞬时变 化率刻画现实问题的过程,理解了瞬时变化率就 是导数,体会了导数的思想和实际背景,已经具 备一定的微分思想,但是对于导数在研究函数性 质中有什么作用还不够理解,多数同学对此有相 当的兴趣和积极性。学生在学习时可能会遇到以 下困难,比如从割线到切线的过程中采用的逼近 方法,理解导数就是曲线上某点的斜率等等。
二. 教法分析
(三)学法分析
自主、合作、探究
借助多媒体技术创设丰富的教学情境,激发学生的学习动机,培养学 习兴趣,充分调动学生的学习积极性,倡导学生采用自主、合作、探 究的方式学习。引导学生动手操作课件,指导学生讨论交流从而发现 规律,培养学生探究问题的习惯和意识以及勇于探索、勤于思考的精 神,提高学生合作学习和数学交流的能力。
19
教学过程
设计意图
(二)动手操作 探索求知
1、课件操作:学生动手拖动 通过逼近方法,将割线趋于确定位
点,观察割线的变化趋势,
置的直线定义为切线,适用于各种 曲线,这种定义才真正反映了切线
2、学生自主合作学习:
借助多媒体教学手段引导学生发现 导数就是切线斜率,使问题变得直
17
如图直线 l 1 是曲线的切线吗?l 2 呢?
y
l2
l1
A
B
直线l1与曲线C有唯一公共点B, 但我们不能说l1与曲线C相切
直线l2与曲线C有不止一个公共点
A,我们能说l2是曲线C在点A处
0
x
的切线
2020年10月2日
18
教学过程
设计意图
3、 那么对于一般的曲
线,曲线切线该如何寻
设问引起学生的好奇心,激发学 生的求知欲,教学中让学生就此
2020年10月2日
13
三. 教学目标
情感态度与价值观
在导数几何意义的推导过程中,渗透逼近和以 直代曲的思想,使学生了解近似与精确间的辨 证关系,激发学生勇于探索、勤于思考的精神; 通过讨论、交流、合作、实验操作等活动激发 学生学习数学的兴趣;培养学生合作学习和数 学交流的能力。
2020年10月2日
一. 教材分析 (二)重点与难点
教学重点:运用导数的几何意义研究函数 教学难点:导数几何意义的推导思路
2020年10月2日
5
一. 教材分析
(三)课时安排
导数的几何意义可安排两课时。本节作为 第一课时,重在探求曲线上某点处切线的斜率 和导数的关系,理解导数的几何意义,体会几 何意义在研究函数性质应用中的作用。
设计意图
(一)创设情景 引入新课 提出问题:
1、平面几何中我们是
怎样判断直线是否是圆 的割线或切线的呢?
提出问题,由学生发现圆的 切线的定义并不适用一般曲 线的切线,必须重新定义曲
线的切线,让学生感受到进
2、如图直线 l 1 是曲线 一步探究学习的重要性。 的切线吗?l 2 呢?
2020年10月2日