河道沉积物的分布特性
河道沉积物的分布特性
河道沉积物的分布特性1 引言沉积物是水体氮素的重要归宿与来源,上覆水与孔隙水是沉积物-水界面中氮交换的主要媒介,无机氮是其重要的交换形态.可溶性氮素通过孔隙水向上覆水扩散迁移,使沉积物成为上覆水重要的氮素内源.影响沉积物-水界面氮交换过程的因素呈现多样化,包括沉积物的理化特征、溶解氧、氧化还原电位、pH、温度、水动力扰动等环境条件以及底栖生物扰动等生物因素.污补河流中污染物在分解转化过程中大量耗氧,使沉积物溶氧量急剧变化,再加上闸坝林立,水流舒缓,河流复氧能力差,沉积物-水界面呈现厌氧状态,对于氮素界面的交换过程及赋存形态有重要的影响.在北方半干旱地区,以海河流域为代表,天然径流少,污废水成为主要补给水源,河流呈现非常规水源补给特点.与传统意义上的河流相比,非常规水源补给河流随污水的汇入消纳了大量的污染物,产生了各类污染问题.滏阳河作为典型的非常规水源补给河流,承接着石家庄、邯郸、邢台、衡水、沧州等城市的工业及生活污废水,平均污径比由1980年的0.25上升到2007年的0.37.目前研究表明,滏阳河作为非常规水源补给河流存在严重的沉积物重金属污染问题,但对存在的氮营养盐污染及内源释放问题关注较少.滏阳河接纳的石化、制药等行业的污水及生活废水中含有大量的氮营养盐(Seved et al., 2010;Tang et al., 2011),排入河流增加了水体的氮负荷(王超等,2015a),低溶解氧进一步加剧了沉积物内源释放风险(郭建宁等,2010).滏阳河水体总氮浓度超国家地表水V类标准,外源输入是水体氮营养盐增加的重要原因(赵钰等,2014),但对沉积物这一重要的氮素内源未做进一步研究.本文针对滏阳河存在的氮素污染问题,采集不同河段的表层沉积物及柱状沉积物,研究表层沉积物氮素空间分布特点及上覆水-孔隙水氮营养盐垂直分布特征,并对沉积物-水界面无机氮扩散通量进行估算,对比滏阳河不同区段氮营养盐内源释放特征,为非常规水源补给河流富营养化防治提供理论支持.2 材料与方法2.1 研究区域概况滏阳河发源于太行山南段东麓邯郸市峰峰矿区,自东武仕水库流经磁县、邯郸等县市,于艾辛庄与滏阳新河汇合,流经衡水等地终至献县,与滹沱河汇合后称子牙河.滏阳河流域属北温带大陆性季风气候,平均气温13.4 ℃;年均降雨量550 mm,集中于7至9月份,占年降雨量70%.滏阳河干流全长402 km,流经石家庄、邢台、邯郸、衡水等重要城市,是一条集防洪、灌溉、排涝、航运等功能于一体的骨干河道.沿途城市人口稠密,制药、皮革等重污染产业广泛分布,其生产生活污水均排入滏阳河内.以艾辛庄为界,上游主要接纳邯郸市区及沿途各县污水,2007年共接纳污水1.25亿m3;下游承纳衡水市区、冀州、武强、武邑等县的生产生活废水,2007年接纳衡水市境内废水量0.54亿m3;此外,邢台市和石家庄市污废水顺子牙河支流最终汇入滏阳河.2.2 样品采集与分析2.2.1 表层沉积物采集研究设置采样点16个,于2014年6月采集表层沉积物及沉积柱.按照上游至下游进行样点编号,其中滏阳河上游包括S1~S9,下游样点为S10~S16.根据行政区段对采样点进行划分,可分为邯郸段(S1~S8)、邢台段(S9、S10)、衡水段(S11~S14)和沧州段(S15、S16).采样区域及采样点分布如图 1所示.图 1图 1 滏阳河沉积物采样点位置分布利用自重力采样器采集表层10 cm沉积物样品,储存于聚乙烯自封袋.沉积柱采集后静置24 h,用虹吸管自上而下对上覆水按5 cm进行分层,保存于聚乙烯瓶;对柱状样自上而下分割,按1 cm 分层,用0.45 μm微孔滤膜过滤得到孔隙水,保存于玻璃瓶.河流水样温度(T)、pH、溶解氧(DO)、氧化还原电位(ORP)利用水质分析仪现场测定.样品低温保存运输.到达实验室后,沉积物部分样品冷冻干燥,研磨,过100目尼龙筛,密封避光储存待分析;其余样品于4 ℃密封避光保存.2.2.2 样品分析参照《水和废水监测分析方法》(国家环境保护总局,2002)测定上覆水中氨氮(NH3-N)、硝氮(NO3--N)和亚硝氮(NO2--N);孔隙水各无机氮(DIN)含量用全自动化学分析仪(AMS Smart Chem 2000)测定.沉积物样品用2 mol·L-1的氯化钾溶液振荡提取1 h,0.45 μm滤膜过滤后测定提取液中氨氮(NH3-N)、硝氮(NO3--N)和亚硝氮(NO2--N)(鲍士旦等,2005).其中NH3-N采用靛酚蓝比色法,NO3--N采用双波长紫外分光光度法,NO2--N采用N-(1-萘基)-乙二胺光度法.采用元素分析仪测定沉积物总氮(TN)及碳氮比(C/N),沉积物中总有机氮(TON)为总氮与无机氮(氨氮、硝氮和亚硝氮之和)的差值.2.3 孔隙水扩散通量模型运用Fick第一扩散定律对沉积物-水界面间物质扩散通量进行估算.Fick第一定律适用于稳态扩散,即界面物质的交换过程为平衡状态,主要受浓度扩散控制(Paul et al., 2001,潘延安等,2014).扩散通量计算公式如下:式中,F为沉积物-水界面扩散通量(μmol·m-2·d-1);为沉积物-水界面物质浓度梯度(mg·L-1·cm-1);M为N的相对原子质量,取14 g·mol-1;Ds为考虑了沉积物弯曲效应的实际分子扩散系数(m2·s-1);与孔隙度(φ)间的关系式:Ds=φ·D0(φ< 0.7);Ds=φ2·D0(φ>0.7).式中,D0为理想溶液的扩散系数,温度25 ℃时,NH3-N、NO3--N和NO2--N的理想扩散系数(D0)分别为19.8×10-6、19.0×10-6、19.1×10-6cm2·s-1(吴文成等,2008).φ为沉积物孔隙度,其计算方法为:式中,Ww为沉积物鲜重(g);Wd为沉积物干重(g);ρ为表层沉积物平均密度与水密度比值,滏阳河沉积物主要为粉砂组成,取2.5(汪淼等,2015).采样点分布图用ArcGIS 10.0绘制;数据统计分析在SPSS 20.0上进行;数据制图在Origin 9.0上完成.3 结果与讨论3.1 表层沉积物氮素含量及空间分布滏阳河各采样点表层沉积物不同形态氮素的空间分布特征见图 2.滏阳河沉积物整体总氮质量浓度在770~10590 mg·kg-1之间,平均值为2584 mg·kg-1,高于EPA制定的沉积物总氮污染重污染标准(2000 mg·kg-1)(US EPA,2002),表明滏阳河整体处于TN重度污染水平.其中流域支流汇入点(S10、S11)TN浓度高达10590、5210 mg·kg-1,远超其他点位.其原因是上游支流接纳的氮素随水流汇集于河流交汇点并发生沉积,造成表层沉积物中TN浓度的升高.邯郸段、邢台段、衡水段和沧州段总氮浓度平均值分别为1756、5745、2664、2573 mg·kg-1,邢台段达整条河段的TN浓度最高值.牛尾河、北澧河、洨河及汪洋沟等支流河水含有大量的总氮,汇入邢台河段,使沉积物TN浓度增高.图 2图 2 滏阳河表层沉积物氮素空间分布特征有机氮(TON)是滏阳河表层沉积物中氮素的主要存在形式,其占总氮比例达84.9%~99.3%.滏阳河表层沉积物中TON的空间分布趋势与TN一致,均在邢台段达到最高值,5056 mg·kg-1.河流中的有机氮占总氮含量达14%~90%(Seitzinger et al., 1997),主要来源于水生生态系统中生物的分泌及腐烂分解,以及外源水体携带的颗粒态氮和溶解性有机氮的输入(Sujay et al., 2014).沉积物中C/N可以判定有机污染来源.Meyers等研究藻类的C/N一般在4~10 之间,而陆生植物的C/N一般大于20(Meyers,1994).滏阳河C/N平均值达18.24,说明滏阳河沉积物中TON更多来源于外源输入,且总氮中TON比例在世界河流中处于较高水平.表层沉积物NH3-N含量范围为3.23~1135.00 mg·kg-1,占TN比例达0.23%~10.70%,分布趋势与有机氮呈现一致性.氨化细菌在厌氧条件下使有机氮发生矿化产生NH3-N,而水体环境中NH3-N主要来源于有机氮的矿化及外源的输入(赵海超等,2013).滏阳河水系低氧现象突出(王超等,2015b),且上覆水流速较低,氧交换能力较弱,导致沉积物溶氧含量低,有机氮矿化生成NH3-N,则沉积物中NH3-N含量分布与有机氮呈现一致性.与之前研究相比(赵钰等,2014),滏阳河表层沉积物NO3--N含量明显上升,由17.20 mg·kg-1升至125.00 mg·kg-1,占TN比例由0.004%升至0.044%;NH3-N含量明显下降,由585.00 mg·kg-1降至164.00 mg·kg-1,占TN百分比由0.135%降至0.052%.NH3-N和NO3--N浓度的升降变化说明沉积物-水界面氧化还原环境发生改变,硝化细菌将NH3-N氧化为稳定的NO3--N.底泥氧化还原状态的改变说明了氨氮污染严重的水体正在逐渐恢复自净能力,水体环境有所改善.3.2 沉积物-水界面氮分布特征滏阳河各河段硝态氮浓度在上覆水到孔隙水的垂直剖面上呈现不同趋势:邢台、衡水和沧州段硝氮浓度随深度而逐渐降低,尤其是在孔隙水中急剧减少.以衡水段为例,NO3--N浓度在上覆水中为2.84 mg·L-1,在孔隙水中降至0.57 mg·L-1,到深层浓度小于0.10 mg·L-1.硝氮随深度变化呈递减趋势,可能与沉积物的氧化还原环境有关.溶解氧是沉积物硝化作用及反硝化作用的重要影响参数,邱昭政等研究发现好氧条件下平均氨氧化速率为14.2 mg·L-1·d-1,而厌氧条件仅有37.40%氨氮转化,平均速率为5.7 mg·L-1·d-1(邱昭政等,2013).未加扰动的沉积物处于缺氧环境,呈现还原环境,致使硝化反应减弱,无法将氨氮转化为NO3--N;同时有利于消耗NO3--N 的反硝化作用进行(Korom et al., 1992),导致NO3--N迅速减少.邢台、衡水和沧州段上覆水呈还原环境(表 1),水流平缓对沉积物扰动作用小,复氧能力较差,且有机物分解消耗溶解氧,沉积物还原性增强,影响硝化和反硝化作用的进行,从而影响沉积物中硝氮的分布.邯郸段硝氮浓度在进入沉积物-水界面后逐渐升高,在界面下11cm处达到最大值6.72 mg·L-1.孔隙水平均硝态氮浓度达3.54 mg·L-1,为上覆水8倍之多.邯郸段山区降水补给较多,地势高差悬殊较大,界面水动力或底栖生物扰动导致沉积物溶解氧含量增大,沉积物-水界面处于氧化状态,硝化作用增强,NH3-N被硝化细菌氧化,造成NO3--N浓度上升.表 1 各采样点表层沉积物及上覆水基本理化性质邯郸、邢台段氨氮浓度在垂直剖面上呈增大趋势,最高浓度分别达到17.70 mg·L-1和39.30 mg·L-1(图 3).NH3-N的含量与沉积物理化性质、氧化还原环境、水动力条件及污染源等有关.一方面,随深度的增加沉积物含氧量降低,还原环境有利于有机氮氨化作用进行,相应的消耗氨的硝化作用减弱,致使NH3-N在沉积物中发生累积,出现随深度升高的情况(刘峰等,2011).另一方面,氨氮的离子态易被带负电的沉积颗粒胶体吸附,导致在深层的累积.衡水段进入沉积物-水界面氨氮浓度先降低再逐步升高,在-7 cm处达到最低值28.80 mg·L-1.沧州段氨氮浓度在垂直方向上随深度增加而降低,上覆水氨氮平均浓度为(27.3±1.80)mg·L-1,是孔隙水氨氮平均含量的2.7倍.衡水段与沧州段NH3-N垂直方向变化趋势的改变可能是由于外源NH3-N的输入.石家庄市作为子牙河水系中最大的氨氮排放区域,其工业氨氮排放量占水系工业源氨氮排放量的81.00%.石家庄市连同衡水、沧州段的污水一起注入滏阳河下游,使衡水、沧州段上覆水氨氮浓度达51.70、27.30 mg·L-1,远高于邯郸、邢台河段.水体NH3-N浓度在2005年达到峰值,2009年下降后11年再次升高的变化趋势与衡水段沉积物NH3-N变化趋势一致(荣楠等,2015).支流外源高氨氮的摄入可能是上覆水氨氮浓度高于表层孔隙水,出现随深度而降低的现象的原因.图 3图 3 滏阳河上覆水和孔隙水硝氮、氨氮垂直分布特征对滏阳河各河段样点上覆水与孔隙水中NH3-N和NO3--N浓度进行统计分析(图 4).上覆水与孔隙水中NO3--N变化趋势在邯郸段存在较大差异,上覆水NO3--N在邯郸段达到低值,平均浓度达0.43 mg·L-1;而在孔隙水中则达整个河段最高值,达4.59 mg·L-1.其原因可能在于邯郸段沉积物中较高溶解氧促使硝化作用进行,抑制了消耗NO3--N的反硝化作用,使沉积物孔隙水中容纳更多的NO3--N.NH3-N浓度在上覆水与孔隙水中变化趋势一致,在衡水段分别达到最高值,51.66和57.72 mg·L-1.支流外源氨氮的大量排放可能是造成衡水段高值的主要原因,限制污水排放将会有助于改善该段界面高氨氮的现状.图 4图 4 滏阳河上覆水和孔隙水硝氮、氨氮浓度空间分布特征3.3 沉积物-水界面无机氮扩散通量自然水体沉积物-水界面水流速度较小,上覆水和孔隙水氮营养盐浓度存在明显的差异,浓度梯度引起由高浓度向低浓度扩散是营养盐的主要迁移过程(吴文成等,2008).若不考虑生物扰动、风浪扰动、界面反应等物化因素,将沉积物-水界面物质扩散简化为分子扩散(秦伯强等,2005),利用Fick第一扩散定律估算沉积物-水界面无机氮的扩散通量,结果见表 2.表 2 滏阳河沉积物-水界面无机氮扩散通量上覆水与孔隙水中营养盐浓度存在差异,导致由高浓度向低浓度的扩散.邯郸段与邢台段沉积物-水界面NH3-N表现为由沉积物向上覆水扩散,扩散通量最大值分别达1093 μmol·m-2·d-1、1471 μmol·m-2·d-1.衡水段与沧州段部分点位NH3-N表现为上覆水向沉积物中扩散,扩散通量在-932~-456 μmol·m-2·d-1之间.不同河段NH3-N扩散通量存在差异,其原因可能是各段水源组成差异导致扩散通量的不同.邯郸与邢台段主要有上游山区降水及沿岸生活污水汇入,而衡水段则接纳上游洨河和邵村排干排入的较高污染的生活废水及皮革、制药等工业废水.石家庄作为子牙河水系中最大的氨氮排放区域,其排放的高氨氮废水也汇入衡水和沧州段.另外一个原因是沿河污水排放总量梯度造成水体氨氮含量差异,致使扩散通量变化.由全国污染源普查统计数据分析,邯郸段和邢台段2007年接纳污水2.45亿m3,而衡水段接纳包括石家庄在内的污水总量4.02亿m3.滏阳河下游大量无数排放使上覆水体氨氮浓度高于沉积物及其孔隙水,则氨氮向下沉积,沉积物发挥“汇”的作用,从上覆水中吸附氨氮.邯郸段沉积物-水界面NO3--N整体上表现为由沉积物向上覆水扩散,扩散通量范围为4.21~309.56 μmol·m-2·d-1.邢台、衡水、沧州各段NO3--N表现为由上覆水向沉积物扩散,最小扩散通量低于-150 μmol·m-2·d-1.NO3--N在沉积物-水界面的扩散通量受沉积物结构、含氧量、有机质含量、生物扰动等因素影响(陈朱虹等,2014).受生物及水体扰动,邯郸段表层沉积物处于氧化环境,硝化作用的进行产生大量的NO3--N,使沉积物孔隙水中浓度高于上覆水,表现为向上覆水体扩散的特征.而邢台、衡水、沧州各段沉积物含氧量较低且有机物分解耗氧使沉积物处于低氧状态,致使硝化反应抑制,反硝化作用消耗NO3--N,造成孔隙水NO3--N浓度低于上覆水,沉积物表现为NO3--N的汇.NO2--N作为硝化与反硝化作用的中间产物,含量低且不稳定存在,因此其扩散通量意义不明确(Hall et al., 1996).滏阳河作为典型的非常规水源补给河流,以生活及工业污废水等非常规水源补给为主,污径比达0.37.与以自然降水为主要补给水源的河流相比,高氮废水的输入加大了沉积物氮素本底.以珠江为例,广州段沉积物总氮含量达1130~2900 mg·kg-1,而滏阳河总氮浓度在770~10590 mg·kg-1之间,沉积物氮含量处于较高水平(吴文成等,2008).与珠江相比,滏阳河沉积物-水界面氨氮扩散通量达-932~1471 μmol·m-2·d-1,处于较高水平,并且下游因外源高污染污水的输入,氨氮仍向沉积物进行扩散,即使控制外源排放,沉积物仍会有内源释放风险,将会为后期河流治理与修复带来困难,急需引起相关治理部门的重视.具体参见污水宝商城资料或更多相关技术文档。
河流沉积特征
河流沉积特征嘿,咱今儿就来说说河流沉积特征这档子事儿。
你想啊,河流就像个勤劳的搬运工,一路奔腾,带着好多泥沙呀、石头啥的。
这一路上,它可没少忙活呢!那河流沉积是咋回事呢?就好比你走路,走着走着累了,总得找个地儿歇歇脚吧。
河流也一样,流着流着,速度慢下来了,那些它带着的东西就开始沉淀啦。
这一沉淀,可不就形成各种各样的地貌了嘛。
比如说在河流入海口,那泥沙堆得就跟小山似的,这就是三角洲呀!那可是个富饶的地儿,土壤肥沃得很呢。
你想想,那得有多少小生物在那安居乐业呀。
再看看河边那些平原,好多也是河流沉积出来的呢。
就好像河流是个神奇的魔法师,一点一点地变出了这些广阔的平原。
还有啊,那些被河流冲来冲去的石头,最后也会沉积下来,形成卵石滩。
你去河边走走,是不是经常能看到那些光溜溜的卵石呀,那可都是河流的杰作呢!河流沉积可不只是形成这些地貌这么简单哦。
它还对生态环境有着重要的影响呢。
那些沉积的地方,往往会成为动植物的乐园。
小鱼小虾在那游来游去,水鸟在那捉鱼吃,多有意思呀。
咱再想想,如果河流不沉积,那会是啥样呢?那估计好多地方都光秃秃的,没啥生机了吧。
所以说呀,河流沉积特征可真是大自然的一大奇妙之处呢。
你看那河流,奔腾不息,却也能在某个时刻安静下来,留下它的痕迹。
这不就跟咱人似的,忙忙碌碌一辈子,也得留下点啥呀。
这河流沉积不就是河流留给大地的礼物嘛。
咱平时去河边玩的时候,可别光知道玩水呀,也多留意留意那些沉积的地貌,感受感受大自然的神奇。
说不定你还能发现一些别人没注意到的小细节呢。
总之呢,河流沉积特征是个特别有意思也特别重要的事儿。
咱可得好好了解了解,珍惜大自然给咱的这些宝贵财富呀!。
城市河道沉积物有机质时空分布及腐殖质赋存特征
7 l 2 ・
化
学
世
界
2 O 1 6年
城 市 河 道沉 积物 有 机质 时空分 布 及腐 殖质 赋存 特 征
胡 伟 , 魏金豹 , 黄 民生 , 马明海 , 刘 素 芳
( 1 .上 海 昱 华 环 保 科 技 有 限公 司 , 上海 2 0 0 0 6 2 ;2 .华 东 师 范 大 学 生 态 与环 境 科 学 学 院 , 上海 2 0 0 0 6 2 )
v a l u e o f 4 8 . 8 3 g / k g .Th e c o n t e n t o f o r g a n i c ma t t e r i n s e d i me n t s wa s s i g n i f i c a n t l y d i f f e r e n t f o r d i f f e r e n t
2. S c h o o l o f E c o l o g i c a l a n d En v i r o n me n t a l S c i e n c e s , Ea s t C h i n a No r ma l U n i v e r s i t y,S h a n g h a i 2 0 0 0 6 2,C h i n a )
r e s u l t s s h o we d t h a t t h e o r g a n i c ma t t e r c o n t e n t i n s e d i me n t s v a r i e d f r o m 1 1 . 3 7 ~1 7 8 . 6 4 g / k g wi t h a me a n
( 1 .S ha n g h ai Yu hu a En v i r o n me n t a l Sc i e n c e a n d Te c h n o l o gy Co mpa n y Li mi t e d Sh a n g h ai 2 0 00 6 2,Ch i n a;
根据环境和沉积物特征
根据环境和沉积物特征,可将曲流河相划分为河床、堤岸、河漫、牛轭湖四个亚相。
河床亚相又划分为河床滞留沉积、边滩沉积两个微相,堤岸亚相划分为天然堤、决口扇两个微相,河漫亚相划分为河漫滩、河漫湖泊、河漫沼泽三个微相,牛轭湖亚相不再划分微相。
各微相沉积特征如下:(1)河床滞留沉积:①以砾石等粗碎屑为主,成分复杂,主要为陆源砾石,亦有下伏基岩和沉积层内砾石。
②位于河床底部冲刷面之上,分布不连续,呈透镜状。
③砾石呈叠瓦状向源排列。
④向上过渡为边滩沉积。
(2)边滩沉积:①以砂岩为主,成分复杂,成熟度低,不稳定矿物含量高,常为长石砂岩,岩屑砂岩等。
②粒度变化范围大,主要由砂、粉砂、泥组成,概率图上为两段式,分选中等,向上粒度变细。
③层理类型多样,随粒度向上变细层理规模向上变小,一般说,由下向上,由大型槽状交错层理-小型交错层理-水平层理,即具明显的正韵律。
④砂体常呈板状,一般底部有冲刷面。
⑤底为滞留沉积,顶为堤岸沉积。
(3)天然堤沉积:①由细砂、粉砂、泥组成,粒度介于边滩与河漫滩沉积之间。
②纵向上呈砂泥薄互层。
③砂岩中以小型波状、槽状交错层理为主,泥岩中具水平层理,常见钙质结核,干裂,植物根、虫迹等。
④沿河道两侧呈弯曲砂垅状。
(4)决口扇沉积:①主要由细砂、粉砂组成,粒度比天然堤稍粗。
②具小型交错层理,波状层理,水平层理,冲蚀与充填构造常见。
③可见植物碎片。
④在剖面上呈透镜状,平面上呈舌状。
(5)河漫滩沉积:①以细粉砂、粘土为主。
②以波状、斜波状层理为主,亦有水平层理,具不对称波痕,泥岩中见干裂,雨痕等。
③化石少见,可见植物碎片。
④岩体常沿河流方向呈板状沿伸。
(6)河漫湖泊沉积:①以粘土为主,也有粉砂。
②潮湿气候区,有丰富的有机质,可见完整的动植物化石,干旱气候区可形成盐类沉积及钙质结核。
③层理不发育,有很薄的水平纹层,常见泥裂。
(7)河漫沼泽沉积:与河漫湖泊沉积相似,与其不同的是可见泥、煤层、炭质页岩、泥灰岩等,规模不大。
干旱区河流演化与沉积特征
干旱区河流演化与沉积特征干旱区河流是指位于气候干燥地区的河流系统,在这种特殊的环境下,河流的演化和沉积特征呈现出独特的形态和规律。
本文将重点探讨干旱区河流的演化过程和沉积特征,并分析造成这些特征的主要因素。
一、河流演化过程干旱区河流的演化过程与气候条件、地质背景和人为干扰等多种因素密切相关。
首先,气候干燥是干旱区河流演化的主导因素之一。
降水量的稀缺和季节性使得河流在干旱季节水位低迷,水流绵延不绝,形成了典型的干旱河道。
在雨季来临时,河流迅速蓄水,水位上升,形成较大的流域湿地。
这种周期性的水循环导致河流经历了多次的收缩和扩张过程,形成了典型的干旱区河流的形态。
其次,地质背景对河流演化也起到了重要的影响。
干旱区的地质条件多为干燥的土壤和岩石,水分的渗透能力较弱,导致干旱区河流水量少、流速快,侵蚀力较大。
在这种背景下,河流侵蚀岩石、土壤,形成了峡谷、峡谷或河涧河段。
同时,河流还在谷地内堆积了大量的冲积物,形成了冲积扇或冲积平原。
最后,人为干扰也对河流的演化产生了一定的影响。
随着人类活动的不断扩张,干旱区河流沿岸的土地被开垦用于农业和人口居住。
经过垂直排水和植被破坏,河流的自然演化过程受到了干扰。
河流纵剖面发生变化,河床演化加速,并容易发生洪水和沙漠化等问题。
二、河流沉积特征干旱区河流的沉积特征主要表现在河床沉积物的类型、分布和变化上。
首先,干旱区河流富含砂质沉积物。
由于干旱区降水量有限,河流水量小、流速快,难以运输大型颗粒,导致沉积物中以砂粒为主。
河床上的砂石混合物形成了典型的砾砂区,河床表面粗糙,河道内常常存在沙洲和沙滩。
其次,干旱区河流的沉积物通常呈现干湿变化。
在河流的季节性变化下,河床上的沉积物也在周期性地变化。
在干燥季节,河流的水位下降,沉积物暴露在空气中,发生干燥和风蚀,形成粉状的风尘沉积物。
而在雨季来临时,河流水位上升,沉积物被重新激活,形成冲积沉积物。
这种周期性变化导致了干旱区河流沉积物的多样性。
大沽排污河沉积物中重金属的分布特性研究
大沽排污河沉积物中重金属的分布特性研究
大沽排污河沉积物中重金属的分布特性研究
通过对大沽河上、中游及其支流44个点位沉积物的采样及检测,分析了沉积物中重金属(Cu、Pb、Zn、Cd、Cr、Ni、Hg、As)的分布特点及相关关系.结果显示,大沽河上、中游的沉积物中重金属含量之间存在着相关关系,部分沉积物中重金属含量超标,河床中部沉积物的厚度最大,而在河床两侧重金属含量出现极值,这为河道疏浚及河床断面设计提供了参考.
作者:迟海燕黎荣赵子良董晶 CHI Hai-yan LI Rong ZHAO Zi-liang DONG Jing 作者单位:迟海燕,黎荣,CHI Hai-yan,LI Rong(天津大学,环境科学与工程学院,天津,300072)
赵子良,董晶,ZHAO Zi-liang,DONG Jing(天津市市政工程建设公司,天津,300050)
刊名:中国给水排水ISTIC PKU英文刊名:CHINA WATER & WASTEWATER 年,卷(期):2006 22(6) 分类号:X505 关键词:大沽河河道底泥重金属分布。
沉积相的分类及详解
沉积相的分类及详解
沉积相是指地球表面沉积物的形成环境,包括河流、湖泊、海洋、沙漠、冰川等。
根据不同的沉积环境和沉积物的性质,沉积相可分为多种类型。
1. 河流沉积相
河流沉积相是指河流水流作用下的沉积环境,包括河床、河岸、洪水平原等。
河流沉积物主要由砂、砾、泥等颗粒物质组成,河流沉积相的特点是沉积物粗粒度、层理发育、成岩作用弱等。
2. 湖泊沉积相
湖泊沉积相是指湖泊水体作用下的沉积环境,包括湖底、湖岸、湖滨等。
湖泊沉积物主要由泥、粉砂、石灰质沉积物等组成,湖泊沉积相的特点是层理发育、生物化学作用强、成岩作用弱等。
3. 海洋沉积相
海洋沉积相是指海洋水体作用下的沉积环境,包括海底、海岸、海滨等。
海洋沉积物主要由泥、粉砂、石灰质沉积物等组成,海洋沉积相的特点是层理发育、生物化学作用强、成岩作用强等。
4. 沙漠沉积相
沙漠沉积相是指沙漠环境下的沉积环境,包括沙丘、沙原、盐湖等。
沙漠沉积物主要由砂、砾、粉砂等组成,沙漠沉积相的特点是颗粒粗大、层理不发育、成岩作用弱等。
5. 冰川沉积相
冰川沉积相是指冰川作用下的沉积环境,包括冰川前缘、冰川侵蚀区、冰川冰碛区等。
冰川沉积物主要由冰碛物、泥、砾石等组成,冰川沉积相的特点是颗粒大小不一、层理不发育、成岩作用弱等。
综上所述,沉积相的分类主要是根据不同的沉积环境和沉积物的性质来划分的。
每种沉积相都有其独特的特点和成因机制,对于研究地质历史和地质资源具有重要的意义。
河流相沉积模式
河流相沉积模式
河流相沉积模式是指在河流系统中,由于水流速度和输沙能力的变化,沉积物在不同区域呈现出不同的沉积特征。
河流相沉积模式通常包括三种主要类型:
1. 河道相:河道相沉积主要发生在河床和河道内部,在沿河流动向的方向上呈现出一定的变化规律。
典型的河道相沉积包括河床砾石、河滩砂、河漫滩泥等,这些沉积物在河道中形成沉积层。
2. 洪积相:洪积相沉积主要发生在河流周围的洪积平原和河谷地带,主要是由于河流周期性的泛滥和冲刷作用而形成的。
典型的洪积相沉积包括粗砂、细砂、淤泥等,这些沉积物经常形成平坦的洪积扇或洪积平原。
3. 三角洲相:三角洲相沉积主要发生在河口附近,当河流进入静水体(如海洋或湖泊)时,由于水流速度降低,沉积物开始沉积下来。
典型的三角洲相沉积包括三角洲前缘的砂质沉积、三角洲心滩的泥质沉积等。
河流相沉积模式的研究对于认识河流沉积演化过程、资源勘探和环境保护具有重要意义。
通过对河流相沉积的分析,可以揭示古代河流系统的演化历史,为油气勘探、水资源开发等提供重要依据。
初一地理河流沉积地貌特征解析
初一地理河流沉积地貌特征解析河流是地球上最常见的地貌形态之一,不仅给人们提供了丰富的水资源,而且还在地理环境中形成了各种各样的地貌特征。
沉积地貌是河流在运动过程中沉积的沉积物所形成的地貌,包括洪积平原、三角洲、峡谷和瀑布等。
本文将解析初一地理河流沉积地貌的特征。
一、洪积平原洪积平原是河流沉积物在长时间的积累作用下形成的平坦地区。
它位于河流下游,是由于河水在断崖或山谷处冲刷过程中携带的大量沉积物逐渐沉积而成。
洪积平原通常由细粒沉积物组成,如泥沙、淤泥和砂砾等。
这些沉积物的颗粒较小,因此能够很容易地被河水携带并沉积在平原上。
洪积平原的沉积地貌特征主要表现为平坦广阔、土壤肥沃,适合进行农业生产。
此外,在河流冲刷的过程中,还会形成河床的变浅、扩宽,形成分散的河道网络。
这种分散的河道网络在洪水季节中可以起到减缓洪水流速、分散洪水能量的作用,从而避免洪水灾害的发生。
因此,洪积平原不仅具有经济价值,而且对于地理环境的调节具有重要的作用。
二、三角洲三角洲是河流在入海口沉积物积累形成的地貌。
它形状呈三角形,是由于河流将携带的沉积物堆积在入海口处而形成。
三角洲通常位于河流下游、陆地与海洋的过渡区,形成了独特的地理景观。
三角洲的主要沉积物为泥沙和砂砾,沙质沉积物堆积在洲头,而泥沙则沉积在洲内。
三角洲的地貌特征表现为平坦低矮的地形,且呈扇状分布。
河流在流经洲头地区时速度减慢,携带的沉积物逐渐沉降,堆积在该区域,形成逐渐扩大和提高的地表。
而洲内地区则是泥沙堆积较多的地方,地形相对平坦。
在三角洲附近常常可以看到多根分散的河道,这些分散的河道在洪水季节可以容纳更多的河水,从而减少河水的冲刷和侵蚀。
三、峡谷峡谷是河流在长时间侵蚀和冲刷作用下形成的狭长地区。
它位于两侧山脊之间,常常是由于地壳抬升或河流自身下切的原因形成。
峡谷的地貌特征表现为地势陡峭、形状狭长。
河流将两侧山脊之间的岩石逐渐侵蚀和冲刷,形成了深而狭窄的河谷。
峡谷的侵蚀地貌特征主要是峭壁和崖石。
2019高考地理辫状河沉积特征及其沉积模式 (共24张PPT)
一、辫状河沉积特征 二、辫状河沉积模式 三、现代河流沉积体系——辫
状河段
二、辫状河沉积模式
(1)至今尚未概括出得 到大家认同的辫状河沉 积模式,通常以加拿大 魁北克省泥盆系巴特里 角辫状河垂向序列作为 辫状河沉积模式的代表。
二、辫状河沉积模式
(2)鄂尔多斯辫状河沉积主要发育于下石河子组
二、辫状河沉积模式
辫状河沉积特征 及其沉积模式
一、辫状河沉积特征 二、辫状河沉积模式 三、现代河流沉积体系——辫
状河段
一、辫状河沉积特征
定义: 辫状河指弯度指数小于和等于1.5, 河道分叉参数大于1的低弯度,多河道 河流。
特点:水浅流急 具有多河道 河床坡降大 宽而浅 侧向迁移迅速
一、辫状河沉积特征
辫状河河床宽浅,河道反复分岔合并,受 不稳定水流作用,河道易废弃改道,所以 其沉积主要发育河床和河漫亚相,与曲流 河相比,不发育堤岸和牛轭湖沉积亚相。
一、辫状河沉积特征
1.河床亚相 (1)河床滞留沉积
与曲流河相同,出现在河床底部,以砂 砾沉积为主,其上发育心滩。
来源可不同 厚度小 成分杂 叠瓦状排列
一、辫状河沉积特征
1.河床亚相 (2)心滩沉积
成因: 与河流水动力结 构有关,弯曲 度较 低,短距离内近于 顺直河道,可沿主 流线形成两个螺旋 式前进的对称环流。
与曲流河相比,辫状河在垂向层序上有以 下特点:
• 河流二元结构顶层粗粒沉积发育较好,厚度较大, 而顶层细粒沉积不发育或厚度较小。
• 底层沉积粒度粗,成分及结构成熟度较低,发育 砂砾岩。
• 发育由河道迁移产生的各类型层理(块状或平行 层理,大型板状交错层理,巨型槽状交错层理)
• 发育大型槽状交错层理,不发育泛滥平原细粒沉 积物。
北京北部上侏罗统辫状河体系沉积特征
北京北部上侏罗统辫状河体系沉积特征
北京北部上侏罗统辫状河体系是指存在于北京市区北部地区上侏罗统地层中的一套河流系统。
这套河流系统的沉积埋藏非常深,但经过多年的研究和探测,科学家们已经了解了它的一些特征。
首先,这套河流系统由数条河道组成,它们蜿蜒迂回,形成了许多环绕山丘的波浪形地形。
这些河道首先形成于上侏罗统早期,经过了数次的改变和演化,发展成为目前所见的形态。
其次,这些河道的沉积物主要为粗砾石、沙砾、细砾石、砂等。
这种沉积物的成分表明,这些河道属于辫状河体系,为泥沙流动非常迅速的多河槽河流。
再次,河道两侧的沉积物属于潮坪相和湖泊相。
因为这些河道在侏罗纪时期曾多次变化,所以在周围的平原上也形成了较为稳定的潮坪和深湖。
最后,这些河道还存在许多河道湾曲、河漫滩及其上的湖泊相、开口湖等现象。
其中湖泊相沉积物属于湖泊沉积,以泥岩和泥页岩居多。
开口湖及江湖相沉积特征则包括砂岩、泥岩和泥质砂岩等。
总的来说,北京北部上侏罗统辫状河体系的沉积特征主要表现在以下几个方面:多河槽河流、河道两侧的潮坪和深湖、河道湾曲、河漫滩及其上的湖泊相、开口湖等。
这些特征不仅反映
了早期河流的发展演化历程,同时也为研究周围地质环境和地貌提供了重要的参考。
崇明村镇级河道沉积物磷形态分布特征
OP 的含量高低, 自 OP, 直接影响沉积物的潜在农用价值。 NAIP + OP 含量与 TP 及其他形态磷 ( 除了 OP ) 的相关关系 而王琦等 皆不显著,
[10 ]
对太湖沉积物中总磷与生物有效磷
得出 NAIP + OP 与 TP 呈极显著正相关关系。 关系的分析中, 这种现象的出现应该与村镇级河道在农业生产中的作用有 使水体中的 关。农业频繁的取水活动加快了水的对流速度, 也打乱了自然条件下的沉积物 营养元素的分布趋向均匀化, 破坏了沉积 沉降与污染物的释放 - 沉积 - 释放的循环过程, 物随着沉积加深磷形态趋于稳定的态势, 也使得 NAIP + OP 与 TP 的关系发生紊乱。
图3
沉积物中各种形态磷的百分率
IP 含量的变化范围为 441. 39 ~ 由图 2 和图 3 还可知, IP 占 TP 的 78% 以上, 550. 99 mg / kg, 是磷的主要存在形态。 OP 含 量 的 变 化 范 围 为 59. 39 ~ 107. 76 mg / kg, 占 TP 的 10. 60% ~ 18. 10% , 与 沉 积 物 中 的 低 有 机 质 含 量 相 对 应。 NAIP 含量的变化范围为 27. 70 ~ 44. 92 mg / kg, NAIP 占 IP 的 6. 73% ~ 8. 86% , 而 AP 的含量较高, 变化范围为 431. 39 ~ 505. 18 mg / kg, AP 绝大多数 在 7 个采样点中的变化不明显, 是主要的无机磷形态。 占 IP 的 75% 以上, 2. 2 总磷、 各形态磷与潜在生物有效磷的关系
[4 ]
。
40 卷 9 期
邹丽敏等
崇明村镇级河道沉积物磷形态分布特征
地理河流堆积知识点总结
地理河流堆积知识点总结一、河流堆积的概念河流堆积是指在河流水流过程中,由于流速减慢或者停滞,河水携带的泥沙、砾石等颗粒物质沉积在河道中,形成河床和河漫滩等地形地貌。
河流堆积是河流水动力作用和重力效应的变化结果,也是自然地理过程的一种重要表现形式。
二、河流堆积的类型1. 河床堆积:即河水在河床上沉积的物质,包括多种颗粒大小的沉积物质,形成河床的各种地貌特征。
2. 河漫滩堆积:河水在水流速度减缓或者停滞时,颗粒物质沉积在河道两侧形成河漫滩,河漫滩的形成与河水的淤积作用有关。
3. 冲积扇堆积:河流在山区、丘陵地区流经峡谷、狭谷等地方,水流速度减慢,河水携带的泥沙、砾石等颗粒物质沉积形成的扇形物。
三、河流堆积的原因1. 水流减速:河流在下降梯度处、弯曲处等地方,水流速度减缓,使得携带的泥沙、砾石等物质沉积下来。
2. 水流停滞:当河水受到阻碍无法顺畅流动时,会形成泥沙、砾石等物质的堆积。
3. 沉降作用:泥沙等颗粒物质在水流中因密度大、颗粒小而容易沉降,从而形成堆积。
四、影响河流堆积的因素1. 河流水流速度:水流速度越慢,河流堆积越容易发生。
2. 水量的大小:水量越大,携带的泥沙等物质越多,堆积程度越大。
3. 地形地貌:河流经过不同地形地貌,会形成不同类型的堆积地貌。
4. 水流阻碍物:水流受到阻碍,如植被、建筑物等,形成堆积的可能性增大。
五、河流堆积的地域特点1. 黄河堆积:黄河是中国母亲河,水沙负荷量大,常年泛滥,形成了大量的沙丘、黄土高原等堆积地貌。
2. 长江堆积:长江上游河流曲折,水流减缓的地方较多,形成了许多河漫滩地貌。
3. 尼罗河堆积:尼罗河上游为高原、山地,河流下游为平原地带,河流受阻滞处较多,形成了大量的冲积扇堆积地貌。
4. 印度河堆积:印度河流经喜马拉雅山脉,形成了大量冲积扇和河漫滩。
六、河流堆积对地理环境的影响1. 地形地貌的形成:河流堆积形成了多种地形地貌,如河漫滩、冲积扇等。
2. 水资源的开发利用:河流堆积丰富了水资源,如黄河、长江、尼罗河等水资源的开发利用得到了充分。
冲积扇沉积物的特征
冲积扇沉积物的特征
1.成分多样性:冲积扇沉积物主要由河流带来的岩石碎屑组成,包括岩石碎屑、砂、粉砂、粘土等。
沉积物的成分通常取决于河流源区的地质构造和岩石类型。
2.大粒度:冲积扇沉积物中的颗粒通常较大,以砂和砾石为主。
这是因为在河流流速减慢和河水输运能力减小时,较大的颗粒会被沉积下来。
3.不均匀性:冲积扇沉积物通常呈现出不均匀的分布。
河流在其下降的过程中,会在低能区域沉积更多的沉积物,而在高能区域沉积物较少。
这导致沉积物的厚度和密度在冲积扇上的不同位置上变化较大。
4.成层结构:冲积扇沉积物通常具有明显的成层结构。
沉积层的颗粒大小和厚度在垂直方向上有所变化,这是由于河流的变化,如河流水位的上升和下降。
5.排列方式:冲积扇沉积物的沉积方式可以是平均或斜坡状,取决于河流的特定条件。
平均沉积通常是在相对稳定的河床条件下发生的,而斜坡状沉积通常是在河流水位变化较大的条件下发生的。
6.断层和变形:由于地球的构造运动,冲积扇沉积物可能会出现断层和变形。
这些断层和变形可能会改变沉积物的各种特性,如层理、厚度和沉积物成分。
7.古环境信息:冲积扇沉积物可以提供有关过去环境的重要信息。
通过对沉积物的分析,可以了解到关于河流改变、气候变化和地壳运动等方面的信息。
太子河流域本溪期沉积相特征
太子河流域本溪期沉积相特征
1 太子河流域本溪期沉积
太子河流域位于中国黄河流域及中南半岛,有着悠久的沉积地质史。
本溪期的地层存在于该流域,是一段有趣的地质时期。
本溪期的
沉积物包括岩溶型沉积物、淤泥质沉积物及砂质沉积物,具有一定的
水平和垂直排列特征。
1. 岩溶沉积
岩溶沉积主要存在于太子河流域的深层。
从形状来看,岩溶沉积
是两端尖锐,两侧向外弯曲的形状,表面呈锥形,表现出外锥、内椎、狭口和横壁等特征。
沉积物主要由二至三级不规则碎屑组成,中间基
底有少量泥和砂。
由于具有相对深厚的基底,岩溶沉积在太子河流域
具有重要控制作用。
2. 淤泥质沉积
淤泥质沉积主要存在于太子河流域的中上层。
沉积物由淤泥质碎屑、黏土、细沙和极细砂组成,并呈现出金属、辉钼等元素的分布不
均匀现象。
它的表面有许多波痕,表明太子河流域出现过陆地洪水活动。
3. 砂质沉积
砂质沉积位于太子河流域的上层,由中、大砂组成,其上有微砂、细沙和黏土等构成混合物。
砂质沉积物表面大多呈椭圆形,而大部分
椭圆形沉积物内外呈梯度排列,内部沉积物的颗粒度逐渐减小,渐渐表示出山洪活动的趋势,一定程度上反映出当时的沉积环境。
通过对太子河流域本溪期沉积物特征的分析,可以看出,该流域本溪期具有较多的沉积构造,其中包括岩溶型沉积物、淤泥质沉积物及砂质沉积物。
这些沉积物可以为研究地质历史和形成背景提供重要的信息支持,为地质动态研究奠定良好的基础。
黄河沉积特征
黄河沉积特征
黄河是中国最为著名的河流之一,也是一条具有重要历史意义的河流。
它的沉积特征不仅在中国,而且在世界上也享有盛誉。
黄河沉积特征也很有趣,下面就来介绍一下黄河沉积特征吧。
首先,河流形成了一个复杂的沉积系统,主要表现为向下深入、向上上升以及向外扩散。
黄河河流特有的沉积系统中,如果以黄河主河道为中心,向下深入的沉积物就位于主河道的下游,向上上升的沉积物就位于主河道的上游,而边缘扩散性的沉积物则位于主河道的左右两侧。
其次,黄河河流沉积的特征还有沉积岩性的差异性。
主河道的沉积物特别高度的均质且细密,大多是砂卵石和细砂;但是,上游的沉积物则具有更多的多孔性,大多是砾砂以及一定程度上的粉砂级物质,它们多位于河谷深处。
此外,黄河河流沉积特征还包括河流沉积物的组成。
黄河的沉积物主要由黏土、陆地砂、粉砂和砂卵石组成。
黏土组成比例最高,大约占90%以上;陆地砂组成比例为5-7%;而粉砂和砂卵石组成比例则最少,均在3%以下。
最后,黄河河流沉积特征还包括河流冲积特征。
河流冲积系统是河流沉积最大的特征之一,它是河流沉积系统中一个重要的组成部分,它们一般位于江河河口,也就是河流汇口处。
河流冲积特征的表现主要有浊流的产出、砂丘的抬升以及河流立体构造的形成等。
总之,黄河河流沉积特征多方面复杂,其中包括沉积系统、沉积
岩性的差异性、沉积物的组成以及河流冲积特征等。
黄河沉积特征的认识有助于我们更好地了解这条伟大的河流,从而对黄河更好的保护和管理。
沉积环境特征总结
发育位置
沉积物搬运方式
沉积物沉积类型
其它
平直河
弯曲度小
通常仅出现在大型河流某一河段的较短距离内,或属于小型河流
可通过侧向迁移逐渐向曲流河发展
曲流河
(蛇曲河)
单河道,河道较稳定
主要分布于河流的中、下游地区
多以悬浮负载和混合负载为主
侧向侵蚀和侧向加积作用发育,并通过裁弯取直形成牛轭湖和泛滥平原沉积
长江中、下游
滨海相
海滩沙丘
潮上带的向陆一侧。海岸沙丘是由波浪作用从临滨搬运至前滨和后滨而处于海平面之上的海岸沙,再经风的吹扬改造而成。
后滨
位于海岸沙丘与平均高潮线之间。
前滨
位于平均高潮线与平均低潮线之间的潮间带
临滨
位于平均低潮线至浪基面之间的朝下带
平面扇形,规模小;剖面楔形,向盆地中央延伸距离较短(几公里)
相
水体深度
滨海相(对应陆棚上部)
最大风暴潮线至浪基面之间
浅海相(对应陆棚下部)
浪基面至陆棚边缘(水深一般10-200m)。有两种类型:边缘海(陆缘海)和陆表海
半深海相(对应大陆斜坡)
水深200-2000m
深海相(对应大洋盆地)
水深2000m以下
沉积物多以悬浮负载方式搬运
多发育在河流的中、下游
正常三角洲
辫状河三角洲
扇三角洲
沉积位置
远离物源区的、地形较缓的盆地边缘
距物源区较近的、地形较陡的盆地边缘
紧邻物源区的、地形较陡的盆地边缘
形成三角洲的河流类型、水流性质
源远流长的曲流河进入盆地;牵引流
较近源的辫状河进入盆地;牵引流
冲积扇直接进入盆地;牵引流和泥石流
辫状河
(游荡性河)
辫状河沉积特征及其沉积模式
低 水深 流缓
高 水浅 流急
侧向 细, 加积 多为 作用 砂泥 明显, 发育 边滩
垂向 及侧 向加 积作 用, 发育 心滩
粗, 多为 粒砂
多种 较 “泥 剖面 低 多样, 少 包砂” 透镜
槽状
或砂 状,
和板
泥间 平面
状交
互正 弯曲
错层
旋回 条带
理
沉积 状
槽状 交错 层理 及冲 刷构 造
几 “砂 剖面 高
•常形成于河道变宽或深度突然增加引起的流线发散地区。 •粗粒砂砾质沉积物,下切板状交错层理,上部发育槽状交错层 理。 •沙坝长轴垂直水流方向,底平顶凸的外部形态。
•主河道弯曲,水流流量不对称产生。 •大型单组或多组低角度板状交错层理或平行层理,上部发育槽 状交错层理。 •沙坝长轴斜交河道方向分布,低凸顶平的透镜状和楔状砂体。
三、现代河流沉积体系—— 辫状河段
曲流河与辫状河沉积特征对比
河 地坡曲 宽 沉 水 沉 沉 沉泥 岩 形分
型 貌降率 深 积 流 积 积 积炭 性 态岔
单
比速 及 作 物 构
序 砂系
元பைடு நூலகம்
率 能 用粒 造
列 体数
量
度
曲 河道 较 高 小于
流 河
及边 滩、
低
40
决口
扇、
天然
堤、
河泛
平原
辫 河道 较 低 远大
状 河
及心 滩、
高
于50
河泛
平原
发育由河道迁移产生的各类型层理块状或平行层理大型板状交错层理巨型槽状交错层理小于40作用明显发育多种多样旋回沉积剖面透镜平面弯曲条带远大于50交错层理弯曲带状科学家本身一开始就不仅对他们所看到的自然界进行编目和描述而且借助于严密的条理化的理论而使自然界的作用可以为人们所理解
地表流水的类型及沉积物特点 ppt课件
地表流水的类型及沉积物特点
地表流水的类型及沉积物特点
曲流与河漫滩
地表流水的类型及沉积物特点
自由曲流
——黄河的九曲十八湾
巴音布鲁克
地表流水的类型及沉积物特点
亚马孙平原上的曲流
地表流水的类型及沉积物特点
黄河上的曲流与牛轭湖
地表流水的类型及沉积物特点
深 切 曲 流
地表流水的类型及沉积物特点
深切曲流,怒江
地表流水的类型及沉积物特点
end
第四节 河流的地质作用
河流是陆地上永久性有固定水流,它与人类的生活生产 有着极其密切的关系。人类文明的发展与河流分不开的“母亲 河”同时从自然界的角度,河流是陆地上最活跃的地质动力。 河流的地质作用是陆地上最强烈的外动力地质作用,流水的作 用,是河水运动过程中对地表各种改造。
流动,在河底部的滑动、滚动和跳跃的移动。 磨圆作用——河底中被拖运的碎属,一方面磨蚀河床
底部和岸坡,另一方面互相撞击,使得其棱角被磨平的作用 过程。
磨圆度越好说明搬运距离越远 2.悬运——河流中的粉沙和黏土由于颗粒的细小悬浮
在水流中,随着流水前进。 3.溶运——河流中一些溶解于水的可溶性岩石和矿物
成分,呈其溶液或胶冻溶液状态被水搬运。
地表流水的类型及沉积物特点
地表流水的类型及沉积物特点
第三节 沟谷流水地质作用
一、沟谷流水的概念: 水文特征: (一)流量变化悬殊,暴涨暴落,而且常常干涸无水; (二)流速较大,多湍急; (三)含砂量多,颗粒大小混杂,分选与磨圆程度均较差。 二、沟谷的发展: (一)纵剖面与横剖面的发展: (二)沟谷的发展阶段:
主要沉积环境的沉积特征
Welcome !!!
欢迎您的下载,
资料仅供参考!
生物礁是浅水碳酸盐沉积中的一种特殊的沉积体,可发育在沿岸形成岸礁,也可在陆棚上形成障壁礁,沉积物以骨架岩、黏结岩和障积岩为主。
陆棚碳酸盐沉积环境内除发有与陆源碎屑沉积环境相对应的风暴沉积外,主要为含生物碎屑灰岩和泥晶灰岩及其与泥灰岩和页岩的互层,具有正常含香生物群组合。
次深海,深海沉积
深海沉积主要为褐色黏土、抱球虫软泥和放射虫软泥等组成。
主要沉积环境的沉积特征
陆地环境沉积相类型
冰川沉积
有被刨蚀的碎屑物质,堆积形成冰积层;砾石多呈棱角状,大小混杂,表面具擦痕;具有层理的冰水混合物;冰海砾石沉积。
河流沉积
山间河流:河道直、流速大、切割深、主要为河床粗碎屑沉积;多为紫红色、块状构造、无化石或含脊椎动物骨骼碎块;
平原河流:流速小、河谷宽、河曲发育;主要有河道、沙坝和泛滥平原沉积;底部为砾石层,具定向排列,为河底滞留沉积,呈透镜状,向上逐渐过渡为点沙坝沉积,以岩屑或长石石英砂岩为主,具大型板状或槽状交错层理;粒度向上变细,缺化石;泛滥平原沉积以粉砂质泥质为主;天然堤以细砂至粉砂为主;洪水冲溢天然堤以粉砂岩为主;曲流河形成的牛轭湖形成泥炭沼泽沉积,呈透镜状。
湖泊沉积
从滨湖到深湖,随湖水深度增加,水动力减弱,沉积物粒度逐渐变细,从交错层理变为水平层理,形成近同心的环带状分布;淡水湖多在淡水区,以细砂岩、粉砂岩及粘土岩为主,大型淡水中泥灰岩、介壳灰岩、油页岩常见,可形成特有的湖生生物组合;咸水湖蒸发岩发育,湖泊干枯过程中,依次出现石膏、岩盐和钾盐等矿物;
海陆交汇相
潮坪沉积分为潮上带、潮间带和潮下带;低潮线附近为潮坪环境中的高能带,以砂质沉积为主,向陆或向海沉积物逐渐变细,以粉砂和泥质为主;常见交错层理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河道沉积物的分布特性1 引言沉积物是水体氮素的重要归宿与来源,上覆水与孔隙水是沉积物-水界面中氮交换的主要媒介,无机氮是其重要的交换形态.可溶性氮素通过孔隙水向上覆水扩散迁移,使沉积物成为上覆水重要的氮素内源.影响沉积物-水界面氮交换过程的因素呈现多样化,包括沉积物的理化特征、溶解氧、氧化还原电位、pH、温度、水动力扰动等环境条件以及底栖生物扰动等生物因素.污补河流中污染物在分解转化过程中大量耗氧,使沉积物溶氧量急剧变化,再加上闸坝林立,水流舒缓,河流复氧能力差,沉积物-水界面呈现厌氧状态,对于氮素界面的交换过程及赋存形态有重要的影响.在北方半干旱地区,以海河流域为代表,天然径流少,污废水成为主要补给水源,河流呈现非常规水源补给特点.与传统意义上的河流相比,非常规水源补给河流随污水的汇入消纳了大量的污染物,产生了各类污染问题.滏阳河作为典型的非常规水源补给河流,承接着石家庄、邯郸、邢台、衡水、沧州等城市的工业及生活污废水,平均污径比由1980年的0.25上升到2007年的0.37.目前研究表明,滏阳河作为非常规水源补给河流存在严重的沉积物重金属污染问题,但对存在的氮营养盐污染及内源释放问题关注较少.滏阳河接纳的石化、制药等行业的污水及生活废水中含有大量的氮营养盐(Seved et al., 2010;Tang et al., 2011),排入河流增加了水体的氮负荷(王超等,2015a),低溶解氧进一步加剧了沉积物内源释放风险(郭建宁等,2010).滏阳河水体总氮浓度超国家地表水V类标准,外源输入是水体氮营养盐增加的重要原因(赵钰等,2014),但对沉积物这一重要的氮素内源未做进一步研究.本文针对滏阳河存在的氮素污染问题,采集不同河段的表层沉积物及柱状沉积物,研究表层沉积物氮素空间分布特点及上覆水-孔隙水氮营养盐垂直分布特征,并对沉积物-水界面无机氮扩散通量进行估算,对比滏阳河不同区段氮营养盐内源释放特征,为非常规水源补给河流富营养化防治提供理论支持.2 材料与方法2.1 研究区域概况滏阳河发源于太行山南段东麓邯郸市峰峰矿区,自东武仕水库流经磁县、邯郸等县市,于艾辛庄与滏阳新河汇合,流经衡水等地终至献县,与滹沱河汇合后称子牙河.滏阳河流域属北温带大陆性季风气候,平均气温13.4 ℃;年均降雨量550 mm,集中于7至9月份,占年降雨量70%.滏阳河干流全长402 km,流经石家庄、邢台、邯郸、衡水等重要城市,是一条集防洪、灌溉、排涝、航运等功能于一体的骨干河道.沿途城市人口稠密,制药、皮革等重污染产业广泛分布,其生产生活污水均排入滏阳河内.以艾辛庄为界,上游主要接纳邯郸市区及沿途各县污水,2007年共接纳污水1.25亿m3;下游承纳衡水市区、冀州、武强、武邑等县的生产生活废水,2007年接纳衡水市境内废水量0.54亿m3;此外,邢台市和石家庄市污废水顺子牙河支流最终汇入滏阳河.2.2 样品采集与分析2.2.1 表层沉积物采集研究设置采样点16个,于2014年6月采集表层沉积物及沉积柱.按照上游至下游进行样点编号,其中滏阳河上游包括S1~S9,下游样点为S10~S16.根据行政区段对采样点进行划分,可分为邯郸段(S1~S8)、邢台段(S9、S10)、衡水段(S11~S14)和沧州段(S15、S16).采样区域及采样点分布如图 1所示.图 1图 1 滏阳河沉积物采样点位置分布利用自重力采样器采集表层10 cm沉积物样品,储存于聚乙烯自封袋.沉积柱采集后静置24 h,用虹吸管自上而下对上覆水按5 cm进行分层,保存于聚乙烯瓶;对柱状样自上而下分割,按1 cm 分层,用0.45 μm微孔滤膜过滤得到孔隙水,保存于玻璃瓶.河流水样温度(T)、pH、溶解氧(DO)、氧化还原电位(ORP)利用水质分析仪现场测定.样品低温保存运输.到达实验室后,沉积物部分样品冷冻干燥,研磨,过100目尼龙筛,密封避光储存待分析;其余样品于4 ℃密封避光保存.2.2.2 样品分析参照《水和废水监测分析方法》(国家环境保护总局,2002)测定上覆水中氨氮(NH3-N)、硝氮(NO3--N)和亚硝氮(NO2--N);孔隙水各无机氮(DIN)含量用全自动化学分析仪(AMS Smart Chem 2000)测定.沉积物样品用2 mol·L-1的氯化钾溶液振荡提取1 h,0.45 μm滤膜过滤后测定提取液中氨氮(NH3-N)、硝氮(NO3--N)和亚硝氮(NO2--N)(鲍士旦等,2005).其中NH3-N采用靛酚蓝比色法,NO3--N采用双波长紫外分光光度法,NO2--N采用N-(1-萘基)-乙二胺光度法.采用元素分析仪测定沉积物总氮(TN)及碳氮比(C/N),沉积物中总有机氮(TON)为总氮与无机氮(氨氮、硝氮和亚硝氮之和)的差值.2.3 孔隙水扩散通量模型运用Fick第一扩散定律对沉积物-水界面间物质扩散通量进行估算.Fick第一定律适用于稳态扩散,即界面物质的交换过程为平衡状态,主要受浓度扩散控制(Paul et al., 2001,潘延安等,2014).扩散通量计算公式如下:式中,F为沉积物-水界面扩散通量(μmol·m-2·d-1);为沉积物-水界面物质浓度梯度(mg·L-1·cm-1);M为N的相对原子质量,取14 g·mol-1;Ds为考虑了沉积物弯曲效应的实际分子扩散系数(m2·s-1);与孔隙度(φ)间的关系式:Ds=φ·D0(φ< 0.7);Ds=φ2·D0(φ>0.7).式中,D0为理想溶液的扩散系数,温度25 ℃时,NH3-N、NO3--N和NO2--N的理想扩散系数(D0)分别为19.8×10-6、19.0×10-6、19.1×10-6cm2·s-1(吴文成等,2008).φ为沉积物孔隙度,其计算方法为:式中,Ww为沉积物鲜重(g);Wd为沉积物干重(g);ρ为表层沉积物平均密度与水密度比值,滏阳河沉积物主要为粉砂组成,取2.5(汪淼等,2015).采样点分布图用ArcGIS 10.0绘制;数据统计分析在SPSS 20.0上进行;数据制图在Origin 9.0上完成.3 结果与讨论3.1 表层沉积物氮素含量及空间分布滏阳河各采样点表层沉积物不同形态氮素的空间分布特征见图 2.滏阳河沉积物整体总氮质量浓度在770~10590 mg·kg-1之间,平均值为2584 mg·kg-1,高于EPA制定的沉积物总氮污染重污染标准(2000 mg·kg-1)(US EPA,2002),表明滏阳河整体处于TN重度污染水平.其中流域支流汇入点(S10、S11)TN浓度高达10590、5210 mg·kg-1,远超其他点位.其原因是上游支流接纳的氮素随水流汇集于河流交汇点并发生沉积,造成表层沉积物中TN浓度的升高.邯郸段、邢台段、衡水段和沧州段总氮浓度平均值分别为1756、5745、2664、2573 mg·kg-1,邢台段达整条河段的TN浓度最高值.牛尾河、北澧河、洨河及汪洋沟等支流河水含有大量的总氮,汇入邢台河段,使沉积物TN浓度增高.图 2图 2 滏阳河表层沉积物氮素空间分布特征有机氮(TON)是滏阳河表层沉积物中氮素的主要存在形式,其占总氮比例达84.9%~99.3%.滏阳河表层沉积物中TON的空间分布趋势与TN一致,均在邢台段达到最高值,5056 mg·kg-1.河流中的有机氮占总氮含量达14%~90%(Seitzinger et al., 1997),主要来源于水生生态系统中生物的分泌及腐烂分解,以及外源水体携带的颗粒态氮和溶解性有机氮的输入(Sujay et al., 2014).沉积物中C/N可以判定有机污染来源.Meyers等研究藻类的C/N一般在4~10 之间,而陆生植物的C/N一般大于20(Meyers,1994).滏阳河C/N平均值达18.24,说明滏阳河沉积物中TON更多来源于外源输入,且总氮中TON比例在世界河流中处于较高水平.表层沉积物NH3-N含量范围为3.23~1135.00 mg·kg-1,占TN比例达0.23%~10.70%,分布趋势与有机氮呈现一致性.氨化细菌在厌氧条件下使有机氮发生矿化产生NH3-N,而水体环境中NH3-N主要来源于有机氮的矿化及外源的输入(赵海超等,2013).滏阳河水系低氧现象突出(王超等,2015b),且上覆水流速较低,氧交换能力较弱,导致沉积物溶氧含量低,有机氮矿化生成NH3-N,则沉积物中NH3-N含量分布与有机氮呈现一致性.与之前研究相比(赵钰等,2014),滏阳河表层沉积物NO3--N含量明显上升,由17.20 mg·kg-1升至125.00 mg·kg-1,占TN比例由0.004%升至0.044%;NH3-N含量明显下降,由585.00 mg·kg-1降至164.00 mg·kg-1,占TN百分比由0.135%降至0.052%.NH3-N和NO3--N浓度的升降变化说明沉积物-水界面氧化还原环境发生改变,硝化细菌将NH3-N氧化为稳定的NO3--N.底泥氧化还原状态的改变说明了氨氮污染严重的水体正在逐渐恢复自净能力,水体环境有所改善.3.2 沉积物-水界面氮分布特征滏阳河各河段硝态氮浓度在上覆水到孔隙水的垂直剖面上呈现不同趋势:邢台、衡水和沧州段硝氮浓度随深度而逐渐降低,尤其是在孔隙水中急剧减少.以衡水段为例,NO3--N浓度在上覆水中为2.84 mg·L-1,在孔隙水中降至0.57 mg·L-1,到深层浓度小于0.10 mg·L-1.硝氮随深度变化呈递减趋势,可能与沉积物的氧化还原环境有关.溶解氧是沉积物硝化作用及反硝化作用的重要影响参数,邱昭政等研究发现好氧条件下平均氨氧化速率为14.2 mg·L-1·d-1,而厌氧条件仅有37.40%氨氮转化,平均速率为5.7 mg·L-1·d-1(邱昭政等,2013).未加扰动的沉积物处于缺氧环境,呈现还原环境,致使硝化反应减弱,无法将氨氮转化为NO3--N;同时有利于消耗NO3--N 的反硝化作用进行(Korom et al., 1992),导致NO3--N迅速减少.邢台、衡水和沧州段上覆水呈还原环境(表 1),水流平缓对沉积物扰动作用小,复氧能力较差,且有机物分解消耗溶解氧,沉积物还原性增强,影响硝化和反硝化作用的进行,从而影响沉积物中硝氮的分布.邯郸段硝氮浓度在进入沉积物-水界面后逐渐升高,在界面下11cm处达到最大值6.72 mg·L-1.孔隙水平均硝态氮浓度达3.54 mg·L-1,为上覆水8倍之多.邯郸段山区降水补给较多,地势高差悬殊较大,界面水动力或底栖生物扰动导致沉积物溶解氧含量增大,沉积物-水界面处于氧化状态,硝化作用增强,NH3-N被硝化细菌氧化,造成NO3--N浓度上升.表 1 各采样点表层沉积物及上覆水基本理化性质邯郸、邢台段氨氮浓度在垂直剖面上呈增大趋势,最高浓度分别达到17.70 mg·L-1和39.30 mg·L-1(图 3).NH3-N的含量与沉积物理化性质、氧化还原环境、水动力条件及污染源等有关.一方面,随深度的增加沉积物含氧量降低,还原环境有利于有机氮氨化作用进行,相应的消耗氨的硝化作用减弱,致使NH3-N在沉积物中发生累积,出现随深度升高的情况(刘峰等,2011).另一方面,氨氮的离子态易被带负电的沉积颗粒胶体吸附,导致在深层的累积.衡水段进入沉积物-水界面氨氮浓度先降低再逐步升高,在-7 cm处达到最低值28.80 mg·L-1.沧州段氨氮浓度在垂直方向上随深度增加而降低,上覆水氨氮平均浓度为(27.3±1.80)mg·L-1,是孔隙水氨氮平均含量的2.7倍.衡水段与沧州段NH3-N垂直方向变化趋势的改变可能是由于外源NH3-N的输入.石家庄市作为子牙河水系中最大的氨氮排放区域,其工业氨氮排放量占水系工业源氨氮排放量的81.00%.石家庄市连同衡水、沧州段的污水一起注入滏阳河下游,使衡水、沧州段上覆水氨氮浓度达51.70、27.30 mg·L-1,远高于邯郸、邢台河段.水体NH3-N浓度在2005年达到峰值,2009年下降后11年再次升高的变化趋势与衡水段沉积物NH3-N变化趋势一致(荣楠等,2015).支流外源高氨氮的摄入可能是上覆水氨氮浓度高于表层孔隙水,出现随深度而降低的现象的原因.图 3图 3 滏阳河上覆水和孔隙水硝氮、氨氮垂直分布特征对滏阳河各河段样点上覆水与孔隙水中NH3-N和NO3--N浓度进行统计分析(图 4).上覆水与孔隙水中NO3--N变化趋势在邯郸段存在较大差异,上覆水NO3--N在邯郸段达到低值,平均浓度达0.43 mg·L-1;而在孔隙水中则达整个河段最高值,达4.59 mg·L-1.其原因可能在于邯郸段沉积物中较高溶解氧促使硝化作用进行,抑制了消耗NO3--N的反硝化作用,使沉积物孔隙水中容纳更多的NO3--N.NH3-N浓度在上覆水与孔隙水中变化趋势一致,在衡水段分别达到最高值,51.66和57.72 mg·L-1.支流外源氨氮的大量排放可能是造成衡水段高值的主要原因,限制污水排放将会有助于改善该段界面高氨氮的现状.图 4图 4 滏阳河上覆水和孔隙水硝氮、氨氮浓度空间分布特征3.3 沉积物-水界面无机氮扩散通量自然水体沉积物-水界面水流速度较小,上覆水和孔隙水氮营养盐浓度存在明显的差异,浓度梯度引起由高浓度向低浓度扩散是营养盐的主要迁移过程(吴文成等,2008).若不考虑生物扰动、风浪扰动、界面反应等物化因素,将沉积物-水界面物质扩散简化为分子扩散(秦伯强等,2005),利用Fick第一扩散定律估算沉积物-水界面无机氮的扩散通量,结果见表 2.表 2 滏阳河沉积物-水界面无机氮扩散通量上覆水与孔隙水中营养盐浓度存在差异,导致由高浓度向低浓度的扩散.邯郸段与邢台段沉积物-水界面NH3-N表现为由沉积物向上覆水扩散,扩散通量最大值分别达1093 μmol·m-2·d-1、1471 μmol·m-2·d-1.衡水段与沧州段部分点位NH3-N表现为上覆水向沉积物中扩散,扩散通量在-932~-456 μmol·m-2·d-1之间.不同河段NH3-N扩散通量存在差异,其原因可能是各段水源组成差异导致扩散通量的不同.邯郸与邢台段主要有上游山区降水及沿岸生活污水汇入,而衡水段则接纳上游洨河和邵村排干排入的较高污染的生活废水及皮革、制药等工业废水.石家庄作为子牙河水系中最大的氨氮排放区域,其排放的高氨氮废水也汇入衡水和沧州段.另外一个原因是沿河污水排放总量梯度造成水体氨氮含量差异,致使扩散通量变化.由全国污染源普查统计数据分析,邯郸段和邢台段2007年接纳污水2.45亿m3,而衡水段接纳包括石家庄在内的污水总量4.02亿m3.滏阳河下游大量无数排放使上覆水体氨氮浓度高于沉积物及其孔隙水,则氨氮向下沉积,沉积物发挥“汇”的作用,从上覆水中吸附氨氮.邯郸段沉积物-水界面NO3--N整体上表现为由沉积物向上覆水扩散,扩散通量范围为4.21~309.56 μmol·m-2·d-1.邢台、衡水、沧州各段NO3--N表现为由上覆水向沉积物扩散,最小扩散通量低于-150 μmol·m-2·d-1.NO3--N在沉积物-水界面的扩散通量受沉积物结构、含氧量、有机质含量、生物扰动等因素影响(陈朱虹等,2014).受生物及水体扰动,邯郸段表层沉积物处于氧化环境,硝化作用的进行产生大量的NO3--N,使沉积物孔隙水中浓度高于上覆水,表现为向上覆水体扩散的特征.而邢台、衡水、沧州各段沉积物含氧量较低且有机物分解耗氧使沉积物处于低氧状态,致使硝化反应抑制,反硝化作用消耗NO3--N,造成孔隙水NO3--N浓度低于上覆水,沉积物表现为NO3--N的汇.NO2--N作为硝化与反硝化作用的中间产物,含量低且不稳定存在,因此其扩散通量意义不明确(Hall et al., 1996).滏阳河作为典型的非常规水源补给河流,以生活及工业污废水等非常规水源补给为主,污径比达0.37.与以自然降水为主要补给水源的河流相比,高氮废水的输入加大了沉积物氮素本底.以珠江为例,广州段沉积物总氮含量达1130~2900 mg·kg-1,而滏阳河总氮浓度在770~10590 mg·kg-1之间,沉积物氮含量处于较高水平(吴文成等,2008).与珠江相比,滏阳河沉积物-水界面氨氮扩散通量达-932~1471 μmol·m-2·d-1,处于较高水平,并且下游因外源高污染污水的输入,氨氮仍向沉积物进行扩散,即使控制外源排放,沉积物仍会有内源释放风险,将会为后期河流治理与修复带来困难,急需引起相关治理部门的重视.具体参见污水宝商城资料或更多相关技术文档。