【教案】 整式的乘法——单项式与单项式相乘
八年级数学上册14.1整式的乘法14.1.4整式的乘法第1课时单项式乘以单项式说课稿(新版)新人教版
八年级数学上册 14.1 整式的乘法 14.1.4 整式的乘法第1课时单项式乘以单项式说课稿(新版)新人教版一. 教材分析新人教版八年级数学上册第14.1节整式的乘法,主要介绍了单项式乘以单项式的运算方法。
这是初中数学中基础而重要的一部分,对于学生来说,这部分内容既是复习和巩固之前学过的知识,又是学习更复杂数学运算的基础。
二. 学情分析学生在学习这一节之前,已经学习了有理数的乘法、乘方以及单项式的概念。
他们对这些基础知识有一定的理解和掌握,但可能对于如何将乘法应用到单项式上,以及如何处理符号等问题会感到困惑。
因此,在教学过程中,我需要针对学生的这些特点进行引导和解释。
三. 说教学目标1.知识与技能目标:使学生掌握单项式乘以单项式的运算方法,能够正确地进行计算。
2.过程与方法目标:通过实例演示和练习,培养学生独立解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们勇于探索的精神。
四. 说教学重难点1.教学重点:单项式乘以单项式的运算方法。
2.教学难点:如何处理符号问题,以及如何将乘法应用到单项式上。
五. 说教学方法与手段在教学过程中,我将采用讲授法、引导法、实践法等多种教学方法。
通过实例讲解,引导学生自己探索和发现规律,再通过练习巩固所学知识。
同时,我会利用黑板、粉笔等教学手段,清晰地展示运算过程,帮助学生理解和记忆。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何进行单项式的乘法运算。
2.讲解:讲解单项式乘以单项式的运算规则,并通过示例进行演示。
3.练习:学生进行练习,教师引导学生思考和解决问题。
4.总结:对本节课的内容进行总结,强调重点和难点。
5.作业布置:布置相关的练习题,巩固所学知识。
七. 说板书设计板书设计要清晰、简洁,能够突出重点。
我会用不同的颜色标注出运算规则和注意事项,帮助学生理解和记忆。
八. 说教学评价教学评价主要通过学生的练习情况和课堂表现来进行。
七年级数学下册整式乘法《单项式与单项式相乘》教案(沪科版)
《单项式与单项式相乘》教学目标:1.使学生理解并掌握单项式与单项式相乘法则,能够熟练地进行单项式的乘法计算;2.注意培养学生归纳、概括能力,以及运算能力.教学重点、难点:重点:掌握单项式与单项式相乘的法则.难点:分清单项式与单项式相乘中,幂的运算法则.教学过程:一、复习旧知,作好铺垫回忆:什么是单项式?什么叫单项式的系数?什么叫单项式的次数?同底数幂乘法法则二、设计情境,问题导入我们已经学习了单项式和幂的运算性质,在这个基础上我们学习整式的乘法运算.先来学最简单的整式乘法,即单项式与单项式相乘(给出课题)如:长方形的长为5a,宽为2a.想一想:如何求出长方形的面积.S=2a·5a你能求出答案吗?三、合作探究、归纳法则在上述算式中①每个单项式是由几个因式构成的,这些因式都是什么?2a·5a =(2·a)·(5·a)②根据乘法交换律2a·5a=2·5·a·a③根据乘法结合律2a·5a =(2·5)·(a·a)④根据有理数乘法和同底数幂的乘法法则得出结论2a·5a =10a2按以上的分析,写出2x2y·3xy2的计算步骤2x2y·3xy2=2·3·x2·x·y·y2=(2·3)·(x2·x)·(y·y 2)=6x3y3通过以上两题,归纳出单项式与单项式相乘的法则:单项式与单项式相乘,把它们的系数、同底数幂分别相乘的积作为积的因式,其余字母连同它的指数不变,也作为积的因式.运算步骤是:①系数相乘为积的系数;②同底数幂相乘,作为积的因式;③只在一个单项式里含有的字母,连同它的指数也作为积的一个因式;单项式与单项式相乘的法则,对于三个以上的单项式相乘也适用.四、尝试练习,逐步掌握计算以下各题:(1)4n2·5n3;(2) 4a2x2·(-3a 3bx);(3)(-5a2b3)·(-3a);解:(1) 4n2·5n3=(4·5)·(n2·n3)=20n5;(2)4a2x2·(-3a3bx)=4a2x2·(-3)a3bx=[4·(-3)]·(a2·a3)·(x2·x)·b=(-12)·a5·x3·b=-12a5bx3.(3)(-5a2b3)·(-3a)=[(-5)·(-3)]·(a2·a)·b3=15a3b3;练习:计算以下各题:(1)(-5amb)·(-2b2);(2)(-3ab)(-a2c)·6ab2.五、反馈小结、深化理解单项式与单项式相乘的法则;单项式与单项式相乘的实质是乘法的交换律与结合律以及幂的运算性质.。
整式的乘法 教学设计
整式的乘法【第一课时】【教学目标】知识与技能:1.会进行单项式与单项式的乘法运算。
2.灵活运用单项式相乘的运算法则。
过程与方法:1.经历探索乘法运算法则的过程,体会乘法分配律的作用和转化思想。
2.感受运算法则和相应的几何模型之间的联系,发展数形结合的思想。
情感、态度与价值观:在学习中获得成就感,增强学好数学的能力和信心。
【教学重难点】重点:熟练地进行单项式的乘法运算。
难点:单项式的乘方与乘法的混合运算。
【教学过程】一、情景引入教师引导学生复习整式的有关概念整式的乘法实际上就是单项式×单项式、单项式×多项式、多项式×多项式。
二、探索法则与应用1.组织讨论:完成课本“试着做做”的题目,引导学生分组讨论单项式×单项式的法则(组织学生积极讨论,教师应积极参与学生的讨论过程,并对不主动参与的同学进行指导。
)2.在学生发言的基础上,教师总结单项式的乘法法则并板书法则:系数与系数相同字母与相同字母单独存在的字母以上3点的处理办法,让学生归纳解题步骤。
(学生刚接触,故要求学生按步骤解题,且提醒学生不能漏项。
)3.例题讲解例1:计算:(1)4x·3xy ; (2)(-2x )·(-3x 2y ); (3)解:(1)(2)(3)例2:计算:(1); (2)解:(1) (2)(强调法则的运用)4.练习:课本“练习”第1题,学生口答,讲解错误的理由;第2题,学生板书,发现问题及时纠正,可让学生辨析、指出错误,巩固法则。
三、课堂总结指导学生总结本节课的知识点、学习过程等的自我评价。
2321abc b c 32⎛⎫⋅- ⎪⎝⎭y12χy χ)(χ3)(43χy 4χ2=⋅⋅⋅⨯=⋅[]y 3226χy )χ(χ3)(2)(y)3χ(2χ)(=⋅⋅⋅-⨯-=-⋅-23324321211abc (b c)a (b b )(c c)ab c .32323⎡⎤⎛⎫⋅-=⨯-⋅⋅⋅⋅⋅=- ⎪⎢⎥⎝⎭⎣⎦-⋅⋅2212ab 3a bc 2221ab (5abc)2⎛⎫-⋅- ⎪⎝⎭2212a ab 3a bc 2-⋅⋅c )c b ()a a a (321)2(22⋅⋅⋅⋅⋅⋅⎥⎦⎤⎢⎣⎡⨯⨯-=cb 3a 34-=221ab (5abc)2⎛⎫-⋅- ⎪⎝⎭)5abc ()b (a 212222-⋅⎪⎭⎫ ⎝⎛-=)5abc (b a 4142-⋅=c )b b ()a a ()5(4142⋅⋅⋅⋅⋅⎥⎦⎤⎢⎣⎡-⨯=c b a 4553-=(可畅所欲言,包括学习心得和困惑,互相帮助,互相促进。
单项式与单项式相乘》教案
单项式与单项式相乘》教案课题14.1.4《整式的乘法--单项式乘以单项式》知识与技能:经历探究单项式与单项式相乘的运算法则的过程,会进行整式相乘的运算。
情感价值观:培养学生转化思想和解决问题的能力,使学生养成良好的研究惯。
教学重点:单项式与单项式相乘的运算法则的探索。
教学难点:灵活运用法则进行计算和化简。
教学方法:创设情境-主体探究-合作交流-应用提高。
媒体资源:多媒体投影。
教学过程:思考回答】设计意图:引入课题,复巩固同底数幂、幂的乘方、积的乘方三个法则及不同点。
提出问题引入新课思考探索。
回顾知识】引入课题,复巩固同底数幂、幂的乘方、积的乘方三个法则及不同点。
提出问题引入新课思考探索。
探索】单项式乘1、单项式乘以单项式的运算法则:以单项式为例,探究单项式与单项式相乘的运算法则,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
例题】计算:1)(-5a2b)(-3a);2)(2x)3(-5xy2)。
(注意规范书写)练巩固】计算:1)3x25x3;2)4y(-2xy2);3)(3x2y)3•(-4x);4)(-2a)3(-3a)2.巩固提高】1.(-2x2y)·(1/3xy2)2.(-3/2ab)·(-2a)·(-2/3a2b2)3.(2×105)2·(4×103)4.(-4xy)·(-x2y2)·(1/2y3)5.(-1/2ab2c)2·(-1/3ab3c2)3·(12a3b) 6.(-ab3)·(-a2b)37.(-2xn+1yn)·(-3xy)·(-1/2x2z)8.-6m2n·(x-y)3·1/3mn2·(y-x)2单项式乘法的运算法则很简单,就是将两个单项式的系数相乘,相同字母的指数相加,然后将结果写成一个新的单项式。
整式乘法优秀教案
整式乘法【教课安排】6 课时。
【第一课时】【教课内容】单项式乘以单项式。
【教课目的】1.经历研究单项式与单项式的乘法,会进行单项式×单项式的运算。
2.在研究运算法例的过程中领会乘法互换律和联合律的作用和转变的思想。
3.在发展推理能力和有条理的表达能力的同时,领会学习数学的兴趣,培育学习数学的信心。
【教课重难点】1.单项式×单项式的运算法例的研究。
2.灵巧运用法例进行计算和化简。
【教课过程】一、复习旧知。
1.回想幂的运算性质①同底数幂的运算性质。
②幂的乘方的运算性质。
③积的乘方的运算性质。
22.计算:① a 3 a 42② 3 xy 22二、研究新知。
1.填空:(ab )c =( ac ) b ; a m a n =a m a n =a m + n ( m ,n 都是正整数);(a m )n = a mn ( m ,n 都是正整数);(ab )n = a n b n (n 都是正整数)。
2.计算: a 2-2a 2=-a 2,a 2·2a 3=2a 5,(-2a 3) 2=4a 6;1 2 2 1 (2+1) (1+2) 3 3x发问:经过上边的活动,你是如何计算的?你发现了什么规律?2.概括单乘单法例:单项式与单项式相乘,把它们的系数、同样字母分别相乘,关于只在后一个单项式里含有的字母,则连同它的指数作为积的一个因式。
三、自学检测。
1.计算:① 3x2·5x 3;② 4y ·(-2xy 2)③( 3x 2y )3·(-4x )④-6x 2 y ·( 3 1 2 ) 2) · ·(a-b 3xy b-a点拨精讲:先乘方再算单项式与单项式的乘法, (a-b )看作一个整体,一般状况选择偶数次幂变形符号简单调些。
4m-n 2 1 3 m +n的和为一个单项式,则这两个单项式的积是 _____。
2.已知单项式 -3x y 与 2x y四、合作研究。
整式的乘法(1)教案
6整式的乘法(1)-----单项式与单项式相乘教学目标:知识与能力:使学生理解并掌握单项式的乘法法则,能够熟练地进行单项式的乘法计算。
方法与过程:经历探索单项式乘法的过程,在具体情境中了解单项式乘法的意义,理解单项式乘法法则。
情感态度与价值观:理解单项式乘法运算的算理,发展学生有条理的思考能力和语言表达能力。
教学重点:单项式与单项式相乘的法则及其应用。
教学难点:理解单项式与单项式相乘的运算法则及其探索过程。
教学方法:通过创设情境,以问题为载体给学生提供探索的空间,引导学生积极探索,教学环节的设计与展开,都以问题的解决为中心。
本节三个课时的内容环环相扣,每课时新知识的学习既是对前一节课所学知识的应用,也为后一节学习奠定基础,所以在教学时注意引导学生发现各知识点之间的联系,善于应用转化的思想,化未知未已知,形成较完整的知识结构。
教学过程:一、复习回顾:问题一:在下列代数式中,哪些是单项式? (1)32-x ; (2)ab ; (3)542ab ; (4)y -; (5)73262+-x x ; (6)x2答案:单项式有:(1)(2)(3)(4)问题二:大家在前面学习了哪三种幂的乘法运算?请分别说出它们的法则及字母公式。
1、 同底数幂的乘法,底数不变,指数相加。
nm nma a a +=⋅(m,n 都是正整数)2、 幂的乘方,底数不变,指数相乘。
mn nmaa =)((m,n 都是正整数)3、 积的乘方,等于各个因式乘方的积。
nnnb a ab =)((n 是正整数) 二、讲授新课:(一) 创设问题情境,引入新课为支持北京申办2008年奥运会,一位画家设计了一幅长为6000米,名为 “奥运龙”的宣传画。
受他的启发京京用两张同样大小的纸,精心制作了两幅画。
如下图所示,第一幅画的画面大小与纸的大小相同,第二幅画的画面在纸的上,下方各留有x 81的空白。
问题一:两幅画面的长、宽各是多少?答:第一幅画面长mx 米,宽x 米;第二幅画面长mx 米,宽x 43米。
11.1 整式的乘法(第4课时 单项式与单项式、整式相乘)(教学课件)-24-25学年七年级数学上册
6 x5 y 6 .
概念归纳
思考—— 3 x5(4x7+2x)=3x5 ·4x7+3x5 ·2x=12x12+6x6这是单
项式乘整式,用到了哪些运算律与运算法则?
单项式乘整式,用单项式乘整式的每一项,再把所得的积相加。
课本例题
例11. 计算
1 2 ⋅ 32 − 2 2
解: 1 2 ⋅ 32 − 2 2
)
A. a2+2 a
B. a2+6 a
C. a2-6 a
D. a2+4 a -2
4. 已知单项式2 x3 y2与-5 x2 y2的积为 mxny4,那么 m - n = -15
.
5. 数学课上,老师讲了单项式与多项式相乘,回到家,小丽拿出课堂笔记复
习,突然发现一道题:-3 x2(2 x -□+1)=-6 x3+3 x2 y -3 x2,“□”的
= 2 ⋅ 32 + 2 ⋅ −22
= 63 2 − 42 3
1
− 2 ⋅ −3 + 9 + 1
3
3
2
1
2 2
− ⋅ −12
4
3
1
2 2
解: 2
− ⋅ −12
4
3
1
2 2
= ⋅ −12 + − ⋅ −12
4
3
1. [2024怀化期中]计算2( a3)2·3 a2的结果是(
A. 5 a7
B. 5 a8
C. 6 a7
D. 6 a8
D
)
2. 计算(7.2×103)×(2.5×104)的结果用科学记数法表示正确的是( D
A. 180 000 000
14.1.4 整式的乘法 (第1课时)单项式与单项式、多项式相乘 教案 2022-2023学年人教
14.1.4 整式的乘法(第1课时)单项式与单项式、多项式相乘一、教学目标1.了解单项式与单项式相乘的方法;2.熟练掌握多项式与单项式相乘的方法;3.能够运用乘法法则解决实际问题;4.培养学生分析问题和解决问题的能力。
二、教学重点1.单项式与单项式相乘的方法;2.多项式与单项式相乘的方法。
三、教学难点学生能够熟练掌握多项式与单项式相乘的方法。
四、教学准备1.PowerPoint课件;2.教学黑板。
五、教学过程第一步:导入新课(1)教师通过引入一道简单的实际问题引起学生的兴趣,例如:现有3个盒子,每个盒子里都有4个苹果,那么一共有多少个苹果?(2)教师引导学生讨论解决此类问题的方法,发现可以通过整式的乘法进行简单的解决。
第二步:引入知识点(1)教师通过PPT展示单项式与单项式相乘的实例,引导学生发现整式相乘的特点。
(2)教师讲解单项式与单项式相乘的方法,如下所示: - 同底数幂相乘,底数相乘,指数相加; - 不同底数幂相乘,直接相乘。
第三步:练习与讲解(1)教师出示一道练习题:计算 (2a^2b^3)(3ab^2),并引导学生完成计算过程。
•步骤1:先求底数的乘积2 × 3 = 6;•步骤2:再求指数的和 2 + 1 = 3 和 3 + 2 = 5;•步骤3:将计算结果组合起来,得到 (2a^2b^3)(3ab^2) = 6a^3b^5。
(2)教师讲解多项式与单项式相乘的方法,如下所示: - 多项式与单项式相乘,将多项式的每一项与单项式相乘,然后合并同类项。
第四步:练习与讲解(1)教师出示一道练习题:计算 (4x^2 + 3xy)(2x - y),并引导学生完成计算过程。
•步骤1:将 (4x^2)(2x) 和 (4x^2)(-y) 相乘,得到 8x^3 和 -4x^2y;•步骤2:将 (3xy)(2x) 和 (3xy)(-y) 相乘,得到 6x^2y 和 -3xy^2;•步骤3:将结果合并,得到 (4x^2 + 3xy)(2x - y) = 8x^3 - 4x^2y +6x^2y - 3xy^2 = 8x^3 + 2x^2y - 3xy^2。
单项式与单项式相乘优秀教案
单项式与单项式相乘一.教学目标:1.理解整式运算的算理,会进行简单的单项式相乘的运算;2. 经历探索单项式乘单项式的过程,理解乘法交换律、结合律的作用,体会类比、转化的思想,发展有条理的思考及语言表达的能力;3. 能运用单项式相乘的法则解决一些实际问题;二.教学重点:单项式相乘的法则的归纳与应用。
三.教学难点:单项式相乘的法则的归纳。
四.教学过程:(一)温故知新前面我们已经学习了幂的运算性质,请一位同学带领大家回顾相关知识。
过渡到整式乘法的学习,让学生回顾什么叫整式,整式的乘法分为几类?哪一类最简单?意图:回忆旧知,为后续学习做铺垫工作。
(二)探索新知活动1:光的速度约为 5103⨯ 千米/秒,从太阳系以外到地球最近的一颗恒星(比邻星)发出的光要4年才能到达地球,一年以 7103⨯ 秒计算,你知道地球与比邻星的距离约是多少千米吗?意图:列式解答,由具体数字入手,降低认知难度,理解每一步的依据。
体会分类的依据。
活动2:由具体的数字变成字母该如何计算呢?(变式1:75abc bc ⨯);如果在因式的前面添上系数又该如何解决呢?(变式2:()7535abc bc -⨯)。
先独立思考,再找同学回答,说出每一步的依据,以及为什么要这样分?意图:类比具体数字的计算过程,通过两个变式的解答,为法则的归纳做铺垫。
让学生明白,解决问题的关键在于如何分组上。
活动3:观察以上两个式子,因式都是什么?单项式与单项式相乘,思考你是如何分组的?独立思考后小组交流,归纳出单项式相乘的法则。
意图:归纳得出单项式相乘的法则,培养学生合作交流以及表达能力。
(三)例题讲解例1 计算(1)()⎪⎭⎫ ⎝⎛-ab abc 214 (2) ⎪⎭⎫ ⎝⎛-⋅z x y y x 3232313(3)()322222121bc ab c ab -⋅⎪⎭⎫ ⎝⎛-⋅意图:题(1)、(2)是法则的简单应用,巩固法则;题(3)有乘方运算又有乘法运算,强调运算顺序;题(3)是3个单项式相乘,单项式相乘的法则仍旧适用。
整式的乘法优秀教案
整式的乘法【课时安排】3课时【第一课时】【教学目标】(一)教学知识点1.经历探索单项式与单项式相乘的运算法则的过程,会进行单项式与单项式相乘的运算。
2.理解单项式与单项式相乘的算理,体会乘法交换律和结合律的作用和转化的思想。
(二)能力训练要求1.发展有条理的思考和语言表达能力。
2.培养学生转化的数学思想。
(三)情感与价值观要求在探索单项式与单项式相乘的过程中,利用乘法的运算律将问题转化,使学生从中获得成就感,培养学习数学的兴趣。
【教学重点】单项式与单项式相乘的运算法则及其应用。
【教学难点】灵活地进行单项式与单项式相乘的运算。
【教学过程】(一)创设问题情景,引入新课:[师]整式的运算我们在前面学习过了它的加减运算,还记得整式的加减法是如何运算的吗?[生]如果遇到有括号,利用去括号法则先去括号,然后再根据合并同类项法则合并同类项。
[师]很棒!其实整式的运算就像数的运算,除了加减法,还应有整式的乘法,整式的除法。
下面我们先来看投影片中的问题:1.为支持北京申办2008年奥运会,一位画家设计了一幅长6000米、名为“奥运龙”的宣传画。
受他的启发,京京用两张同样大小的纸,精心制作了两幅画,如图6-1所示,第一幅画的画面大小与纸的大小相同,第二幅画的画面在纸的上、下方各留有81x 米的空白。
图6-1(1)第一幅画的画面面积是 平方米;(2)第二幅画的画面面积是 平方米。
[生]从图形我们可以读出条件,第一个画面的长、宽分别为x 米,mx 米;第二个画面的长、宽分别为mx 米、(x -81x -81x)即43x 米。
因此,第一幅画的画面面积是x·(mx)平方米;第二幅画的画面面积是(mx)·(43x)平方米。
[师]我们一起来看这两个运算:x·(mx),(mx)·(43x)。
这是什么样的运算。
[生]x ,mx ,43x 都是单项式,它们相乘是单项式与单项式相乘。
[师]大家都知道整式包括单项式和多项式,从这节课开始我们就来研究整式的乘法。
《单项式与单项式相乘》教案-2022-2023学年人教版数学八年级上册
《单项式与单项式相乘》教案教学目标:一、知识与技能1.学生能理解并掌握单项式的乘法法则,能够熟练地进行单项式的乘法计算。
2.正确区别各单项式中的系数,同底数的幂和不同底数幂的因式。
二、过程与方法让学生感知单项式乘法法则对两个以上单项式相乘同样成立,知道单项式乘法的结果仍是单项式;经历探索乘法运算法则的过程,发展观察、归纳、猜测、验证等能力。
三、情感、态度与价值观注意培养学生的归纳、概括能力以及运算能力,充分调动学生的积极性,主动性。
教学重难点1.重点:对单项式运算法则的理解和应用。
2.难点:应用单项式与单项式的乘法法则解决数学问题。
教学过程一、复习旧知,导入新课我们学习的幂的有关运算性质有哪些?教师活动:我们刚才已经复习了幂的运算性质。
从本节开始,我们学习整式的乘法。
我们知道,整式包括什么?(包括单项式和多项式。
)因此整式的乘法可分为单项式乘以单项式、单项式乘以多项式、多项式乘以多项式。
这节课我们就来学习最简单的一种:单项式与单项式相乘。
二、师生互动,探究新知1.一个长方体底面积是4xy,高度是3x,那么这个长方体的体积是多少?学生活动:小组合作完成,在小组交流讨论后由代表发言。
教师活动:每一步的依据是什么?(乘法交换律)2.仿照刚才的作法,你能解出下面的题目吗?(1)3x2y·(-2xy3)=[3·(-2)]·(x·x2)(y·y3)=-6x3y4。
(2)(-5a2b3)·(-4b2c)=[(-5)×(-4)]·a2·(b3·b2)·c=20a2b5C。
单项式和单项式相乘,系数与系数相乘,相同字母的幂分别相乘;对于只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式。
三、随堂练习,巩固新知1.3x5·5x3=___________________,4y·(-2xy3)=_____________。
单项式与单项式相乘教学设计
14.1.4 整式的乘法(1)【学习目标】1、理解并识记单项式与单项式相乘运算法则的推导过程.2、会正确运用单项式与单项式相乘的运算法则.[学习过程]一、板书课题,揭示目标同学们,今天我们来学习14.1.4 整式的乘法(1)(板书课题),本节课的学习目标是:二、出示目标1、理解并识记单项式与单项式相乘运算法则的推导过程.2、会正确运用单项式与单项式相乘的运算法则.三、自学指导(一)过渡语:怎样才能当堂达到学习目标呢?请同学们按照指导认真自学.(二)出示自学自导认真看课本P98练习下面--- P99练习上面.要求:○1回答“思考”中的问题,理解单项式与单项式相乘法则地推导过程.○2看例4是如何运用单项式相乘法则的?(如有不懂,可小声问同桌或举手问老师)6分钟后,比谁能正确地运用单项式与单项式相乘法则做对检测题.四、学生自学(一)学生看书,教师巡视,督促每个学生都认真、紧张地自学.(二)学生练习:1、出示检测题:P99: 1.(让2位学生板演,其他学生在下面做.)要求:1、6分钟内独立完成.2、仿照例题,比谁做得又对又快(做完的请举手示意)2.教师巡视,收集错误,进行第二次备课.五、后教(同桌互相交换练习本)1、自由更正请同学们认真看堂上板演的内容,如果有错误或不同解法的请上来更正或补充.2、讨论、归纳(先让尖子生讲,若尖子生不会或讲得不全则教师点拨)评:1、先评(1)、(2)题:第1步对不对?为什么?引导学生回答:单项式与单项式相乘.把它们的系数,同底数幂,分别相乘,对于只在单项式里含有的字母,则连同它的指数作为积的一个因式.(教师出示).2、结果对不对?对则结束.错则更正、讨论.3、(3)、(4)题第一步先干什么?引导学生回答:先乘方.(积的乘方)4、再进行什么运算?引导学生回答:单项式乘单项式法则.5、结果对不对?对则结束.错则更正、讨论.6、口答:课本P99 练习2六、课堂训练运用本节知识做作业时注意:1、分清系数和底数的幂;2、对于只在一个单项式里含有的字母该怎么做;3、计算要细心;必做题:P104 3选做题:P105 10.七、教学反思:。
《整式的乘法(1)》参考教案
6.5 整式的乘法(一)●教学目标(一)教学知识点1.经历探索单项式与单项式相乘的运算法则的过程,会进行单项式与单项式相乘的运算.2.理解单项式与单项式相乘的算理,体会乘法交换律和结合律的作用和转化的思想.(二)能力训练要求1.发展有条理的思考和语言表达能力.2.培养学生转化的数学思想.(三)情感与价值观要求在探索单项式与单项式相乘的过程中,利用乘法的运算律将问题转化,使学生从中获得成就感,培养学习数学的兴趣.●教学重点单项式与单项式相乘的运算法则及其应用.●教学难点灵活地进行单项式与单项式相乘的运算.●教学方法引导——发现法●教具准备投影片四张第一张:问题情景,记作(§6.5.1A)第二张:想一想,记作(§6.5.1B)第三张:例题,记作(§6.5.1C)第四张:练习,记作(§6.5.1D)●教学过程Ⅰ.创设问题情景,引入新课[师]整式的运算我们在前面学习过了它的加减运算,还记得整式的加减法是如何运算的吗?[生]如果遇到有括号,利用去括号法则先去括号,然后再根据合并同类项法则合并同类项.[师]很棒!其实整式的运算就像数的运算,除了加减法,还应有整式的乘法,整式的除法.下面我们先来看投影片§6.5.1A 中的问题:为支持北京申办2008年奥运会,一位画家设计了一幅长6000米、名为“奥运龙”的宣传画.受他的启发,京京用两张同样大小的纸,精心制作了两幅画,如图6-1所示,第一幅画的画面大小与纸的大小相同,第二幅画的画面在纸的上、下方各留有81x 米的空白.图6-1(1)第一幅画的画面面积是 米2; (2)第二幅画的画面面积是 米2.[生]从图形我们可以读出条件,第一个画面的长、宽分别为x 米,mx 米;第二个画面的长、宽分别为mx 米、(x -81x -81x)即43x 米.因此,第一幅画的画面面积是x·(mx)米2;第二幅画的画面面积是(mx)·(43x)米2.[师]我们一起来看这两个运算:x·(mx),(mx)·(43x).这是什么样的运算.[生]x,mx,43x 都是单项式,它们相乘是单项式与单项式相乘.[师]大家都知道整式包括单项式和多项式,从这节课开始我们就来研究整式的乘法.我们先来学习单项式与单项式相乘.Ⅱ.运用乘法的交换律、结合律和同底数幂乘法的运算性质等知识,探索单项式与单项式相乘的运算法则出示投影片(§6.5.1B)想一想:(1)对于上面的问题小明也得到如下的结果:第一幅画的画面面积是x·(mx)米2;3x)米2.第二幅画的画面面积是(mx)·(4可以表达的更简单些吗?说说你的理由.(2)类似地,3a2b·2ab3和(xyz)·y2z可以表达得更简单些吗?为什么?(3)如何进行单项式与单项式相乘的运算?[师]我们来看“想一想”中的三个问题.[生]我认为这两幅画的画面面积可以表达的更简单些.x·(mx)=m·(x·x)——乘法交换律、结合律=mx2——同底数幂乘法运算性质3x)(mx)·(43m)(x·x)——乘法交换律、结合律=(43mx2——同底数幂乘法运算性质=4[生]类似地,3a2b·2ab3和(xyz)·y2z也可以表达得更简单些.3a2b·2ab3=(3×2)·(a2·a)·(b·b3)——乘法交换律、结合律=6a3b4——同底数幂乘法运算性质(xyz)·y2z=x·(y·y2)·(z·z)——乘法交换律、结合律=xy3z2——同底数幂乘法的运算性质[师]很棒!这两位同学恰当地运用了乘法交换律、结合律以及同底数幂乘法的运算性质将这几个单项式与单项式相乘的结果化成最简.在(1)(2)的基础上,你能用自己的语言描述总结出单项式与单项式相乘的运算法则吗?你们一定做得会更棒.[生]单项式与单项式相乘,利用乘法交换律和结合律,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,一起作为积的因式.[师]我们接下来就用这个法则去做几个题,出示投影片(§6.5.1C) [例1]计算: (1)(2xy 2)·(31xy);(2)(-2a 2b 3)·(-3a);22(3)7(2)xy z xyz ⋅.解:(1)(2xy 2)·(31xy)=(2×31)·(x·x)(y 2·y)=32x 2y 3;(2)(-2a 2b 3)·(-3a)=[(-2)·(-3)](a 2a)·b 3=6a 3b 3;222222343(3)7(2)7428.xy z xyz xy z x y z x y z ⋅=⋅=[师生共析]单项式与单项式相乘的乘法法则在运用时要注意以下几点: 1.积的系数等于各因式系数的积,先确定符号,再计算绝对值.这时容易出现的错误是,将系数相乘与指数相加混淆,如2a 3·3a 2=6a 5,而不要认为是6a 6或5a 5.2.相同字母的幂相乘,运用同底数幂的乘法运算性质.3.只在一个单项式里含有的字母,要连同它的指数作为积的一个因式.4.单项式乘法法则对于三个以上的单项式相乘同样适用.5.单项式乘以单项式,结果仍是一个单项式.Ⅲ.练习,熟悉单项式与单项式相乘的运算法则,及每一步运算的算理 出示投影片(§6.5.1D) 1.计算: (1)(5x 3)·(2x 2y); (3)(-3ab)·(-4b 2); (3)(2x 2y)3·(-4xy 2).2.一种电子计算机每秒可做4×109次运算,它工作5×102秒,可做多少次运算?(由几位同学板演,最后师生共同讲评) 1.解:(1)(5x 3)·(2x 2y)=(5×2)(x 3·x 2)·y=10x 3+2y=10x 5y; (2)(-3ab)·(-4b 2)=[(-3)×(-4)]a·(b·b 2)=12ab 3;(3)(2x 2y)3·(-4xy 2) =[23(x 2)3·y 3]·(-4xy 2) =(8x 6y 3)·(-4xy 2)=[8×(-4)]·(x 6·x)(y 3·y 2)=-32x 7y 5 2.解:(4×109)×(5×102) =(4×5)×(109×102) =20×1011=2×1012(次)答:工作5×102秒,可做2×1012次运算. Ⅳ.课时小结这节课我们利用乘法交换律和结合律及同底数幂乘法的法则探索出单项式相乘的运算法则,并能熟练地运用.Ⅴ.课后作业 课本习题6.8 Ⅵ.活动与探究若(a m+1b n+2)·(a 2n -1b 2m )=a 5b 3,则m+n 的值为多少?[过程]根据单项式乘法的法则,可建立关于m,n 的方程,即(a m+1b n+2)·(a 2n-1b 2m )=(a m+1·a 2n -1)·(b n+2·b 2m )=a 2n+m b 2m+n+2=a 5b 3,所以2n+m=5①,2m+n+2=3即2m+n=1②,观察①②方程的特点,很容易就可求出m+n.[结果]根据题意,得2n+m=5①,2m+n=1②,①+②得3n+3m=6,3(m+n)=6,所以m+n=2.●板书设计§6.5 整式的乘法(一)——单项式与单项式相乘问题:如何将x·(mx);(mx)·(43x)化成最简?探索:x·(mx)=m·(x·x)——乘法交换律、结合律 =mx 2——同底数幂乘法运算性质(mx)·(43x)=(43m)·(x·x)——乘法交换律、结合律3mx2——同底数幂乘法运算性质=4类似地,3a2b·2ab3=(3×2)(a2·a)(b·b3)=6a3b4;(xyz)·y2z=x·(y·y2)(z·z)=xy3z2.归纳:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.例题:例1.(师生共析)练习:(学生板演,师生共同讲评)●备课资料有趣的“3x+1问题”现有两个代数式:3x+1 ①1x ②2如果随意给出一个正整数x,那么我们都可以根据代数式①或②求出一个对应值.我们约定:若正整数x为奇数,我们就根据①式求出对应值;若正整数x 为偶数,我们就根据②式求出对应值.例如,根据这种规则,若取正整数x为18(偶数),则由②式求得对应值为9;而9是奇数,由①式求得对应值为28;同样正整数28(偶数)对应14……我们感兴趣的是,从某一个正整数出发,不断地这样对应下去,会是一个什么样的结果呢?也许这是一个非常吸引人的数学游戏.下面我们以正整数18为例,不断地做下去,如a所示,最后竟出现了一个循环:4,2,1,4,2,1…再取一个奇数试试看,比如取x为21,如b所示,结果是一样的——仍然是一个同样的循环.大家可以随意再取一些正整数试一试,结果一定同样奇妙——最后总是落入4,2,1的“黑洞”,有人把这个游戏称为“3x+1问题”.是不是从所有的正整数出发,最后都落入4,2,1的“黑洞”中呢?有人借助计算机试遍了从1到7×10的所有正整数,结果都是成立的.遗憾的是,这个结论至今还没有人给出数学证明(因为“验证”得再多,也是有限多个,不可能把正整数全部“验证”完毕).这种现象是否可以推广到整数范围?大家不妨取几个负整数或0再试一试.。
八年级数学上册第12章整式的乘除:整式的乘法1单项式与单项式相乘上课课件新版华东师大版
方体的体积!
你能分别说出a·b、
3a·2a和3a·5ab的几
何意义吗?
3a·2a可以看作是
长为3a,宽为2a
的长方形的面积.
3a·5ab可以看作是
高为3a,底面长
和宽分别为5a、b
的长方体的体积!
典例精析
【例2】纳米是一种长度单位,1米=109纳米,试计算长为5米,
宽为4米,高为3米的长方体体积是多少立方纳米?
故选:D.
2.下面的计算正确的是( )
A.3x2·4x2=12x2
B.x3·x5=x15
C.x4·x2=x6
D.(x5)2=x7
【详解】解:A、3x2·4x2=12x4,故本选项错误;
B、x3·x5=x8,故本选项错误;
C、x4·x2=x6,故本选项正确;
D、(x5)2=x10,故本选项错误.
故选:C.
第12章 整式的乘除
12.2 整式的乘法
第1课时 单项式与单项式相乘
1.掌握单项式与单项式相乘的运算法则;
2.熟练运用单项式与单项式相乘的运算法则,并且可以对有关
的计算进行化简求值;
温故知新
1.幂的运算性质有哪几条?
同底数幂的乘法法则:am·
an=am+n ( m,n都是正整数).
幂的乘方法则:(am)n=amn ( m,n都是正整数).
【详解】(1)解:原式=2x3y2·4x2y4z2=8x5y6z2;
(2)解:原式=-8x6+x6-9x6=-16x6
知识点二 单项式与单项式相乘的几何意义
你能分别说出a·a、
和a·ab的几何意
义吗?
a·a可以看作是边
长为a的正方形的
整式乘法 优秀教案
整式乘法③-2a2(ab+3b-1)二、探究新知。
(一)探究:计算下列各式,然后回答问题。
(1)(a+2)(a+3)=a2+5a+6(2)(a+2)(a-3)=a2-a-6(3)(a-2)(a-3)=a2-5a+6从上面的计算中,你能总结出什么规律:(x+m)(x+n)=x2+(m+n)x+mn。
问题:(1)如何用文字语言叙述多项式的乘法法则?(2)多项式与多项式相乘的步骤应该是什么?(二)总结规律,揭示法则。
对于(a+b)(m+n)=am+an+bm+bn的计算过程可以表示为:(a+b)(m+n)=am+an+bm+bn=am+bm+an+bn。
多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
如计算(2x-1)(-x+3),2x看成公式中的a;-1看成公式中的b;-x 看成公式中的m;3看成公式中的n。
运用法则(2x-1)中的每一项分别去乘(-x+3)中的每一项,计算可得:-2x2+6x+x-3。
计算:(1)(x+2y)(5a+3b)(2)(2x-3)(x+4)(3)(x+y)(x2-xy+y2)结合例题讲解,提醒学生在解题时要注意:(1)解题书写和格式的规范性;(2)注意总结不同类型题目的解题方法、步骤和结果;(3)注意各项的符号,并要注意做到不重复、不遗漏。
三、课堂训练。
1.先化简,再求值:(x-2y)(x+3y)-(2x-y)(x-4y),其中:x=-1,y=2。
解:∵(x-2y)(x+3y)-(2x-y)(x-4y)=x2+3xy-2xy-6y2-(2x2-8xy-xy+4y2)=x2+3xy-2xy-6y2-2x2+8xy+xy-4y2=-x2+10xy-10y2当x=-1,y=2时,原式=-(-1)2+10×(-1)×2-10×22=-1-20-40=-61.2.计算:①(x-1)(x-2);②(m-3)(m+5);③(x+2)(x-2)。
《整式的乘法》第一课时教案
《整式的乘法》第一课时教案《《整式的乘法》第一课时教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!1.教学内容(1)单项式与单项式相乘法则:一般地,单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘法则:一般地,单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.2.地位与作用单项式乘单项式综合用到有理数的乘法、幂的运算性质等知识,它是学习多项式乘法的基础,在整式乘法中,它有承前启后的作用,是整式乘法的关键.单项式乘多项式是研究多项式与多项式相乘、整式的除法和因式分解的基础,同时也是学习物理、化学等学科不可缺少的工具.本节课的教学效果将直接影响后续课程的教学.3.教学重点(1)单项式与单项式相乘法则的概括过程和运用.(2)单项式与多项式相乘法则的概括过程和运用.二、目标解析1.目标(1)理解单项式乘单项式、单项式乘多项式法则.(2)能够运用单项式乘单项式、单项式乘多项式法则进行运算.(3)在探索单项式与多项式相乘法则中,发展学生的运算能力,体会转化思想和数形结合的思想.2.目标解析(1)学生能理解并掌握单项式与单项式相乘、单项式与多项式相乘法则.(2)学生能运用单项式与单项式、单项式与多项式相乘法则.(3)结合具体的实例,让学生体会从特殊到一般的数学思想及类比的学习方法.三、学情诊断八年级学生已经掌握了有理数的乘法,并对幂的运算性质有一定的认知水平,再利用单项式与单项式相乘法则过程中,符号是计算过程中极易出错的问题.单项式与多项式相乘是利用乘法分配律展开,结果是一个多项式,其项数与多项式中的项数相同,学生往往出现漏乘现象.四、教学策略1.教学手段利用多媒体和导学案辅助教学,提高课堂效率和学生的积极性.2.教学工具电脑和投影仪.五、教学过程本节课以教材为蓝本,以学生为主体,以高效为目标,以多媒体和导学案为手段,我将整个教学过程设计为以下8个环节:1.观看视频,激发热情首先让学生欣赏一段天宫二号起飞的视频,再提出问题:“天宫二号飞行的高度怎么求?”,由于学生已经学过路程问题,他们很快能说出“速度乘时间”.【设计意图】由天宫二号起飞视频入手,提高学生的学习积极性,既能让学生体会到数学来源于生活,也能服务于生活,更能激发学生的爱国热情.2.引入问题,探索新知新课标指出,教师是课堂教学的组织者、引导者、合作者,学生才是学习的主体.因此在这一环节,我引导学生探索,设置了问题1.问题1“天宫二号”垂直起飞的平均的速度约7×103m/s,垂直飞行的时间约2×102s,你知道“天宫二号”垂直飞行路程约是多少吗?问题1是由学生观看的视频抽象出来数学问题,并提出问题:“天宫二号”的垂直飞行的路程是多少呢?学生根据已经学过的知识,很容易的得出结论(7×103)×(2×102)m.我接着问:“那么(7×103)×(2×102)等于多少呢”,学生根据整数与整数的乘法和科学记数法等知识,能求出结果是1.4×106.肯定学生的回答后,再次追问了一个问题:在计算(7×103)×(2×102)的过程中,运用了哪些运算律和运算性质?这个问题不是很难,学生能够回答,结论是:乘法交换律、乘法结合律以及幂的运算性质.为了进一步引导,我追问了两个问题.追问1如果将数据7×103改为7c3,2×102改为2c2,怎样计算7c3·2c2这个式子?追问2如果将数据7c3改为ac3,那怎样计ac3·2c2这个式子?追问1是将问题1中物理问题转化为纯数学问题,把数据10换成c.追问2是将思考题1中的7换成了a.通过追问1和追问2,我把“数”的运算转化为“式”的运算,并在此基础上,让小组合作讨论、归纳和总结出“式”的运算规律,即单项式与单项式相乘法则.【设计意图】第一个环节,是为探索单项式与单项式相乘法则做知识铺垫,第二个环节通过由特殊到一般,由具体到抽象,通过类比得出单项式与单项式相乘法则,同时也培养学生了探索新知的方法3.总结新知,应用新知通过问题1探究,归纳提炼出单项式与单项式相乘法则,即:一般地,单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.在这个运算法则里,要强调三个方面的内容,即系数、同底数幂和只在一个单项式里含有的字母.为了引导学生使用这个法则,我设置了例题1.例1计算:(1)(-5a2b)(-3a)(2) (2x)3(-5xy2)运用法则解决问题时,首先要认清式子的结构,即是否单项式与单项式相乘.显然例1第一题符合这样的结构,而例1第二题不符合这样的结构,式子里面有一个积的乘方运算,所以先运算积乘方,然后转化为单项式与单项式相乘.【设计意图】引导学生使用法则,加深学生对法则的理解.4.应用新知提高能力为了突出难点1,我设置了练习1和练习2.练习1口算下列各题,看谁算得又对又快:(1) 6x2·3xy(2) 4y·(-2xy2)(3) (-3ab)·2ab2(4) (-3x)2·5x3练习2计算:(1) (-3x)2·4x2(2) (-2a)3·(-3a)2练习1是一个抢答题,不但提高了学生的积极性,也活跃了课堂气氛,更让学生加强了对法则的理解和应用.练习2由学生独立完成,学生代表板书.师生共同点评学生代表板书结果,适时提醒学生注意符号问题.练习1、练习2加强了单项式与单项式相乘法则的应用.【设计意图】第一个环节是为了激发学生的积极性,活跃课堂氛围,初步检查了部分学生的掌握情况.第二个环节是检验全体学生的掌握情况.5.引入问题再探新知为了突破重点2,我引入了问题2,把实验中学的“思源广场”花坛抽象成为数学问题.问题2为了扩大绿地面积,实验中学把“思源广场”的一块长pm,宽bm的长方形绿地,向两边分别加宽am和cm,你能用几种方法表示扩大后的整个绿地面积?学生根据数形结合思想,用两种不同方式表示花坛的面积,利用面积不变这一条件,得到一个单项式乘多项式等于多项式,并由小组合作探究单项式与多项式相乘的规律.【设计意图】由校园内的“思源广场”引出新知,可以增加学生的学习兴趣.在推导法则过程中,体会转换和数形结合的思想的应用.6.归纳新知应用新知根据小组探究结果,由小组代表总结出单项式与多项式相乘法则,即:一般地,单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.在得出单项式与多项式相乘法则后,引导学生发现,单项式与多项式相乘,实质是利用乘法分配律转化为单项式与单项式相乘,再把所得的积相加.这一过程体现了转化的数学思想.为了突破难点2,我设置了例题2.例2计算:(1)(-4x)·(3x+1)(2)【设计意图】加强对法则的理解,由老师根据法则完成例题2,并适时提醒学生避免出现“漏乘”现象,并注意符号问题.7.训练新知拓展提升第一个环节,为了突破难点2,我设置了练习3.练习3计算:(1)3a(5a-2b)(2)(x-3y)(-6x)练习3由学生独立完成,学生代表板书.师生共同点评学生代表板书结果,并了解下面学生掌握情况,适时提醒可能出现的问题.【设计意图】由学生独立完成,学生代表板书,可以检验学生对法则的掌握情况为了培养学生的发散思维,第二个环节设置了一个拓展提升题:如图是改造后的“思源广场”花坛,你能求出它的整个面积吗?在这个环节中,小组内再次合作交流,从不同角度看待这个问题,通过一题多思,一题多解培养学生的探索精神和创新意识.通过学生发言讲解,体现学生是课堂的主体,把课堂真正还给学生.【设计意图】用不同方法求面积,培养学生的发散思维.8.总结收获课后反思为了让学生能清晰的理出本节课所学的知识,我引导学生从两个方面进行总结:(1)本节课在数学知识上你有哪些收获?(2)本节课体现出了哪些数学思想?【设计意图】通过归纳总结,优化知识结构,完善知识体系,体会数学思想,提高认知水平,同时培养了学生的归纳能力、语言表达能力.本节课同学们共同探讨了单项式与单项式相乘、单项式与多项式相乘法则,知识点都是学生通过探索、归纳发现的.对知识的理解步步深入,达到了各层次的目标要求,并且本节课注重了知识的拓展延伸,使课堂效益达到最佳状态.《整式的乘法》第一课时教案这篇文章共10120字。
整式的乘法教案
6、整式的乘法第一课时 单项式与单项式相乘教学目标:知识与能力目标:1、经历探索整式乘法运算法则的过程,会进行简单的整式乘法运算。
2、理解整式乘法运算的算理,体会乘法分配率的利用和转化思想,培养思考及表达能力。
过程与方法目标:由实例引入整式乘法运算,让学生体会整式运算的必要性,探索整式乘法运算的法则,并会运用。
课堂达标测试☆ 基础练习设计1、计算(1)(5x 3)·(2x 2y) (2)(-3ab)·(-4b 2)(3)(2x 2y)3·(-4xy 2) (4)(3×105)×(5×102)(5)(-3x)·2xy 2·4y (6)2a 2·(-2a )3+(2a 4)·5a2、一种电子计算机每秒可进行4×109次运算,它工作5×102秒可进行多少次运算?3、卫星绕地球运动的速度(即第一宇宙速度)是7.9×103米/秒,求卫星绕地球进行2×109秒走过的路程。
☆ 个性练习设计 若单项式31x n+1y 与单项式3xyz 乘积的结果是一个六次单项式,求n 的值。
整式的乘法第二课时 单项式与多项式的乘法教学目标:知识与能力目标:1、经历探索整式乘法运算法则的过程,会进行简单的整式乘法运算。
2、理解整式乘法运算的算理,体会乘法分配率的利用和转化思想,培养思考及表达能力。
过程与方法目标:由实例引入整式乘法运算,让学生体会整式运算的必要性,探索整式乘法运算的法则,并会运用。
课堂达标测试☆基础练习设计1、选择(1)x(1+x)-x(1-x)等于()A、2xB、2x2C、0D、-2x+2x2(2)(-3a2+b2-1)(-2a)等于()A、6a3-2ab2B、6a3-2ab2-2aC、-6a2+2ab-2aD、6a3-2ab2+2a2、计算(1)-6x(x-3y) (2)5x(2x2-3x+4) (3)3x(x2-2x-1)-2x2(x-2)3、计算下面图形的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单项式与单项式相乘
教学内容:人教版八年级上册14.1.4整式的乘法
教学目标:
1、让学生通过适当的尝试,获得直接的经验,体验单项式与单项式的乘法运算规律,总结运算法则;
2、使学生能正确区别各单项式中的系数,同底数幂和不同底数幂的因式;
3、让学生感知单项式法则对两个以上单项式相乘同样成立,知道单项式乘法的结果仍是单项式。
教学重点:对单项式运算法则的理解和应用。
教学难点:尝试与探究单项式与单项式的乘法运算规律。
教学方法:讲授法
教学用具:多媒体课件、黑板
课时安排:一课时
教学过程:
一、复习回顾:(查漏补缺和复习并指名学生回答)
1、指出下列名称的公式及运算法则
同底数幂相乘:幂的乘方:积的乘方:
2、只要认真,你就能全部判断正确,看谁一遍做对。
(1)632.m m m =(2)725)(a
a =(3)632)(a
b ab =(4)1055m
m m =+(5)523)()(x x x -=--3、单项式中的数字因数叫做这个单项式的__系数__。
二、创设情境,导入新课:
问题:光的速度约为5
103⨯千米/秒,太阳光照射到地球上需要的时间大约是2105⨯秒,你知道地球与太阳的距离约是多少千米吗?
启发思考:在这里,
求距离,会遇到什么运算呢?导入新课:因式都是单项式,它们相乘,就是我们今天要学习的“单项式与单项式相乘”。
出示课题和教学目标。
三、探索研究:
(1)怎样计算(5103⨯)×(2
105⨯)?n m n m a a a +=⋅mn n m a a =)(n n n b a ab =)(
计算过程中用到哪些运算律及运算性质?
(2)如果将上式中的数字改为字母,
比如()25)(bc ac ⨯,怎样计算这个式子?
地球与太阳的距离约是:
87105.11015⨯=⨯(千米)()25)(bc ac ⨯是两个单项式5ac 与2bc 相乘,我们可以利用乘法交换律,结
合律及同底数幂的运算性质来计算:()2
5)(bc ac ⨯=(a ⋅b)⋅(25c c ⋅)=25+abc =7abc 。
例1、把下面的计算表示成更简单的结果。
)
3(4)1(2552bx a x a -⋅解:原式b
x x a a ))()](3(4[2532⋅⋅-⨯=b
x a 7512-=2、类似的,尝试把下面结果表达更简单些。
(鼓励学生大胆尝试)
)
2(3)2(322xyz y x -解:原式3
22))()](2(3[z y y x x ⋅⋅-⨯=3
336z y x -=3、解题规范格式训练
)
4)(5(232c b b a --解:○1原式c
b b a )()]4()5[(232⋅⋅-⨯-=c
b a 5220=○
2或)
4)(5(232c b b a --c
b b a )()]4()5[(232⋅⋅-⨯-=c
b a 5220=四、尝试总结归纳法则,可自学课本。
1、你能从这里总结出怎样进行单项式乘以单项式的法则吗?
2、单项式乘以单项式法则:单项式与单项式相乘,把它们的(系数)(相同的字母)分别相(乘),对于(只在一个单项式里含有的字母),则连同它的(指数)作为积的(一个因式)。
五、拓展、延伸(积极开动脑筋)
1、(1)、单项式乘以单项式,结果仍是一个(
单项式)(2)、单项式乘法法则对于三个以上的单项式相乘能否同样适用?
(3)、遇到积的乘方怎么办?应该先算什么?
2、计算:例
3、22
)3)(31)(2(xyz xy xy 解:原式)9)(31)(2(2222z y x xy xy =2
222))()(93
12(z y y y x x x ⋅⋅⋅⋅⨯⨯=2
546z y x =3、能力拓展:
(1)已知单项式2a 3y 2与-4a 2y 4的积为ma 5y n ,求m+n 的值。
(2)已知A=3ab,B=-5a 2c,求A 2
B 的值。
解:(1)由题意可知:
∵(2a 3y 2)⋅(-4a 2y 4))
)()](4(2[4223y y a a ⋅-⨯=6
58b a -=n
y ma 5=∴.
6,8=-=n m ∴.
268-=+-=+n
m (2)由题意可知:A 2B )
5()3(22c a ab -⋅=)
5(9222c a b a -⋅=
c
b a a 222))](5(9[⋅-⨯=c
b a 2445-=六、小结:谈谈收获
(1)求系数的积,应注意符号;
(2)相同字母因式相乘,是同底数幂的乘法,底数不变,指数相加;
○
1只在一个单项式里含有的字母,要连同它的指数写在积里,防止遗漏;○
2若某一单项式是乘方的形式时,要先乘方再算乘法(3)单项式乘以单项式的结果仍然是一个单项式,结果要把系数写在字母因式的前面;
(4)单项式乘法的法则对于三个以上的单项式相乘同样适用。
七、布置作业:1、必做题:100页1、2题
(鼓励学生当堂完成)
2、选做题:101页3题
八、板书设计:
单项式与单项式相乘1、回顾:
(1)同底数幂相乘:
(2)幂的乘方:
(3)积的乘方:2、例题讲解(例1及训练)3、单项式乘以单项式法则:单项式与单项式相乘,把它们的(系数)(相同的字母)分别相(乘),对于(只在一个单项式里含有的字母),则连同它的(指数)作为积的(一个因式)。
4、讲解例2及得出运算法则:有乘方的先做乘方,再做单项式相乘。
九、课后反思:
n
m n m a a a +=⋅mn n m a a =)(n n n b a ab =)(。