一元一次方程教学设计

合集下载

青岛版数学七年级上册《7.2 一元一次方程》教学设计

青岛版数学七年级上册《7.2 一元一次方程》教学设计

青岛版数学七年级上册《7.2 一元一次方程》教学设计一. 教材分析《7.2 一元一次方程》是青岛版数学七年级上册的一个重要内容。

本节内容主要让学生了解一元一次方程的概念、性质和解法,培养学生解决实际问题的能力。

教材通过引入实际问题,引导学生认识一元一次方程,并通过对方程的变形和求解,使学生掌握一元一次方程的解法。

二. 学情分析七年级的学生已具备了一定的数学基础,对代数知识有一定的了解。

但部分学生对代数式的运算和方程的解法还不够熟练。

因此,在教学过程中,教师需要关注学生的个体差异,引导学生逐步掌握一元一次方程的解法,并能够运用到实际问题中。

三. 教学目标1.理解一元一次方程的概念,掌握一元一次方程的解法。

2.能够运用一元一次方程解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.重难点:一元一次方程的概念、性质和解法。

2.难点:一元一次方程的解法和实际问题的运用。

五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动参与课堂。

2.讲授法:教师讲解一元一次方程的概念、性质和解法,引导学生理解和掌握。

3.实践操作法:让学生通过实际操作,巩固一元一次方程的解法。

4.小组合作学习:学生分组讨论,共同解决问题,培养学生的团队协作能力。

六. 教学准备1.课件:制作课件,展示一元一次方程的相关概念、性质和解法。

2.练习题:准备一些一元一次方程的实际问题,用于巩固所学知识。

3.教学工具:黑板、粉笔、投影仪等。

七. 教学过程1.导入(5分钟)利用课件展示一些实际问题,引导学生思考如何用数学方法解决问题。

例如,某商场举行打折活动,原价100元的商品现价80元,问打几折?2.呈现(10分钟)介绍一元一次方程的概念、性质和解法。

通过示例,讲解一元一次方程的解法步骤:去分母、去括号、移项、合并同类项、系数化为1。

3.操练(10分钟)让学生分组讨论,解决一些实际问题。

教师巡回指导,解答学生的疑问。

2024年人教版七年级上册教学设计 第五章 一元一次方程第五章 一元一次方程

2024年人教版七年级上册教学设计 第五章  一元一次方程第五章  一元一次方程

一、单元学习主题本单元是“数与代数”领域“方程与不等式”主题中的“一元一次方程”.二、单元学习内容分析1.课标分析《标准2022》指出初中阶段数与代数是数学知识体系的基础之一,是学生认知数量关系、探索数学规律、建立数学模型的基石,可以帮助学生从数量的角度清晰准确地认识、理解和表达现实世界.数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题,是学生理解数学符号,以及感悟用数学符号表达事物的性质、关系和规律的关键内容,是学生初步形成抽象能力和推理能力、感悟用数学的语言表达现实世界的重要载体.方程与不等式的教学应当让学生经历对现实问题中量的分析,借助用字母表达的未知数,建立两个量之间关系的过程,知道方程或不等式是现实问题中含有未知数的等量关系或不等关系的数学表达,引导学生关注既含有已知数,又含有未知数的方程,感悟用字母表示数的意义,体会算术与代数的差异.在教学过程中,要关注数学知识与实际的结合,让学生在实际背景中理解数量关系和变化规律;经历从实际问题中建立数学模型、求解模型、验证反思的过程,形成模型观念;要关注基于代数的逻辑推理,能在比较复杂的情境中,提升学生发现问题、提出问题、分析问题和解决问题的能力,以及有逻辑地表达与交流的能力.2.本单元教学内容分析人教版教材七年级上册第五章“一元一次方程”,本章包括三个小节:5.1方程;5.2解一元一次方程;5.3实际问题与一元一次方程.“方程与不等式”是义务教育阶段数学课程中数与代数领域的一个重要内容,它揭示了数学中最基本的数量关系(相等关系和不等关系),是一类应用广泛的数学工具.从数学学科本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展;从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础;从应用数学的角度看,方程是一个既方便又强大的数学工具,它能够有效地刻画现实世界中的数量关系,将实际问题转化为数学模型加以解决.本单元主要内容包括:一元一次方程及其相关概念、一元一次方程的解法和利用一元一次方程解决实际问题.其中,以方程为工具分析问题、解决问题,即根据问题中的相等关系建立方程模型是本单元的重点之一,同时也是主要难点.分析实际问题中的数量关系并用一元一次方程表示其中的相等关系,是始终贯穿于本单元的主线.对一元一次方程的有关概念和解法的讨论,是在建立和运用方程这种数学模型的大背景之下进行的,它们在本单元前两节中占重要地位.解方程中蕴含的“化归思想”和列方程中蕴含的“数学建模思想”,是本单元中包含的主要数学思想,对于它们的体悟与内化,不仅对学生今后研究问题、解决问题以及终身的发展非常有益,而且也是深入贯彻实施《标准2022》的素养理念的渠道,与提高学生自身的数学素养有非常密切且直接的关系,更是促进学生思考、激发学生思维探究、教会学生学习方法、挖掘学生的学习潜力、有效提高初中数学教学质量和学生学业质量的重要保障.三、单元学情分析本单元内容是人教版教材数学七年级上册第五章一元一次方程,从学生的认知基础上看,学生在前面学段中已经学过有关于简单方程的内容,对方程有了初步的认识,会用方程表示简单情境中的数量关系,会解简单的方程,同时通过对整式的学习,学生能够进行合并同类项,去括号等整式的加减运算,即对方程的认识已经历了入门阶段,又具备了一定的基础.这些基本的、朴素的认识为进一步学习方程奠定了基础.本单元的内容是在前面对方程学习的基础之上的进一步发展,是更系统、更深入、更复杂的讨论,更强调数学思想、数学模型的渗透,结合七年级学生的思维习惯,他们虽然已经具备了一定的学习能力,但仍处于感性认识向理性认识过渡的时期,抽象思维能力还有待提高,因此教学中对问题情境的选取要符合学生的认知水平,在学生的最近发展区创设情境,给他们创造自主学习、合作探究的机会,让学生在主动参与中体验到探索成功的喜悦,在经历数学知识的形成过程中逐步体会、感悟和理解这些数学内容的内涵.四、单元学习目标1.经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效的数学模型,通过了解一元一次方程及其相关概念,完成从算式数学到方程式数学的进步,从而发展学生的抽象能力,培养学生的模型意识.2.掌握等式的性质,能利用它们探究一元一次方程的解法,进一步夯实学生的理论基础,培养学生的应用意识.3.了解解方程的基本目标,理解并掌握解一元一次方程的一般步骤和解法,培养学生的运算能力,进一步体会解法中蕴含的化归思想.4.能够通过“找出实际问题中的已知数和未知数,分析它们之间的关系,设未知数,列出方程表示问题中的相等关系”来体会数学建模的思想,培养学生的模型观念.5.通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决实际问题的基本过程,感受数学的应用价值,提高学生分析问题、解决问题的能力.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.生活性原则:本节课的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。

认识一元一次方程教学设计通用3篇

认识一元一次方程教学设计通用3篇

认识一元一次方程教学设计通用3篇元一次方程教学设计篇一一、教学目标:1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。

2、通过观察,归纳一元一次方程的概念3、积累活动经验。

二、重点和难点重点:归纳一元一次方程的概念难点:感受方程作为刻画现实世界有效模型的意义三、教学过程1、课前训练一(1)如果|| = 9,则= ;如果2 = 9,则=(2)在数轴上距离原点4个单位长度的数为(3)下列关于相反数的说法不正确的是()A、两个相反数只有符号不同,并且它们到原点的距离相等。

B、互为相反数的两个数的绝对值相等C、0的相反数是0D、互为相反数的两个数的和为0(字母表示为、互为相反数则)E、有理数的相反数一定比0小(4)乘积为1的两个数互为倒数,如:(5)如果,则()A、互为倒数B、互为相反数C、都是0D、至少有一个为0(6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过周后树苗长高到1米,依题意得方程2、由课本P149卡通图画引入新课3、分组讨论P149两个练习4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:()A、+25=310B、+(+25)=310C、2 =310D、2=310课本的宽为3厘米,长比宽多4厘米,则课本的面积为平方厘米。

5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回0.8元。

已知每个笔记本比练习本贵1.2元,求每个练习本多少元?解:设每个练习本要元,则每个笔记本要元,依题意可列得方程:6、归纳方程、一元一次方程的概念7、随堂练习PO1518、达标测试(1)下列式子中,属于方程的是()A、B、C、D、(2)下列方程中,属于一元一次方程的是()A、B、C、D、(3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。

人教版数学七年级上册3.3解一元一次方程(去分母)教学设计

人教版数学七年级上册3.3解一元一次方程(去分母)教学设计
(2)反馈教学:及时收集学生的反馈信息,了解学生的学习情况,调整教学进度和方法,确保教学效果。
(3)激励教学:注重鼓励学生,激发学生的学习积极性,让学生在克服困难的过程中体验成功,增强自信心。
3.教学过程:
(1)导入:通过实际问题的引入,激发学生的好奇心,引导学生进入学习状态。
(2)新知讲解:以学生为主体,教师为主导,引导学生发现并总结去分母的方法,注重讲解与示范相结合。
6.反思与总结:要求学生撰写一篇学习心得,内容包括本节课所学知识的理解、解题过程中的困惑与收获、以及对未来学习的期望。
目的:促使学生反思学习过程,培养自我评价和目标设定能力。
作业布置要求:
1.作业量适中,避免过度负担,保证学生有足够的时间进行思考和总结。
2.鼓励学生遇到问题时主动请教同学和老师,形成良好的学习氛围。
(2)运用探究式教学法,引导学生通过小组合作、自主探究等方式,发现并掌握去分母的方法,培养学生的独立思考能力和合作意识。
(3)借助信息技术手段,如多媒体课件、数学软件等,为学生提供直观、动态的演示,帮助学生理解抽象的数学概念。
2.教学策略:
(1)分层教学:针对学生的个体差异,设计不同难度的教学活动,使每个学生都能在原有基础上得到提高。
在此基础上,学生在学习本章节时可能出现以下情况:1.对去分母的方法掌握不牢固,容易在运算过程中出错;2.面对实际问题,不能熟练地将问题转化为含分数的一元一次方程;3.在小组讨论和自主探究过程中,部分学生可能缺乏主动性和自信心。
因此,在教学过程中,教师需要关注学生的个体差异,提供有针对性的指导,引导学生克服困难,激发学生的学习兴趣,帮助他们建立信心。同时,注重培养学生的合作意识和批判性思维,使学生在掌握知识的同时,提高解决问题的能力。通过以上措施,为学生提供适应其认知水平和发展需求的教学环境。

一元一次方程及其解法教案教学设计

一元一次方程及其解法教案教学设计

4.2一元一次方程及其解法教案设计第4章一元一次方程七年级上册苏科版(2024)【教材分析和学情分析】教材分析:第四章“一元一次方程”是初中数学的基础内容,主要介绍了方程的基本概念、方程的解、等式的性质以及如何解一元一次方程。

这一章的学习,旨在通过实际问题的解决,让学生理解并掌握一元一次方程的模型,培养他们的逻辑思维能力和问题解决能力。

教材中通过丰富的实例和习题,帮助学生从实际问题中抽象出数学问题,再通过解决数学问题,反哺解决实际问题,形成数学思维。

学情分析:1. 学生基础:七年级的学生已经学习了基本的算术运算,对数的概念有一定的理解,但可能对如何用数学模型解决实际问题还比较陌生。

此外,他们的抽象思维能力和逻辑推理能力还在发展阶段。

2. 学习兴趣:初中的学生对新鲜事物充满好奇,如果能将一元一次方程与生活实际相结合,设计一些趣味性的教学活动,可以激发他们的学习兴趣。

3. 学习习惯:部分学生可能还习惯于被动接受知识,缺乏主动探究和自我解决问题的习惯,需要教师引导他们主动参与到学习过程中。

4. 学习困难:一些学生可能在理解等式的性质和运用这些性质解方程时遇到困难,需要教师耐心引导,通过实例演示和反复练习帮助他们掌握。

【教学目标】1. 知识与技能:学生应能理解一元一次方程的定义,掌握其标准形式,并能识别和列出实际问题的一元一次方程。

2. 过程与方法:通过实例,让学生经历从实际问题抽象出一元一次方程的过程,掌握解一元一次方程的基本步骤,培养他们的抽象思维和问题解决能力。

3. 情感态度与价值观:培养学生对数学的兴趣,体验数学与生活的紧密联系,提高他们的学习积极性和自信心。

【教学重难点】1. 重点:理解一元一次方程的定义,能正确列出和解一元一次方程。

2. 难点:将实际问题转化为一元一次方程,理解解方程的过程。

【教学过程】1. 导入新课:通过生活中的实例,如“小明有10元钱,他买了一本书花了5元,他还剩下多少钱?”引入方程的概念,让学生初步感知方程是用来表示等量关系的数学工具。

2024年人教版七年级上册教学设计 第五章 一元一次方程方程

2024年人教版七年级上册教学设计 第五章  一元一次方程方程

5.1.1从算式到方程课时目标1.通过引入实际问题情境,让学生在算式、代数两种方式下解决问题,体会由算术到代数是数学的一大进步,从而培养学生分析、归纳和抽象概括的思维能力,初步认识建立数学模型的思想.2.经历用含有未知数的等式表示实际问题中的相等关系,感悟方程的现实意义,理解方程的概念,培养学生获取信息、分析问题、处理问题的能力,提升方程模型的应用意识.3.通过数学背景材料,让学生理解并掌握方程、一元一次方程及其相关概念的内涵,培养学生的阅读理解、拓展探究的能力,增强学生的数学应用意识,调动学生学习数学的主动性.学习重点寻找相等关系列出方程,方程、一元一次方程及其相关概念.学习难点寻找相等关系列出方程的意识和过程.课时活动设计情境引入问题:甲、乙两支登山队沿同一条路线同时向一山峰进发.甲队从距大本营1 km的一号营地出发,每小时行进1.2km;乙队从距大本营3km的二号营地出发,每小时行进0.8km.多长时间后,甲队在途中追上乙队?学生先独立思考、作答,然后小组交流合作,最后选派学生代表板演展示,教师巡视指导.解:甲队追上乙队所用的时间为3−11.2−0.8=20.4=5(小时).教师适时追问:(1)这是算术解法,同学们,你们知道这样做的根据吗?(2)你还有其它的解决方法吗?教师引导学生尝试通过列方程的方法来解决这个问题.解:设x小时后,甲队在途中追上乙队.当甲队追上乙队时,甲队距大本营的路程为(1.2x+1)km,乙队距大本营的路程为(0.8x+3)km.因为甲队在途中追上乙队,即甲队距大本营的路程=乙队距大本营的路程,于是1.2x+1=0.8x+3.设计意图:通过设置这个学生熟悉的行程问题,让学生尝试用自身拥有的数学知识(算术方法)解决,然后逐步引导学生用含有未知数的式子表示有关的量,并进一步依据相等关系列出含有未知数的等式——方程,目的在于突出方程的根本特征,为引出方程的概念作铺垫.探究新知探究1方程的概念和列方程教师请同学们按照教学活动1中的方法,先设出未知数,再根据问题中的相等关系列出含有未知数的等式.学习先独立思考解答下列两个问题,然后再进行小组谈论,最后选派代表板演展示.问题1:用买3个大水杯的钱,可以买4个小水杯,大水杯的单价比小水杯的单价多5元,两种水杯的单价各是多少元?分析:根据题意,可知3个大水杯的总价=4个小水杯的总价,大水杯的单价-小水杯的单价=5,总价=数量×单价.因此,只要设出大水杯的单价或小水杯的单价,就可以列出方程了.解:设大水杯的单价为x元,那么小水杯的单价为(x-5)元.因为用买3个大水杯的钱,可以买4个小水杯,所以3x=4(x-5).由这个含有未知数x的等式可以求出大水杯的单价,进而可以求出小水杯的单价.问题2:如图是一枚长方形的庆祝中国共产党成立100周年纪念币,其面积是4 000mm2,长和宽的比为85(即宽是长的58).这枚纪念币的长和宽分别是多少毫米?分析:根据题意,可知这个长方形的宽=58×长方形的长,长方形的面积=长×宽,因此,只要设出长方形的长或宽,就可以列出方程了.解:设这枚纪念币的长为x mm,则纪念币的宽可以表示为58x mm,面积可以表58x2mm2.已知纪念币的面积为4000mm2,所以58x2=4000.由这个含有未知数x的等式可以求出这枚纪念币的长,进而可以求出纪念币的宽.教师引导学生归纳:像这样,先设出字母表示未知数,然后根据问题中的相等关系,列出一个含有未知数的等式,这样的等式叫作方程.教师适时追问:(1)你能解释这些方程的左边、右边各表示什么意思吗?(2)对于根据问题中的相等关系列方程,说说你的体会?学生思考,小组讨论交流.教师引导学生归纳:分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法.这个过程可以表示如下:教师进一步指出:用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只含有已知数,不含未知数;而方程是根据问题中的相等关系列出的等式,其中既含有已知数,也含有用字母表示的未知数,这为解决许多问题带来了方便.探究2解方程和方程的解问题3:请同学们尝试解方程1.2x+1=0.8x+3.学生先独立解答,然后再小组交流,教师巡视指导.解:可以发现,当x=5时,左边=1.2×5+1=7,右边=0.8×5+3=7,这时方程左右两边的值相等.教师引导学生归纳:一般地,使方程左、右两边的值相等的未知数的值,叫作方程的解.例如,x=5就是方程1.2x+1=0.8x+3的解.求方程的解的过程,叫作解方程.判断未知数是否为方程的解的具体步骤:(1)把未知数的值分别代入方程的左、右两边进行计算;(2)若左边=右边,则这个未知数是方程的解;反之,则不是.探究3一元一次方程的概念问题4:观察下列方程,你有什么发现.1.2x+1=0.8x+3;3x=4(x-5).先让学生独立思考,自主探索,然后将分析结果在小组内进行交流,形成共识,最后由学生代表回答问题,教师巡视指导学生的学习情况.解:这些方程中只有1个未知数x,且未知数x的次数都是1.引导学生归纳出一元一次方程的概念:一般地,如果方程中只含有一个未知数(元),且含有未知数的式子都是整式,未知数的次数都是1,这样的方程叫作一元一次方程.设计意图:通过设置一系列问题,突出方程的根本特征,使学生认识到从算式到方程是更有力、更方便的数学工具,从算术方法到代数方法是数学的一大进步.初步培养了学生由实际问题抽象出方程模型的能力.典例精讲例1根据下列问题,设未知数并列出方程:(1)某校女生占全体学生数的52%,比男生多80人,这所学校有多少名学生?(2)如图,一块正方形绿地沿某一方向加宽5m,扩大后的绿地面积是500m2,求正方形绿地的边长.分析:(1)根据题意,可知女生人数-男生人数=80,并且女生人数=全体学生数×52%,因此,只需设出全体学生数就可以列出方程了;(2)由题意,可知扩大后的绿地的长=正方形绿地的长+5,扩大后的绿地面积=500,所以只需设出原来绿地的长就可以列出方程了.解:(1)设这所学校的学生数为x,那么女生数为0.52x,男生数为(1-0.52)x,根据“女生比男生多80人”,列得方程0.52x-(1-0.52)x=80.(2)设正方形绿地的边长为x m,那么扩大后的绿地面积为(x2+5x)m2,根据“扩大后的绿地面积是500m2”,列得方程x2+5x=500.例2(1)x=2,x=32是方程2x=3的解吗?(2)x=10,x=20是方程3x=4(x-5)的解吗?解:(1)当x=2时,方程2x=3的左边=2×2=4,右边=3,方程左、右两边的值不相等,所以x=2不是方程2x=3的解;当x=32时,方程2x=3的左边=2×32=3,右边=3,方程左、右两边的值相等,所以x=32是方程2x=3的解.(2)当x=10时,方程3x=4(x-5)的左边=3×10=30,右边=4×(10-5)=20,方程左、右两边的值不相等,所以x=10不是方程3x=4(x-5)的解;当x=20时,方程3x=4(x-5)的左边=3×20=60,右边=4×(20-5)=60,方程左、右两边的值相等,所以x=20是方程3x=4(x-5)的解.例32x+1=0.8x+3,3x=4(x-5),0.52x-(1-0.52)x=80,它们有什么共同特征?解:(1)只含有一个未知数x;(2)未知数x的次数都是1;(3)整式方程.设计意图:将列方程解决实际问题这一本章的教学难点分散在本章教学的每一节课中是设置这一系列教学活动的目的,化整为零地培养学生由实际问题抽象出方程模型的能力,持续渗透建模思想.教学中,通过先让学生独立思考、然后再进行小组合作的学习活动,既能培养学生的阅读理解能力、分析问题、解决问题的能力,又能提高学生的抽象思维能力.巩固训练1.x=3是下列哪个方程的解(B)A.2x+7=11B.5x-8=2x+1C.3x=1D.-x=32.小芬买了15份礼物,共花了900元,已知每份礼物内都有1包饼干及每支售价20元的棒棒糖2支,若每包饼干的售价为x元,则依题意可列出下列哪一个一元一次方程(C)A.15(2x+20)=900B.15x+20×2=900C.15(x+20×2)=900D.15×x×2+20=9003.当m=3或1时,关于x的方程x|2-m|+1=0是一元一次方程.4.下列式子中,哪些是方程,哪些是一元一次方程?并说明理由.①2x+1;②2m+15=3;③3x-5=5x+4;④x2+2x-6=0;⑤-3x+1.8=3y;⑥3a+9>15.解:上述式子是方程的有②③④⑤,其中②③是一元一次方程.理由:①是含有未知数的式子,不是等式;⑥是不等式;而②③④⑤是含有未知数的等式,符合方程的定义,其中④未知数的次数是2,⑤含有两个未知数,只有②③符合一元一次方程的定义,因此它们是一元一次方程.5.根据下列问题,设未知数并列出方程:(1)某长方形足球场的周长为310米,长和宽之差为25米,求这个足球场的宽;(2)《数学学习方法报》每份0.6元,《数学周报》每份0.5元,小明用10元钱买了两种报纸共18份,他买的两种报纸各多少份?解:(1)设这个足球场的宽为x米,则长为(x+25)米,依题意,得2x+2(x+25)=310.(2)设《数学学习方法报》买了x份,则《数学周报》买了(18-x)份,则有0.6x+0.5(18-x)=10.设计意图:通过练习,巩固方程及一元一次方程的概念,促进学生对知识的理解,使学生更加深刻地把握概念的内涵和外延,持续体会数学建模思想.课堂小结1.这节课你学到了哪些知识?2.在探寻方程的有关概念的学习过程中,你学到了哪些数学方法?积累了哪些活动经验?3.在利用列方程解实际问题的过程中,对你有哪些启示?设计意图:通过课堂小结的形式,让学生回顾知识点,形成知识体系,有利于学生养成回顾梳理知识的习惯.课堂8分钟.1.教材第118页习题5.1第1,2,3,5,6题.2.七彩作业.5.1.1从算式到方程1.解决数学实际问题的方式:(1)算式方法.(2)用含有未知数的等式表示问题中的相等关系.2.方程:含有未知数的等式叫作方程.3.用方程的方法解决实际问题是更方便的数学工具.4.方程的解、解方程的概念.5.一元一次方程的概念.教学反思5.1.2等式的性质课时目标1.通过使学生亲身经历运用所学知识探索等式的性质的过程,激发学生的数学学习兴趣,增强学生学好数学的信心,进而培养学生自主探究和实践能力.2.通过让学生从事自主学习、合作交流等数学活动,理解并掌握等式的性质,在实际操作中学习知识,在解决问题中深化认知,发展和提高学生的应用意识.3.通过使学生经历利用等式的性质解方程的过程,逐步培养学生观察、分析、概括的逻辑思维能力,从而渗透“化归”的思想.学习重点等式的性质和运用.学习难点应用等式的性质把简单的一元一次方程化成“x=m”的形式.课时活动设计情境引入用观察的方法我们可以求出简单的一元一次方程的解.你能用这种方法求出下列方程的解吗?(1)3x-5=22;(2)0.28-0.13y=0.27y+1.学生独立思考解答,然后小组交流,最后选派学生代表板演展示,教师巡视指导.解:对于(1),通过观察,可以看出x=9是方程的解;但是(2)不容易直接看出来.追问:既然不容易直接看出来,那么我们还能借助哪些知识来解这个方程呢?设计意图:设置悬念,引出等式的性质的讨论,为后面逐步过渡到用等式的性质讨论方程的解法作铺垫.探究新知探究1等式的性质问题1:请同学们填空,使式子成立.(1)如果m=n,那么n=m;(2)如果x+2x=3x,那么3x=x+2x;(3)如果a=3,b=3,那么a= b.(填“>”“=”或“<”)学生独立思考解答,然后小组交流,最后选派学生代表板演展示,教师巡视指导.教师归纳:诸如m+n=n+m,x+2x=3x,3×3+1=5×2,3x+1=5y这样的式子,都是等式.我们可以用a=b表示一般的等式.首先,给出关于等式的两个基本事实:(1)等式两边可以交换.如果a=b,那么b=a;(2)相等关系可以传递.如果a=b,b=c,那么a=c.思考:在小学,我们已经知道:等式两边同时加(或减)同一个正数,同时乘同一个正数,或同时除以同一个不为0的正数,结果仍相等.引入负数后,这些性质还成立吗?完成下列题目,试试你的猜想是否成立.问题2:用适当的数或整式填空,使所得结果仍是等式.(1)如果3x=-2x-1,那么3x+2x=-1,两边同时加2x;(2)如果12x=5,那么x=10,两边同时乘2;(3)如果13x-2=x-12,那么13x-x=-12+2,两边同时加2-x.学生独立思考解答,然后小组交流,最后选派学生代表板演展示,教师巡视指导.教师根据学生回答情况作出评价,适时进行追问:(1)在运用等式的性质时,等式的两边要做怎样的变化?(2)在等式两边同除以一个数时,应注意什么?师生共同归纳:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.用符号语言描述:如果a=b,那么a±c=b±c.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.用符号语言描述:如果a=b,那么ac=bc;如果a=b,c≠0,那么=.探究2利用等式的性质解方程问题3:利用等式的性质解下列方程:(1)x+3=5;(2)3x+2=8.学生独立思考,小组交流讨论,并派学生代表上台板演.解:(1)方程两边减3,得x+3-3=5-3.于是x=2.(2)方程两边减2,得3x+2-2=8-2.化简,得3x=6.方程两边除以3,得x=2.教师引导学生归纳:一般地,从方程解出未知数的值从后,通常需要代入原方程检验,看这个值能否使方程左、右两边的值相等.例如,将x=2代入方程3x+2=8的左边,得3×2+2=8.方程左、右两边的值相等,所以x=2是方程3x+2=8的解.解以x为未知数的方程,就是把方程逐步转化为x=m(常数)的形式,等式的性质是转化的重要依据.设计意图:设置上述教学环节,让学生借助具体的式子来验证等式的两条性质,加深对等式的性质的认知,同时又用文字语言和符号语言两种形式来描述这些性质,目的在于让学生切实理解等式的性质,体会如何用数学的符号语言抽象概括地表示它们.典例精讲例1根据等式的性质填空,并说明依据:(1)如果2x=5-x,那么2x+=5;(2)如果m+2n=5+2n,那么m=;(3)如果x=-4,那么·x=28;(4)如果3m=4n,那么32m=·n.解:(1)2x+x=5;根据等式的性质1,等式两边加x,结果仍相等.(2)m=5;根据等式的性质1,等式两边减2n,结果仍相等.(3)-7·x=28;根据等式的性质2,等式两边乘-7,结果仍相等.(4)32m=2·n;根据等式的性质2,等式两边除以2,结果仍相等.例2利用等式的性质解下列方程:(1)x+7=26;(2)-5x=20;(3)-13x-5=4.分析:要使方程x+7=26转化为x=m(常数)的形式,需要去掉方程左边的7,利用等式的性质1,方程两边减7就得出x的值.类似地,利用等式的性质,可以将另外两个方程转化为x=m的形式.解:(1)方程两边减7,得x+7-7=26-7.于是x=19.(2)方程两边除以-5,得-5-5=20-5.于是x=-4.(3)方程两边加5,得-13x-5+5=4+5.化简,得-13x=9.方程两边乘-3,得x=-27.设计意图:通过例题,让学生在观察等式的两边的变化情况后运用等式的性质做题,进一步加深学生对等式性质的准确把握,同时有助于引导学生利用等式的性质研究方程的解法,对于需要运用两次等式的性质来解方程的题目,需要学生有一定的思维顺序,能够锻炼学生的思维能力.巩固训练1.如果mx=my,那么下列等式中不一定成立的是(D)A.mx+1=my+1B.mx-3=my-3C.-12mx=-12myD.x=y2.下列方程的变形,符合等式的性质的是(D)A.由2x-3=7得2x=7-3B.由-3x=5得x=5+3C.由2x-3=x-1得2x-x=-1-3D.由-14x=1得x=-43.用适当的数或整式填空,使所得的式子仍是等式,并注明根据.(1)如果x+2=3,那么x=3+-2,根据是等式的性质1;(2)如果4x=3x-7,那么4x-3x=-7,根据是等式的性质1;(3)如果-2x=6,那么x=-3,根据是等式的性质2;(4)如果12x=-4,那么x=-8,根据是等式的性质2.4.利用等式的性质解方程:(1)x-4=1;(2)3x+5=0.解:(1)方程两边加4,得x-4+4=1+4.于是x=5.(2)方程两边减5,得3x+5-5=0-5.整理,得3x=-5.方程两边除以3,33=-53.于是x=-53.设计意图:通过巩固训练,进一步巩固学生对等式的性质的认识,让学生充分认识到如何应用等式的性质去解题.课堂小结1.本节课你学到了什么知识?2.在运用等式的性质解题时,应该注意什么?3.在运用等式的性质解方程时,你获得了哪些宝贵的经验?设计意图:通过课堂小结的形式,让学生回顾知识点,形成知识体系,有利于学生养成回顾梳理知识的习惯,让学生在对课堂所学有系统认知的基础上,深化对知识的理解程度.课堂8分钟.1.教材第118页习题5.1第4,7,8,10,11题.2.七彩作业.5.1.2等式的性质1.关于等式的两个基本事实:等式两边可以交换.如果a=b,那么b=a.相等关系可以传递.如果a=b,b=c,那么a=c.2.等式的基本性质:等式的性质1等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.教学反思。

一元一次方程公开课获奖教学设计

一元一次方程公开课获奖教学设计

主题:一元一次方程公开课获奖教学设计一、前言一元一次方程是初中数学中的重要内容,它不仅在学生的日常生活中有着广泛的应用,而且在学生的数学学习中也起着至关重要的作用。

如何设计一场寓教于乐、深入浅出的一元一次方程公开课,是每一位数学老师都面临的挑战。

本篇文章将围绕一元一次方程公开课的获奖教学设计展开讨论。

二、教学目标1. 知识目标:学生能够掌握一元一次方程的基本概念和解题方法。

2. 能力目标:学生能够灵活运用一元一次方程解决生活中的实际问题。

3. 情感目标:通过趣味性的教学方式,激发学生对数学的兴趣,培养他们解决问题的能力。

三、教学内容1. 一元一次方程的基本概念:什么是一元一次方程?方程的组成部分是什么?方程的解是什么意义?2. 一元一次方程的解法:通过逐步展示方程的解题步骤,让学生掌握解题方法。

3. 一元一次方程在生活中的应用:通过案例分析,引导学生理解一元一次方程在实际生活中的应用场景。

四、教学设计1. 导入环节:设计一个趣味性的小游戏,让学生在游戏中感受到数学的魅力,并引出如何用数学方法解决问题。

2. 讲授环节:结合多媒体教学,通过形象化的图表和实例,让学生更好地理解一元一次方程的概念和解题方法。

3. 实践环节:设计一些生活中的实际问题,让学生分组讨论并运用一元一次方程进行解决,提高学生的动手能力和实际运用能力。

4. 总结与拓展:对本节课内容进行总结,并引导学生思考一元一次方程在更广泛领域的应用,激发他们的求知欲。

五、教学方法1. 启发式教学法:通过启发式问题引导学生主动探索,激发他们的兴趣和求知欲。

2. 合作学习法:设计小组讨论和合作解题环节,培养学生的合作精神和团队意识。

3. 多媒体辅助教学法:运用多媒体的展示方式,使抽象的概念更加具体,有助于学生的理解和记忆。

六、评价与反思1. 评价方式:通过观察学生课堂表现、听取学生答疑情况和看学生课后作业,全方位评价学生的学习情况。

2. 反思教学:及时总结反思教学过程中的不足和不足之处,不断改进教学方法,提高教学效果。

全国初中数学青年教师优秀课一等奖《一元一次方程》教学设计

全国初中数学青年教师优秀课一等奖《一元一次方程》教学设计

《一元一次方程》教学设计一、内容与内容解析继第四章《代数式》之后,第五章《一元一次方程》内容仍属于《义务教育课程标准(2022年版)》中的“数与代数”领域.从数学学科本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数的发展.从代数关于方程的分类看,一元一次方程是最基本的代数方程,对它的理解和掌握对于后续内容(其他的方程以及不等式、函数等)的学习具有重要的基础,这是因为这些后续内容的学习和一元一次方程的学习有很强的关联性和可类比性.本章内容是对一元一次方程作更系统、更深入的讨论,所涉及的实际问题要比以前学习的问题更复杂些,更强调模型化思想的渗透,对方程的解法更注重算理.一元一次方程的概念和解法贯穿全章,是本章的教学重点.本节课学习内容主要包括:(1)一元一次方程的概念;(2)一元一次方程的解(根)的概念;(3)判断一个数是否是一元一次方程的解;(4)尝试检验法求一元一次方程的解.由此可见,一元一次方程作为章节起始课,承载着单元知识引领作用.基于教学内容特殊的地位和作用,本节课的教学重点确定为:1. 一元一次方程的概念;2. 尝试、检验法解一元一次方程的思想和方法.二、目标与目标解析1. 进一步认识方程,感悟从算式到方程是数学的进步.2. 经历“把实际问题抽象成数学问题”的过程,体会方程是刻画现实世界的一种有效模型,会根据简单数量关系列一元一次方程.3. 通过观察、分类、归纳,经历一元一次方程概念的形成过程,理解一元一次方程的概念.4. 根据解的概念能判断一个数是否为一元一次方程的解.5.体验用尝试、检验解一元一次方程的思想和方法,并能解决简单的实际问题.三、教学问题诊断分析:从课程标准看,学生已经对方程有初步的认识,会用方程表示简单情景中的数量关系,会解简单的方程,具备了一定的基础,为进一步学习方程奠定了基础.列方程建立在分析问题的数量关系上,关键是找出合适的等量关系,并将其用数学的符号语言正确表达,即建立问题的方程模型,因为有些问题中数量关系比较隐蔽,对七年级学生来说分析有点困难,对每一个问题都要作具体分析,而不是简单的套用某一方法就可以完成,所以列方程要求较高.尝试、检验法作为解方程的一种方法,在教学可能会受到原有解方程知识干扰;在尝试、检验时如何确定未知数的较小取值范围,如何逼近方程的解,对于七年级学生来说是比较难处理的.本班学生基础、能力中等.因此本节课的难点为:1. 经历“把实际问题抽象成数学问题”的过程,体会方程是刻画现实世界的一种有效模型,会根据简单数量关系列一元一次方程.2. 体验用尝试、检验解一元一次方程的思想和方法.四、教学支持条件分析:为了有效实现教学目标,根据问题诊断分析和学习行为分析,采取以下教学支持条件:策略1:在列方程环节中,通过5个问题串,本题中未知量是什么?怎么来表示这个未知量?根据那句话来列方程?这句话的意思是什么?你能列出方程吗?来分散列方程教学难点.策略2:在归纳一元一次方程概念环节中,由学生自己制定标准把得到6个方程进行分类,通过对比二元方程、二次方程,归纳得到一元一次方程概念,凸显了一元一次方程的的特征,也为后续的方程学习指明了方法.策略3:在“尝试、检验解一元一次方程”环节中,通过估计几年后教师年龄是女儿的2倍,来确定未知数的取值范围,让学生经历尝试、检验过程,体验尝试作为问题解决的一种有效策略.五、教学过程与目标检测设计:(一)师生对话引入新课1. 请两位同学做自我介绍,追问生1年龄,追问生2出生年份,求其年龄.2. 先猜测老师年龄,然后根据师生一段对话求出老师年龄.小明:我今年14岁,老师您几岁?老师:我年龄与你年龄的平均数再加11就是我的年龄.【设计意图】1.轻松的自我我介绍,可以缓和紧张的课堂气氛,通过自我介绍引出学生年龄问题,进而转到猜测老师的年龄. 2.在猜测老师年龄时通过太大、太小、接近了,来确定年龄的范围,为后续尝试、检验法做铺垫. 3.在计算老师年龄时一般会出现三种情况:凑的方法(尝试、检验法)、算术的方法、方程的方法.通过比较让学生感悟在数量关系相对复杂的情况下,相比列算式,列方程显得更直接、更自然,体现了方程的价值,从而引出课题“方程”.(二)合作讨论探究新知1. 根据下列问题中的条件,分别列出方程.(1)如图,天平左边放着3个乒乓球,右边放5.4克的砝码和1个乒乓球,天平恰好平衡,求1个乒乓球的质量.设1个乒乓球的质量为x克,那么可以列方程: .通过5个问题串来降低列方程难度.本题中未知量是什么?怎么来表示这个未知量?根据那句话来列方程?这句话的意思是什么?你能列出方程吗?(2)一株小树苗,开始时高为40厘米,栽种后每周长高约5厘米,大约几周后树苗长高到1米?设y周后树苗长高到1m,那么可以列方程: .(3)小杰买了单价分别为2元和1.2元的贺卡若干张,花了10.8元,问这两种贺卡各买了多少张?设单价2元的贺卡m 张,单价1.2元的贺卡n 张那么可以列方程: .用不同的字母来表示未知量,让学生明白未知量可用任何字母表示,但同一题中的字母表示相同的含义.(4)把一个面积为1125平方米的一块操场分割成如图所示的正方形和长方形两个部分,求正方形边长.设正方形边长为x 米,那么可以列方程: .(5)小明用温差法测量某山峰的高度,在同一时刻测得山脚温度为7.8℃,山顶温度为-2.1℃.已知该地区山峰的高度每增加100m ,气温大约降低0.6℃,问这个山峰的高度大约是多少米?设这个山峰的高度大约是y 米,那么可以列方程: .【设计意图】1.经历“把实际问题抽象成数学问题”的过程,体会方程是刻画现实世界的一种有效模型. 2.一元一次方程是最基本的代数方程,其“特征”只有在方程背景下比较才能凸显出来,故相比教科书增添了二元方程和二次方程.2. 自己制定一个分类依据,把这六个方程分分类.(1)x x +=4.53 (2)100540=+y (3)8.102.12=+n m(4)1125202=+x x (5)1.2006.08.7-=-x (6)x x =++11214 生:按未知数的个数分,一元、二元;按未知数的次数分,一次、二次. 方程(1)、(2)、(5)、(6)同时具有一元、一次两个特征,我们把形如这样的方程叫做一元一次方程,引出今天的课题.再观察这四个方程两边的代数式,得到一元一次方程的第三个特征(两边都是整式).【设计意图】由学生自己制定标准把得到6个方程进行分类,通过观察、合作讨论、归纳得到一元一次方程概念,凸显了一元一次方程的的特征(一元、一次),也为后续的方程学习指明了方法.3. 下列各式中,哪些是方程? 哪些是一元一次方程?(1)05=x (2) x 31+ (3) y y +=42(4)m m -=+123 (5) x x-=43 (6) 321x y -= 【设计意图】通过追问(2)、(3)、(5)、(6)不是一元一次方程的缘由,加深对一元一次方程特征的理解,借此巩固一元一次方程概念.4.写出一个一元一次方程.(三)温故知新 再探新知1. 在小学方程学习中,我们还学习了什么?解方程就是求出能使方程左右两边相等的未知数的值,我们把这个值叫做方程的解.2. 判断下列x 的值是不是方程9234-=-x x 的解.(1)2=x (2) 3-=x【设计意图】方程“验根”是对“方程的解”的概念直接应用,由教学经验可知,学生会把未知数的同时代入到方程两边,得到错误的式子“922324-⨯=-⨯”.第(1)小题讲解中,要让学生充分理解“左边=右边”这一判断标准,并归纳总结判断一个未知数的值是不是方程的解步骤及表述格式.第(2)小题由学生参照格式完成,强化验根的程序.3. 写出一个一元一次方程,使它们的解是x= - 2.【设计意图】让学生从正反两个方面深入理解一元一次方程解的概念.(四)尝试检验 体验方法对于一些较简单的方程,先确定未知数的一个较小的取值范围,再逐一将这些可取的值代入方程进行尝试检验,能使方程两边相等的未知数的值就是方程的解.这种解方程的方法叫尝试检验法.它是解决问题的一种有效的方法.1. 今年乐老师36岁、女儿9岁,几年后乐老师的年龄是女儿的2倍?今年老师的年龄是女儿的4倍,你们估估看几年后老师的年龄是女儿的2倍?10年?20年?跨度太大,15年?从而可以确定应在什么之间?如果设x年后乐老师的年龄是女儿的2倍.可列方程?方程的解因该是那几个整数中的一个?【设计意图】让学生经历尝试、检验过程,如何确定未知数的较小取值范围,如何逼近方程的解.由老师的年龄问题自然的引到丢番图的年龄问题,借此介绍代数、方程的发展历程.2. 求出丢番图的年龄.上帝给予的童年占六分之一,又过了十二分之一,两颊长胡,再过七分之一,点燃起结婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓.悲伤只有用数论的研究去弥补,又过了四年,他也走完了人生的旅途.因为年龄为整数,且必为6、12、7、2的公倍数,最小公倍数为84,根据实际情况,年龄不可能达到168及以上,把84代入方程尝试、检验.【设计意图】这是一道悠久历史的名题,也是数学与文学结合的佳作,诗中并没有明确说出丢番图的寿命数字,但已隐含于诗中,利用方程可以求出其年龄,这当中蕴含着浓浓的数学文化.根据生平历程和年龄得到的方程相对较繁,利用整数解,感悟“尝试、检验”作为问题解决的一种有效策略.(五)回顾总结提升认识1. 一元一次方程是方程大家庭中最简单的一类,你觉得他简单在哪里?2. 比一元一次方程稍稍复杂的方程可能是什么方程?它复杂在哪?如果它的“次”“元”继续增加,又可能产生什么方程?3. 如果“元”“次”同时增加,还可能产生什么新的方程?你能写一个吗?【设计意图】从方程到一元一次方程得到概念,从一元一次方程到方程加以提升.4. 我们发现,从左到右,方程越来越复杂.同学们,我们不妨换个方向,如果从右往左看,感觉又会怎样呢?这是我们以后解方程思考的方向,当然解方程不可能象今天一样都去尝试,究竟如何解方程?这是我们下节课要学习的内容.【设计意图】渗透解方程的基本思想方法,为后续的方程学习起到引领作用.(六)分层联系巩固必做:完成作业本《5.1一元一次方程》.选做:用自己的年龄编一道问题,并列出方程.查阅方程史实,了解方程发展历程.【设计意图】分层作业,使“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”.《一元一次方程》的点评方程是数学的核心内容,是刻画世界数量关系的有效数学模型。

一元一次方程教案最新7篇

一元一次方程教案最新7篇

一元一次方程教案最新7篇元一次方程教学设计篇一一、教材分析1、教材地位和作用本节课是义务教育课程标准实验教科书数学六年级上册第五章《一元一次方程》中第一节课的内容。

是小学与初中知识的衔接点,学生在小学已经初步接触过方程,了解了什么是方程,什么是方程的解,并学会了用逆运算法解一些简单的方程。

并在前一章刚学过整式的概念及其运算的基础上,本节课将带领学生继续学习方程、一元一次方程等内容。

要求教师帮助学生在现实情境中,通过对多种实际问题的分析,感受方程作为刻画现实世界的模型的意义,建立方程归纳得出一元一次方程的概念并用尝试检验法来求解,同时也为学生进一步学习一元一次方程的解法和应用起到铺垫作用。

2、教学目标综上分析及教学大纲要求,本课时教学目标制定如下:⒈.通过对多种实际问题的分析,感受方程作为刻画现实世界的有效模型的意义⒈.会根据简单数量关系列方程,通过观察、归纳一元一次方程的概念⒈.体会解决问题的一种重要的思想方法----尝试检验法⒈.回顾理解等式的两个性质,并初步学会利用等式的两个性质解一元一次方程3、教学重点和难点重点:一元一次方程的概念和用尝试检验法求方程的解难点:利用等式的两个性质解一元一次方程二、教法与学法分析:教法方法与手段:本节课利用多媒体教学平台,在概念教学设计中,注意遵循人们认识事物的规律,从具体到抽象,从特殊到一般,由浅入深。

从学生熟悉的实际问题开始,将实际问题“数学化”建立方程模型。

采用教师引导,学生自主探索、观察、归纳的教学方式。

利用多媒体和天平演示等教学设备辅助教学,充分调动学生的积极性。

学法指导:根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法。

通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考,探索情境中的所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程和一元一次方程的意义,培养学生抽象概括等能力。

北师大版七年级数学上册3.1.1《一元一次方程(第1课时)》优质教学设计

北师大版七年级数学上册3.1.1《一元一次方程(第1课时)》优质教学设计

北师大版七年级数学上册3.1.1《一元一次方程(第1课时)》优质教学设计一. 教材分析《一元一次方程(第1课时)》这一节内容是北师大版七年级数学上册的重点内容。

本节课的主要内容是一元一次方程的定义、性质和解法。

通过本节课的学习,学生能够理解一元一次方程的概念,掌握一元一次方程的解法,并能够应用一元一次方程解决实际问题。

教材中通过丰富的实例和具体的操作,引导学生逐步掌握一元一次方程的知识,同时培养学生的数学思维和解决问题的能力。

二. 学情分析七年级的学生已经具备了一些基本的数学知识,比如代数的初步知识,能够进行简单的代数运算。

但是学生对于一元一次方程的概念和解法可能还比较陌生,需要通过具体的实例和操作来理解和掌握。

学生的学习兴趣和积极性较高,对于新的知识有较强的求知欲,但也有一部分学生可能对于一些抽象的概念和理论感到困惑,需要教师耐心引导和讲解。

三. 教学目标1.知识与技能:学生能够理解一元一次方程的概念,掌握一元一次方程的解法,并能够应用一元一次方程解决实际问题。

2.过程与方法:学生通过观察、操作、思考、交流等过程,培养自己的数学思维和解决问题的能力。

3.情感态度与价值观:学生能够积极参与课堂学习,克服困难,自主探索,增强对数学的兴趣和信心。

四. 教学重难点1.重点:一元一次方程的概念、性质和解法。

2.难点:一元一次方程的解法和应用。

五. 教学方法1.情境教学法:通过具体的实例和实际问题,引发学生的思考和兴趣,引导学生主动参与学习。

2.启发式教学法:教师提出问题,引导学生思考和探索,激发学生的学习积极性和创造力。

3.合作学习法:学生通过小组合作,共同解决问题,培养学生的合作意识和团队精神。

六. 教学准备1.教师准备:教师需要准备相关的教学材料,如PPT、教案、例题、练习题等。

2.学生准备:学生需要预习相关的知识,了解一元一次方程的基本概念。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引入一元一次方程的概念,激发学生的兴趣和思考。

七年级数学上册《认识一元一次方程》教案、教学设计

七年级数学上册《认识一元一次方程》教案、教学设计
3.学生的学习习惯和方法。部分学生可能还保留着小学时期的学习习惯,依赖教师的讲解,缺乏自主探究的能力。教学中应鼓励学生主动参与,培养他们独立思考和合作交流的习惯。
4.学生的情感态度。初中生对新鲜事物充满好奇,但也可能因为遇到困难而产生挫败感。在教学过程中,应注重激发学生的学习兴趣,及时给予鼓励和支持,帮助他们建立自信心,形成积极向上的学习态度。
1.学生对方程概念的理解程度。大部分学生可能对方程的认识仅限于等式的平衡性,对于一元一次方程的解法和应用还不够熟悉,需要通过具体例子的引导和解释来帮助他们理解。
2.学生的数学思维能力。七年级学生正处于抽象逻辑思维的发展阶段,他们需要通过具体操作和形象思维来辅助理解和解决问题,因此在教学中应注重形象与抽象的结合,逐步引导学生向更高层次的数学思维过渡。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握一元一次方程的概念及其解法是本章节的重点。学生需要从具体的实例中抽象出一元一次方程的一般形式,并学会运用基本的解法步骤进行求解。
-重难点突破设想:通过生活实例引入一元一次方程,如购物找零、年龄问题等,让学生在实际问题中发现方程的模型,进而理解方程的含义。在教学过程中,逐步引导学生从特殊到一般,从直观到抽象,最终掌握一元一次方程的解法。
-设想实施:利用交互式白板、教学软件等现代教学工具,设计互动性强、形象直观的课件,让学生在视觉和操作上更好地理解一元一次方程的解法。
3.实施分层次教学,关注学生的个体差异。针对不同学生的学习能力和学习风格,设计不同难度的问题和练习,使每个学生都能在原有基础上得到提高。
-设想实施:准备基础、提高、拓展三个层次的问题和练习,让学生自主选择适合自己水平的任务,同时提供个别辅导,帮助学习有困难的学生克服困难。

2023最新-《一元一次方程与实际问题》教学设计【优秀3篇】

2023最新-《一元一次方程与实际问题》教学设计【优秀3篇】

《一元一次方程与实际问题》教学设计【优秀3篇】在教学工作者实际的教学活动中,通常会被要求编写教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。

我们该怎么去写教学设计呢?问渠那得清如许,为有源头活水来,以下是漂亮的编辑帮大家整理的《一元一次方程与实际问题》教学设计【优秀3篇】,欢迎借鉴,希望大家能够喜欢。

实际问题与一元一次方程教学设计篇一【教学目标】1、进一步掌握列一元一次方程解应用题的方法步骤.2、通过分析工作量中的相等关系,进一步经历运用方程解决实际问题的过程,体会方程模型的作用.3、培养学生自主探究和合作交流的意识和能力,体会数学的应用价值.【教学重点】会运用一元一次方程解决工程问题。

【教学难点】分析工作量中的相等关系,进一步经历运用方程解决实际问题的过程,体会方程模型的作用.【教学过程】一、复习导入1、一件工作,甲单独做20小时完成,乙单独做12小时完成。

那么两人合作多少小时完成?思考:(1)两人合作32小时完成对吗?为什么?(2)甲每小时完成全部工作的;乙每小时完成全部工作的;甲x小时完成全部工作的;乙x小时完成全部工作的。

2、整理一块地,由一个人做要80小时完成。

那么4个人做需要多少小时完成?分析:一个人做1小时完成的工作量是;一个人做x小时完成的工作量是;4个人做x小时完成的工作量是。

3、一项工作,12个人4个小时才能完成。

若这项工作由8个人来做,要多少小时才能完成呢?(1)人均效率(一个人做一小时的工作量)是。

(2)这项工作由8人来做,x小时完成的工作量是。

总结:一个工作由m个人n小时完成,那么人均效率是。

二、合作探究例1整理一批图书,由一个人做要40小时完成。

现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。

假设这些人的工作效率相同,具体应先安排多少人工作分析:这里可以把工作总量看作1请填空:人均效率(一个人做1小时完成的工作量)为,由x人先做4小时,完成的工作量为,再增加2人和前一部分人一起做8小时,完成的工作量为,这项工作分两段完成任务,两段完成任务的工作量之和为。

5.3 一元一次方程的应用 教学设计-北师大版(2024)七年级数学上册

5.3 一元一次方程的应用 教学设计-北师大版(2024)七年级数学上册

5.3《一元一次方程的应用》教学设计教材分析本节课是北师大版( 2024)七年级上册的第五章第三节(《一元一次方程的应用》教学内容,它是学生学习完一元一次方程的概念和解法后的第一个模型应用内容,目的是让学生感受一元一次方程是刻画现实世界常见的数学模型之一。

本节课内容与学生现实生活结合紧密,这样可以让学生更容易根据问题中的数量关系建立方程模型。

与此同时,由于本节课是学生首次经历建立数学模型并求解的全过程,所以对于本课的教学,需引导学生真正经历从实际问题中获得等量关系、建立和求解一元一次方程模型的全过程,感悟模型思想,为以后学习研究其他数学模型奠定基础。

因此,本节课无论是在知识上还是思想方法及能力上都起着举足轻重的作用。

本节课的重点是通过对实际问题所涉及的数学关系的理解,找到图形问题中的等量关系,建立一元一次方程,使实际问题数学化。

难点是审清题意,关键让学生抓住图形问题中的不变量。

核心素养目标:思维品质、能正确分析应用题的题意,找出题中的不变量——等量关系,设未知数、列方程、求解并检验解的合理性。

数学建模、通过分析图形问题中的数量关系体会方程模型的作用,进一步提高学生分析问题、解决问题、敢于提出问题的能力。

情感态度与价值观、通过对实际问题的探讨,使学生在动手独立思考、方程意识的过程中,进一步体会数学应用的价值,鼓励学生大胆质疑,激发学生的好奇心和主动学习的欲望。

教学重点与难点:重点:能正确分析应用题的题意,找出题中的不变量——等量关系,设未知数、列方程、求解并检验解的合理性。

难点:通过分析图形问题中的数量关系体会方程模型的作用,进一步提高学生分析问题、解决问题、敢于提出问题的能力。

课前准备:多媒体课件、细绳、小球、水杯。

教学过程:一、创新情境,引入新课活动内容:情境1:成语( 朝三暮四”的故事( 附内容:从前有个人养了一群猴子.每天早晨和晚上都喂每只猴子四个橡子,可是他家里越来越穷了,已经买不起这么多橡子了,这可怎么办,于是他想了一个办法,第二天他对猴子们说,从今天开始,每天早上给你们三个橡子,晚上给四个,猴子们一听,早上的比晚上的少,气的大叫起来,那个人灵机一动,连忙改口说,要不我每天早上给你们四个橡子,晚上三个橡子,这样总可以了吧,猴子们一听,早上比晚上多,都高兴的跳了起来。

一元一次方程教学设计与教学反思[共5篇][修改版]

一元一次方程教学设计与教学反思[共5篇][修改版]

第一篇:一元一次方程教学设计与教学反思人教版七年级数学上册第三章《一元一次方程》教学设计呈贡区第一中学邹秀存一、教学分析(一)教学内容分析1.方程是代数学的核心,是刻画现实世界的一个有效的数学模型,而一元一次方程是最简单的代数方程,也是所有代数方程的基础。

2. 用一元一次方程解决实际问题是初中阶段应用数学知识解决实际问题的开端,也是增强学生学数学、用数学的重要题材;教材渗透的符号化、模型化思想及类比、化归、归纳等数学思想方法,都是学生今后学习和工作中必备的数学修养和素质。

3. 通过本节课,使学生了解一元一次方程及其相关概念,认识到从算术到方程是数学的进步,并体会方程的意义,同时在“观察分析-抽象表示-符号变换-解释体验”的过程中,感受数学的科学价值和人文价值;体会从实际问题到方程中蕴含的模型化思想,提高分析问题和解决问题的能力。

“从算术到方程”是本章第一节内容,是从算术模型到方程模型的首次尝试跨越,对后续学习有着重要的意义。

(二)教学对象分析该内容属于2012年审定人教版义务教育教科书七年级上册第三章的内容。

1.学生在小学阶段已对简单方程有所认识,也会用方程表示简单情境中的数量关系,但多数学生说不出方程的本质。

2.学生已会用算术模型和方程模型解决简单的实际问题,但学生说不出算术算式与代数方程的区别与联系,感受不到方程是更简便、更有力的数学工具,从算术方法到代数方程是数学的进步。

3.学生尽管已会模仿解决一些简单的实际问题,但学生缺乏多角度思考的习惯,也没有交流、合作、质疑的意识,不会用数学方式去思考。

大部分学生思维比较活跃,敢想也敢说。

二、教学目标(一)通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;(二)初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;(三)培养学生获取信息,分析问题,处理问题的能力。

三、教学重点、难点均是从实际问题中寻找相等关系。

四、教学过程(一)问题解决,体会方程播放2010年南非世界杯宣传曲。

解一元一次方程 教学设计【优秀3篇】

解一元一次方程 教学设计【优秀3篇】

解一元一次方程教学设计【优秀3篇】篇一:解一元一次方程教学设计1白话文的我细心为您带来了解一元一次方程教学设计【优秀3篇】,希望能够帮助到大家。

篇一:解一元一次方程教案设计篇一一。

教学目标:1。

学问目标:了解一元一次方程的概念,驾驭含括号的一元一次方程的解法。

2。

实力目标:培育学生的运算实力与解题思路。

3。

情感目标:通过主动探究,合作学习,相互沟通,体会数学的严谨,感受数学的魅力,增加学习数学的爱好。

二。

教学的重点与难点:1。

重点:了解一元一次方程的概念,解含有括号的一元一次方程的解法。

2。

难点:括号前面是负号时,去括号时遗忘变号。

移项法则的敏捷运用。

三。

教学方法:1。

教法:讲课结合法2。

学法:看中学,讲中学,做中学3。

教学活动:讲授四。

课型:新授课五。

课时:第一课时六。

教学用具:彩色粉笔,小黑板,多媒体七。

教学过程1。

创设情景:今日让我们一起做个小小的嬉戏,这个嬉戏的名字叫:猜猜你心中的她心里想一个数将这个数+2将所得结果最终+7将所得的结果告知老师(抽一个同学,让他把他计算的`结果告知老师,由老师通过计算得到他最起先所想的数字。

)老师:同学们知道老师是怎样猜到的吗?同学:不知道。

老师:那同学们想知道老师是怎样猜到的吗?这就是我们今日所要学习的内容解一元一次方程。

2。

探究新知:一元一次方程的概念:前面我们遇到的一些方程,例如 3老师:大家视察这些方程,它们有什么共同特征?(提示:视察未知数的个数和未知数的次数。

)(抽同学起来回答,然后再由老师概括。

)只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,像这样的方程叫做一元一次方程。

老师:同学们从这个概念中,能找出关键的字吗?能用它来推断一个式子是否是一元一次方程吗?再次强调特征:(1)只含一个未知数;(2)未知数的次数为1;(3)是一个整式。

(留意:这几个特征必需同时满意,缺一不行。

)3。

例题讲解:例1推断如下的式子是一元一次方程吗?(写在小黑板上,让学生推断,并分别抽同学起来回答,假如不是,要说出理由。

认识一元一次方程教学设计优秀3篇

认识一元一次方程教学设计优秀3篇

认识一元一次方程教学设计优秀3篇一元一次方程教学设计篇一删繁就简三秋树领异标新二月花————“一元一次方程应用”教学实录及反思临沂高都中学王兴玲列方程解应用题,是整个初中阶段数学教学的重点。

因此,在教学中让学生掌握好它的原理、方法及实质则显得十分重要。

在本节课教学过程中始终贯穿一条主线,即为什么要列方程、怎样列方程、怎样简捷地列方程等来阐明列方程的优越性、实质性及规律性。

具体设计如下:一、引言——故事的开端(为什么要列方程)问题1:临沂高都中学组织学生参观小埠东橡胶坝和沂河大桥(多媒体展示小埠东橡胶坝的图片、沂河大桥的美图等)师:在途中,我们遇到了一些有趣的数学问题希望同学们一起解决。

在参观小埠东橡胶坝时,朋朋感叹道:“这座橡胶坝真是宏伟壮观,不知道刚才参观的沂河大桥有多长”?小波马上说:“我知道,小埠东橡胶坝长1一叁5米,是沂河大桥的2倍还多55米。

”朋朋想:那么沂河大桥有多长呢?同学们能帮朋朋解决这个问题吗?问题1、小埠东橡胶坝长1一叁5米,是沂河大桥的2倍还多55米,那么沂河大桥有多长?生1:沂河大桥长为(米)(师板演)师:除了列算式外,还有别的方法吗?生2:可以列方程师:如果用列方程的方法来解,设哪个未知数为x? 生2:设沂河大桥的长为x米。

师:根据怎样的相当关系来列方程?方程的解是多少?生2:根据小埠东橡胶坝长1一叁5米,是沂河大桥的2倍还多55米,列方程1一叁5=2x+55,解得:x=540(教师板演)师:以上两种方法,大家比较、体会一下,我们为什么有时要用列方程的方法来解决实际问题呢?列方程有什么优越性?生3:列方程就是直来直往。

师:非常棒,列方程是顺向思考,而算数方法是逆向思考,较繁琐,且有时易出错,所以才需要学习:一元一次应用题(教师板书课题)师:有的同学习惯了算数方法,不愿意列方程,但有的实际问题数量关系比较复杂,用算数方法不易解决,如下面问题……(设计意图:根据新课程的理念,本节课创造性的使用教材,以学生熟悉的背景引入,具有较强的感染力和吸引力教学内容并不陌生,关键是要学生清楚问什么要用列方程来解决问题,列方程比直接算数列式有何优越性,小学中的算术可以吗?问什么要换个角度研究呢?)二、故事的发展——怎样列方程师:参观完大桥后,在途中我们遇到一位老大爷正在吃力地拉着一辆装满大米和面粉的手推车上坡,几位同学立即上前帮助。

北师大版数学七年级上册《 第五章 一元一次方程 》教学设计

北师大版数学七年级上册《 第五章 一元一次方程 》教学设计

北师大版数学七年级上册《第五章一元一次方程》教学设计一. 教材分析北师大版数学七年级上册第五章《一元一次方程》是初中学段数学教学的重要内容,主要让学生了解和掌握一元一次方程的定义、解法及其应用。

本章通过实际问题引入方程的概念,让学生感受数学与实际生活的联系,培养学生的数学应用能力。

教材内容安排合理,由浅入深,既注重基础知识的教学,又重视学生能力的培养。

二. 学情分析初入学段的七年级学生在数学知识、技能、思维方式等方面具有一定的基础,但方程概念、解法及应用对于他们来说还是一个新的领域。

因此,在教学过程中,教师应关注学生的个体差异,充分调动学生的积极性,激发他们的求知欲望,引导学生主动探究、合作交流,逐步掌握一元一次方程的知识。

三. 教学目标1.知识与技能目标:使学生了解一元一次方程的概念,掌握一元一次方程的解法,能运用一元一次方程解决实际问题。

2.过程与方法目标:通过观察、分析、归纳等方法,培养学生发现规律、解决问题的能力。

3.情感态度与价值观目标:培养学生热爱数学、勇于探究的精神,提高学生运用数学知识解决实际问题的能力。

四. 教学重难点1.重点:一元一次方程的概念、解法及应用。

2.难点:一元一次方程的解法,以及如何将实际问题转化为方程问题。

五. 教学方法1.情境教学法:通过生活实例引入方程概念,让学生感受数学与实际生活的联系。

2.启发式教学法:引导学生主动思考、探究,发现方程的解法及应用。

3.合作学习法:鼓励学生之间相互讨论、交流,提高解决问题的能力。

4.反馈评价法:及时了解学生的学习情况,针对性地调整教学方法及策略。

六. 教学准备1.教学课件:制作生动、直观的课件,辅助教学。

2.教学案例:准备一些实际问题,用于引导学生解决方程问题。

3.练习题库:准备一定数量的练习题,用于巩固所学知识。

4.教学用具:黑板、粉笔、投影仪等。

七. 教学过程1.导入(5分钟)利用生活实例引入方程的概念,如“小明买书”问题,引导学生感受数学与实际生活的联系。

《一元一次方程》教学设计精选11篇

《一元一次方程》教学设计精选11篇

《一元一次方程》教学设计精选11篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!《一元一次方程》教学设计精选11篇作为一位优秀的人·民教师,常常需要准备教案,教案是教学蓝图,可以有效提高教学效率。

一元一次方程教学设计

一元一次方程教学设计

元一次方程,确定方
次方程知识的运用。
师及时纠正引导。
程中未知数的值。
让学生巩固列方程的基 3.学生先思考,然后以
20
3. 练 一 练 , 四 道 题
本步骤,在给学生数学

小组必答形式轮流作
目,根据题中条件列
知识的同时,渗透建立
答,其他学生纠正或补

方程。
充,师总结评价。
数学模型的思想方法。
4. 出 示 两 道 检 验 一
以小组抢答形式完成练

4.学生快速计算,小组
个数值是否是方程
习,激发学生学习兴趣,
抢答,完成练习。师适

的解的练习题。
时纠正总结。
调动学生参与到课堂教
学中来,活跃课堂气氛。
通过写小结的方式引导
比比谁的收获多,通 学生先写 1 分钟小结, 学生回顾所学知识,加
课堂小结 过本节课的学习,你 然后找学生谈自己的 深学生对所学内容的理 3 感悟反思 有哪些收获?写 1 分 收获,师适时给予总结 解,培养学生独立分析、
一次方程的概念,并 个方程的特点,形成概
将实际问题转化为一元

将实际问题转化为 念。分析列方程的过 一次方程的问题,培养
一 元 一 次 方 程 问 题 程,归纳将实际问题转

学生数学建模的核心素 的过程总结成 “设 化为一元一次方程的
养,同时以口诀形式归

找列”的口诀。
过程,并形成口诀。师 纳,便于学生记忆。
他去给参加拔河的
示数,让学生体验从算
式到代数式再到方程的 3
导入新课
学生列方程。 同学买水,在买水过
发展过程,初步感受方
教师引出课题并板书。

一元一次方程解法教学设计

一元一次方程解法教学设计

一元一次方程解法教学设计一元一次方程解法教学设计 1一、教材分析:1、主要内容:一元一次方程的解法第一课时2、教材中的地位与作用:一元一次方程的解法是在学生已经具备了代数初步知识、系统学习了整式加减的基础上安排的,是对整式运算的进一步深化和认识。

本节课是在教授了一元一次方程解法第一课时因此尤为重要。

同时着力培养学生积极思维的优良品格,逐步形成具体问题具体分析的哲学思想,养成正确思考,善于思考的良好习惯,从而提高分析问题,解决问题的能力。

3、教学重点:熟练运用等式性质和移项解一元一次方程。

教学难点:学生如何在已有的基础上根据不同形式的问题选择合适的解题方法。

二、教学目标:(1)知识与技能:初步学习一元一次方程的一般解法,进一步巩固等式性质。

(2)过程与方法:通过寻找解题方法,提高学生发散思维能力,逐步培养创新意识。

(3)情感、态度与价值观:在教学过程中,充分体现和谐、简洁之美,使学生在获取知识的同时,又能对所学内容产生浓厚的兴趣,增强求知欲。

三、教法方法:自学探究指导法学法探究:自主、合作、探究学习法教学手段:多媒体辅助教学初步设想简单问题由学生自主完成,难度稍大同桌或小组互助完成,知识拓展由小组间互助完成,即同桌对学,小组对学,互查互助,学友展示师傅补充。

四、课前准备1、导学案的使用:由于七年级是课改的年段,教师在新课前一天将学习目标、学习内容、思路和方法等以“预习案”的形式明确给学生,学习目标、思路和方法要有层次性和逻辑性。

并印发“探究案”和“测评案”(三案合一),有意识地引导学生在课前自学。

2、分组:两个差异较大的学生结成一个学习对子,即:师傅和学友。

三个学习对子为一个学习小组。

桌椅按照面对面排列。

每一对学习对子中的师傅负责徒弟的学习,六人中挑选综合能力最优者为组长,负责本组合作学习的总组织者和协调者。

相邻的两个小组为结对组。

班级同学般6人一组,其中优中差相结合,不仅考虑数学学科同时考虑其他学科,由于学生各科不均衡,师徒角色有时会转化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级数学上册《一元一次方程》教学设计
教学内容:人教版七年级上册3.1.1一元一次方程
教学目标:
知识与技能:
1、理解一元一次方程,以及一元一次方程解的概念。

2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。

3、掌握检验某个数值是不是方程解的方法。

过程与方法:
在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用
新知识解决实际问题的能力。

情感态度和价值观:
让学生体会到从算式到方程是数学的进步,体现数学和日常生活密切相关,
认识到许多实际问题可以用数学方法解决,激发学生学习数学的热情。

教学重点:建立一元一次方程的概念,寻找相等关系,列出方程。

教学难点:根据具体问题中的相等关系,列出方程。

教学准备:多媒体教室,配套课件。

教学过程:
设计理念:
数学教学要从学生的经验和已有的知识出发,创设有助于学生自主学习的问题情景,在数学教学活动中要创造性地使用数学教材。

课程标准的建议要求教师不再是“教教材”而是“用教材”。

本节课在抓住主要目标,用活教材,针对学生实际、激活学生学习热情等方面做了有益
的探索,现就几个教学片断进行探讨。

一、游戏导入,设置悬念
师:同学们,老师学会了一个魔术,情你们配合表演。

请看大屏幕,这是2006年10月的日历,请你用正方形任意框出四个日期,并告诉老师这四个数字的和,老师马上就告诉你这四个数字。

生1:24,师:2,3,9,10生2:84师:17,18,24,25
师:同学们想学会这个魔术吗生:想!
师:通过这节课的学习,同学们一定能学会!
【一些教师常用教材的章前图或者行程问题情景导入,但章前图过于平淡且较难,不易激发学生兴趣,本次课用游戏导入激发学生的求知欲,其实质是列一元一次方程x+(x+1)+(x+7)+(x+8)=任意框出的四个日期的和,x是第一个日期,这是本次课的第一个变化。


二、突出主题,突出主体
1、师:看大屏幕,独立思考下列问题,根据条件列出式子。

(1)x的2倍与3的差是5,
(2)长方形的的长为a,宽比长少5,周长为36,则=36
(3)A、B两地相距180千米,甲乙两车分别从A、B两地出发,相向而行,甲车每小时行驶30千米,乙车得速度是甲车速度的倍,经过t小时相遇,则=180
生:(1)2x-3=5(2)2(a+a-5)=36(3)30t+(30t)=180
师:这些式子小学学习过,它们是()生:方程。

师:对,含有未知数的等式叫做方程,等号的两边分别叫做方程的左边和右边。

(现实,学生齐读)
【这又是一个变化,从小学已有知识出发,提前给出方程的概念,避免课堂中的逻辑矛盾,同时为学习列方程打下基础。


2、师:小学我们学过简易方程,并用简易方程解决应用题,对于比较复杂的实际应用题,用方程解答起来更加方便。

请自己阅读课本P/79—81,(课本内容略)并把课本空空填写完整,不懂的和你的同学
交流。

还要回答下列问题:
(1)你是如何理解“列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式——方程”
(2)什么叫一元一次方程
(3)什么是的解你找到验证的方法吗
师:在阅读P/80例题1时老师做出友情提示:
(1)选择一个未知数x
(2)对于这三个问题,分别考虑:
用含x的未知数分别表示正方形的边长;
用含x的未知数表示这台计算机的检修时间;
用含x的未知数分别表示男、女生人数。

(3)找一个问题中的相等关系列出方程
学生讨论出上述答案后
师:大屏幕显示上述问题的答案
【以前我在上这节课时,总是犯了和大多数老师一样的毛病,担心内容多,学生自己不会弄懂,满堂灌,结果我讲的筋疲力尽,学生还是糊里糊涂;这次我放开手,让学生自主学习,带着问题学习,和同学合作学习,结果学生情绪高涨,问题迎刃而解,重点内容也都清晰化。

这一变化,把我彻底从课堂解放出来,再不是学生心中“喋喋不休”的数学老师了,真正做到了学生学得愉快,老师教得轻松!】
三、体现新时代教师是学生学习的合作者
在大多数学生完成课本阅读和解答好课本问题、上述问题的基础上,请几名代表学生汇报所列方程,并解释方程等号左右两边式子的含义。

师:(强调)(1)方程两边表示的是同一个数;
(2)左右两边表示的方法不同。

【这一小小的点拨,有画龙点睛之作用,突出方程的实质性含义,为以后列出更复杂的方程打下基础】
四、给学生一个展示自己精彩的舞台
师:本节知识也学完了,你能解释课前老师魔术中的几多秘密
设任意框出的四个数字的第一个为x,则:
生1:x+(x+1)+(x+7)+(x+8)=24;
生2:x+(x+1)+(x+7)+(x+8)=84
师:很好!如何算出x的值,是我们下一节课要探讨的问题(继续设疑,激发学生的学习兴趣),但老师想当堂检测一下谁掌握的最多,最好,请看大屏幕。

【题目略,题目设计主要是列方程,并要求学生划出列方程的一个相等关系;检验一个数值是不是方程的解。

这次的舞台大展示,教师仍然改掉以前的在学生旁边指手画脚的坏毛病,让学生一口气做完,让他们胆大地出错,暴露问题,然后师生一起纠正答案,效果比以前好了N 倍!】
五、我的课堂,我做主,我来说
生1我掌握方程的概念:含有未知数的等式叫方程,即①有未知数②是等式;
生2:我掌握一元一次方程的概念:等式两边只含有一个未知数,并且未知数的次数都是1;
生3:我会检查一个数值是不是方程的解;
生4:我知道列方程的关键是找一个包含题目意思的相等关系并且等式左右两边是同一个量的两种不同种表达方式!
生5:我觉得用方程解决实际应用问题比以前小学的算术法来得简单!
师:谢谢你们精彩的发言,你们的发言是“五语道破其他人”!
【课堂小结一改教师全盘包办,学生没心没肺的听,心里还盼望着下课,盼望着游戏的课间。

学生的课堂,让学生自己说,让学生把掌握的数学知识用自己的语言说出来,也可以训练他们把符号语言转化为文
字语言,为以后学习几何学知识打下深厚的基础!】
五、基础巩固与知识延伸
(1)基础练习见同步练习册
(2)拓展练习如下;
1、下列四个式子中,是一元一次方程的是()
A.1+2+3+4>8B.2x3C.x=1
D.||=、
2、已知关于x的方程ax+b=c的解是x=1,则=
3、下面有四张卡片,请你至少抽出三张卡片编写两道一元一次方程,并和你的同学交流一下,看看你和谁不谋而合!
【作业设计也一改从前,千篇一律,本节课后作业分出了层次,也体现了趣味性和挑战性,激发了学生的求知欲!】
六、课后反思:
数学课堂中的阅读和其它学科中的阅读一样重要,在课堂中我们要指导学生对概念性的东西进行阅读,帮助他们从句子中提炼出概念的内涵和外延,让他们能把书中的语言文字转化成自己的思想。

所以我在教“一元一次方程的概念”的时候,要求学生自己读教材,然后和同学相互讨论,以便引起思维的碰撞。

只有学生在充分读书的基础上,学生才能明白关健词的含义:只含有一个未知数,并且未知数的最高次数是1的等式才是一元一次方程。

只有使等式两边相等的未知数的值才是该方程的解。

俗话说得好:书读百遍,其义自现。

在数学课堂中,阅读对学生来说至关重要,它比起老师的“苦口婆心”的说教有效得多。

相关文档
最新文档