应用时间序列分析第4章答案

合集下载

时间序列分析王燕习题答案

时间序列分析王燕习题答案

时间序列分析王燕习题答案时间序列分析王燕习题答案时间序列分析是一门研究时间序列数据的统计学方法,它可以帮助我们理解和预测时间序列数据的趋势和模式。

王燕是这一领域的专家,在她的教材中提供了一系列的习题供学习者练习。

本文将给出一些关于时间序列分析中王燕习题的答案,希望能帮助读者更好地理解和应用这一方法。

第一题:给出一个时间序列数据,如何确定其季节性?季节性是时间序列数据中重复出现的周期性变化。

我们可以通过观察数据的图表来确定其季节性。

如果数据呈现出明显的周期性变化,且每个周期的长度相似,那么可以认为该时间序列具有季节性。

第二题:如何进行时间序列数据的平滑处理?时间序列数据的平滑处理是为了去除数据中的随机波动,使其更易于观察和分析。

常用的平滑方法有移动平均法和指数平滑法。

移动平均法是将一段时间内的数据求平均值,以此来代表整个时间段的数据。

指数平滑法则是通过对历史数据进行加权平均,赋予较近期数据更高的权重,以反映出时间序列数据的趋势。

第三题:如何进行时间序列数据的分解?时间序列数据的分解是为了将其拆解成趋势、季节性和随机成分三个部分,以便更好地理解和预测数据。

常用的分解方法有经典分解法和X-11分解法。

经典分解法是将时间序列数据拆解成趋势、季节性和随机成分,其中趋势是数据的长期变化,季节性是周期性的变化,随机成分则是无法解释的随机波动。

X-11分解法则是在经典分解法的基础上加入了一些调整和修正,使得分解结果更准确。

第四题:如何进行时间序列数据的预测?时间序列数据的预测是利用历史数据来预测未来的趋势和模式。

常用的预测方法有移动平均法和指数平滑法。

移动平均法是将时间序列数据的平均值作为未来的预测值。

指数平滑法则是通过对历史数据进行加权平均,赋予较近期数据更高的权重,以反映出时间序列数据的趋势。

此外,还可以使用ARIMA模型进行时间序列数据的预测,ARIMA模型是一种常用的时间序列预测模型,它结合了自回归、滑动平均和差分运算。

应用时间序列分析 第三版 王燕 课后答案

应用时间序列分析 第三版 王燕 课后答案

Xˆ 21
1 5
X 20
1 5
19 i 16
Xi
Xˆ 22
1 5
Xˆ 21
1 5
X 20
1 19 5 i15
Xi
a 111 6 5 5 5 25
在指数平滑法中:
xˆ2 2 ˆx 2 1 x 2 00 . 4 x 20 0 . 6x 1 9
b 0.4
b a 0.4 6 0.16 25
0.6957 0.15
33 0
4、解:原模型可变形为:
(1 B cB 2 )xt t
由其平稳域判别条件知:当| 2 | 1,2 1 1且2 1 1时,模型平稳。
由此可知 c 应满足:| c | 1, c 11且 c 11
即当-1<c<0 时,该 AR(2)模型平稳。
1
k
1/(1 c)
即[3.8275,16.1509]
(2) T1 xT1 xˆT (1) 10.5 9.88 0.62 xˆT1(1) E(xt2 ) 0.3*0.62 9.964 10.15 xˆT1(2) E(xt3 ) 0.09*0.62 9.9892 10.045
Var[eT2 (2)] (1 0.32 )*9 9.81 xt3 的95%的置信区间:[10.045-1.96× 9.81 ,10.045+1.96* 9.81 ]
第二章 P34 1、(1)因为序列具有明显的趋势,所以序列非平稳。
(2)样本自相关系数:
nk
ˆk
(k) (0)
(xt
t 1 n
x)(xtk (xt x)2
x)
t 1
x
1 n
n t 1
xt
1 (1 20

第四章多重共线性答案1

第四章多重共线性答案1

B 、序列相关第四章多重共线性一、判断题1、 多重共线性是一种随机误差现象。

(F )2、 多重共线性是总体的特征。

(F )3、 在存在不完全多重共线性的情况下,回归系数的标准差会趋于变小,相应的t 值会趋于 变大。

(F )4、 尽管有不完全的多重共线性,OLS 估计量仍然是最优线性无偏估讣呈:。

(T )5、 在髙度多重共线的情形中,要评价一个或多个偏回归系数的个别显著性是不可能的。

(T )6、 变量的两两高度相关并不表示髙度多重共线性。

(F )7、 如果分析的目的仅仅是预测,则多重共线性一泄是无害的。

(T )8、 在多元回归中,根据通常的t 检验,每个参数都是统汁上不显著的,你就不会得到一个 高的F值。

(F )9、 如果简单相关系数检测法证明多元回归模型的解释变量两两不相关,则可以判断解释变 量间不存在多重共线性。

(F )10、 多重共线性问题的实质是样本问题,因此可以通过增加样本信息得到改善。

(T ) 11、 虽然多重共线性下,很难精确区分各个解释变量的单独影响,但可据此模型进行预测。

(T )12、 如果回归模型存在严重的多重共线性,可不加分析地去掉某个解释变量从而消除多重共 线性。

(F )13、 多重共线性的存在会降低OLS 估计的方差。

(F )14、 随着多重共线性程度的增强,方差膨胀因子以及系数估计误差都在增大。

(T ) 15、 解释变量和随机误差项相关,是产生多重共线性的原因。

(F ) 16、 对于模型K=0°+QX“ +…+0*皿+气,山人…山;如果X2 = Xj_x z ,模型必然存在解释变星的多重共线性问题。

(T )17、 多重共线性问题是随机扰动项违背古典假左引起的。

(F ) 18、 存在多重共线性时,模型参数无法估计。

(F )二、 单项选择题1、 在线性回归模型中,若解释变量X ]和的观测值成比例,既有X h = kX 2i ,英中k 为非零常数,则表明模型中存在(B )A 、异方差B 、多重共线性C 、序列相关D 、随机解释变量 2、 在多元线性回归模型中,若某个解释变量对其余解释变量的可决系数接近1,则表明模型中存在(C )A、异方差性C、多重共线性D、拟合优度低3、对于模型X=Q+QX“.+02X M+%,与s=0相比,当5=0.5时,估计量6的方差vai•伉)将是原来的(B )A、1 倍B、1.33 倍C、1.96 倍D、2 倍4、如果方差膨胀因子VIF=10.则认为什么问题是严重的(C)A、异方差问题B、序列相关问题C、多重共线性问题D、解释变量与随机项的相关性5、经验认为某个解释与苴他解释变量间多重共线性严重的情况是这个解释变量的VIF(C )。

(完整word版)时间序列分析基于R__习题答案及解析

(完整word版)时间序列分析基于R__习题答案及解析

第一章习题答案略第二章习题答案2.1(1)非平稳(2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376(3)典型的具有单调趋势的时间序列样本自相关图2.2(1)非平稳,时序图如下(2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图2.3(1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118(2)平稳序列(3)白噪声序列2.4,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。

显著性水平=0.05不能视为纯随机序列。

2.5(1)时序图与样本自相关图如下(2) 非平稳 (3)非纯随机 2.6(1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机第三章习题答案3.1 ()0t E x =,21() 1.9610.7t Var x ==-,220.70.49ρ==,220φ= 3.2 1715φ=,2115φ=3.3 ()0t E x =,10.15() 1.98(10.15)(10.80.15)(10.80.15)t Var x +==--+++10.80.7010.15ρ==+,210.80.150.41ρρ=-=,3210.80.150.22ρρρ=-=1110.70φρ==,2220.15φφ==-,330φ=3.4 10c -<<, 1121,1,2k k k c c k ρρρρ--⎧=⎪-⎨⎪=+≥⎩3.5 证明:该序列的特征方程为:32--c 0c λλλ+=,解该特征方程得三个特征根:11λ=,2c λ=3c λ=-无论c 取什么值,该方程都有一个特征根在单位圆上,所以该序列一定是非平稳序列。

课后习题答案-时间序列分析及应用(R语言原书第2版)

课后习题答案-时间序列分析及应用(R语言原书第2版)
> plot(ts(rnorm(n=48)),type='o') # If you repeat this command R will use a new “random numbers” each time. If you want to reproduce the same simulation first use the command set.seed(#########) where ######### is an integer of your choice.
stationary.
(b) Find the autocovariance function for {Yt}. Cov(Yt,Yt − k) = Cov(X,X) = σ2 for all t and k, free of t (and k). (c) Sketch a “typical” time plot of Yt. The plot will be a horizontal “line” (really a discrete-time horizontal line)
relation functions are the same for θ = 3 and θ = 1/3. For simplicity, suppose that the process mean is known
to be zero and the variance of Yt is known to be 1. You observe the series {Yt} for t = 1, 2,..., n and suppose that you can produce good estimates of the autocorrelations ρk. Do you think that you could determine which value of θ is correct (3 or 1/3) based on the estimate of ρk? Why or why not?

时间序列分析参考答案

时间序列分析参考答案

时间序列分析参考答案时间序列分析参考答案时间序列分析是一种研究随时间变化的数据模式和趋势的统计方法。

它可以帮助我们理解数据的变化规律,预测未来的趋势,以及制定相应的决策。

在本文中,我们将探讨时间序列分析的基本概念、方法和应用。

一、时间序列分析的基本概念时间序列是按照时间顺序排列的一系列数据观测值。

它可以是连续的,比如每天的股票价格,也可以是离散的,比如每月的销售额。

时间序列分析的目标是找出数据中的模式和趋势,以便进行预测和决策。

时间序列分析的基本概念包括趋势、季节性和周期性。

趋势是指数据在长期内的整体变化方向,可以是上升、下降或平稳。

季节性是指数据在一年中周期性重复出现的变化模式,比如节假日销售额的增长。

周期性是指数据在较长时间内出现的波动,通常周期长度大于一年。

二、时间序列分析的方法时间序列分析的方法包括描述性分析、平稳性检验、模型建立和预测等。

描述性分析是对时间序列数据进行可视化和统计分析,以了解数据的基本特征。

常用的描述性分析方法包括绘制折线图、直方图和自相关图等。

折线图可以显示数据的整体趋势和季节性变化,直方图可以展示数据的分布情况,自相关图可以帮助我们发现数据的相关性。

平稳性检验是判断时间序列数据是否具有平稳性的方法。

平稳性是指数据的均值和方差在时间上保持不变。

常用的平稳性检验方法包括单位根检验和ADF检验等。

模型建立是根据时间序列数据的特征,选择合适的模型来描述数据的变化规律。

常用的模型包括AR模型、MA模型和ARMA模型等。

AR模型是自回归模型,表示当前观测值与过去观测值之间的线性关系;MA模型是移动平均模型,表示当前观测值与过去观测值的误差之间的线性关系;ARMA模型是自回归移动平均模型,综合考虑了自回归和移动平均的效果。

预测是利用已知的时间序列数据,通过建立模型来预测未来的观测值。

常用的预测方法包括滚动预测、指数平滑法和ARIMA模型等。

滚动预测是指根据当前观测值和过去观测值的模型,逐步预测未来的观测值;指数平滑法是基于历史数据的加权平均值,对未来的观测值进行预测;ARIMA模型是自回归移动平均差分整合模型,可以处理非平稳的时间序列数据。

人大版应用时间序列分析(第5版)习题答案

人大版应用时间序列分析(第5版)习题答案

第一章习题答案略第二章习题答案2.1答案:(1)不平稳,有典型线性趋势(2)1-6阶自相关系数如下(3)典型的具有单调趋势的时间序列样本自相关图2.2答案:(1)不平稳(2)延迟1-24阶自相关系数(3)自相关图呈现典型的长期趋势与周期并存的特征2.3答案:(1)1-24阶自相关系数(2)平稳序列(3)非白噪声序列2.4计算该序列各阶延迟的Q统计量及相应P值。

由于延迟1-12阶Q统计量的P值均显著大于0.05,所以该序列为纯随机序列。

2.5答案(1)绘制时序图与自相关图(2)序列时序图显示出典型的周期特征,该序列非平稳(3)该序列为非白噪声序列2.6答案(1)如果是进行平稳性图识别,该序列自相关图呈现一定的趋势序列特征,可以视为非平稳非白噪声序列。

如果通过adf检验进行序列平稳性识别,该序列带漂移项的0阶滞后P值小于0.05,可以视为平稳非白噪声序列(2)差分后序列为平稳非白噪声序列2.7答案(1)时序图和自相关图显示该序列有趋势特征,所以图识别为非平稳序列。

(2)单位根检验显示带漂移项0阶延迟的P值小于0.05,所以基于adf检验可以认为该序列平稳(3)如果使用adf检验结果,认为该序列平稳,则白噪声检验显示该序列为非白噪声序列如果使用图识别认为该序列非平稳,那么一阶差分后序列为平稳非白噪声序列2.8答案(1)时序图和自相关图都显示典型的趋势序列特征(2)单位根检验显示该序列可以认为是平稳序列(带漂移项一阶滞后P值小于0.05)(3)一阶差分后序列平稳第三章习题答案 3.10101()0110.7t E x φφ===--() 221112() 1.96110.7t Var x φ===--() 22213=0.70.49ρφ==()12122221110.490.7=0110.71ρρρφρρ-==-(4) 3.21111222211212(2)7=0.515111=0.30.515AR φφφρφφφρφρφφφ⎧⎧⎧=⎪=⎪⎪⎪--⇒⇒⎨⎨⎨⎪⎪⎪=+=+⎩⎩⎪⎩模型有:,2115φ=3.312012(1)(10.5)(10.3)0.80.15()01t t t t t tt B B x x x x E x εεφφφ----=⇔=-+==--,22121212()(1)(1)(1)10.15=(10.15)(10.80.15)(10.80.15)1.98t Var x φφφφφφ-=+--+-+--+++=()1122112312210.83=0.70110.150.80.70.150.410.80.410.150.70.22φρφρφρφρφρφρ==-+=+=⨯-==+=⨯-⨯=() 1112223340.70.15=0φρφφφ====-()3.41211110011AR c c c c c ⎧<-<<⎧⎪⇒⇒-<<⎨⎨<±<⎪⎩⎩() ()模型的平稳条件是 1121,21,2k k k c c k ρρρρ--⎧=⎪-⎨⎪=+≥⎩() 3.5证明:该序列的特征方程为:320c c λλλ--+=,解该特征方程得三个特征根:11λ=,2λ=3λ=无论c 取什么值,该方程都有一个特征根在单位圆上,所以该序列一定是非平稳序列。

(完整版)应用时间序列第四章第5题答案

(完整版)应用时间序列第四章第5题答案

第四章5:我国1949年-2008年年末人口总数(单位:万人)序列如表4-8所示(行数据).选择适当的模型拟合该序列的长期数据,并作5期预测。

data wangbao4_5;input x@@;time=1949+_n_-1;cards;54167 55196 56300 57482 58796 60266 61465 6282864653 65994 67207 66207 65859 67295 69172 7049972538 74542 76368 78534 80671 82992 85229 8717789211 90859 92420 93717 94974 96259 97542 98705100072 101654 103008 104357 105851 107507 109300 111026112704 114333 115823 117171 118517 119850 121121 122389123626 124761 125786 126743 127627 128453 129227 129988130756 131448 132129 132802;proc gplot data=wangbao4_5;plot x*time=1;symbol1c=black v=star i=join;run;proc autoreg data=wangbao4_5;model x=time; output out=out p=wangbao4_5_cup;run;proc gplot data=out;plot x*time=1 wangbao4_5_cup*time=2/overlay;symbol2c=red v=none i=join w=2l=3;run;proc forecast data=wangbao4_5 method=stepar trend=2 lead=5 out=out outfull outest=est;id time;var x;proc gplot data=out;plot x*time=_type_/href=2008;symbol1i=none v=star c=black;symbol2i=join v=none c=red;symbol3i=join v=none c=black l=2;symbol4i=join v=none c=black l=2;run;分析过程:1、时序图通过时序图,我可以发现我国1949年-2008年年末人口总数(随时间的变化呈现出线性变化.故此时可以用线性模型拟合序列的发展:Xt=a+bt+It t=1,2,3,…,60E(It)=0,var(It)=σ2其中,It为随机波动;Xt=a+b就是消除随机波动的影响之后该序列的长期趋势。

应用时间序列分析习题答案

应用时间序列分析习题答案

第二章习题答案2.1(1)非平稳(2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376(3)典型的具有单调趋势的时间序列样本自相关图2.2(1)非平稳,时序图如下(2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图2.3(1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118(2)平稳序列(3)白噪声序列2.4,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。

显著性水平=0.05不能视为纯随机序列。

2.5(1)时序图与样本自相关图如下(2) 非平稳 (3)非纯随机 2.6(1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机第三章习题答案3.1 解:1()0.7()()t t t E x E x E ε-=⋅+0)()7.01(=-t x E 0)(=t x E t t x ε=-)B 7.01(t t t B B B x εε)7.07.01()7.01(221 +++=-=- 229608.149.011)(εεσσ=-=t x Var49.00212==ρφρ 022=φ3.2 解:对于AR (2)模型:⎩⎨⎧=+=+==+=+=-3.05.02110211212112011φρφρφρφρρφφρφρφρ 解得:⎩⎨⎧==15/115/721φφ3.3 解:根据该AR(2)模型的形式,易得:0)(=t x E原模型可变为:t t t t x x x ε+-=--2115.08.02212122)1)(1)(1(1)(σφφφφφφ-+--+-=t x Var2)15.08.01)(15.08.01)(15.01()15.01(σ+++--+==1.98232σ⎪⎩⎪⎨⎧=+==+==-=2209.04066.06957.0)1/(1221302112211ρφρφρρφρφρφφρ ⎪⎩⎪⎨⎧=-====015.06957.033222111φφφρφ 3.4 解:原模型可变形为:t t x cB B ε=--)1(2由其平稳域判别条件知:当1||2<φ,112<+φφ且112<-φφ时,模型平稳。

应用时间序列分析习题答案解析

应用时间序列分析习题答案解析

第二章习题答案2.1(1)非平稳(2)0.01730.7000.4120.148-0.079-0.258-0.376(3)典型的具有单调趋势的时间序列样本自相关图2.2(1)非平稳,时序图如下(2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图2.3(1)自相关系数为:0.20230.0130.042-0.043-0.179-0.251-0.0940.0248-0.068-0.0720.0140.1090.2170.3160.0070-0.0250.075-0.141-0.204-0.2450.0660.0062-0.139-0.0340.206-0.0100.0800.118(2)平稳序列(3)白噪声序列2.4LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。

显著性水平=0.05,序列不能视为纯随机序列。

2.5(1)时序图与样本自相关图如下(2)非平稳(3)非纯随机2.6(1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2))(2)差分序列平稳,非纯随机第三章习题答案3.1解:E(xt)0.7E(x t)E(t) 1(1 0.7)()0ExE(x t)0t(1 0.7B)xtt122x t(10.7B)(10.7B0.7B)ttVar(x t)1 10.4921.9608222220100.493.2解:对于AR(2)模型:0.5110211210.321120112解得:12 71/15 /153.3解:根据该AR(2)模型的形式,易得:E(x t)0原模型可变为:xt0.8x10.15x2tttVar(x t)(1)(12 112)(121 2 )2(10.15)(1(10.80.15)0.15)(1 0.80.15)22=1.9823/(1)0.69570.69571121110.40660.15211202220.2209031221333.4解:原模型可变形为:(12 BcB)x tt由其平稳域判别条件知:当|2|1,211且211时,模型平稳。

时间序列分析-王燕-习题4答案(2)

时间序列分析-王燕-习题4答案(2)

6、方法一:趋势拟合法income<-scan('习题4.6数据.txt')ts.plot(income)由时序图可以看出,该序列呈现二次曲线的形状。

于是,我们对该序列进行二次曲线拟合:t<-1:length(income)t2<-t^2z<-lm(income~t+t2)summary(z)lines(z$fitted.values, col=2)方法二:移动平滑法拟合选取N=5income.fil<-filter(income,rep(1/5,5),sides=1)lines(income.fil,col=3)7、(1)milk<-scan('习题4.7数据.txt')ts.plot(milk)从该序列的时序图中,我们看到长期递增趋势和以年为固定周期的季节波动同时作用于该序列,因此我们可以采用乘积模型和加法模型。

在这里以加法模型为例。

z<-scan('4.7.txt')ts.plot(z)z<-ts(z,start=c(1962,1),frequency=12)z.s<-decompose(z,type='additive') //运用加法模型进行分解z.1<-z-z.s$seas //提取其中的季节系数,并在z中减去(因为是加法模//型)该季节系数ts.plot(z.1)lines(z.s$trend,col=3)z.2<-ts(z.1)t<-1:length(z.2)t2<-t^2t3<-t^3r1<-lm(z.2~t)r2<-lm(z.2~t+t2)r3<-lm(z.2~t+t2+t3)summary(r1)summary(r2)summary(r3) ##发现3次拟合效果最佳,故选用三次拟合ts.plot(z.2)lines(r3$fitt,col=4)pt<-(length(z.2)+1) : (length(z.2)+12)pt1<-pt ##预测下一年序列pt2<-pt^2pt3<-pt^3pt<-matrix(c(pt1,pt2,pt3),byrow=T,nrow=3)/*为预测时间的矩阵。

时间序列分析——基于R答案

时间序列分析——基于R答案

时间序列分析——基于R 王燕答案第一章时间序列分析简介略第二章时间序列的预处理#========================================## 2.5习题-1##========================================library(tseries)par(mfrow=c(1,2))x=rep(1:20)temp=ts(x)plot(temp)#不是平稳序列as.vector(acf(temp)$acf[1:6])#序列的自相关系数递减到零的速度相当缓慢,#在很长的延迟时期里,自相关系数一直为正,#而后又一直为负,在自相关图上显示出明显的#三角对称性,这是具有单调趋势的非平稳序列#的一种典型的自相关图形式。

这和该序列时序#图显示的显著的单调递增性是一致的。

#======================================== ## 2.5习题-2##======================================== library(tseries)par(mfrow=c(1,2))volcano.co2=read.table('习题2.2数据.txt',sep='\t',header=F) data=ts(as.vector(t(as.matrix(volcano.co2))),start=c(1975,1)) plot(data)#不是平稳序列as.vector(acf(data,lag.max=23)$acf)#序列自相关系数长期位于零轴的一边。

这是#具有单调趋势序列的典型特征,同时自相关#图呈现出明显的正弦波动规律,这是具有周#期变化规律的非平稳序列的典型特征。

自相#关图显示出来的这两个性质和该序列时序图#显示出的带长期递增趋势的周期性质是非常#吻合的。

#========================================## 2.5习题-3##======================================== library(tseries)par(mfrow=c(1,2))rain=read.table('习题2.3数据.txt',sep='\t',header=F) data=ts(as.vector(t(as.matrix(rain))),start=c(1945,1)) plot(data)#该序列为平稳序列as.vector(acf(data,lag.max = 23)$acf)#该序列的自相关系数一直都比较小,#基本控制在2倍的标准差范闹以内,#可以认为该序列自始至终都在零轴附#近波动,这是随机性非常强的平稳时#间序列通常具有的自相关图特征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学::汪宝班级:七班学号:1122314451 班级序号:685:我国1949年-2008年年末人口总数(单位:万人)序列如表4-8所示(行数据).选择适当的模型拟合该序列的长期数据,并作5期预测。

解:具体解题过程如下:(本题代码我是做一问写一问的)1:观察时序图:data wangbao4_5;input x;time=1949+_n_-1;cards;54167 55196 56300 57482 58796 60266 61465 6282864653 65994 67207 66207 65859 67295 69172 7049972538 74542 76368 78534 80671 82992 85229 8717789211 90859 92420 93717 94974 96259 97542 98705100072 101654 103008 104357 105851 107507 109300 111026112704 114333 115823 117171 118517 119850 121121 122389123626 124761 125786 126743 127627 128453 129227 129988130756 131448 132129 132802;proc gplot data=wangbao4_5;plot x*time=1;symbol1c=black v=star i=join;run;分析:通过时序图,我可以发现我国1949年-2008年年末人口总数(随时间的变化呈现出线性变化.故此时我可以用线性模型拟合序列的发展.X t=a+b t+I t t=1,2,3,…,60E(I t)=0,var(I t)=σ2其中,I t为随机波动;X t=a+b就是消除随机波动的影响之后该序列的长期趋势。

2:进行线性模型拟合:proc autoreg data=wangbao4_5;model x=time;output out=out p=wangbao4_5_cup;run;proc gplot data=out;plot x*time=1 wangbao4_5_cup*time=2/overlay ;symbol2c=red v=none i=join w=2l=3;run;分析:由上面输出结果可知:两个参数的p值明显小于0.05,即这两个参数都是具有显著非零,4:模型检验又因为Regress R-square=total R-square=0.9931,即拟合度达到99.31%所以用这个模型拟合的非常好。

5:结论所以本题拟合的模型为:X t=-2770828+1449t+I t t=1,2,3,…,60E(I t)=0,var(I t)=σ26:作5期预测proc forecast data=wangbao4_5 method=stepar trend=2 lead=5out=out outfull outest=est;id t;var x;proc gplot data=out;plot x*time=_type_/href=2008;symbol1i=none v=star c=black;symbol2i=join v=none c=red;symbol3i=join v=none c=black l=2;symbol4i=join v=none c=black l=2;run;6:爱荷华州1948-1979年非农产品季度收入数据如表4——9所示(行数据),选择适当的模型拟合该序列的长期趋势。

解:具体做题过程如下:(本题代码我是做一问写一问的)1、绘制时序图data wangbao4_6;input x;time=_n_;cards;601 604 620 626 641 642 645 655 682 678 692 707736 753 763 775 775 783 794 813 823 826 829 831830 838 854 872 882 903 919 937 927 962 975 9951001 1013 1021 1028 1027 1048 1070 1095 1113 1143 1154 11731178 1183 1205 1208 1209 1223 1238 1245 1258 1278 1294 13141323 1336 1355 1377 1416 1430 1455 1480 1514 1545 1589 16341669 1715 1760 1812 1809 1828 1871 1892 1946 1983 2013 20452048 2097 2140 2171 2208 2272 2311 2349 2362 2442 2479 25282571 2634 2684 2790 2890 2964 3085 3159 3237 3358 3489 35883624 3719 3821 3934 4028 4129 4205 4349 4463 4598 4725 48274939 5067 5231 5408 5492 5653 5828 5965;proc gplot data =wangbao4_6; plot x*time;symbol c =black v =star i =join; run ;分析;可知时序图显示该序列有明显的曲线递增趋势。

尝试使用修正指数型模型进行迭代拟合:t t bc a x +=+Єt , t=1,2,…,1282、拟合模型proc nlin method =gauss; model x=a+b*c**time;parameters a=0.1 b=0.1 c=1.1; output predicted =xhat out =out; run ;NLIN 过程输出以下六方面信息: (1)迭代过程(2)收敛状况(本次迭代收敛)(3)估计信息摘要(4)主要统计量(5)参数信息摘要得到的拟合模型为:t 0307.12.1128.604ε+⨯+=tt x t=1,2,…,128(6)近似相关矩阵3、拟合效果为了直观看出拟合效果,我们可以将原序列值和拟合值联合作图:proc gplot data =out;plot x*t=1 xhat*t=2/overlay ; symbol1 c =black v =star i =join; symbol2 c =red v =none i =join;分析:由上图图我们可以看出,原序列值和拟合值很接近,拟合效果较好。

综合以上的分析,我们可以选择模型:t 0307.12.1128.604ε+⨯+=t t x 来拟合该序列的长期趋势。

拟合效果很不错。

8: 某城市1980年1月至1995年8月每月屠宰生猪的数量(单位:头)如表4—11所示(行数据),选择适当的模型拟合该序列的发展,并预测1995年9月至1997年9月该城市的生猪屠宰量。

解:具体解题过程如下:(本题代码我是做一问写一问的)ata wangbao4_8; input x; time=_n_; cards ;76378 71947 33873 96428 105084 95741 110647 100311 94133 103055 90595 101457 76889 81291 91643 96228 102736 100264 103491 97027 95240 91680 101259 109564 76892 85773 95210 93771 98202 97906 100306 94089 102680 77919 93561 117062 81225 88357 106175 91922 104114 109959 97880 105386 96479 97580 109490 110191 90974 98981 107188 94177 115097 113696 114532 120110 93607 110925 103312 120184 103069 103351 111331 106161 111590 99447 101987 85333 86970 100561 89543 89265 82719 79498 74846 73819 77029 78446 86978 7587869571 75722 64182 77357 63292 59380 78332 72381 55971 6975085472 70133 79125 85805 81778 86852 69069 79556 88174 6669872258 73445 76131 86082 75443 73969 78139 78646 66269 7377680034 70694 81823 75640 75540 82229 75345 77034 78589 7976975982 78074 77588 84100 97966 89051 93503 84747 74531 9190081635 89797 81022 78265 77271 85043 95418 79568 103283 9577091297 101244 114525 101139 93866 95171 100183 103926 102643 10838797077 90901 90336 88732 83759 99267 73292 78943 94399 9293790130 91055 106062 103560 104075 101783 93791 102313 82413 83534109011 96499 102430 103002 91815 99067 110067 101599 97646 10493088905 89936 106723 84307 114896 106749 87892 100506;proc gplot data=wangbao4_8;plot x*time=1;symbol1c=red i=join v=star;run;proc arima data=wangbao4_8;identify var=x;run;1:时序图与平稳性判别分析:上图是数据对应的时序图,从图上曲线分析来看,数据并没有周期性或者趋向性规律,并且每月的生猪的屠宰量大约在80000上下波动。

所以由该序列图我可以认为它是个平稳的数列。

即可以用第三章的AR模型或MA模型或ARMA模型进行拟合。

但是为了稳妥起见,我还需要利用自相关图进一步辅助识别。

相关文档
最新文档