大学物理习题答案1
大学物理课后习题1第一章答案
习题11.1选择题(1)一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为()(A)dtdr (B)dtr d (C)dtr d || (D)22)()(dtdy dt dx +答案:(D)。
(2)一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度()(A)等于零(B)等于-2m/s (C)等于2m/s (D)不能确定。
答案:(D)。
(3)一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为()(A)t R t R ππ2,2(B)tRπ2,0(C)0,0(D)0,2tRπ答案:(B)。
(4)质点作曲线运动,r表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,τa 表示切向加速度,下列表达式中,()①a t = d /d v ,②v =t r d /d ,③v =t S d /d ,④τa t =d /d v.(A)只有①、④是对的.(B)只有②、④是对的.(C)只有②是对的.(D)只有③是对的.答案:(D)。
(5)一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为υ,某一时间内的平均速度为v,平均速率为v ,它们之间的关系必定有:()(A)vv v,v == (B)v v v,v =≠ (C)vv v,v ≠≠ (D)vv v,v ≠= 答案:(D)。
1.2填空题(1)一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是;经过的路程是。
答案:10m;5πm。
(2)一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v=。
答案:23m·s -1.(3)一质点从静止出发沿半径R=1m 的圆周运动,其角加速度随时间t 的变化规律是α=12t 2-6t (SI),则质点的角速度ω=__________________;切向加速度τa =_________________.答案:4t 3-3t 2(rad/s),12t 2-6t (m/s 2)(4)一质点作直线运动,其坐标x 与时间t 的关系曲线如题1.2(4)图所示.则该质点在第___秒瞬时速度为零;在第秒至第秒间速度与加速度同方向.题1.2(4)图答案:3,36;(5)一质点其速率表示式为v s =+12,则在任一位置处其切向加速度a τ为。
大学物理(上册)课后习题及答案
因此有: ,∴
⑵由 得: ,两边积分得:
∴
⑶质点停止运动时速度为零, ,即t→∞,
故有:
⑷ 时,其速度为: ,
即速度减至 的 .
2.13作用在质量为10 kg的物体上的力为 N,式中 的单位是s,⑴求4s后,这物体的动量和速度的变化,以及力给予物体的冲量。⑵为了使这力的冲量为200 N·s,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度 m/s的物体,回答这两个问题。
将 ,及 代入上式,即得: 。
6.9沿绳子传播的平面简谐波的波动方程为 =0.05cos(10 ),式中 , 以米计, 以秒计。求:
⑴设 =100 N,问可使飞轮在多长时间内停止转动?在这段时间里飞轮转了几转?⑵如果在2s内飞轮转速减少一半,需加多大的力 ?
解:⑴先作闸杆和飞轮的受力分析图(如图(b))。图中 、 是正压力, 、 是摩擦力, 和 是杆在 点转轴处所受支承力, 是轮的重力, 是轮在 轴处所受支承力。
杆处于静止状态,所以对 点的合力矩应为零,设闸瓦厚度不计,则有:
解:因为
将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相。故有: ,
,
5.9一质量为 的物体作谐振动,振幅为 ,周期为 ,当 时位移为 。求:
⑴ 时,物体所在的位置及此时所受力的大小和方向;
⑵由起始位置运动到 处所需的最短时间;
⑶在 处物体的总能量。
解:由题已知 ,∴
又, 时,
故振动方程为:
⑴将 代入得:
方向指向坐标原点,即沿 轴负向。
⑵由题知, 时, ; 时,
∴
⑶由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为:
(完整版)大学物理课后习题答案详解
第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。
(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线 (2)质点的位置 : 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dt dv-= ⎰⎰-=t vv kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt ev dx tk tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = 而落地所用时间 gh2t = 所以 0d -2gh d r v i j t =d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
大学物理习题答案第一章
大学物理习题答案第一章-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN[习题解答]1-3 如题1-3图所示,汽车从A地出发,向北行驶60km到达B地,然后向东行驶60km到达C地,最后向东北行驶50km到达D地。
求汽车行驶的总路程和总位移。
解汽车行驶的总路程为;汽车的总位移的大小为∆r =位移的方向沿东北方向,与方向一致。
1-4 现有一矢量R是时间t的函数,问与在一般情况下是否相等为什么解与在一般情况下是不相等的。
因为前者是对矢量R的绝对值(大小或长度)求导,表示矢量R的大小随时间的变化率;而后者是对矢量R的大小和方向两者同时求导,再取绝对值,表示矢量R大小随时间的变化和矢量R方向随时间的变化两部分的绝对值。
如果矢量R方向不变只是大小变化,那么这两个表示式是相等的。
1-5 一质点沿直线L运动,其位置与时间的关系为r = 6t 2 -2t 3 ,r和t的单位分别是m和s。
求:(1)第二秒内的平均速度;(2)第三秒末和第四秒末的速度;(3)第三秒末和第四秒末的加速度。
解取直线L的正方向为x轴,以下所求得的速度和加速度,若为正值,表示该速度或加速度沿x轴的正方向,若为负值表示,该速度或加速度沿x轴的反方向。
(1)第二秒内的平均速度m⋅s-1;(2)第三秒末的速度因为,将t = 3 s 代入,就求得第三秒末的速度,为v3 = - 18 m⋅s-1;用同样的方法可以求得第四秒末的速度,为v4 = - 48 m⋅s-1;(3)第三秒末的加速度因为,将t = 3 s 代入,就求得第三秒末的加速度,为a3 = - 24 m⋅s-2;用同样的方法可以求得第四秒末的加速度,为v4 = - 36 m⋅s-2 .1-6 一质点作直线运动,速度和加速度的大小分别为和,试证明:(1) v d v = a d s;(2)当a为常量时,式v 2 = v02 + 2a (s-s0 )成立。
解(1);(2)对上式积分,等号左边为,等号右边为,于是得,即.1-7 质点沿直线运动,在经过时间t后它离该直线上某定点O的距离s满足关系式:s = (t-1)2 (t-2),s和t的单位分别是m和s。
大学物理课后习题答案(杨晓峰版)(一)
大学物理课后习题答案(杨晓峰版)(一)引言概述:大学物理课后习题是提高学生对物理知识理解和运用的重要方式,然而,许多学生在学习过程中往往遇到困惑和难题,缺乏习题答案的指导。
本文将为大学物理课后习题提供杨晓峰版的答案,以帮助学生更好地学习和掌握物理知识。
正文:一、力学1. 牛顿第一定律(惯性定律)- 物体的速度保持不变,除非受到外力的作用- 在惯性参照系中,物体保持静止或匀速直线运动的状态不变- 摩擦力、空气阻力等是物体运动状态改变的常见原因2. 牛顿第二定律(运动定律)- 物体的加速度与作用力成正比,与物体的质量成反比- F = m * a,其中F为物体所受合外力,m为物体质量,a为物体加速度- 物体所受合外力的方向与加速度的方向相同3. 牛顿第三定律(作用与反作用定律)- 作用在两个物体上的力大小相等,方向相反- 作用力和反作用力同时存在,但作用于不同的物体上- 两个物体之间的作用力和反作用力不论物体的质量大小都相等4. 动量守恒定律- 系统内外力合为零时,系统的动量守恒- 碰撞过程中,系统总动量在碰撞前后保持不变- 弹性碰撞和非弹性碰撞是常见的碰撞形式5. 动能定律- 物体的动能是其质量和速度的函数- 动能的转化和守恒是物体运动中能量转化的重要现象- 动能可以通过速度的增加和物体质量的改变来调节二、热学1. 理想气体状态方程- 理想气体的状态可以用压强、体积和温度来描述- 理想气体状态方程:PV = nRT,其中P为气体的压强,V为气体的体积,n为气体的摩尔数,R为气体常数,T为气体的温度2. 热力学第一定律(能量守恒定律)- 系统内外能量之和为零时,系统的能量守恒- 系统对外做功或从外界得到热量时,系统内部能量发生变化- 系统对外做负功或向外界释放热量时,系统内部能量减小3. 热力学第二定律(熵增定律)- 系统在自发过程中,熵总是增加的- 熵是衡量系统无序程度的物理量- 热量只能从高温物体流向低温物体,不会自发地从低温物体流向高温物体4. 热力学循环- 热力学循环是指在一定条件下,系统经过一系列状态变化后回到原始状态- 卡诺循环是一种理论上的完全可逆循环- 卡诺循环的效率与工作物质的特性和温度有关5. 热传导- 热传导是指物体内部或不同物体之间热量的传递现象- 热传导遵循热量从高温区到低温区的传递规律- 热传导的速率取决于物体的热导率和温度差异总结:本文提供了大学物理课后习题的答案,重点涵盖了力学和热学的知识点。
《大学物理》习题答案1,匡乐满主编,北京邮电大学出版社
解: vx a, vy 2ct 当运动方向与x成450角时,则
即 a 2ct, t a 2c
vx vy
v
v
2 x
v
2 y
a 2 4c2t 2
2a
大学物理 盛忠志主讲
5、一飞机在跑道上跑过500米后,即升空,如果它在跑
前是静止的,以恒定加速度运动,升空前跑了30秒,则
0
30 10 20
60
n1
2 02 2
302 102 2 60
20 3
60
2
10 20
30
60
n2
10 2 2 30
5 3
大学物理 盛忠志主讲
8、某人骑自行车以速率v向正西方行驶,遇到由北向 南刮的风(设风速大小也为v),则他感到风是从 (A)东北方向吹来 (B)东南方向吹来 (C)西北方向吹来 (D)西南方向吹来。
dv y dy
dy dt
vy
dv y dy
则
a vy
dv y dy
kvy2
分离变量得 : dvy kdy vy
两边积分得 :
v dv y
y
kdy
v v0 y
0
盛忠志主讲
v v0eky
大学物理 盛忠志主讲
3、一质点沿半径为1 m 的圆周运动,运动方程
为 2 3t,3 式中 以弧度计,t以秒计,求:(1) t=2 s
vx A sin t vy B cost
由速度的定义,有: vx
大 学 物 理 试 卷及答案1
大 学 物 理 试 卷班级:_____________ 姓名:_____________ 学号:_____________ 日期:__________年_______月_______日 成绩:_____________一、选择题:(每题3分,共33分)1、在恒定不变的压强下,气体分子的平均碰撞频率Z 与气体的热力学温度T 的关系为 (A) Z 与T 无关. (B) Z 与T 成正比.(C) Z 与T 成反比. (D) Z 与T 成正比. [ ]2、关于可逆过程和不可逆过程的判断: (1) 可逆热力学过程一定是准静态过程. (2) 准静态过程一定是可逆过程. (3) 不可逆过程就是不能向相反方向进行的过程. (4) 凡有摩擦的过程,一定是不可逆过程. 以上四种判断,其中正确的是 (A) (1)、(2)、(3). (B) (1)、(2)、(4).(C) (2)、(4).(D) (1)、(4). [ ]3、 如图,bca 为理想气体绝热过程,b 1a 和b 2a 是任意过程,则上述两过程中气体作功与吸收热量的情况是:(A) b 1a 过程放热,作负功;b 2a 过程放热,作负功. (B) b 1a 过程吸热,作负功;b 2a 过程放热,作负功.(C) b 1a 过程吸热,作正功;b 2a 过程吸热,作负功. (D) b 1a 过程放热,作正功;b 2a 过程吸热,作正功.[ ]4、如图所示,设某热力学系统经历一个由c →d →e 的过程,其中,ab 是一条绝热曲线,a 、c 在该曲线上.由热力学定律可知,该系统在过程中(A) 不断向外界放出热量. (B) 不断从外界吸收热量.(C) 有的阶段吸热,有的阶段放热,整个过程中吸的热量等于放出的热量. (D) 有的阶段吸热,有的阶段放热,整个过程中吸的热量大于放出的热量.(E) 有的阶段吸热,有的阶段放热,整个过程中吸的热量小于放出的热量. [ ]5、气缸中有一定量的氮气(视为刚性分子理想气体),经过绝热压缩,使其压强变为原pO V b 12ac a b cde Vp O来的2倍,问气体分子的平均速率变为原来的几倍? (A) 22/5. (B) 22/7.(C) 21/5. (D) 21/7. [ ]6、一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,(如图所示),作成一复摆.已知细棒绕通过其一端的轴的转动惯量231ml J =,此摆作微小振动的周期为 (A) g l π2. (B) gl 22π. (C) g l 322π. (D) gl 3π. [ ]7、一质点作简谐振动,已知振动周期为T ,则其振动动能变化的周期是 (A) T /4. (B) 2/T . (C) T . (D) 2 T . (E) 4T . [ ]8、图中所画的是两个简谐振动的振动曲线.若这两个简谐振动可叠加,则合成的余弦振动的初相为(A) π23. (B) π. (C) π21. (D) 0. [ ]9、在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定(A) 大小相同,而方向相反. (B) 大小和方向均相同. (C) 大小不同,方向相同. (D) 大小不同,而方向相反.[ ]10、两相干波源S 1和S 2相距λ /4,(λ 为波长),S 1的相位比S 2的相位超前π21,在S 1,S 2的连线上,S 1外侧各点(例如P 点)两波引起的两谐振动的相位差是: (A) 0. (B)π21. (C) π. (D) π23. [ ]11、若在弦线上的驻波表达式是 t x y ππ=20cos 2sin 20.0.则形成该驻波的两个反向进行的行波为:(A)]21)10(2cos[10.01π+-π=x t y ]21)10(2cos[10.02π++π=x t y (SI).(B) ]50.0)10(2cos[10.01π--π=x t y]75.0)10(2cos[10.02π++π=x t y (SI).S 1S 2Pλ/4A/ -(C) ]21)10(2cos[10.01π+-π=x t y ]21)10(2cos[10.02π-+π=x t y (SI).(D) ]75.0)10(2cos[10.01π+-π=x t y]75.0)10(2cos[10.02π++π=x t y (SI). [ ]二、填空题:(共25分)12、两个容器容积相等,分别储有相同质量的N 2和O 2气体,它们用光滑细管相连通,管子中置一小滴水银,两边的温度差为 30 K ,当水银滴在正中不动时,N 2和O 2的温度为2N T = ___________,2O T =__________.(N 2气的摩尔质量M mol =28×10-3 kg ·mol -1)13、在无外力场作用的条件下,处于平衡态的气体分子按速度分布的规律,可用 ________________分布律来描述.如果气体处于外力场中,气体分子在空间的分布规律,可用__________分布律来描述.14、 图示的两条f (v )~v 曲线分别表示氢气和氧气在同一温度下的麦克斯韦速率分布曲线.由此可得氢气分子的最概然速率为________________;氧气分子的最概然速率为________________. 15、已知一简谐振动曲线如图所示,由图确定振子:(1) 在_____________s 时速度为零.(2) 在____________ s 时动能最大.(3) 在____________ s 时加速度取正的最大值.16、一平面余弦波沿Ox 轴正方向传播,波动表达式为 ])(2cos[φλ+-π=xT t A y , 则x = -λ 处质点的振动方程是____________________________________;若以x = λ处为新的坐标轴原点,且此坐标轴指向与波的传播方向相反,则对此新的坐标轴,该波的波动表达式是_______________________________________________.) x (cm)t (s)O 1217、如图所示,在平面波传播方向上有一障碍物AB ,根据惠更斯原理,定性地绘出波绕过障碍物传播的情况.18、在真空中沿着z 轴正方向传播的平面电磁波的磁场强度波的表达式为])/(cos[00.2π+-=c z t H x ω (SI),则它的电场强度波的表达式为____________________________________________________.(真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m )三、计算题:(共42分)19、有 2×10-3 m 3刚性双原子分子理想气体,其内能为6.75×102 J . (1) 试求气体的压强;(2) 设分子总数为 5.4×1022个,求分子的平均平动动能及气体的温度. (玻尔兹曼常量k =1.38×10-23 J ·K -1)20、汽缸内有一种刚性双原子分子的理想气体,若经过准静态绝热膨胀后气体的压强减少了一半,则变化前后气体的内能之比 E 1∶E 2=?21、如图所示,有一定量的理想气体,从初状态a (p 1,V 1)开始,经过一个等体过程达到压强为p 1/4的b 态,再经过一个等压过程达到状态c ,最后经等温过程而完成一个循环.求该循环过程中系统对外作的功W 和所吸的热量Q .22、如图,劲度系数为k 的弹簧一端固定在墙上,另一端连接一质量为M 的容器,容器可在光滑水平面上运动.当弹簧未变形时容器位于O 处,今使容器自O 点左侧l 0处从静止开始运动,每经过O 点一次时,从上方滴管中滴入一质量为m 的油滴,求:(1) 容器中滴入n 滴以后,容器运动到距O 点的最远距离;(2) 容器滴入第(n +1)滴与第n 滴的时间间隔.大 学 物 理 试 卷 解 答二、填空题:(共25分)pp 1112、 210 K 2分240 K 2分13、 麦克斯韦 2分玻尔兹曼 2分14、 2000 m ·s -1 1分 500 m ·s -1 2分15、 0.5(2n +1) n = 0,1,2,3,… 1分 n n = 0,1,2,3,… 1分 0.5(4n +1) n = 0,1,2,3,… 1分16、 ]/2cos[1φ+π=T t A y 2分 ])//(2cos[2φλ++π=x T t A y 3分17、 答案见图子波源、波阵面、波线各3分占1分18、 ])/(cos[754π+--=c z t E y ω (SI) 3分三、计算题:(共42分)19(10分)、解:(1) 设分子数为N .据 E = N (i / 2)kT 及 p = (N / V )kT得 p = 2E / (iV ) = 1.35×105 Pa 4分(2) 由 kT N kT Ew 2523=得 ()21105.75/3-⨯==N E w J 3分又 kT N E 25=得 T = 2 E / (5Nk )=362k 3分20(10分)、解:据 iRT M M E mol 21)/(=, RT M M pV m ol )/(= 2分 得 ipV E 21=变化前 11121V ip E =, 变化后22221V ip E = 2分 绝热过程 γγ2211V p V p =即1221/)/(p p V V =γ3分题设 1221p p =, 则 21)/(21=γV V即 γ/121)21(/=V V∴)21/(21/221121V ip V ip E E =γ/1)21(2⨯=22.1211==-γ 3分21(10分)、解:设c 状态的体积为V 2,则由于a ,c 两状态的温度相同,p 1V 1= p 1V 2 /4 故 V 2 = 4 V 1 2分 循环过程 ΔE = 0 , Q =W . 而在a →b 等体过程中功 W 1= 0. 在b →c 等压过程中功W 2 =p 1(V 2-V 1) /4 = p 1(4V 1-V 1)/4=3 p 1V 1/4 2分在c →a 等温过程中功W 3 =p 1 V 1 ln (V 2/V 1) = -p 1V 1ln 4 2分 ∴ W =W 1 +W 2 +W 3 =[(3/4)-ln4] p 1V 1 1分 Q =W=[(3/4)-ln4] p 1V 1 3分22(12分)、解:(1) 容器中每滴入一油滴的前后,水平方向动量值不变,而且在容器回到O 点滴入下一油滴前, 水平方向动量的大小与刚滴入上一油滴后的瞬间后的相同。
大学物理1考试题及答案
大学物理1考试题及答案一、选择题(每题2分,共20分)1. 光在真空中的传播速度是多少?A. 3×10^8 m/sB. 3×10^5 km/sC. 3×10^3 km/sD. 3×10^6 m/s答案:A2. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
这一定律的数学表达式是什么?A. F = maB. F = m/aC. a = F/mD. a = mF答案:A3. 一个物体从静止开始自由下落,忽略空气阻力,其下落的位移与时间的关系是什么?A. s = gtB. s = 1/2 gt^2C. s = 1/2 g(t^2 - 1)D. s = gt^2答案:B4. 以下哪个选项是电磁波谱中波长最长的部分?A. 无线电波B. 微波C. 红外线D. 可见光答案:A5. 根据热力学第一定律,一个封闭系统的能量守恒,其表达式是什么?A. ΔU = Q + WB. ΔU = Q - WC. ΔU = Q + PD. ΔU = W - Q答案:A6. 一个质量为m的物体在水平面上以速度v做匀速直线运动,若摩擦力为f,那么物体的动能是多少?A. mvB. mv^2/2C. fvtD. 0答案:B7. 根据麦克斯韦方程组,电场是由什么产生的?A. 电荷B. 变化的磁场C. 电荷和变化的磁场D. 电流答案:C8. 一个理想气体经历一个等温过程,其压强P和体积V之间的关系是什么?A. P ∝ VB. P ∝ 1/VC. P = constantD. P ∝ V^2答案:B9. 在量子力学中,海森堡不确定性原理表明了什么?A. 粒子的位置和动量可以同时准确测量B. 粒子的位置和动量不能同时准确测量C. 粒子的能量和时间可以同时准确测量D. 粒子的能量和时间不能同时准确测量答案:B10. 根据狭义相对论,一个物体的质量会随着速度的增加而增加,这一效应可以用以下哪个公式描述?A. E = mc^2B. m = m0 / sqrt(1 - v^2/c^2)C. m = m0 * v/cD. m = m0 * sqrt(1 - v^2/c^2)答案:B二、填空题(每题2分,共20分)11. 一个物体的质量为2kg,受到的力为10N,根据牛顿第二定律,其加速度是_________ m/s^2。
大学物理学第一章习题答案
习题11、1选择题(1) 一运动质点在某瞬时位于矢径的端点处,其速度大小为(A)(B)(C)(D)[答案:D](2) 一质点作直线运动,某时刻的瞬时速度,瞬时加速度,则一秒钟后质点的速度(A)等于零(B)等于-2m/s(C)等于2m/s (D)不能确定。
[答案:D](3) 一质点沿半径为R的圆周作匀速率运动,每t秒转一圈,在2t时间间隔中,其平均速度大小与平均速率大小分别为(A)(B)(C) (D)[答案:B]1、2填空题(1) 一质点,以的匀速率作半径为5m的圆周运动,则该质点在5s内,位移的大小就是;经过的路程就是。
[答案: 10m;5πm](2) 一质点沿x方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v0为5m·s-1,则当t为3s时,质点的速度v=。
[答案: 23m·s-1 ](3) 轮船在水上以相对于水的速度航行,水流速度为,一人相对于甲板以速度行走。
如人相对于岸静止,则、与的关系就是。
[答案:]1、3一个物体能否被瞧作质点,您认为主要由以下三个因素中哪个因素决定:(1) 物体的大小与形状;(2) 物体的内部结构;(3) 所研究问题的性质。
解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。
1、4下面几个质点运动学方程,哪个就是匀变速直线运动?(1)x=4t-3;(2)x=-4t3+3t2+6;(3)x=-2t2+8t+4;(4)x=2/t2-4/t。
给出这个匀变速直线运动在t=3s时的速度与加速度,并说明该时刻运动就是加速的还就是减速的。
(x单位为m,t单位为s)解:匀变速直线运动即加速度为不等于零的常数时的运动。
加速度又就是位移对时间的两阶导数。
于就是可得(3)为匀变速直线运动。
其速度与加速度表达式分别为t=3s时的速度与加速度分别为v=20m/s,a=4m/s2。
因加速度为正所以就是加速的。
大学物理习题册及解答_第二版_第一章_质点的运动
( A ) 3i 3 j (C) - 3i 3 j
(B) - 3i 3 j ( D) 3i 3 j
二、填空题
1.一质点沿x轴运动,其加速度a与位置坐标的关系为 a 3 6 x 2 (SI), 如果质点在原点处的速度为零,试求其在任意位置的速度 为 .
d d dx d a dt dx dt dx
8. 半径为R的圆盘在固定支撑面上向右滚动,圆盘质心C的运动速 度为 ,圆盘绕质心转动的角速度为 ,如图所示.则圆盘边 缘上A点的线速度为 ;B点的线速度为 ;O点的 线速度为 . A
分析:刚体上某质点的运动可看为随质心的 平动和绕质心转动的合成
B
C O
A C R
B R
1
消去t得轨道方程为 y M
o
o dr (2) A sinωt i A cosωt j d t d a A cosωt i A sinωt j r dt
x y 2 1 2 A1 A2
2
(椭圆)
1 2
x
2
2
2
1
2
上式表明:加速度恒指向椭圆中心。
质点在通过图中M点时,其速率是增大还是减小?
x A cos t y A sin t
1 2
at
M
y
Q
a
o
V an
P
o
x
(3)当t=0时,x=A1,y=0,质点位于图中P点
质点位于
t 2
时, x A1 cos
y A sin
2
解:(1)从运动方程中消去时间就得到轨道方程
大学物理课后习题答案第一章
第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 的路程; (3)1s 末的瞬时加速度和第2s 的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:=Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 的平均加速度为:= [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为,并由上述数据求出量值.[证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:.计算得加速度为:= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m). 根据自由落体运动公式s = gt 2/2,得下落的时间为:= 4.49(s). 因此人飞越的时间为:t = t 1 + t 2 = 6.98(s).人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1),v a 22(1)(1)n sa n t -=+22(1)(1)n sa n t -=+22(51)30(51)10a -=+222h t g=70m22.5º 图1.3所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1),与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程, 解得:.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为; (2)试证在时间t ,船行驶的距离为. [证明](1)分离变量得, 故 ,可得:. (2)公式可化为,由于v = d x/d t ,所以: 积分.因此 . 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变量得方程:, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则d v /d t = -kv n .(1)如果n = 1,则得, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .201sin 02gt v t y θ-+=0(sin t v g θ=011kt v v =+01ln(1)x v kt k=+2d d vk t v =-020d d v t v v k t v =-⎰⎰011kt v v =+001v v v kt=+00001d d d(1)1(1)v x t v kt v kt k v kt ==+++00001d d(1)(1)x tx v kt k v kt =++⎰⎰01ln(1)x v kt k=+d d ()m vt f v =d d vk t v=-而d v = v 0e -kt d t ,积分得:. 当t = 0时,x = 0,所以C` = v 0/k ,因此.(2)如果n ≠1,则得,积分得. 当t = 0时,v = v 0,所以,因此. 如果n = 2,就是本题的结果.如果n ≠2,可得,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求:(1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2);角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即.由此得,即 ,解得 .所以 =3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = 20m·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为 v 0x = v 0cos θ, v 0y = v 0sin θ.加速度的大小为a x = a cos α, a y = a sin α. 运动方程为, . 即 ,.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);(s).将t 代入x 的方程求得x = 9000m .0e `ktv x C k-=+-0(1-e )kt vx k -=d d n vk t v=-11n v kt C n -=-+-101n v C n-=-11011(1)n n n kt v v --=+-1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-3n t a a =23r r ωβ=22(12)243t t =33/6t =3242(13/3)t θ=+=+32012x x x v t a t =+2012y y y v t a t =-+201cos cos 2x v t a t θα=⋅+⋅201sin sin 2y v t a t θα=-⋅+⋅02sin 103sin v t a θα== y xO α v 0θ a a xa yv 0x v 0y[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为= 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距 2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为;螺帽做竖直上抛运动,位移为. 由题意得h = h 1 - h 2,所以, 解得时间为= 0.705(s).算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为; (2)如果气流的速度向东,证明来回飞行的总时间为;(3)如果气流的速度向北,证明来回飞行的总时间为.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为 . (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB 方向的速度大小为,所以飞行时间为212t h a t =∆2n v a R=21012h v t at =+22012h v t gt =-21()2h a g t =+2/()t h a g =+02l t v =1221/t t u v =-02221/t t u v=-1222l l vl t v u v u v u =+=+--022222/1/1/t l v u v u v==--22V v u =-RA图1.7AB AB vv + uv - uABvuuvv. 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?[解答]雨对地的速度等于雨对车的速度加车对地的速度,由此可作矢量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 . 证毕. 方法二:利用正弦定理.根据正弦定理可得,所以:,即 . 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间,雨滴的位移为l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.22222222/1/l l l v t V v u u v ===--0221/t u v=-2v 3v 1v 12(sin cos )lv v hθθ=+12sin()sin(90)v v θαα=+︒-12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+12(sin cos )lv v hθθ=+v 1hl v 2θ图1.10v 1h lv 2θ v 3 α α v ⊥。
大学物理习题及答案
; (B) 0=E ,R Q U 04επ=; (C) 204r Q E επ=,r Q U 04επ=; (D) 204r Q E επ=,R Q U 04επ=。 7、点电荷Q -位于圆心O 处,a 是一固定点,b 、c 、d 为同一圆周上的三点,如图 所示。现将一试验电荷从a 点分别移动到b 、c 、d 各点,则 [ ] ()A 从a 到b ,电场力作功最大; ()B 从a 到到c ,电场力作功最大; ()C 从a 到d ,电场力作功最大; ()D 从a 到各点,电场力作功相等。 二、填空题 1、把一个均匀带电量Q +的球形肥皂泡由半径1r 吹胀到2r ,则半径为R (12r R r <<) 的高斯球面上任一点的场强大小E 由 变为______________。 2、一个点电荷对另一个相距为l 的点电荷施加一个大小为F 的静电力,如果两个点电 荷间的距离增加到2l ,则它们之间静电力的大小变为F 的 倍。 3、两个点电荷的带电量分别为Q 和q ,它们相距为a 。当q 由2Q 变到4 Q 时,在它们的连线中点处的电势变为原来的 倍。(以无限远处的电势为零) 4、高斯定理反映了静电场是有源场,由此可以知道 电力线的源头, 是电力线的尾闾。 5、电荷1q 、2q 、3q 和4q 在真空中的分布如图所示, 其中2q 是半径 为R 的均匀带电球体, S 为闭合曲面,则通过闭合曲面S 的电通量 =???S S E d , 空间各点的电场强度由 产生。 6、静电场的环路定理的数学表示式为:______________________。 7、描述静电场性质的两个基本物理量是______________;它们的定义式是 ________________和 __________________________________________. 8、静电场中某点的电势,其数值等于______________________________ 或
大学物理第1章习题解答(全)
a
at
an
dv dt
et
v2 R
en
1-6 已知质点沿x轴作直线运动,其运动方程为
x 2 6t 2 2t3
求(1)质点在运动开始后4.0s内的位移大小;
(2)质点在该时间内所通过的路程;
(3)t=4 s 时质点的速度和加速度。
解:(1)质点在4.0s内的位移大小
arctan[ (v0
bt)2 ]
at
Rb
(2)要使 a a b ,即
1 R
R2b2 (v0 bt)4 b
可得 t v0 b
v v0 bt
此时速率为零(即运动方向反向)
t 0 开始到 t v0 b
质点经过的路程 L
L
st
s0
st
0
小的一半时, 值为多少?
(3)t为多少时,法向加速度和切向加速度 相等?
解 (1)由 2 4t3 得: d 12t2
dt
d 12t 2
dt
法向:an 2r (12t 2 )2 r an t2s 2.30102 m s2
切向:
at
r d
x x4 x0 32 m
(2)由
dx 0 dt
(2)由
dx 12t 6t 2 0 dt
得知质点换向的时刻为t 2 s(t=0不合题意)
-30
02
x(m)
10
t=4
t=0
t=2
则 x1 x2 x0 8m x2 x4 x2 40m
t 4s的路程:s1 x1 x2 48m
大学物理 1 期末考试复习原题 (含参考答案)
大学物理1期末考试复习原题力学8.A质量为m的小球,用轻绳AB、BC连接,如图,其中AB水平.剪断绳AB 前后的瞬间,绳BC中的张力比T : T′=____________________.9.一圆锥摆摆长为l、摆锤质量为m,在水平面上作匀速圆周运动,摆线与铅直线夹角θ,则(1) 摆线的张力T=_____________________;(2) 摆锤的速率v=_____________________.12.一光滑的内表面半径为10 cm的半球形碗,以匀角速度ω绕其对称OC 旋转.已知放在碗内表面上的一个小球P相对于碗静止,其位置高于碗底4 cm,则由此可推知碗旋转的角速度约为(C) 17 rad/s (D) 18 rad/s.[]13.质量为m的小球,放在光滑的木板和光滑的墙壁之间,并保持平衡,如图所示.设木板和墙壁之间的夹角为α,当α逐渐增大时,小球对木板的压力将(A) 增加(B) 减少.(C) 不变.(D) 先是增加,后又减小.压力增减的分界角为α=45°.[ ]15.m m一圆盘正绕垂直于盘面的水平光滑固定轴O转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω(A) 增大.(B) 不变.(C) 减小.(D) 不能确定定.()16.如图所示,A、B为两个相同的绕着轻绳的定滑轮.A滑轮挂一质量为M的物体,B滑轮受拉力F,而且F=Mg.设A、B两滑轮的角加速度分别为βA和βB,不计滑轮轴的摩擦,则有(A) βA=βB.(B) βA>βB.(C) βA<βB.(D) 开始时βA=βB,以后βA<βB.18. 有两个半径相同,质量相等的细圆环A和B.A环的质量分布均匀,B环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A和J B,则(A) J A>J B(B) J A<J B.(C) J A =J B.(D) 不能确定J A、J B哪个大.22. 一人坐在转椅上,双手各持一哑铃,哑铃与转轴的距离各为0.6 m.先让人体以5 rad/s的角速度随转椅旋转.此后,人将哑铃拉回使与转轴距离为0.2 m.人体和转椅对轴的转动惯量为5 kg·m2,并视为不变.每一哑铃的质量为5 kg可视为质点.哑铃被拉回后,人体的角速度ω =__________________________.28.质量m=1.1 kg的匀质圆盘,可以绕通过其中心且垂直盘面的水平光滑固定轴转动,对轴的转动惯量J=221mr(r为盘的半径).圆盘边缘绕有绳子,绳子下端挂一质量m1=1.0 kg的物体,如图所示.起初在圆盘上加一恒力矩使物体以速率v0=0.6 m/s匀速上升,如撤去所加力矩,问经历多少时间圆盘开始作反方向转动.静电学1. 如图所示,两个同心球壳.内球壳半径为R 1,均匀带有电荷Q ;外球壳半径为R 2,壳的厚度忽略,原先不带电,但与地相连接.设地为电势零点,则在两球之间、距离球心为r 的P 点处电场强度的大小与电势分别为:(A) E =204r Q επ,U =r Q04επ.(B) E =204r Q επ,U =⎪⎪⎭⎫ ⎝⎛-πr R Q11410ε.(C) E =204r Qεπ,U =⎪⎪⎭⎫ ⎝⎛-π20114R r Q ε.(D) E =0,U =204R Qεπ. [ ]10.E图中曲线表示一种轴对称性静电场的场强大小E 的 分布,r 表示离对称轴的距离,这是由______________ ______________________产生的电场.14. 一半径为R 的均匀带电球面,其电荷面密度为σ.若规定无穷远处为电势零点,则该球面上的电势U =____________________.17.L q如图所示,真空中一长为L的均匀带电细直杆,总电荷为q,试求在直杆延长线上距杆的一端距离为d的P点的电场强度.28. 关于高斯定理,下列说法中哪一个是正确的?(A) 高斯面内不包围自由电荷,则面上各点电位移矢量D 为零.(B) 高斯面上处处D 为零,则面内必不存在自由电荷.(C) 高斯面的D 通量仅与面内自由电荷有关.(D)以上说法都不正确. ( )q一空心导体球壳,其内、外半径分别为R 1和R 2,带电荷q ,如图所示.当球壳中心处再放一电荷为q 的点电荷时,则导体球壳的电势(设无穷远处为电势零点)为(A) 104R qεπ . (B) 204R qεπ . (C) 102R q επ . (D)20R q ε2π . [ ]35.如图所示,将一负电荷从无穷远处移到一个不带电的导体 附近,则导体内的电场强度______________,导体的电势 ______________.(填增大、不变、减小)36. 一金属球壳的内、外半径分别为R 1和R 2,带电荷为Q .在球心处有一电荷为q 的点电荷,则球壳内表面上的电荷面密度σ =______________.38. 地球表面附近的电场强度为 100 N/C .如果把地球看作半径为6.4×105m的导体球,则地球表面的电荷40. 地球表面附近的电场强度约为 100 N /C ,方向垂直地面向下,假设地球上的电荷都均匀分布在地表面上,则地面带_____电,电荷面密度σ =__________.(ε 0 = 8.85×10-12 C 2/(N ·m 2) )41.12厚度为d 的“无限大”均匀带电导体板两表面单位面积上电荷之和为σ .试求图示离左板面距离为a 的一点与离右板面距离为b 的一点之间的电势差.42. 半径分别为 1.0 cm与 2.0 cm的两个球形导体,各带电荷 1.0×10-8 C,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/CmN109419⋅⨯=πε)43.半径分别为R1和R2 (R2 > R1 )的两个同心导体薄球壳,分别带有电荷Q1和Q2,今将内球壳用细导线与远处半径为r的导体球相联,如图所示, 导体球原来不带电,试求相联后导体球所带电荷q.稳恒磁场习题1. 有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为(A) 0.90. (B) 1.00. (C) 1.11. (D) 1.22. [ ]2.边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感强度B 为 (A) l Iπ420μ. (B)lI π220μ.(C)lI π02μ. (D) 以上均不对. [ ]3.通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O .4.无限长载流空心圆柱导体的内外半径分别为a、b,电流在导体截面上均匀分布,则空间各处的B 的大小与场点到圆柱中心轴线的距离r的关系定性地如图所示.正确的图是[]11. 一质点带有电荷q =8.0×10-10 C,以速度v =3.0×105 m·s-1在半径为R =6.00×10-3 m的圆周上,作匀速圆周运动.该带电质点在轨道中心所产生的磁感强度B =__________________,该带电质点轨道运动的磁矩p m =___________________.(μ0 =4π×10-7 H·m-1) 12. 载有一定电流的圆线圈在周围空间产生的磁场与圆线圈半径R有关,当圆线圈半径增大时,(1)圆线圈中心点(即圆心)的磁场__________________________(2.)圆线圈轴线上各点的磁场________________________________________ __________________________________________________________.14. 一条无限长直导线载有10 A的电流.在离它0.5 m远的地方它产生的磁感强度B为______________________.一条长直载流导线,在离它1 cm处产生的磁感强度是10-4T,它所载的电流为__________________________.两根长直导线通有电流I,图示有三种环路;在每种情况下,⎰⋅lBd等于:____________________________________(对环路a).___________________________________(对环路b).____________________________________(对环路c).16.设氢原子基态的电子轨道半径为a0,求由于电子的轨道运动(如图)在原子核处(圆心处)产生的磁感强度的大小和方向.19.一根半径为R的长直导线载有电流I,作一宽为R、长为l的假想平面S,如图所示。
(完整版)大学物理课后习题答案详解
r r r r r r rr、⎰ dt⎰0 dx = ⎰ v e⎰v v1122v v d tv v d tvg 2 g h d tdt [v 2 + ( g t ) 2 ] 12 (v 2 + 2 g h ) 12第一章质点运动学1、(习题 1.1):一质点在 xOy 平面内运动,运动函数为 x = 2 t, y = 4 t 2 - 8 。
(1)求质点 的轨道方程;(2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。
解:(1)由 x=2t 得,y=4t 2-8可得: r y=x 2-8r 即轨道曲线(2)质点的位置 : r = 2ti + (4t 2 - 8) jr r rr r 由 v = d r / d t 则速度: v = 2i + 8tjr r rr 由 a = d v / d t 则加速度: a = 8 jrr r r r r r r 则当 t=1s 时,有 r = 2i - 4 j , v = 2i + 8 j , a = 8 j r当 t=2s 时,有r = 4i + 8 j , v = 2i +16 j , a = 8 j 2 (习题 1.2): 质点沿 x 在轴正向运动,加速度 a = -kv , k 为常数.设从原点出发时速度为 v ,求运动方程 x = x(t ) .解:dv = -kvdt v1 v 0 vd v = ⎰ t - k dt 0v = v e - k tdx x= v e -k t0 t0 -k t d t x = v0 (1 - e -k t )k3、一质点沿 x 轴运动,其加速度为 a = 4 t (SI),已知 t = 0 时,质点位于 x 0=10 m 处,初速 度 v 0 = 0.试求其位置和时间的关系式.解:a = d v /d t = 4 td v = 4 t d tv 0d v = ⎰t 4t d t v = 2 t 2v = d x /d t = 2 t 2⎰x d x = ⎰t 2t 2 d t x = 2 t 3 /3+10 (SI)x4、一质量为 m 的小球在高度 h 处以初速度 v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; d r d v d v (3)落地前瞬时小球的 ,,.d td td t解:(1)x = v t式(1)v v v y = h - gt 2 式(2)r (t ) = v t i + (h - gt 2 ) j0 (2)联立式(1)、式(2)得y = h -vd r(3) = v i - gt j而落地所用时间t =0 gx 22v 22hgvd r所以 = v i - 2gh jvd vdv g 2t= - g j v = v 2 + v 2 = v 2 + (-gt) 2= =x y 0 0vv v d rv d v 2) v = [(2t )2+ 4] 2 = 2(t 2+ 1)2t t 2 + 1, V a = a - a = m + M m + Mvg gvv v 5、 已知质点位矢随时间变化的函数形式为 r = t 2i + 2tj ,式中 r 的单位为 m , 的单位为 s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
大学物理习题及答案
(1)A、B起动后,经多长时间C也开始运动?
(2)C开始运动时速度是多大?
7.判断正误
度4 rads-1绕竖直轴转动,两球与轴的距离都为15cm,
现在把轴环C下移,使两球与轴的距离减为5cm。此时
钢球的角速度 。
4.质量为1kg的物体,置于水平地面上,物体与地面的静摩擦系数为 ,滑动摩擦系 ,对物体施一水平拉力 0.96(SI),则2秒末物体的速度大小 。
5.X轴沿水平方向,Y轴竖直向下,在时刻 将质量为 的质点由a处静止释放,让它自由下落,则在任意时刻 ,质点所受的对原点O的力矩 ;在任意时刻 ,质点对原点O的角动量 。
为R=2m的圆轨道转动。转动的角速度 与
时间t的函数关系为 (k为常量)。
已知t=2s时,质点P的速度值为32m.s-1试
求t=1s时,质点P的速度与加速度的大小。
12.当火车静止时,乘客发现雨滴下落方向偏向车头,偏角为30º,当火车以35m/s的速率沿水平直路行驶时,发现雨滴下落方向偏向车尾,偏角为45º,假设雨滴相对于地的速度保持不变,试计算雨滴相对于地的速度的大小。
球时,若以两小球和弹簧为系统,则系统的
(A)动量守恒,机械能守恒。
(B)动量守恒,机械能不守恒。
(C)动量不守恒,机械能守恒。(D)动量不守恒,机械能不守恒。
7.质点的质量为 ,置于光滑球面的顶点A处(球面固定不动),如图所示。当它由静止开始下滑到球面上B点时,它的加速度的大小为
(A)
《大学物理》习题训练与详细解答一(质点运动学练习一、二)
2 3 2 3 x x0 t 10 t 3 3
6.如图2所示,质点p在水平面内沿一半径为R =2m的圆轨道转动,转动的角速度ω与时间的关系 2 示为 kt (k为常数)。 已知t=2s时,质点P的速度值为32m/s. 试求 t=1s时,质点P的速度与加速度的大小
w v k 2 2 4 t Rt
(A)(1)、(4)是正确的 (C) (2) 是正确的 (B) (2)、(4)是正确的 (D) (3)是正确的
3.一质点沿x轴作直线运动,它的运动方程为 x=3+5t+6t2-t3 (SI) 则 5m/s (1) 质点在t=0时刻的速度V0=________; (2)加速度为零时,该质点的速度v=________. 17m/s
dv dv 2 kv t 2 ktdt dt v v t 1 1 2 ( ) ( kt ) v0 0 v 2
.
3.一质点作直线运动,其坐标x与时间t的函数曲线如图 3 秒瞬时速度为零;在第 1所示,则该质点在第______ 3 6 ______ 秒至第______ 秒间速度与加速度同方向。
大学物理Ⅳ-习题课1
练习一 质点运动学(一)
1.一质点在平面上作一般曲线运动,其瞬时速度为 , 瞬时速率为v,某一段时间内的平均速度为v ,平均速 率为v ,它们之间的关系必定有 [ ] D (A) | v | = v, | v | = v (B) | v | ≠v, | v | = v (C) | v | ≠v,
r 平均速度: v , t s 平均速率: v , t dr 瞬时速度: v , dt d r ds 瞬时速率: v dt dt
v
|v≠ | v
(D)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习一 (第一章 质点运动学)一、1.(0586)(D )2.(0587)(C )3.(0015)(D )4.(0519)(B ) 5.(0602)(D ) 二、1.(0002)A t= 1.19 s t= 0.67 s2.(0008)8 m 10 m3.(0255)()[]t t A t ωβωωωββsin 2cos e 22 +--,()ωπ/1221+n , (n = 0, 1, 2,…)4.(0588) 30/3Ct +v 400112x t Ct ++v 5.(0590) 5m/s 17m/s三、1.(0004)解:设质点在x 处的速度为v ,2d d d 26 d d d xa x t x t==⋅=+v v ()20d 26d x x x =+⎰⎰vv v() 2 213 x x +=v2.(0265)解:(1) /0.5 m/s x t ∆∆==-v(2) 2 =/96dx dt t t =- v (3) 2=6 m /s -v|(1.5)(1)||(2)(1.5)| 2.25 m S x x x x =-+-=3.(0266)解:(1) j t r i t r j y i x r s i n c o s ωω+=+=(2) d s i n c o s d rr t i r t j t ωωωω==-+ v 22d cos sin d a r t i r t j tωωωω==-- v (3) ()r j t r i t r a s i n c o s 22ωωωω-=+-=这说明 a 与 r方向相反,即a 指向圆心.4. 解:根据题意t=0,v=0--------==⋅+⋅∴=⋅+⋅=====⋅+⋅=+⋅+⋅⎰⎰⎰⎰⎰⎰由于及初始件vt trt tr dv adt m s i m s j dtv m s ti m s tj drv t r m idtdr vdt m s ti m s tj dtr m m s t m s t j 02202202202222[(6)(4)] (6)(4)0,(10)[(6)(4)][10(3)][(2)]质点运动方程的分量式:--=+⋅=⋅x m m s t y m s t222210(3)(2)消去参数t ,得到运动轨迹方程 =-y x 3220练习二(第一章 质点运动学)一、1.(0604)(C ) 2.(5382)(D ) 3.(5627)(B ) 4.(0001)(D ) 5.(5002)(A )二、1.(0009) 0bt +v2.(0262) -c (b -ct )2/R3.(0509) 331ct 2ct c 2t 4/R 4.(0596) 4.8 m/s 2 3.15rad5.(0599) 2200cos /g θv三、 1. (0021)解: 记水、风、船和地球分别为w ,f ,s 和e ,则水地、风船、风地o o和船地间的相对速度分别为we V 、fs V 、fe V 和se V.由已知条件we V =10 km/h ,正东方向.fe V =10 km/h ,正西方向.sw V =20 km/h ,北偏西030方向.根据速度合成法则: se V =sw V +we V由图可得: se V =310 km/h ,方向正北.同理 fs V =fe V -se V , 由于fe V =-we V∴ fs V =sw V , fs V的方向为南偏西30°在船上观察烟缕的飘向即fs V的方向,它为南偏西30° 2.(0272)解:设抛出时刻车的速度为0v ,球的相对于车的速度为/0 v ,与竖直方向成θ角.抛射过程中,在地面参照系中,车的位移 21012x t at ∆=+v ①球的位移 ()/200sin x t θ∆=+v v ②()/2201cos 2y t gt θ∆=-v ③小孩接住球的条件 0221=∆∆=∆y x x ,即 ()201sin 2/at t θ=v ,()2/01c o s 2g t t θ=v两式相比得 tg /θ=g a ,∴ ()g a /tg 1-=θ3. (0517)解:(1) 题给雨滴相对于地面竖直下落,故相对于地面的水平分速为零.雨滴相对于列车的水平分速与列车速度等值反向为10 m/s ,正西方向.(2) 设下标W 指雨滴,t 指列车,E 指地面,则有 WE v = W tv + v tE , v tE =10 m/sv WE 竖直向下,v W t 偏离竖直方向30°,由图求得 雨滴相对于地面的速率为 v WE = v tE ctg30o =17.3 m/sWtvWEv tEv 30° fe we 北东雨滴相对于列车的速率 20sin 30tEW t ==v v m/s 4.(0692)解:选地为静系,火车为动系.已知:雨滴对地速度v a 的方向偏前30°,火车行驶时,雨滴对火车的相对速度 v r 偏后45°,火车速度v t =35 m/s ,方向水平, 由图可知:o o sin30sin45a r t +=v v vo o cos30cos45a r =v v 由此二式解出: 25.6c o s 30s i n 30s i n 45c o s 45ta ==+v v m/s5. 解: 由题意 2t ω∝,则322222k rad s t Rtt ωω-===⋅=v当t=0.5s 时,角速度、角加速度和切向加速度分别为21222220.54 2.01.0 1.01t t n t nt rad s d t rad s dta R m s a a a R e R e a m s ωωαααω----==⋅===⋅==⋅=+=+==⋅在2.0s 内该点所转过的角度222002 5.33dt t dt rad θθω-===⎰⎰练习三 (第二章 牛顿定律)一、1.(0038)B2.(0338)A3.(0341)B4.(0610)B5.(5388)tB 6.(0024)B 二、1.(0352) 80 N 与车行方向相同98 N 与车行方向相反2.(0355) 2%3.(0526) s g μ/ 三、1.(0037) 解:(1) 子弹进入沙土后受力为-Kv ,由牛顿定律d d K mt-=vv 00v d d d ,d t K K t t m m -=-=⎰⎰v vvvv /0e Kt m -=v v(2) 求最大深度解法一: d d xt=v /0d e d Kt m x t -=v/0d ed xtKt m x t -=⎰⎰v/0(/)(1e )Kt m x m K -=-v max 0/x m K =v解法二:d d d d ()()d d d d x K mm m t x t x-===v v vv v mdx d K=-vma xd d x mx K=-⎰⎰v v K m x /0max v =2.(0530)解:人受力如图(1)a m g m N T 112=-+ 底板受力如图(2) a m g m N T T 2221=-'-+ 212T T = N N =' 由以上四式可解得 a m m g m g m T )(421212+=--5.2474/))((212=++=a g m m T N5.412)(21=-+=='T a g m N N N3.(0628)解:以r 表示小球所在处圆锥体的水平截面半径.对小球写出牛顿定律方程为 r m ma N T 2cos sin ωθθ==-0sin cos =-+mg N T θθ 其中 θsin l r = 联立求解得: (1) θθωθcos sin sin 2l m mg N -= θωθ22sin cos l m mg T += (2) 0,==N c ωωθωcos /l g c = θcos /mg T =练习四 (第三章 动量守恒定律和能量守恒定律)一、1. (0063) (C) 2. (0067)(B)图(1)a图(2)T g m 13. (0384)(B)二、1. (0061) 1 m /s 0.5 m /s 2. (0066) b t – P 0 + b t三、 1. (0375) 解:(1) 设A ,B 间绳中张力为T ,分别对A 、B 列动力学方程M A g –T =M A a 1分T =M B a1分解得 a =Mg / (M A +M B )由 M A = M B = M a =21g 1分设B 、C 之间绳长为l ,在时间t 内B 物体作匀加速运动,有l =21at 2=gt 2/4 , t=g l /4=0.4 s 2分(2) B 和C 之间绳子刚拉紧时,A 和B 所达到的速度为 v =at =21gt =21×10×0.4=2.0 m/s令B 、C 间拉紧后,C 开始运动时A 、B 、C 三者的速度大小均变为V ,由动量定理(设三者速度变化过程中T AB 为AB 间绳中平均张力,T BC 为BC 间绳中平均张力,τ为过程时间)M A V - M A v = –T AB ·τ (∵M A g<<T AB )2分M B V – M B v =T AB ·τ–T BC ·τ1分M C V – 0 = T BC ·τ1分得 (M A + M B + M C )V = ( M A + M B ) vV =33132)(.M M M M C B A B A ==+++v M v m/s1分2.(0395)解:这个问题有两个物理过程:第一过程为木块M 沿光滑的固定斜面下滑,到达B 点时速度的大小为θsin gl 21=v 1分方向:沿斜面向下第二个过程:子弹与木块作完全非弹性碰撞.在斜面方向上,内力的分量远远大于外力,动量近似守恒,以斜面向上为正,则有V v v )(cos M m M m +=-1θ 3分Mm gl M m +-=θθsin cos 2v V 1分练习五 (第三章 动量守恒定律和能量守恒定律)一、1. (0078) (C) 2. (0095)(C) 3. (0101) (C)二、1. (0079)2 mg x 0 sin α 2. (0733)12 J 3. (0737) 4000 J 三、1. (0438) 解:设弹簧伸长x 1时,木块A 、B 所受合外力为零,即有:F -kx 1 = 0 x 1 = F /k 1分设绳的拉力T 对m 2所作的功为W T 2,恒力F对m 2所作的功为为W F ,木块A 、B 系统所受合外力为零时的速度为v ,弹簧在此过程中所作的功为W K .对m 1、m 2系统,由动能定理有W F +W K =221)(21v m m + ①2分对m 2有 W F +W T 2=2221v m ② 2分而 W K =k F kx 221221-=-, W F =Fx 1=kF 2 2分代入①式可求得 )(21m m k F +=v1分由②式可得 +-=F T W W 22221v m ])(21[2122m m m k F +--=)(2)2(21212m m k m m F ++-= 由于绳拉A 和B 的力方向相反大小相等,而A 和B 的位移又相同,所以绳的拉力对m 1作的功为 )(2)2(2121221m m k m m F W W T T ++=-= 2分练习六 (第三章 动量守恒定律和能量守恒定律)一、1. (0796)(D) 2. (0076) (C) 二、1. (0801) x ≥ x 1 U 02. (0802) (2 m ,6 m) (-4 m ,2 m)和(6 m ,8 m) 2 m 和6 m三、1.(0713) 解:由题给条件可知物体与桌面间的正压力mg F N +︒=30sin 1分物体要有加速度必须 N F μ≥︒30cos 2分即 mg t μμ≥-)3(5, 0s 256.0t t =≥ 1分 物体开始运动后,所受冲量为⎰-︒=tt t N F I 0d )30cos (μ)(96.1)(83.30202t t t t ---= t = 3 s, I = 28.8 N s 2分则此时物体的动量的大小为 I m =v 速度的大小为8.28==mIv m/s 2分2.(5261) 解:(1) 因穿透时间极短,故可认为物体未离开平衡位置.因此,作用于子弹、物体系统上的外力均在竖直方向,故系统在水平方向动量守恒.令子弹穿出时物体的水平速度为v '有 m v 0 = m v +M v ' 2分v ' = m (v 0 - v )/M =3.13 m/s2分T =Mg+M v 2/l =26.5 N 2分(2) s N 7.40⋅-=-=∆v v m m t f (设0v方向为正方向) 2分负号表示冲量方向与0v方向相反. 2分练习七 (第四章 刚体的转动)一、 1.(0981) (B ) 2. (5028) (C) 3.(0153) (A)4.(0291) (C)5. (0610) (C)6.(5030) (B)二、 1.(0983) 20参考解: r 1ω1=r 2ω2 , α1 = ω1 / t 1 , θ1=21112t α21211412ωθr r n π=π=4825411⨯π⨯⨯π=t =20 rev 2.(0551) 4.0 rad3.(5642) 2mgl μ参考解: M =⎰M d =()mgl r r l gm lμμ21d /0=⎰ 4. (5031) (1)Jk 920ω- (2) 02ωk J三、1.(0159) 解:根据转动定律 M =J d ω / d t即 d ω=(M / J ) d t其中 M =Fr ,r =0.1 m ,F =0.5 t ,J =1×10-3 kg ·m 2, 分别代入上式,得d ω=50t d t则1 s 末的角速度 ω1=⎰1050t d t =25 rad / s2.(0563) 解:受力分析如图所示.设重物的对地加速度为a ,向上.则绳的A 端对地有加速度a 向下,人相对于绳虽为匀速向上,但相对于地其加速度仍为a 向下.根据牛顿第二定律可得:对人: Mg -T 2=Ma ①对重物: T 1-21Mg =21 ②根据转动定律,对滑轮有(T 2-T 1)R =J α=MR 2α / 4 ③因绳与滑轮无相对滑动, a =αR ④①、②、③、④四式联立解得 a =2g / 7 3.(0782) 解:各物体受力情况如图.T A -mg =ma(2m)g -T B =(2m )a(T -T A )r =212mr α(T B -T )(2r )=21(2m )(2r )2α'a =r α=(2r )α'由上述方程组解得:α=2g / (9r )=43.6 rad ·s -2 ; α'=12α=21.8 rad ·s -2 ; T2'=(4/3)mg =78.4 N练习八 (第四章 刚体的转动)一、 1.(0133) (B) 2.(0230)(C) 3.(0247) (C) 4.(0772)(D) 5.(5640)(D)6.(0228) (A)7.(0499)(B)二、 1.(0235) ()0643/M m l+v2.(0773) 对O 轴的角动量 ;对该轴的合外力矩为零 ;机械能3.(0556)20m RJ m R J +-vω 4.(0546)(1)W ; (2)kl cos θ ; (3)W =2kl sin θ . 三、1.(5045)解:对棒和滑块系统,在碰撞过程中,由于碰撞时间极短,所以棒所受的摩擦力矩<<滑块的冲力矩.故可认为合外力矩为零,因而系统的角动量守恒,即22122113m l m l m l ω=-+v v ① 碰后棒在转动过程中所受的摩擦力矩为gl m x x l m gM lf 10121d μμ-=⋅-=⎰ ② 由角动量定理 ω210310l m dt M tf -=⎰③由①、②和③解得 12212t m m gμ+=v v2. (0785) 解:以转台和二人为研究对象,所受外力只有重力及轴的支撑力,诸力对转轴的合力矩为零,所以系统角动量守恒.各转动惯量分别为 221mR J =,221mR J A =,()22/21R m J B = 以地面为参照系,A 处的人走动的角速度为(/)R ω+v ,B 处的人走动的角速度为12/4/2R R ωω⎛⎫-=- ⎪⎝⎭v v由角动量守恒定律()()()22222201111111/2/4/2222222mR mR m R mR mR R m R R ωωωω⎡⎤⎛⎫++=+++- ⎪⎢⎥⎣⎦⎝⎭v v解出 0ωω= 3.(0232)解:选小球和环为系统.运动过程中所受合外力矩为零,角动量守恒.对地球、小球和环系统机械能守恒.取过环心的水平面为势能零点.小球到B 点时: J 0ω0=(J 0+mR 2)ω ①()22222000111222B J mgR J m R ωωω+=++v ②式中B v 表示小球在B 点时相对于地面的竖直分速度,也等于它相对于环的速度.由式①得: ω=J 0ω 0 / (J 0 + mR 2)代入式②得B =v当小球滑到C 点时,由角动量守恒定律,系统的角速度又回复至ω0,又由机械能守恒定律知,小球在C 的动能完全由重力势能转换而来.即:()22C m mg R =v, C =v 4.解:把子弹和杆看作一个系统.系统所受的外力有重力和轴对细杆的约束力.在子弹射入杆的极短时间里,重力和约束力均通过轴O ,因此它们对轴O 的力矩均为零,系统的角动量应当守恒.于是有 22(3)m a m l ma ω='+v ①子弹射入杆后,细杆在摆动过程中只有重力做功,所以以子弹、细杆和地球为一系统,则此系统的机械能守恒.于是有222(3)(2)(1cos30)m l ma mga m gl ω''+=+-②解式①和式②,得 =v练习九 (第六章 热力学基础)一、1. (4106) (B) 2. (4312) (A) 3. (4582) (B) 4. (4680) (C) 5. (4100) (B)6. (4105) (B)二、1. (4584) 等压 ; 等压 ; 等压2. (0238) 166 J3. (4147) 在等压升温过程中,气体要膨胀而对外作功,所以要比气体等体升温过程多吸收一部分热量.4. (4316) AM ; AM 、BM5. (4472) 1123V p ; 0 三、1.(4102) 解:(1) 等温过程气体对外作功为⎰⎰===333ln d d V V V V RT V VRTV p W =8.31×298×1.0986 J = 2.72×103J(2) 绝热过程气体对外作功为 V VV p V p W V V V V d d 03003⎰⎰-==γγ RT V p 1311131001--=--=--γγγγ =2.20×103 J2.(4694)解:(1)由等温线 C pV =得 V pV p T -=)d d (由绝热线C pV =γ得 VpV p Q γ-=)d d (由题意知714.01//)/d (d )/d (d ==--=γγV p V p V p V p Q T故 =γ1/0.714=1.4由绝热方程 γγ2211V p V p =可得421121058.7)(⨯==γV V p p Pa (2) V V V p V p W V V V V d )(d 2121211γ⎰⎰==5.6012211=--=γV p V p J3.(4117)解:由图可看出 p A V A = p C V C从状态方程 pV =νRT可知 T A =T C , 因此全过程A →B →C 的 ∆E =0. B →C 过程是绝热过程,有Q BC = 0. A →B 过程是等压过程,有 )(25)( A A B B A B p AB V p V p T T C Q -=-=ν=14.9×105J .故全过程A →B →C 的 Q = Q BC +Q AB =14.9×105 J .p 12p(m 3)p 1×4×根据热一律Q =W +∆E ,得全过程A →B →C 的 W = Q -∆E =14.9×105 J .4.(5547) 解:(1) 由35=V pC C 和 R C C V p =- 可解得 R C p 25= 和 R C V 23=(2) 该理想气体的摩尔数 ==000RT Vp ν 4 mol在全过程中气体内能的改变量为 △E =ν C V (T 1-T 2)=7.48×103 J全过程中气体对外作的功为 011lnp p RT W ν= 式中 1210//p p T T = 则 30111006.6ln⨯==T T RT W ν J . 全过程中气体从外界吸的热量为 Q = △E +W =1.35×104 J . 5.(4112) 解:(1) p -V 图如图.12(2) T 1=(273+27) K =300 K 据 V 1/T 1=V 2/T 2,得 T 2 = V 2T 1/V 1=600 KQ =ν C p (T 2-T 1) =1.25×104 J(3) ∆E =0 (4) 据 Q = W + ∆E∴ W =Q =1.25×104 J练习十 (第六章 热力学基础)一、1.(4084) (C) 2.(4103) (C)3. (4122) (D) 4。