厌氧发酵指标测定方法
厌氧发酵vfas的阈值
厌氧发酵vfas的阈值
VFA(挥发性脂肪酸)是指在厌氧发酵过程中产生的一类有机酸,包括乙酸、丙酸、丁酸等。
在不同的环境和发酵条件下,VFA的产量和组成可能会有所不同。
通常来说,VFA的阈值取决于具体的应用场景和研究目的,但是一般来说,VFA的阈值可能会影响发酵过程的效率和产物质量。
在污水处理、生物质降解、沼气发酵等领域,VFA的阈值通常被用作评估发酵过程的稳定性和效率的指标之一。
一般来说,高水平的VFA可能会导致发酵过程的酸化,影响生物体系的稳定性,因此需要根据具体情况来设定合适的阈值。
具体来说,一些研究或应用可能会将总VFA的浓度作为评估指标,通常在 1000 - 3000 mg/L 的范围内,高于这个范围可能会被认为是酸化严重,需要采取措施进行调节。
而对于单个VFA,如乙酸、丙酸等,其浓度也可能有相应的阈值,不同的研究或应用会有不同的设定。
需要注意的是,VFA的阈值通常是根据具体的实验条件、生物体系和研究目的来确定的,因此在具体应用中需要进行合理的设定,并结合其他参数进行综合评估。
1 / 1。
温度和ph值调控对厌氧发酵产甲烷影响的研究
温度和pH值调控对厌氧发酵产甲烷影响的研究1. 研究目标本研究的目标是探究温度和pH值对厌氧发酵产甲烷过程的影响,以及寻找最适宜的温度和pH条件来提高甲烷产量。
通过深入了解这些调控因素对厌氧发酵过程中微生物群落结构和功能的影响,我们可以为甲烷生产过程的优化提供科学依据。
2. 方法2.1 实验设计在本实验中,我们采用了一系列不同温度(30°C、35°C、40°C)和pH值(6.5、7.0、7.5)条件下进行厌氧发酵实验。
每个条件下设置3个重复样品,共计27个试验样品。
2.2 实验操作1.根据设计条件,将不同温度下培养基分装到相应试管中。
2.分别调节不同试管中培养基的pH值,并在每个试管中接种相同数量的活性污泥。
3.将试管密封并放置于恒温摇床中进行培养。
4.定期取样,分析甲烷产量、污泥特性以及微生物群落结构等指标。
2.3 数据分析1.使用气相色谱法测定每个样品中的甲烷含量,并计算甲烷产量。
2.通过测定污泥中的总固体含量、总挥发性固体含量、pH值等参数,评估厌氧发酵过程的稳定性和酸化效果。
3.利用高通量测序技术(如16S rRNA基因测序)对不同样品中的微生物群落结构进行分析,并计算多样性指数。
3. 发现3.1 温度对甲烷产量的影响•在30°C条件下,甲烷产量最高,平均达到X mL/g VS(挥发性固体)。
•随着温度升高至35°C和40°C,甲烷产量逐渐下降,分别为X mL/g VS和X mL/g VS。
3.2 pH值对甲烷产量的影响•在pH值为7.0条件下,甲烷产量最高,平均达到X mL/g VS。
•当pH值偏离7.0时,甲烷产量均呈下降趋势。
pH值为6.5时,甲烷产量为X mL/g VS;pH值为7.5时,甲烷产量为X mL/g VS。
3.3 微生物群落结构的变化•随着温度的升高,微生物群落结构发生了显著变化。
在30°C条件下,厌氧菌属和甲烷菌属是主要的微生物类群。
厌氧性发酵
1.2 酒精发酵中副产物的形成
主产物(product) :乙醇(alcohol)
副产物(by product ): 二氧化碳(carbon dioxide) 甘油(glycerol) 乙醛(acetaldehyde) 瑚珀酸( succinic acid ) 乙酸(acetic acid) 酯(ester) 高级醇(higher alcohol) 双乙酰(diacetyl)
(2) 厌氧性发酵(anaerobic fermentation) :在发酵 过程中不需要供给无菌空气。 e.g. lactic acid bacteria --------lactic acid Bacillus clostridium -------acetone-butanol (3)兼性发酵 (facultative fermentation) :
1.2.1.2 影响杂醇油形成的条件 a.菌种。在同样的条件下,不同菌种的杂醇油生成 量相差很大。酵母的杂醇油生成量与醇脱氢酶活 性关系密切,该酶活力高,杂醇油生成量大。 b.培养基组成。培养基中支链氨基酸(亮氨酸、异 亮氨酸、缬氨酸)的存在,可增加相应的高级醇 (异戊醇、活性戊醇和异丁醇 )的生成量。培养 基中氮水平高,形成杂醇油量少,杂醇油总形成 量因氮水平高而降低。 c.发酵条件。一般发酵温度高,高级醇生成量高, 通风有利于高级醇生成。高级醇的生成与乙醇的 生成是平行的,随乙醇的生成而生成。
e.g.
Bacillus subtilis -----------amylase
Corynebacterium 265-----------inosinic acid Asp.niger Uv06---------citric acid C.glutamicum As1299---------glutamic acid
厌氧性发酵
)
• 发酵作用:所谓的发酵,广义的讲就是利用微生
物或生物化学的手段,将各种物质加以改变,然 后利用由此产生的能量及代谢中间体,而得到各 种有用的物质。
发酵的类型
根据微生物的种类不同,可分为好氧性发酵、厌氧 性发酵和兼性发酵。 (1)好氧性发酵(aerobic fermentation):在发 酵过程中需要通入一定量的无菌空气,满足微生物呼吸需要。
1.2.1.2 影响杂醇油形成的条件 a.菌种。在同样的条件下,不同菌种的杂醇油生成 量相差很大。酵母的杂醇油生成量与醇脱氢酶活 性关系密切,该酶活力高,杂醇油生成量大。 b.培养基组成。培养基中支链氨基酸(亮氨酸、异 亮氨酸、缬氨酸)的存在,可增加相应的高级醇 (异戊醇、活性戊醇和异丁醇 )的生成量。培养 基中氮水平高,形成杂醇油量少,杂醇油总形成 量因氮水平高而降低。 c.发酵条件。一般发酵温度高,高级醇生成量高, 通风有利于高级醇生成。高级醇的生成与乙醇的 生成是平行的,随乙醇的生成而生成。
由葡萄糖生成乙醇的总反应式为
C6H12O6 + 2ADP +2H3PO4
2CH3CH2OH + 2CO2 + 2ATP
则1mol葡萄糖生成2mol乙醇,理论转化率为 2×46.05/180.1×100%=51.1% 但是在生产中大约有5%的葡萄糖用于合成酵母细胞 和副产物,实际上乙醇生成量约为理论值的95%,则乙 醇对糖的实际转化率约为48.5%。 酵母菌在无氧的条件下,通过以上12步反应,1分子 G生成2分子的乙醇,2分子的CO2和 2分子ATP。整个 过程可用下面的简图表示。
CH3COCOOH -乙酰乳酸 + CH3CHO-TPP(活性乙醛)
温度对高浓度恒温厌氧发酵产沼气成分的影响
温度对高浓度恒温厌氧发酵产沼气成分的影响李金平;周丹丹;张庆芳;翟盼盼;冯荣【摘要】摘要;为了研究温度对高浓度恒温厌氧发酵产沼气成分的影响,在4个11.5L的发酵罐中并行批次实验研究19、30、37、52℃下总固体量(TS)为15%时鲜牛粪的恒温厌氧发酵过程,用沼气分析仪实时测量沼气成分.实验结果表明:37℃时厌氧发酵的产气量和产甲烷量最大,累积产气量为232 L,累计甲烷产量为116.1 L;比30、52℃下分别多产18.2、15.6L甲烷;52、37、30℃下厌氧发酵甲烷的平均体积分数分别为46.6%、46.5%和43.6%.%In order to study the influence of temperature on composition of biogas fermented in high-concentrated thermostatic anaerobic environment, the process of anaerobic fermentation of fresh cattle manure with solid concentration of 15% was experimentally investigated, four parallel anaerobic digesters of 11. 5 L in volume at 19, 30, 37 ℃ and 52 ℃ respectively in batch mode. Real-time measurement of biogas compositions was carried out with biogas analyzer. The experimental result showed that the highest cumulative yield of biogas and the highest methane yield took place at 37 ℃, the former being 232 L and the latter being 116. 1 L, which compared with the yields at 30, 52 ℃ were more than 18. 2 L and 15. 6 L. The average methane volume content in anaerobic fermentation at 52, 37 ℃ and 30 ℃ was 46. 6%, 46. 5% and 43.6%, respectively.【期刊名称】《兰州理工大学学报》【年(卷),期】2012(038)006【总页数】5页(P44-48)【关键词】恒温厌氧发酵;沼气成分;甲烷;高浓度【作者】李金平;周丹丹;张庆芳;翟盼盼;冯荣【作者单位】兰州理工大学太阳能与气体水合物研究中心,甘肃兰州730050;兰州理工大学太阳能与气体水合物研究中心,甘肃兰州730050;兰州理工大学太阳能与气体水合物研究中心,甘肃兰州730050;兰州理工大学太阳能与气体水合物研究中心,甘肃兰州730050;兰州理工大学太阳能与气体水合物研究中心,甘肃兰州730050【正文语种】中文【中图分类】TK6目前,中国畜牧业占农业总产值的比重约为33%,已经发展成为农业和农村经济的重要组成部分,而畜牧业在快速发展的同时,畜禽养殖场粪便污染问题也日益突出,逐渐成为社会关注的焦点.利用厌氧发酵处理畜禽粪便不仅可以提供清洁能源——沼气,实现节能减排,并且还能实现农业废弃物的综合利用,如沼液还田,能减轻对环境的压力,是目前最有发展前景的方法之一.厌氧发酵是一个复杂的生物化学反应过程,有湿式厌氧发酵和干式厌氧发酵2种,湿式厌氧发酵在处理农业废弃物时需要大量的清洁水,厌氧发酵后沼液浓度较低,脱水比较困难,制约了湿式厌氧发酵未来的发展.目前,干式厌氧发酵已经广泛应用于处理城市垃圾、禽畜粪便、农作物秸秆,具有节约用水、管理方便、产气率高、处理成本小等优点,已经成为厌氧发酵技术的研究热点.厌氧发酵技术有分界点,以总固体量15%为分界点,因此研究分析总固体量为15%发酵物即可以作为湿式发酵分界点,也可以作为干式发酵的对比点[1].李东等[2]研究秸秆常温干式厌氧发酵,发现与湿式厌氧发酵相比干式发酵不仅提高了池容效率,而且缩短了发酵周期,同时提高了单位原料产气率.张苗蕾等[3]在恒温水浴中研究了不同浓度的牛粪和玉米秸秆干式厌氧发酵,与湿式厌氧发酵相比启动时间较早,累积产气量较高.Fatma等[4]研究鸡粪干式发酵,发现37℃是最佳发酵温度,甲烷含量较高.温度是影响沼气生产的重要因素,它通过对酶的活性、微生物代谢方式、物质的溶解度等方面影响厌氧发酵[5],进而影响了沼气中甲烷、二氧化碳和硫化氢等气体体积分数.关于温度对厌氧发酵的研究已经很多.Hammad等[6]以不同的禽畜粪便和植物废渣为发酵原料来评价甲烷的产量与温度的关系,结果表明,在最适温度35℃左右,沼气的产量和甲烷的体积分数随着环境温度增长而提高,同时表明沼气的生产使用牛粪作为发酵原料优于其他的禽畜粪便.农村户用沼气池多为常温发酵,当沼气池内沼液温度低于15℃时,沼气池产气将显著降低[7],气温低于-5℃时就不能正常产气使用[8].贺延龄[9]认为甲烷反应器每天的温度波动不宜超过±2℃,当有±3℃的变化时,就会抑制甲烷的产生速率,有±5℃的急剧变化时,就会完全抑制甲烷的产生.在寒旱地区由于昼夜温差大,户用沼气池产沼气每年只能使用5个月.温度变化是制约户用沼气池连续使用的最重要因素.厌氧发酵可分为3个温度范围:随环境温度变化的发酵方式的常温发酵,20~45℃的中温发酵和50~65℃的高温发酵[10].本文在4个11.5L的发酵罐(内置1.5L的加热水箱)中实验研究了19、30、37、52℃下总固体量为15%的纯牛粪的恒温厌氧发酵过程,并用沼气分析仪实时测量了沼气成分,研究了温度对厌氧发酵产沼气成分的影响.1 实验1.1 实验装置本实验采用自行设计的自动可控温厌氧发酵系统,主要由温控仪、4个高径比为1的11.5L304不锈钢发酵罐(内置1.5L加热水箱)和集气装置组成,如图1所示.发酵罐的温度通过加热水箱的水温控制,3个经过良好保温的发酵罐温度分别控制在52±1℃、37±1℃、30±1℃.温度均使用精度为±0.1K的Pt100铂电阻测量,质量采用精度为±0.01g的电子天平测量,pH值用精度为±0.1的pH-108型袖珍数显笔式酸度计测量,气体成分由Biogas测量,甲烷和二氧化碳的测量精度均为±3.0%,硫化氢的测量范围是0~5g/kg,测量精度为±0.025g/kg.1.2 发酵原料图1 可控性恒温发酵装置示意图Fig.1 Schematic diagram of controllable constanttemperature fermentation equipment1.温控仪;2.保温层;3.52℃发酵罐;4.37℃发酵罐;5.30℃发酵罐;6.常温发酵罐;7.数据采集仪;8.湿式气体流量计;9.计算机;10.沼气分析仪;11.储水桶;12.储气罐;13.内水箱;14.电磁阀;15.热水泵;16.恒温水箱;17.加热丝;18.温度传感器每个发酵罐7.5L填充发酵原料,2.5L作为预留储气空间.发酵原料由新鲜牛粪、接种物和水组成,其中新鲜牛粪取自某奶牛繁育中心,接种物取自奶牛繁育中心的恒温厌氧发酵罐.经测定其理化性质见表1.表1 牛粪和接种物的理化性质Tab.1 Physical and chemical properties of cattle manure and inoculums物料密度/(kg·m-3) pH 固体浓度/%挥发性固体/%655 7.6 26.18 43.54接种物牛粪986 7.2 4.13 54.48为控制发酵原料的总固体量在15%,由发酵罐中添加2.4L接种量,计算出新鲜牛粪和水的质量分别为1 690g和3 772g. 式中:M0为料液的总固体量,%;Xi为物料i的重量,g;m为原料的总固体量,%;W 为加入水量,g.1.3 测量指标和测定方法测量指标和测定方法见表2.表2 测量指标和测定方法Tab.2 Measurement indices and methods指标测定方法主要仪器检测时间温度电阻法 Pt100铂电阻数据采集仪10s1次总固体量减重法恒温干燥箱实验前后各1次挥发性固体减重法马弗炉实验前后各1次pH 电位法袖珍数显笔式酸度计每天21:00产气量排水法湿式气体流量计每天21:00 CH4、CO2、H2S 红外吸收 Biogas Check 每天21:00 1.4 实验方法实验共进行了58天.每天21:00用气体采样袋收集1L气体,使用沼气分析仪测定其成分,并用排水集气法收集沼气罐中剩余气体,用量筒测定水的体积以表示剩余气体的体积.人工搅拌从第1天开始,每天21:00搅拌2min.2 结果与讨论2.1 发酵温度对发酵罐内pH值的影响厌氧发酵过程中pH值变化是生物菌群厌氧消化、气液两相间CO2平衡、液相内酸碱平衡以及固液两相溶解平衡的共同作用结果[9].从图2可以看出,厌氧发酵开始时,不同的发酵温度下,pH均有明显的降低,即处于酸化阶段.此阶段产甲烷菌数量少,处于适应环境阶段,不能及时消耗发酵罐内产生的挥发性脂肪酸,使得酸积累越来越多,致使pH值降低.第9天中19℃发酵罐中pH迅速上升,这是由于发酵浓度高,出现了酸积累的原因;30℃pH值有剧烈下降,而这是因产酸过度消耗造成.19、30、37、52℃发酵罐中的pH值分别在第14、11、9、10天达到正常发酵范围(pH:6.8~7.6),即完成了酸化阶段.随后pH值一直处于6.8~7.7.但相比较而言,由于温度越高氨浓度越高,所以pH值在6.8~7.7随温度从52、37、30、19℃降低而相应降低.图2 发酵温度对pH的影响Fig.2 Influence of temperature on pH in anaerobic fermentation2.2 发酵温度对日产沼气量和日消耗总固体量的影响图3中发酵温度对沼气产量的影响基本与pH值变化相对应.在厌氧发酵第1天,除常温发酵罐外,每个发酵罐都有大量气体产生.这是由于接种物中产甲烷菌利用牛粪中的小分子物质及接种物自身的脂肪酸产生了大量沼气造成的.常温发酵罐产气量较低是由于温度和水解酸化菌产生脂肪酸的综合影响.随着厌氧发酵的进行,温度的影响开始凸显.厌氧发酵的第2天,除19℃发酵罐产气量低外,其余3个发酵罐产气量虽然有小波动,但整体均平稳上升,其中30、37、52℃发酵罐分别在第12、10、7天出现了产气高峰.可以看出,温度越高,产气高峰出现越早,发酵速率越高.这是由于牛粪发酵浓度高,物质流动性差,与发酵微生物接触几率减小.而温度越高分子运动速度越快,高温加速了发酵物质与发酵微生物的接触概率,供给发酵微生物充足的食物,使发酵微生物迅速增长繁殖,微生物数量的增长造成产气速率的进一步提高,从而在发酵原料充足的条件下52℃发酵罐最早出现最高日产气量15.2 L,比37℃产气高峰早3天.图3 发酵温度对沼气产量的影响Fig.3 Influence of temperature on biogas yields in anaerobic fermentation30、37、52℃发酵罐在出现产气高峰后的一段时间内,由于发酵物质逐渐不足,产气量开始下降,但30、37℃日产气量均高于52℃产气,且37℃发酵罐产气量多数时间处于最高.这是因为厌氧发酵产甲烷过程主要由2部分组成:一部分利用乙酸产甲烷,另一部分是利用H2与CO2合成甲烷.产氢菌是沼气发酵中很重要的微生物,它们可为产甲烷菌提供H2和CO2来合成甲烷.大多数产氢菌在30~38℃能产生更多氢,而产甲烷菌也在30~38℃对CO2/H2利用效果最好.M.Braun和F.Mayer[11]通过对不同温度下产氢菌活性研究,得到产氢菌最佳生长温度是30℃,并且做了产氢菌生长随温度的关系曲线.产氢菌在30~38℃区间活性很高,在50~60℃区间活性偏低,30℃和37℃在发酵中期和后期除了利用乙酸合成甲烷,还利用了CO2/H2合成甲烷,所以在发酵物质逐渐不足条件下,30、37℃条件下产气量曲线高于52℃.图4为每日总固体量的消耗图,对比图3与图4,37℃和52℃发酵罐在分别达到最高日产气量时TS的转化率有明显的差距.52℃发酵罐的最高日产气量高于37℃时,但是TS消耗量相比,前者却小于后者,说明发酵前期52℃发酵原料转化率高于37℃时.但是随着发酵的进行,从总体趋势分析,TS的消耗量与产气量基本成正比关系.因为总碳量与挥发性固体的线性关系,可以知道总碳量与总固体量也为线性关系,而甲烷和二氧化碳主要来源于含碳物质的分解.图4 发酵温度对总固体量降解的影响Fig.4 Influence of temperature on total solid gradation in anaerobic fermentation2.3 发酵温度对TS累计消耗量和累积产沼气量的影响58天内,52、37、30℃和常温条件下发酵罐的累积产气量分别为200.40、231.95、201.55、60.70L,52、37、30℃下厌氧发酵周期分别为35、33、34天,实验结果见图5.图5 发酵温度对TS累计消耗量和累积产气量的影响Fig.5 Influence of temperature on cumulative TS consumption and cumulative biogas yield in anaerobic fermentation通常一个厌氧发酵周期定义为从厌氧发酵开始到产气量达到总产气量90%的时段[12].58天实验结束时,常温发酵罐的日产气量仍然维持在1L(占1.66%)左右,因此这里不对19℃下厌氧发酵周期进行讨论.由图5可知,37℃实验组的累积产气量最高,其次是30℃实验组.由温度与生物反应活性之间的关系[13]可以看出厌氧生化速率在37℃附近达到一个极大值,在45℃左右出现低值,继而在53~63℃又出现一个极大值.37℃与52℃有着同样的利用乙酸产甲烷的能力,又有着30℃附近时产氢细菌的高效率,同时细菌有着利用CO2/H2合成甲烷的最好活性,所以产气量与产甲烷量最高.许多研究表明嗜热菌对有机物的降解能力要优于中温菌和低温菌,但在此次发酵中,30℃与52℃发酵累积产气量接近,与大多数学者对常规厌氧发酵的研究结果不同,这是因为TS为15%时52℃发酵速率快,发酵底物供应充足,产甲烷菌在发酵高峰期到来前迅速增长繁殖,由于产甲烷过程中含碳物质既是能源又是碳源,用于微生物细胞增长消耗的碳源多于30℃.30℃时,由于产氢菌利用CO2/H2合成甲烷的细菌活性高于52℃,而此途径合成甲烷量约占整个产甲烷量28%[9],即30℃实验组通过此途径弥补了用乙酸途径合成甲烷细菌活性的不足.综合结果为30℃和52℃的累积产气量相当.TS累计消耗量直观反映了不同温度对发酵原料厌氧降解速率的影响,在37℃时TS降解速率最快,表明在适宜温度下牛粪中有机物物质转化速率较快,在同一发酵周期内累计产气量多.但是随着原料中营养物质的减少,TS的累计下降速率总体呈递减趋势.2.4 温度对沼气中甲烷体积分数的影响作为一种可燃性的混合气体,沼气的主要成分包括甲烷、二氧化碳、氮气、硫化氢等,通常甲烷的体积分数为50%~70%,二氧化碳的体积分数为30%,甲烷的体积分数决定了沼气的品质.硫化氢作为一种剧毒的酸性气体,其质量分数对管道有腐蚀破坏作用,如何降低其质量分数对环境保护工作有重要意义.如图6所示,在一定温度条件下随厌氧发酵的进行甲烷体积分数先升高后逐渐降低.52、37、30℃下厌氧发酵甲烷峰值分别为66%、60%、60%,甲烷平均体积分数分别为46.6%、46.5%和43.6%.尽管52、37、30℃下厌氧发酵的甲烷峰值和平均甲烷体积分数差别不大,但它们的累积甲烷产量却存在明显差异,37℃下厌氧发酵的累积甲烷产量分别是52℃下的1.16和1.23倍.因为接种液取自37℃发酵罐中,所以在发酵前期37℃有明显优势,且由于发酵原料充足,发酵速率较大,甲烷体积分数也较高,随着发酵时间的持续,pH值升高导致氨的体积分数增加,抑制了产甲烷的活性,使甲烷的体积分数下降.图6 发酵温度对甲烷体积分数的影响Fig.6 Effect of temperature on methane content in anaerobic fermentation2.5 温度对沼气中二氧化碳体积分数的影响由图7可以看出52℃实验组的CO2体积分数曲线基本上高于其他组分,这是因为52℃条件下产甲烷菌利用CO2/H2合成甲烷的效率较低,而30℃时产甲烷利用CO2/H2的效率最高,且37℃产氢活性明显高于52℃.所以52℃时CO2体积分数高于其他发酵罐.图7 发酵温度对二氧化碳体积分数的影响Fig.7 Influence of temperature on CO2content in anaerobic fermentation2.6 温度对沼气中硫化氢质量分数的影响从图8可以看出,发酵初期(2天内)各温度下厌氧发酵产生的沼气中的硫化氢质量分数均随时间的明显上升,发酵第3天开始,沼气中的硫化氢质量分数开始下降.这是由于在发酵初期,蛋白质等大分子含硫物质经过水解酸化后分解出硫化氢,使硫化氢质量分数增大,而后随着甲烷菌的代谢,甲烷体积分数增大导致硫化氢所占比重开始下降[14].图8 发酵温度对硫化氢质量分数的影响Fig.8 Influence of temperature on hydrogen sulfide content in anaerobic fermentation实验初期处于酸化阶段,硫化氢质量分数较高,这是由于在较低的发酵温度下,产甲烷菌活性较弱,产生的甲烷较少,硫化氢所占的比例较大.综上所述,可以看出19℃条件下厌氧发酵的日产气速率最小、日产气量最少、沼气中的甲烷日均体积分数最低、硫化氢日均质量分数最高.而中国的户用沼气池普遍采用自然发酵,料液温度随环境的变化而变化,显然沼气生产情况比19℃下生物质厌氧发酵更加糟糕.因此,为了提高生物质厌氧发酵速率、日产气量和沼气中的甲烷体积分数,并降低沼气中硫化氢产量,建议将沼气生产温度控制在37℃.3 结论1)对于高浓度发酵,温度对发酵速率的影响是最主要因素,52℃发酵罐产气速率最大,产气高峰比37℃提前3天,37℃比30℃提前1天.2)37℃时厌氧发酵的产气量和产甲烷量都是最大的.对TS为15%的发酵过程,37℃虽然发酵周期长于52℃,但发酵原料的利用更充分.52℃发酵适合于连续进料的快速产气过程,37℃更适合于充分消解原料过程.3)中国户用沼气池普遍采用自然发酵,料液温度随环境的变化而变化,沼气生产性能比19℃下生物质厌氧发酵更差.因此,为了提高生物质厌氧发酵速率、沼气品质,并降低沼气中硫化氢质量分数,建议将沼气生产温度控制在37℃.参考文献:[1]宁桂兴,申欢,文一波,等.农作物秸秆干式厌氧发酵实验研究[J].环境工程学报,2009,3(6):1131-1134.[2]李东,马隆龙,袁振宏,等.华南地区稻秸常温干式厌氧发酵试验研究[J].农业工程学报,2006,22(12):176-179.[3]张苗蕾,张从良,李顺义,等.含水量对牛粪和玉米秸秆干式厌氧发酵的影响[J].江苏农业科学,2009,6(1):401-403.[4]FATMA A,YUTAKA N,NAOMICHI N.Dry mesophilic fermentation of chicken manure for production of methane by repeated batch culture [J].Journal of Bioscience and Bioengineering,2009,107(3):293-295.[5]任南琪,王爱杰.厌氧生物技术原理与应用[M].北京:化学工业出版社,2004.[6]HQMMQE M,BADARNEH D,TAHBOUB K.Evaluating variable organic waste to produce methane[J].Energy Conversion &Management,1999,40(13):1463-1475.[7]郭甲生,秦朝葵,戴万能.变化气候条件下沼气池散热动态仿真[J].中国沼气,2010,28(3):8-10.[8]甘寿文,徐兆波,黄武.大型沼气工程生态应用关键技术研究[J].中国生态农业学报,2008,16(5):1293-1297.[9]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,1998. [10]李想.农业废弃物干法厌氧发酵关键参数优化研究[D].北京:中国农业科学院,2007.[11]BRAUN M,MAYER F,GOTTSCHALK G.Clostridium aceticum (Wieringa),a microorganism producing acetic acid from molecular hydrogen and carbon dioxide[J].Archives of Microbiology,1981,128(3):288-293.[12]吴满昌,孙可伟,李如燕.不同反应温度的城市生活垃圾厌氧发酵研究[J].化学与生物工程,2005,22(9):28-31.[13]余建峰.不同接种物氧发酵过程的影响[D].郑州:郑州大学,2006. [14]刘德江,张富年,邱桃玉.牛粪不同发酵浓度对沼气中甲烷及硫化氢含量的影响[J].中国沼气,2008,26(5):18-20.。
厌氧发酵实习报告
厌氧发酵实习报告
一、实习目的
1. 了解厌氧发酵的原理和过程。
2. 掌握厌氧发酵实验操作方法。
3. 观察并分析厌氧发酵的产物。
二、实验原理
厌氧发酵是在缺氧条件下,由特定的微生物对有机物进行分解的过程。
主要分为四个阶段:水解、酸化、醋酸发酵和甲烷发酵。
有机物首先被水解为小分子,然后经过酸化作用产生挥发性脂肪酸,最后经过醋酸发酵和甲烷发酵生成甲烷和二氧化碳。
三、实验步骤
1. 准备实验材料:厌氧发酵装置、基质(如秸秆、粪便等)、种子污泥、氢氧化钠等。
2. 组装厌氧发酵反应器,加入基质和种子污泥,充分混匀。
3. 密封反应器,排除空气,创造厌氧环境。
4. 控制温度在35-37°C,促进微生物发酵。
5. 定期检测并记录产气量、pH值等参数。
6. 收集并分析产气成分(甲烷、二氧化碳等)。
四、实验结果与分析
1. 产气量随时间呈现先增加后趋于平稳的趋势。
2. pH值在发酵初期有所下降,后期趋于中性。
3. 产气主要成分为甲烷和二氧化碳,占比约为60%和40%。
4. 剩余固体可作为有机肥料利用。
五、实习体会
通过本次实习,我对厌氧发酵原理和过程有了更深入的理解。
掌握了相关实验操作技能,并亲自观察了发酵过程中的各种现象。
厌氧发酵不仅可以实现有机废弃物的资源化利用,还能产生可再生能源甲烷,具有重要的环境和经济价值。
不同初始pH值对白菜尾菜与羊粪混合厌氧发酵的影响
2024年2月Feb.2024第48卷第1期Vol.48,No.1热带农业工程TROPICAL AGRICULTURAL ENCINEERING不同初始pH 值对白菜尾菜与羊粪混合厌氧发酵的影响申岳1,2蔡立群1,2陈晓龙1,2王勇智1,2周生虎1,2(1甘肃农业大学资源与环境学院甘肃兰州730070;2甘肃省干旱生境作物学重点试验室甘肃兰州730070)摘要探究不同初始pH 对白菜尾菜与羊粪混合厌氧发酵的影响,为尾菜沼气工程预处理技术提供理论基础。
利用自制小型发酵装置,以白菜尾菜为主要原料,添加适量羊粪防止发酵系统酸化,导致产气停滞,将白菜尾菜与羊粪按总固体含量(TS )2∶1进行混合,设置4个不同初始pH 值处理(T1:pH 值未调节,pH =7.1±0.1;T2:pH =6.5±0.1;T3:pH =7.5±0.1;T4:pH =8.5±0.1),高温条件下(55±1)℃进行湿式厌氧发酵。
研究不同初始pH 值对白菜尾菜和羊粪混合发酵过程中产甲烷效能、发酵基质有机质水解、发酵系统稳定性的影响。
与T1相比,T3处理能有效增加白菜尾菜与羊粪混合厌氧发酵的产甲烷效能;碱性条件下能进一步促进固态有机物的水解,提高发酵液中有机质含量;各发酵系统均能较稳定运行,更有利于白菜尾菜与羊粪厌氧发酵的进行。
本结论可为白菜尾菜沼气化利用提供一定的理论及应用参考。
关键词pH 值;尾菜;混合发酵;羊粪;甲烷中图分类号TQ921;X72Effects of Different Initial PH Values on Mixed Anaerobic Fermentationof Cabbage Tail and Sheep ManureSHEN Yue 1,2CAI Liqun 1,2CHEN Xiaolong 1,2WANG Yongzhi 1,2ZHOU Shenghu 1,2(1College of Resources and Environment Science,Gansu Agricultural University,Lanzhou,Gansu 730070;2State Key Laboratory of Aridland Crop Science,Lanzhou,Gansu 730070)AbstractThe effects of different initial pH on mixed anaerobic fermentation of cabbage tail and sheepmanure were investigated to provide a theoretical basis for the pretreatment technology of vegetable tail methane ing a self-made small-scale fermentation device,with cabbage tail as the main raw material,an appropriate amount of sheep manure was added to prevent acidification of the fermentation system,resulting in stagnation of gas production.The cabbage tail and sheep manure were mixed according to the total solid content (TS)of 2:1,and four different initial pH values were set (T1:pH was not adjusted,pH =7.1±0.1;T2:pH =6.5±0.1;T3:pH =7.5±0.1;T4:pH =8.5±0.1),wet anaerobic fermentation under high temperature conditions (55±1)°C.The effects of different initial pH values on methane-producing efficiency,organic matter hydrolysis in fermentation substrate and stability of fermentation system during mixed fermentation of cabbage tail and sheep manure were pared with T1,T3treatment could effectively increase the methane production efficiency of mixed anaerobic of cabbage tail and sheep manure.Under alkaline conditions,it can further promote the hydrolysis of solid organic matter and increase the content of organic matter in the fermentation solution.Each fermentation system can operate stably,which is more conducive to the anaerobic fermentation of cabbage tail and sheep manure.This基金项目:甘肃省教育厅高校产业支撑项目(No.2021CYZC-50)。
厌氧菌检验 微生物学实验
实验六、厌氧菌检验一、厌氧培养1、刨肉基法方法:将破伤风梭菌、产气荚膜梭菌分别接种在庖肉培养基中,35℃48h,观察结果。
2、厌氧罐法方法:将破伤风梭菌接种在高渗芽孢培养基中并放置于厌氧罐中;将破伤风梭菌、产气荚膜梭菌分别接种在血平板中并置于厌氧罐中,放厌氧袋,密闭,置35℃48h观察结果。
二、观察厌氧菌培养结果:1、庖肉基1)破伤风梭菌:肉汤混浊,部分消化,微变黑,有少量气体,有腐败性恶臭味。
2)产气荚膜梭菌:产生气体,肉渣呈粉红色,不被消化。
2、血平板1)破伤风梭菌:呈薄膜状生长,菌落半透明、灰白色、边缘疏松呈羽毛状,伴β溶血。
2)产气荚膜梭菌:多数菌株有双层溶血环,内环完全溶血,外环不完全溶血。
3、梭菌平板破伤风梭菌:形成直径1mm 以上不规则的菌落,中心紧密,周边疏松,似羽毛状。
三、涂片、革兰染色镜检:破伤风梭菌产气荚膜梭菌G-,细长,芽胞圆形,比菌体大,G+,粗短大杆菌,两端钝圆,单个或成双排列。
位于菌体顶端,使细菌呈鼓槌状芽胞椭圆形,位于菌体中央或次极端,芽胞直径不大于菌体四、芽孢染色:制片①5%孔雀绿加热3~5min,水洗甩干;②0.5%沙黄水溶液染色0.5~1.0min,水洗甩干干后镜检,如图所示:菌体呈红色,芽孢呈淡绿色。
破伤风梭菌产气荚膜梭菌五、汹涌发酵试验(试教)产气荚膜梭菌:分解乳糖产酸,使酪蛋白变性,同时产生大量气体,将凝固的酪蛋白冲成蜂窝状,并将液面上的凡土林层向上推挤,甚至冲开管口棉塞,气势凶猛,为“汹涌发酵”。
六、讨论:1、做生化试验时,有些细菌为致病菌,故实验时要保护好自己,且实验废弃物要妥善处理,以免发生有害菌的感染。
2、所有接种的菌株暴露于有氧环境中不得超过20min3、厌氧菌检验:可据厌氧菌的菌体形态、染色反应、菌落性状以及对某些抗生素的敏感性等作出初步鉴定。
最后鉴定则要进行生化反应及终末代谢产物等项检查。
4、破伤风梭菌微生物检验:根据破伤风的典型临床表现即可作出诊断,故一般不作细菌学检查。
Cao2对城市污水处理中剩余污泥厌氧发酵产酸性能与生物酶活性的影响
Cao2对城市污水处理中剩余污泥厌氧发酵产酸性能与生物酶活性的影响作者:钮劲涛金宝丹周萍牛佳慧张局张钟方陶泓帆马志刚代菁雯李诺楠来源:《郑州轻工业学院学报(社会科学版)》2019年第04期关键词:剩余污泥;厌氧发酵;CaO2;水解酸化;短链脂肪酸;生物酶活性0引言目前,活性污泥法是应用最广泛的污水处理方法,具有处理效果好、成本低等特点.然而运用活性污泥法处理城市污水会产生大量副产物———剩余污泥,其处理问题成为当前污水处理工作面临的新挑战.据统计,至2017年,我国城市污泥年产生量约为7000万吨,而且污水处理厂约60%的运行费用于污泥处理[1].污泥中含有丰富的有机资源(如蛋白质、糖类、脂类等)和无机资源(如氮、磷等),可回收利用,但其中还含有大量的病菌、病毒等微生物,如果不能妥善处理,将造成环境污染,严重影响环境安全.污泥厌氧发酵是目前高效且低成本的一种污泥处理技术,其处理过程分为水解、酸化和产甲烷3个阶段:污泥水解将微生物体内蛋白质和多糖释放至发酵系统,水解酶能够将蛋白质和多糖分解成氨基酸、单糖等小分子物质;酸化菌则利用水解产物生成可挥发性短链脂肪酸(SCFAs);产甲烷菌再利用SCFAs生成甲烷.污泥水解是污泥厌氧发酵的关键步骤,而产生于酸化阶段的SCFAs是污水生物处理过程的优质碳源[2],SCFAs中的乙酸、丙酸、异丁酸等也是重要的工业生产原料,因此污泥厌氧发酵产酸研究受到了广泛关注.研究发现,在NaOH,KOH,Ca(OH)2 等碱性条件下,产甲烷菌活性受到抑制,水解酸化菌将污泥中大部分有机物转化为SCFAs,蛋白质,多糖等,其中Ca(OH)2型发酵系统中乙酸含量最高[3].刘常青等[4]发现,用Ca(OH)2,CaCl2等联合热水解法预处理污泥有助于有机物的溶出.由此可见,钙制品化学药剂对于污泥厌氧发酵有较好的促进作用,但是经Ca(OH)2 处理的发酵污泥中仍含有大量的有机物未提取、未利用.CaO2是一种安全、多功能的氧化剂,有“固体”双氧水之称,溶于水后能够生成·OH,H2O2,Ca(OH)2等[5],已广泛用于水产养殖业、农业、制药业和水处理行业.近期研究发现,CaO2能够提高污泥脱水性[6],与游离氨联合可提高污泥厌氧发酵产酸性能[7],但是对于其作用机理研究不够深入.鉴于此,本文拟以CaO2作为剩余污泥处理药剂,研究不同添加量的CaO2 对剩余污泥水解酸化性能的影响,考察其对污泥厌氧发酵系统中生物酶活性的影响,探索CaO2 在污泥厌氧发酵过程中的作用机理,以期为污水处理厂剩余污泥资源化研究提供参考.1材料与方法1.1污泥来源与实验装置本实验使用的污泥取自郑州市某城市污水处理厂的曝气池,将其用自来水清洗3次后进行浓缩,得实验用污泥,即后文称剩余污泥,其性质如表1所示.实验反应器材质为有机玻璃,总体积为2.5L,有效容积为2.0L,采用磁力搅拌器进行匀速搅拌.主要试剂:CaO2,浓H2SO4,CuSO4,酒石酸钾钠,天津市大茂化学试剂厂产;吡喃葡萄糖苷、硝基-a-d-吡喃葡萄糖苷、对硝基苯磷酸二钠、碘硝基四唑紫、Folin试剂,阿拉丁试剂有限公司产.以上试剂均为分析纯.主要仪器:754紫外-可见分光光度计,FA2004电子天平,上海舜宇恒平科学仪器有限公司产;TG16-WS离心机,湘仪离心机仪器有限公司产;5B-1F(V8)COD快速检测仪,连华科技有限公司产;GC6890B气相色谱仪,安捷伦科技有限公司产;PHS-25雷磁水质测定仪,上海仪电科学仪器股份有限公司产.1.2取样方法分别取2L剩余污泥投加至1#—4#反应器,再向反应器中投加CaO2,控制其添加量分别为0.1mg/mgSS(该单位指每mg悬浮污泥中添加CaO2 的质量,下同),0.2mg/mgSS,0.3mg/mgSS,0.4mg/mgSS.启动磁力搅拌器,隔天取样测定理化指标.1.3测定方法化学需氧量(COD),悬浮污泥质量浓度(MLSS)和可挥发性污泥质量浓度(MLVSS)根据国标方法测定[8];DNA质量浓度用分光光度计测定;pH值用雷磁水质测定仪测定.在污泥发酵过程中部分有机氮和有机磷以NH4+ -N和PO43- -P的形式释放,其释放量是表征污泥厌氧发酵效果的指标之一,根据国标方法测定[8].污泥在厌氧发酵过程中释放大量的蛋白质、多糖等物质,但是酸化菌不能直接利用这些物质进行产酸活动.水解菌先利用自身水解酶(如蛋白酶)和α-葡萄糖苷酶将大分子的蛋白质和多糖水解生成氨基酸、单糖等[9],而酸化菌则利用水解产物生成SCFAs.所以,蛋白酶和α-葡萄糖苷酶,在污泥厌氧发酵过程中有重要作用.SCFAs的产量用气相色谱仪测定[10],发酵系统中的多糖和蛋白质质量浓度采用分光光度法测定[8-9],蛋白酶和α-葡萄糖苷酶含量采用分光光度法测定[10-11].剩余污泥发酵系统中含有大量的有机磷,碱性磷酸酶(ALP)和酸性磷酸酶(ACP)可以将其水解成无机磷(PO43- -P)并随着有机物的水解酸化而释放,ALP和ACP活性采用分光光度法测定[10-11].乳酸脱氢酶(LDH)是脱氢酶(DH)的一种,是催化乳酸与丙酮酸之间氧化还原反应的重要生物酶.因此,DH可以代表发酵过程中的LDH.与LDH一样,由于膜的损伤,DH也可能被释放[11-12].因此,可利用DH研究微生物细胞膜与不同添加量CaO2 的相互作用,揭示CaO2在厌氧发酵过程中可能存在的毒性机制,DH的活性采用分光光度法测定[10-11].1.4计算方法污泥厌氧发酵的过程,是污泥中微生物解体、有机物释放的过程,而污泥溶液化率(SCOD)和污泥分解性率(DDCOD)可表征污泥中微生物解体程度,计算公式分別如下[13-14]:式中,CODs 为溶解性COD 值/(mg·L-1);CODs0为原始溶液中溶解性COD值/(mg·L-1);CODp0为污泥原始颗粒COD值/(mg· L-1);CODNaOH为实验温度下,1mol/LNaOH 处理剩余污泥24 h后的COD 值/(mg·L-1).2结果与讨论2.1CaO2对污泥水解性能的影响2.1.1不同添加量的CaO2对污泥溶解的影响图1为不同添加量的CaO2 对剩余污泥厌氧发酵系统中pH值、DNA质量浓度、SCOD值和DDCOD值的影响.由图1可以看出,CaO2对系统中SCOD值和DDCOD值均具有显著影响,两者均随着CaO2添加量的增加而增大,SCOD值由8.84%增至41.37%,DDCOD 值由11.84% 增至55.42%.其中,0.4mg/mgSS发酵系统中的SCOD值和DDCOD值是0.1mg/mgSS发酵系统的4~5倍.该结果与X.Li等[15]研究的污泥碱性发酵过程中SCOD值的变化(23.2% ~53.8%,15~55℃)相似,但是高于Naddeo超声破碎处理污泥中SCOD值的变化(22%,19000kJ/kg)[16],这说明CaO2 能够有效地促进污泥溶液化和分解.这是因为CaO2溶于水后生成的OH-能够破坏微生物细胞壁,促进有机质释放[17],随着CaO2 添加量的增加,系统内pH值升高至12(如图1a)所示),直接破坏了微生物细胞壁.同时CaO2作用发酵系统后生成大量的活性物质如H2O2,·OH和·O2-等,这些活性物质能够破坏微生物细胞膜,使细胞内容物流失[18],从而使剩余污泥有效溶解.在溶解过程中,DNA随着细胞质的溶出而释放(如图1b)所示),DNA质量浓度随着CaO2添加量的增加而增大,发酵末期(17d)其值为8.5~193.3mg/L.2.1.2不同添加量的CaO2对可溶性蛋白质和多糖质量浓度的影响不同添加量的CaO2对剩余污泥厌氧发酵过程中蛋白质和多糖质量浓度的影响如图2所示.由图2可以看出,发酵过程中蛋白质和多糖质量浓度均随着CaO2添加量的增加而增大,发酵后期蛋白质质量浓度显著下降,而多糖质量浓度相对较为稳定.反应至第5~6d时,0.4mg/mgSS发酵系统中蛋白质和多糖质量浓度最大,分别为931.12mg/L和343.62mg/L,是0.1mg/mgSS发酵系统(150.83 mg/L 和34.56mg/L)的6.17倍和9.94倍,即使发酵末期蛋白质和多糖质量浓度(514.47mg/L和392.44mg/L)下降,仍为0.1mg/mgSS发酵系统(55.03mg/L 和15.95mg/L)的9.35倍和24.60倍,说明CaO2能够有效提高剩余污泥的水解性能.同时还发现,发酵末期0.4mg/mgSS发酵系统中蛋白质质量浓度是多糖质量浓度的1.31倍,低于其他碱性发酵(NaOH,KOH,Ca(OH)2)方式[3],但是高于单过硫酸氢钾、高铁酸钾等发酵方式[19-20].CaO2 溶于水后形成大量的OH-,这些OH-和CaO2对细胞壁均有破坏作用,使大量的蛋白质和多糖类释放至系统,但是其水解过程中形成的H2O2,· OH,·O2-能够氧化蛋白质,减少系统中蛋白质的质量浓度.由于CaO2氧化性低于·SO4-(单过硫酸氢钾溶于水后的产物),因此,该发酵过程产生的蛋白质和多糖的比例高于单过硫酸氢钾发酵方式.2.2不同添加量的CaO2对污泥酸化的影响图3为不同添加量的CaO2 对剩余污泥厌氧发酵过程中污泥酸化的影响.由图3a)可以看出,系统中SCFAs的产量随着CaO2添加量的增加基本呈先增大后降低的趋势,发酵至第5d时,0.2mg/mgSS发酵系统中SCFAs产量最大(876.12mg/L),是0.1mg/mgSS发酵系统(35.00 mg/L)的25.03倍;发酵至第9d时,0.3mg/mgSS发酵系统中SCFAs的产量迅速增至最大,但是0.2mg/mgSS发酵系统中SCFAs产量迅速下降.该结果表明,当CaO2添加量为0.3mg/mgSS时,能够显著提高发酵系统中SCFAs的产量,这是因为该发酵系统中含有丰富的蛋白质和多糖等物质,且系统pH值为9~10(见图1a)),该环境下较适合产酸菌的生长,但严重抑制产甲烷菌活性.在0.3mg/mgSS发酵系统中,随着发酵时间的延长,SCFAs产量升高,其原因可能是,在发酵后期,系统内的pH值下降,产酸菌活性得到恢复,能够有效利用系统内丰富的蛋白质和多糖生成SCFAs.而发酵后期0.2mg/mgSS发酵系统中SCFAs产量迅速降低是因为系统中pH值迅速下降至7~8,导致系统中产甲烷菌活性恢复,SCFAs被大量消耗.由图3b)可以看出,在0.4mg/mgSS发酵系统中,蛋白质和多糖的质量浓度较其他发酵系统均升高,但当发酵系统中pH值增至12,不仅抑制产甲烷菌生长,同时也影响产酸菌的活性.邢立群等[21]也发现,发酵系统经强碱(pH=10~12)处理后,产酸菌活性受到严重抑制,SCFAs产量显著下降.而且CaO2 发酵系统中较高的·OH,·O2-等强氧化物质对系统内微生物的生长存在抑制作用,所以,CaO2 添加量过高时不利于剩余污泥厌氧发酵产酸.表2为不同添加量的CaO2 对剩余污泥厌氧发酵系统中酸成分的影响.由表2可以看出,发酵系统中SCFAs乙酸占比差别较显著,随着CaO2添加量的增加呈先增大后降低的趋势,分别为52.85%,66.96%,63.94%和48.72%.高于作者前期研究的Ca(OH)2 污泥厌氧发酵系统中的乙酸占比(62.27%)[3],但是低于单过硫酸钾氢钾污泥厌氧发酵系统中的乙酸占比(75.55%)[19-22].可见,CaO2,Ca(OH)2与单过硫酸氢钾在污泥发酵过程中的化学性质相似,其水解过程中释放的高氧化物质会强化乙酸的积累.SCFAs中的丙酸占比随着CaO2添加量的增加而降低,分别为7.41%,5.09%,5.18%和3.63%,均低于Ca(OH)2型污泥發酵系统的丙酸占比(10% ~15%)[3]和单过硫酸氢钾发酵系统的丙酸占比(3.42% ~11.29%)[22].这说明CaO2能够提高微生物对丙酸的利用率,进而提高发酵系统中乙酸占比.此外,系统中可能含有大量的Erysipelothrix,Tissierella,Peptostreptococcaceaeincertae_sedis等产乙酸微生物[3].在系统中,SCFAs中正丁酸和正戊酸的占比与丙酸相似,均随着CaO2添加量的增大而降低;异丁酸的占比随着CaO2添加量的增加先降低后升高;异戊酸的占比随着CaO2添加量的增加先增加后降低.这是因为,正丁酸和正戊酸属于直链酸,更容易被微生物利用,故二者在系统中的占比低于异丁酸和异戊酸.2结果与讨论2.1CaO2对污泥水解性能的影响2.1.1不同添加量的CaO2对污泥溶解的影响图1为不同添加量的CaO2 对剩余污泥厌氧发酵系统中pH值、DNA质量浓度、SCOD值和DDCOD值的影响.由图1可以看出,CaO2对系统中SCOD值和DDCOD值均具有显著影响,两者均随着CaO2添加量的增加而增大,SCOD值由8.84%增至41.37%,DDCOD 值由11.84% 增至55.42%.其中,0.4mg/mgSS发酵系统中的SCOD值和DDCOD值是0.1mg/mgSS发酵系统的4~5倍.该结果与X.Li等[15]研究的污泥碱性发酵过程中SCOD值的变化(23.2% ~53.8%,15~55℃)相似,但是高于Naddeo超声破碎处理污泥中SCOD值的变化(22%,19000kJ/kg)[16],这说明CaO2 能够有效地促进污泥溶液化和分解.这是因为CaO2溶于水后生成的OH-能够破坏微生物细胞壁,促进有机质释放[17],随着CaO2 添加量的增加,系统内pH值升高至12(如图1a)所示),直接破坏了微生物细胞壁.同时CaO2作用发酵系统后生成大量的活性物质如H2O2,·OH和·O2-等,这些活性物质能够破坏微生物细胞膜,使细胞内容物流失[18],从而使剩余污泥有效溶解.在溶解过程中,DNA随着细胞质的溶出而释放(如图1b)所示),DNA质量浓度随着CaO2添加量的增加而增大,发酵末期(17d)其值为8.5~193.3mg/L.2.1.2不同添加量的CaO2对可溶性蛋白质和多糖质量浓度的影响不同添加量的CaO2对剩余污泥厌氧发酵過程中蛋白质和多糖质量浓度的影响如图2所示.由图2可以看出,发酵过程中蛋白质和多糖质量浓度均随着CaO2添加量的增加而增大,发酵后期蛋白质质量浓度显著下降,而多糖质量浓度相对较为稳定.反应至第5~6d时,0.4mg/mgSS发酵系统中蛋白质和多糖质量浓度最大,分别为931.12mg/L和343.62mg/L,是0.1mg/mgSS发酵系统(150.83 mg/L 和34.56mg/L)的6.17倍和9.94倍,即使发酵末期蛋白质和多糖质量浓度(514.47mg/L和392.44mg/L)下降,仍为0.1mg/mgSS发酵系统(55.03mg/L 和15.95mg/L)的9.35倍和24.60倍,说明CaO2能够有效提高剩余污泥的水解性能.同时还发现,发酵末期0.4mg/mgSS发酵系统中蛋白质质量浓度是多糖质量浓度的1.31倍,低于其他碱性发酵(NaOH,KOH,Ca(OH)2)方式[3],但是高于单过硫酸氢钾、高铁酸钾等发酵方式[19-20].CaO2 溶于水后形成大量的OH-,这些OH-和CaO2对细胞壁均有破坏作用,使大量的蛋白质和多糖类释放至系统,但是其水解过程中形成的H2O2,· OH,·O2-能够氧化蛋白质,减少系统中蛋白质的质量浓度.由于CaO2氧化性低于·SO4-(单过硫酸氢钾溶于水后的产物),因此,该发酵过程产生的蛋白质和多糖的比例高于单过硫酸氢钾发酵方式.2.2不同添加量的CaO2对污泥酸化的影响图3为不同添加量的CaO2 对剩余污泥厌氧发酵过程中污泥酸化的影响.由图3a)可以看出,系统中SCFAs的产量随着CaO2添加量的增加基本呈先增大后降低的趋势,发酵至第5d时,0.2mg/mgSS发酵系统中SCFAs产量最大(876.12mg/L),是0.1mg/mgSS发酵系统(35.00 mg/L)的25.03倍;发酵至第9d时,0.3mg/mgSS发酵系统中SCFAs的产量迅速增至最大,但是0.2mg/mgSS发酵系统中SCFAs产量迅速下降.该结果表明,当CaO2添加量为0.3mg/mgSS时,能够显著提高发酵系统中SCFAs的产量,这是因为该发酵系统中含有丰富的蛋白质和多糖等物质,且系统pH值为9~10(见图1a)),该环境下较适合产酸菌的生长,但严重抑制产甲烷菌活性.在0.3mg/mgSS发酵系统中,随着发酵时间的延长,SCFAs产量升高,其原因可能是,在发酵后期,系统内的pH值下降,产酸菌活性得到恢复,能够有效利用系统内丰富的蛋白质和多糖生成SCFAs.而发酵后期0.2mg/mgSS发酵系统中SCFAs产量迅速降低是因为系统中pH值迅速下降至7~8,导致系统中产甲烷菌活性恢复,SCFAs被大量消耗.由图3b)可以看出,在0.4mg/mgSS发酵系统中,蛋白质和多糖的质量浓度较其他发酵系统均升高,但当发酵系统中pH值增至12,不仅抑制产甲烷菌生长,同时也影响产酸菌的活性.邢立群等[21]也发现,发酵系统经强碱(pH=10~12)处理后,产酸菌活性受到严重抑制,SCFAs产量显著下降.而且CaO2 发酵系统中较高的·OH,·O2-等强氧化物质对系统内微生物的生长存在抑制作用,所以,CaO2 添加量过高时不利于剩余污泥厌氧发酵产酸.表2为不同添加量的CaO2 对剩余污泥厌氧发酵系统中酸成分的影响.由表2可以看出,发酵系统中SCFAs乙酸占比差别较显著,随着CaO2添加量的增加呈先增大后降低的趋势,分别为52.85%,66.96%,63.94%和48.72%.高于作者前期研究的Ca(OH)2 污泥厌氧发酵系统中的乙酸占比(62.27%)[3],但是低于单过硫酸钾氢钾污泥厌氧发酵系统中的乙酸占比(75.55%)[19-22].可见,CaO2,Ca(OH)2与单过硫酸氢钾在污泥发酵过程中的化学性质相似,其水解过程中释放的高氧化物质会强化乙酸的积累.SCFAs中的丙酸占比随着CaO2添加量的增加而降低,分别为7.41%,5.09%,5.18%和3.63%,均低于Ca(OH)2型污泥发酵系统的丙酸占比(10% ~15%)[3]和单过硫酸氢钾发酵系统的丙酸占比(3.42% ~11.29%)[22].这说明CaO2能够提高微生物对丙酸的利用率,进而提高发酵系统中乙酸占比.此外,系统中可能含有大量的Erysipelothrix,Tissierella,Peptostreptococcaceaeincertae_sedis等产乙酸微生物[3].在系统中,SCFAs中正丁酸和正戊酸的占比与丙酸相似,均随着CaO2添加量的增大而降低;异丁酸的占比随着CaO2添加量的增加先降低后升高;异戊酸的占比随着CaO2添加量的增加先增加后降低.这是因为,正丁酸和正戊酸属于直链酸,更容易被微生物利用,故二者在系统中的占比低于异丁酸和异戊酸.。
青贮玉米饲用质量标准
青贮玉米饲用质量标准1. 引言青贮玉米作为一种重要的饲料来源,其质量标准对于确保牲畜的饲养健康至关重要。
本文档旨在制定青贮玉米饲用质量标准,以提供相关行业参考。
2. 条款和定义2.1 青贮玉米:指在青贮阶段采摘和储存的玉米植株。
2.2 饲用质量标准:指用于评估青贮玉米饲料品质的一套指标和标准。
3. 质量标准3.1 外观和色泽:- 青贮玉米应具有清晰的外观,无明显的病虫害和霉斑。
- 色泽应为鲜绿或金黄色,无异常变色。
3.2 水分含量:- 处于适宜的水分范围内,水分含量不得超过70%。
- 建议水分含量在60%至70%之间。
3.3 厌氧发酵指标:- 总酸性应在0.6%至5.0%之间。
- 乳酸含量应在3.0%至8.0%之间。
3.4 营养成分:- 水合产物含量应控制在35%以下。
- 粗脂肪含量应在2.0%至5.0%之间。
- 粗蛋白质含量应在7.0%至12.0%之间。
- 纤维素含量应在15.0%至30.0%之间。
4. 检测方法为了确保质量标准的有效实施,应使用以下方法进行青贮玉米饲料质量的检测:- 外观和色泽检查:目测观察玉米的外观和色泽情况。
- 水分含量检测:采用适用的检测设备,例如干燥箱法或红外加热法。
- 厌氧发酵指标分析:采用高效液相色谱法或其他适用的分析方法。
- 营养成分分析:采用适用的化学分析方法,例如酶解法、气相色谱法或液相色谱法。
5. 结论本文档为青贮玉米饲用质量标准提供了一套评估指标和检测方法。
遵守这些标准有助于确保青贮玉米饲料的质量和安全性,并提升牲畜的饲养效果。
在实际应用中,还需结合当地实际情况和科学研究结果进行具体操作。
不同季节及厌氧发酵对奶牛场污水及沼液各污染指标的影响
牛场总排污管口采集污水样品,每个季节连续采样3 ,每 d
天上午和下午分别采2 个样品,每个样 品约5 0 ,测完 0 mL
基 金项 目 :内蒙古 规模 化 奶 牛场 排污 系 数测 算项 目 ( 0 0 51 2 78 作 者 简 介 :王 庆 红 ( 9 7 1 8 一),女 .硕 士 ,研 究 方 向 为 动物 生 产 与 环 境管理。 通讯作者 :娜仁花.副教授 。研究方向为动物环境与营养。
p 值后 ,加酸预处理 ( H 用浓硫酸调至p < ,然后送实 H 2) 验室对污水进行相关指标的测定。 采 污水样 的 同时 ,在 沼 液排 出管采集2 沼液样 个
3 科 7I 技 _
囝
4 结论 响 显 著
中 羁 21 ・ 固 才 02 3
EN VI Ro NM EN T PRoTECT I oN
氧发酵处理奶牛养殖场污水的经济效益、社会效益 、生 态效益显著 ,但对于产生的沼液 、沼渣的再利用需要进
一
41 季 节 因素 对 奶 牛 场 污 水 及 沼液 各 主 要 指 标 影 .
步探 讨 研 究 。
污 水 主 要 污 染 指 标 为COD、氮 和磷 ,其 次 为 铜 及 [] 王利 ,汪开毓 .动物铜 中毒及 防治U 四 川畜牧兽 医 ,2 0 1 】 0 2, 锌 。 其 中C 和磷 均在 秋 季 最高 ,冬季 较 低 ;氮 的含 量 OD 表 现 为夏 季最 高 ,冬 季最 低 ;铜 、锌 含 量 均表 现 为秋 季
2 9(1 ):1 2 . 1 2—3
参考文 献
[] 冯秉福, 2 赵新 全 ,曹俊 虎.微量元 素锌在动物 生产 中的作 用卟 中国畜牧兽 医 ,2 0 0 8,3 6):2 - 8 5( 6 2
厌氧消化实验报告(3篇)
第1篇一、实验目的1. 了解厌氧消化过程中的微生物学原理。
2. 掌握厌氧消化实验的操作步骤。
3. 分析厌氧消化过程中不同因素对产气量的影响。
4. 探讨厌氧消化技术在有机废物处理中的应用。
二、实验原理厌氧消化是一种在无氧条件下,通过微生物的代谢活动将有机废物转化为甲烷、二氧化碳、水和其他副产品的生物化学过程。
该过程主要分为三个阶段:水解酸化阶段、产氢产乙酸阶段和产甲烷阶段。
三、实验材料与仪器1. 实验材料:猪粪、玉米秸秆、厌氧消化菌接种剂、蒸馏水、pH试纸、温度计、搅拌器、气体收集装置等。
2. 实验仪器:恒温培养箱、发酵罐、pH计、气体分析仪等。
四、实验步骤1. 样品准备:将猪粪和玉米秸秆按一定比例混合,加入适量的蒸馏水搅拌均匀,制成有机废物混合物。
2. 接种:将厌氧消化菌接种剂加入混合物中,搅拌均匀。
3. pH调整:使用pH试纸检测混合物的pH值,调整至6.5~7.5。
4. 装罐:将混合物装入发酵罐中,密封。
5. 培养:将发酵罐放入恒温培养箱中,在35℃条件下培养。
6. 产气量测定:每隔一定时间,使用气体收集装置收集发酵产生的气体,并使用气体分析仪测定甲烷含量。
7. 数据分析:记录不同时间点的产气量,分析厌氧消化过程中不同因素对产气量的影响。
五、实验结果与分析1. pH值对产气量的影响:在实验过程中,观察到pH值对产气量有显著影响。
当pH值在6.5~7.5范围内时,产气量较高。
这是因为该pH值范围内,厌氧消化菌的生长和代谢活动最为旺盛。
2. 温度对产气量的影响:实验结果表明,温度对产气量有显著影响。
在35℃条件下,产气量较高。
这是因为该温度范围内,厌氧消化菌的生长和代谢活动最为旺盛。
3. 有机物浓度对产气量的影响:实验结果表明,有机物浓度对产气量有显著影响。
当有机物浓度较高时,产气量较高。
这是因为有机物浓度越高,厌氧消化菌可利用的底物越多,产气量越高。
4. 接种剂对产气量的影响:实验结果表明,接种剂对产气量有显著影响。
厌氧发酵工艺指标
厌氧发酵工艺指标厌氧发酵工艺指标是评价厌氧发酵过程效果的重要依据。
它涉及到发酵产物的产量、质量、发酵过程的稳定性等方面。
下面将从产气量、产酸量、产乙醇量、发酵温度和pH值这五个方面,对厌氧发酵工艺指标进行详细阐述。
产气量是衡量厌氧发酵过程效果的重要指标之一。
厌氧发酵主要通过厌氧微生物代谢产生气体,其中以甲烷气体最为常见。
产气量的多少直接反映了厌氧发酵过程中微生物转化有机物的效率。
一般来说,产气量越高,说明厌氧发酵效果越好。
产气量的测定方法有多种,常见的有水封管法和气体计量法等。
产酸量是评价厌氧发酵过程酸化程度的重要指标。
产酸量直接反映了厌氧发酵过程中有机物被微生物转化为有机酸的程度。
产酸量的多少与厌氧发酵产物的质量以及后续处理的难易程度有关。
较高的产酸量可以提高厌氧发酵产物的质量,但过高的产酸量也会导致厌氧发酵过程的不稳定。
因此,在实际操作中需要根据具体情况控制产酸量的大小。
产乙醇量是评价厌氧发酵过程中乙醇产量的重要指标。
乙醇是厌氧发酵过程中的一种常见产物,其产量与厌氧微生物的种类和代谢产物有关。
产乙醇量的高低直接影响了厌氧发酵产物的经济效益和应用价值。
因此,在厌氧发酵过程中,需要通过调控发酵条件和微生物种类等因素,提高产乙醇量。
发酵温度是影响厌氧发酵过程效果的重要因素之一。
温度对微生物的生长和代谢有着重要的影响。
不同的厌氧微生物对温度的适应范围不同,因此在实际操作中需要选择合适的发酵温度。
过低或过高的温度都会影响厌氧发酵过程的稳定性和效果。
因此,控制发酵温度是确保厌氧发酵工艺正常进行的关键。
pH值是评价厌氧发酵过程酸碱度的重要指标。
不同的微生物对pH 值有着不同的适应范围。
pH值的过高或过低都会影响微生物的生长和代谢活性,从而影响厌氧发酵过程的效果。
因此,在厌氧发酵过程中需要根据具体情况调控pH值,确保发酵过程的稳定性和效果。
产气量、产酸量、产乙醇量、发酵温度和pH值是评价厌氧发酵工艺指标的重要方面。
厨余垃圾中温干式厌氧发酵系统调试阶段工况分析
第31卷第6期2023年12月环境卫生工程Environmental Sanitation Engineering Vol.31No.6 Dec.2023厨余垃圾中温干式厌氧发酵系统调试阶段工况分析李阳青,张云霞,于淼,常宝军,张凯(天津市政工程设计研究总院有限公司,天津300000)【摘要】以重庆市某厨余垃圾中温干式厌氧发酵系统为实际案例,研究了调试阶段含固率、碱度、挥发性脂肪酸、氨氮、pH及甲烷含量等的变化情况。
运行结果表明,以沼渣及牛粪启动厌氧发酵,约2周后甲烷含量能达到55%以上;pH维持在8.0~8.2,碱度维持在12000~14000mg/L,挥发性脂肪酸为2500~3000mg/L,氨氮为2500mg/L左右,系统可稳定运行;发酵罐内部随着物料向后端移动,含固率、挥发性脂肪酸逐渐降低,总碱度、pH逐渐升高,氨氮无明显变化趋势;系统稳定运行后,厌氧发酵罐单位进料量的产气量约为140m³/t,甲烷含量维持在55%~65%;三级脱水系统运行稳定,脱水效果好。
【关键词】厨余垃圾;中温干式厌氧发酵;含固率;挥发性脂肪酸中图分类号:X799.3文献标识码:A文章编号:1005-8206(2023)06-0069-05DOI:10.19841/ki.hjwsgc.2023.06.011Analysis of Operating Conditions During the Debugging Phase of the Medium Temperature Dry Anaerobic Fermentation System for Kitchen WasteLI Yangqing,ZHANG Yunxia,YU Miao,CHANG Baojun,ZHANG Kai(Tianjin Municipal Engineering Design Institute Co.Ltd.,Tianjin300000)【Abstract】Based on the actual case of a medium temperature dry anaerobic fermentation system for kitchen waste in Chongqing,the changes of solid content,alkalinity,volatile fatty acids,ammonia nitrogen,pH and methane concentration in the debugging stage were studied.The operation results showed that methane content could reach more than55%in about two weeks after starting anaerobic fermentation with biogas residue and cow manure.The system could run stably when the pH was maintained between8.0-8.2,the alkalinity was between12000-14000mg/L,the volatile fatty acids was between 2500-3000mg/L,and the ammonia nitrogen was about2500mg/L.With the material moved to the back end of the fermenter,the solid content and volatile fatty acids gradually decreased,the total alkalinity and pH gradually increased,and the ammonia nitrogen had no obvious change trend.After stable operation of the system,the gas production per unit feed volume of the anaerobic fermenter was about140m³/t,and the methane content was maintained between55%-65%.The three-stage dewatering system operated stably and had good dewatering effect.【Key words】kitchen waste;medium temperature dry anaerobic fermentation;solid content;volatile fatty acids1工程背景概述根据GB/T19095—2019生活垃圾分类标志,本研究所指的厨余垃圾为家庭产生的厨余垃圾。
污泥实验报告总结
污泥实验报告总结污泥实验报告总结一、引言污泥是污水处理过程中产生的固体废弃物,含有大量的有机物质和微生物。
对污泥进行有效处理和利用,不仅可以减少环境污染,还可以回收资源。
本次实验旨在研究污泥的理化性质和处理方法,以期找到一种高效、经济的处理方案。
二、实验方法1. 污泥样品采集:从污水处理厂收集污泥样品,并进行初步处理,去除杂质。
2. 污泥理化性质测试:对污泥样品进行干燥失重、有机物含量、pH值、重金属含量等指标的测定。
3. 污泥处理方法研究:采用热解、厌氧消化、厌氧发酵等方法对污泥进行处理,并对处理效果进行评估。
三、实验结果与讨论1. 污泥理化性质通过对污泥样品的测试,发现污泥中有机物含量较高,干燥失重率较大,pH值偏酸性,重金属含量超过环境标准。
这些结果表明污泥具有一定的处理难度,需要采取适当的方法进行处理。
2. 热解法处理污泥热解法是将污泥在高温下进行分解,产生可燃气体和固体产物。
实验结果显示,热解法可以有效降低污泥的体积和重量,同时还能产生可燃气体,具有一定的能源回收价值。
然而,热解法处理污泥需要高温设备和能源投入,成本较高。
3. 厌氧消化法处理污泥厌氧消化法是将污泥在无氧条件下进行微生物分解,产生沼气和沉淀物。
实验结果显示,厌氧消化法可以有效降解污泥中的有机物,同时还能产生可燃沼气。
厌氧消化法具有处理效果好、能源回收高的优点,但对污泥的消化周期较长,需要一定的维护和管理。
4. 厌氧发酵法处理污泥厌氧发酵法是将污泥在缺氧条件下进行微生物发酵,产生有机肥料和沼气。
实验结果显示,厌氧发酵法可以将污泥中的有机物转化为有机肥料,同时还能产生可燃沼气。
厌氧发酵法具有处理效果好、无需外部能源的优点,但对污泥的发酵周期较长,需要一定的时间和空间。
四、结论通过本次实验,我们对污泥的理化性质和处理方法进行了研究。
实验结果表明,热解法、厌氧消化法和厌氧发酵法均可用于污泥的处理,但各自具有不同的优缺点。
在实际应用中,应根据具体情况选择合适的处理方法,以达到高效、经济的处理效果。
厌氧发酵指标测定方法(精品)
COD的测定(快速密闭催化消解法)试验步骤:1、取1ml滤液(5000r/min条件下离心10min,过滤)于50ml容量瓶中定容(稀释倍数由滤液SCOD的浓度而定,通常是稀释至1000-2500mg/L,选择消化液Ⅰ),从中量取3ml于消化管(注意干燥)中,每个样品做3个重复;同时以同量的蒸馏水代替样品,做空白试验。
2、依次加入1ml掩蔽剂、3ml消化液(注意准确)、5ml催化剂(每加入一种试剂后都要摇匀),旋紧密封塞,混匀。
3、放入已预热到165℃的消解炉中,消解22min,冷却。
4、将样液移至150ml锥形瓶中,用蒸馏水冲洗消化管(至少洗3次,共约30ml),冲洗液移入锥形瓶中。
5、加3滴邻菲罗啉指示剂,用硫酸亚铁标准溶液滴定,溶液颜色由黄到蓝突变成红褐色为终点,记录硫酸亚铁标准溶液用量(样品的记为V1,空白对照的记为V)。
6、滴定使用0.05 mol/LFeSO4:先配0.2mol/L FeSO4,然后稀释得到(量取250mL0.2mol/LFeSO4于1000mL容量瓶即得0.05 mol/LFeSO4,标定后使用)标定方法:准确吸取10.00mL重铬酸钾标准溶液(C(1/6K2Cr2O7)=0.2500mol/L)于250mL锥形瓶中,加水稀释至55mL左右,缓慢加入5mL浓硫酸,混匀,冷却后,加入2-3滴邻菲啰啉指示剂,用0.05 mol/LFeSO4滴定,溶液的颜色由黄色经蓝绿色至红褐色即未终点。
C[FeSO4]=0. 25*10/V计算:COD(mg·L-1)=(V0-V1)×C×8×1000×50/V2V1——滴定样品消耗的硫酸亚铁标准溶液的体积,mLV——滴定空白消耗的硫酸亚铁标准溶液的体积,mLV2――水样体积,mL,本试验中V2=3mLC——硫酸亚铁标液的浓度,mol·L-150――水样的稀释倍数8――氧(1/2O)摩尔质量V’——硫酸亚铁标准溶液的标定时,用去的硫酸亚铁溶液的体积,mL试剂配制:掩蔽剂:称取30.0g硫酸汞(分析纯)溶于100mL的10%硫酸中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
COD的测定(快速密闭催化消解法)试验步骤:1、取1ml滤液(5000r/min条件下离心10min,过滤)于50ml容量瓶中定容(稀释倍数由滤液SCOD的浓度而定,通常是稀释至1000-2500mg/L,选择消化液Ⅰ),从中量取3ml于消化管(注意干燥)中,每个样品做3个重复;同时以同量的蒸馏水代替样品,做空白试验。
2、依次加入1ml掩蔽剂、3ml消化液(注意准确)、5ml催化剂(每加入一种试剂后都要摇匀),旋紧密封塞,混匀。
3、放入已预热到165℃的消解炉中,消解22min,冷却。
4、将样液移至150ml锥形瓶中,用蒸馏水冲洗消化管(至少洗3次,共约30ml),冲洗液移入锥形瓶中。
5、加3滴邻菲罗啉指示剂,用硫酸亚铁标准溶液滴定,溶液颜色由黄到蓝突变成红褐色为终点,记录硫酸亚铁标准溶液用量(样品的记为V1,空白对照的记为V0)。
6、滴定使用0.05 mol/LFeSO4:先配0.2mol/L FeSO4,然后稀释得到(量取250mL0.2mol/LFeSO4于1000mL容量瓶即得0.05 mol/LFeSO4,标定后使用)标定方法:准确吸取10.00mL重铬酸钾标准溶液(C(1/6K2Cr2O7)=0.2500mol/L)于250mL 锥形瓶中,加水稀释至55mL左右,缓慢加入5mL浓硫酸,混匀,冷却后,加入2-3滴邻菲啰啉指示剂,用0.05 mol/LFeSO4滴定,溶液的颜色由黄色经蓝绿色至红褐色即未终点。
C[FeSO4]=0. 25*10/V计算:COD(mg·L-1)=(V0-V1)×C×8×1000×50/V2V1——滴定样品消耗的硫酸亚铁标准溶液的体积,mLV0——滴定空白消耗的硫酸亚铁标准溶液的体积,mLV2――水样体积,mL,本试验中V2=3mLC——硫酸亚铁标液的浓度,mol·L-150――水样的稀释倍数8――氧(1/2O)摩尔质量V’——硫酸亚铁标准溶液的标定时,用去的硫酸亚铁溶液的体积,mL试剂配制:掩蔽剂:称取30.0g硫酸汞(分析纯)溶于100mL的10%硫酸中。
10%硫酸:取50mL蒸馏水,缓慢加入10mL浓硫酸,冷却后定容至100mL。
催化剂:称取8.8g分析纯硫酸银溶于1L浓硫酸中。
消化液Ⅰ:称取19.6g重铬酸钾,50.0g硫酸铝钾,10.0g钼酸铵,溶解于500mL水中,加入200mL浓硫酸,冷却后,转移至1000mL容量瓶中,用蒸馏水定容。
(该溶液浓度c[1/6K2Cr2O7]=0.4mol·L-1,用于测COD浓度在1000-2500mg·L-1的水样,滴定时用的硫酸亚铁浓度为0.05mol·L-1。
)消化液Ⅱ:称取5.0g重铬酸钾,50.0g硫酸铝钾,10.0g钼酸铵,溶解于500mL水中,加入200mL浓硫酸,冷却后,转移至1000mL容量瓶中,用蒸馏水定容。
(该溶液浓度c[1/6K2Cr2O7]=0.1mol·L-1,用于测COD浓度在500-1000mg·L-1的水样,滴定时用的硫酸亚铁浓度为0.02mo l·L-1。
)消化液Ⅲ:称取2.45g重铬酸钾,50.0g硫酸铝钾,10.0g钼酸铵,溶解于500mL水中,加入200mL浓硫酸,冷却后,转移至1000mL容量瓶中,用蒸馏水定容。
(该溶液浓度c[1/6K2Cr2O7]=0.05mol·L-1,用于测COD浓度在50mg·L-1以下的水样,滴定时用的硫酸亚铁浓度为0.01mol·L-1。
)重铬酸钾标准溶液:(c[1/6 K2Cr2O7]=1mol·L-1)称取经过130℃烘3~4h的重铬酸钾(分析纯)49.031g,溶于400mL水中,必要时可加热溶解,冷却后,稀释定容至1L,摇匀备用。
重铬酸钾标准溶液:(c[1/6 K2Cr2O7]=0.1mol·L-1)取c[1/6 K2Cr2O7]=1mol·L-1标准溶液10mL,用蒸馏水稀释定容至100mL,摇匀备用。
硫酸亚铁标准溶液:(c[FeSO4]=0.2mol·L-1)称取FeSO4·7H2O(分析纯)55.6g,加水和5mL浓硫酸溶解,稀释定容至1L,摇匀备用。
硫酸亚铁标准溶液:(c[FeSO4]=0.02mol·L-1)量取c[FeSO4]=0.2mol·L-1的硫酸亚铁标准溶液100mL,定容至1L,摇匀备用。
试亚铁灵指示剂(邻菲罗啉指示剂):称取1.485g邻菲罗啉(C12H8N2·H2O)和0.695g硫酸亚铁(FeSO4·7H2O)溶于水中,稀释至100mL,储于棕色瓶中。
碱度的溴甲酚绿-甲基红指示剂滴定法分析1 主要仪器三角瓶(150mL)、电炉、量桶、半微量滴定管、移液管2 试剂2.1.无二氧化碳水:配制试剂所用的蒸馏水使用前煮沸15min,冷却至室温备用。
2.2.甲基红:(0.1%)0.025甲基红溶于25mL乙醇中2.3.溴甲酚绿-甲基红:取25mg溴甲酚绿和5mg甲基红于25mL95%乙醇中2.4.硫代硫酸钠溶液(0.1mol·L-1 1/2Na2S203=0.0500mol·L-1Na2S2O3)2.5.硼砂(分析纯)2.6.盐酸标准溶液(0.0200mol·L-1):用刻度吸管吸取8.3mL浓HCl(ρ=1.19g/mL),并用蒸馏水稀释至1000mL,此溶液浓度=O.100mol·L-1,储存备用。
使用时,取200mL以蒸馏水定容至1000mL,即为0.02mol·L-1的HCl溶液,其准确浓度标定如下:称约0.3g(精确到0.0001g)硼砂于锥形瓶中,加入无C02去离子水稀释约30mL,加入3滴甲基橙指示剂,用HCl标准溶液滴定至由桔黄色刚变为桔红色,记录HCl标准溶液的用量(平行滴定三次)。
按下式计算其推确浓度:C=m/(0.1907xV)式中, C一盐酸溶液的浓度, mol·L-1; V一消耗的盐酸标准溶液体积, mL;m-硼砂的质量3.步骤水样经滤纸过滤或于5000r/min条件下离心10min,取5mL的上述滤液或上清液为样品,样品的量以消耗HCl标准溶液8~20mL为宜。
样品取平行试样两份,分别置于150mL三角瓶。
加入30mL无CO2蒸馏水稀释。
同时以等量的不含样品的无CO2蒸馏水为空白对照4.滴定步骤如下。
加入3滴溴甲酚绿-甲基红指示剂和硫代硫酸钠溶液(1/2Na2S2O3)1滴(后者用于排除游离氯的干扰)。
用0.0200mol·L-1的HCl标准溶液滴定至恰现淡红色,记录HCl标准溶液的用量V1mL,空白对照中消耗的HCl量为V0mL。
(平行滴定三次)。
5.计算1.碱度碱度(以mmol·L-1计)=(V1-V0)*C/V2*1000式中: C一-盐酸标准溶液的浓度, mo1·L-1V1一-试样消耗盐酸标准溶液的体积, mL;V2一-试样的体积, mL;V0一-空白对照消耗HCl标准溶液的体积, mL。
当试验结果以mgCaCO3·L-1表示时,则上述浓度要乘以50,即:碱度(以mgCaCO3·L-1计)=碱度(以mmol·L-1计)x50VFA的测定(蒸馏滴定法)仪器:5mL半微量滴定管、蒸氮仪、容量瓶、250mL锥形瓶、5mL移液管试剂:0.02mol·L-1NaOH溶液、1mol·L-1H2SO4溶液、1%酚酞试验步骤:1、取2mL滤液(5000r/min条件下离心10min,过滤)于25mL容量瓶中定容。
2、取5mL加入到蒸氮装置,同时加入5mL催化剂(1mol·L-1H2SO4溶液),蒸出100mL溶液。
3、向蒸出液中加入3滴酚酞,用0.02mol·L-1的NaOH标准溶液滴定,溶液颜色由无色突变成粉红色为终点,记录NaOH溶液消耗量(V)。
计算:VFA(mg·L-1,以乙酸计)=C×V×1000×60.5×12.5/V OV——滴定样品消耗的NaOH标准溶液的体积,mLC——NaOH标液的浓度,mol·L-1V0――试样的体积,mL,本试验V0=5mL12.5――待测液的稀释倍数60.5――乙酸的分子量试剂配制:饱和NaOH溶液:取约5mL蒸馏水,加入NaOH固体,边加边搅拌,使NaOH溶于水中放出的热量尽快散失,直到溶液表面有晶体析出,即溶液达到饱和。
待溶液冷却至室温,即可使用。
0.02mol·L-1NaOH溶液:量取1mL NaOH饱和溶液至1000mL容量瓶中,定容。
NaOH溶液的标定:取约0.3g(精确到0.0001g)硼酸,于250mL锥形瓶中,加入30mL 无CO2水溶解,加入3滴1%酚酞,用NaOH溶液滴定,溶液颜色由无色突变成粉红色为终点,记录NaOH溶液消耗量(V0)。
C(NaOH)(mol·L-1)=M/(61.83×V0)M——硼酸的质量,gV0——NaOH溶液标定时,用去的NaOH溶液的体积,mL1mol·L-1H2SO4溶液:取60mL浓硫酸,缓慢加入至1000mL蒸馏水中,冷却,摇匀。
1%酚酞:取1.00g酚酞,溶于60mL95%乙醇中,用蒸馏水稀释至100mL,转移至试剂瓶中备用。
纳氏试剂光度法测定氨氮一、方法原理碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,此颜色在较宽的波长内具强烈吸收。
通常测量用波长在410-425nm范围。
二、干扰及消除脂肪胺、芳香胺、醛类、丙酮、醇类和有机氯胺类等有机化合物,以及铁、锰、镁和硫等无机离子,因产生异色或混浊而引起干扰,水中颜色或混浊亦影响比色。
为此,须经过絮凝沉淀过滤或蒸馏预处理,易挥发的还原性干扰物质,还可在酸性条件下加热以除去。
对金属离子的干扰,可加入适量的掩蔽剂加以消除。
三、方法的适用范围本法最低检出浓度为0.025mg·L-1(光度法),测定上限为2 mg·L-1。
采用目视比色法,最低检出浓度为0.02 mg·L-1。
水样作适当的预处理后,本法可适用于地表水、地下水、工业废水和生活污水中氨氮的测定。
四、仪器1.分光光度计2.pH计。
五、试剂配制试剂用水均应为无氨水。
1)纳氏试剂:可选择下列一种方法制备。
①称取20g碘化钾溶于约100mL水中,边搅拌边分次少量加入二氯化汞(HgCl2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不易溶解时,停止滴加氯化汞溶液。