最新人教版初一数学下册平方根、立方根试题
七年级数学下册第六章实数6.2立方根练习卷含解析新版新人教版
七年级数学下册第八章:6.2 立方根一.选择题(共3小题)1.有下列说法:(1)﹣3是的平方根;(2)7是(﹣7)2的算术平方根;(3)27的立方根是±3;(4)1的平方根是±1;(5)0没有算术平方根.其中正确的有()A.1个B.2个C.3个D.4个2.下列等式成立的是()A.B.C.D.3.立方根等于它本身的有()A.0,1 B.﹣1,0,1 C.0 D.1二.填空题(共3小题)4.已知=﹣3,则a=.5.的平方根是,﹣125的立方根是.6.若a2=9,b3=﹣8,则a﹣b=.三.解答题(共6小题)7.求下列各式中的x(1)(x﹣1)2=9(2)8(x+1)3=﹣278.已知﹣3是2a﹣1的平方根,3a+2b+4的立方根是3,求a+b的平方根.9.一个正方体的体积是125cm3,现将它锯成8块同样大小的正方体小木块.(1)求每个小正方体的棱长.(2)现有一张面积为36cm2长方形木板,已知长方形的长是宽的4倍,若把以上小正方体排放在这张长方形木板上,且只排放一层,最多可以放几个小正方体?请说明理由.10.(1)若x,y为实数,且x=+4,求(x﹣y)2的平方根;(2)已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.11.按要求填空:(1)填表:a0.0004 0.04 4 400(2)根据你发现规律填空:已知:=2.638,则=,=;已知:=0.06164,=61.64,则x=.12.已知是m+3的算术平方根是n﹣2的立方根,试求:(1)m和n的值;(2)A﹣B的值.人教新版七年级下学期《6.2 立方根》2020年同步练习卷参考答案与试题解析一.选择题(共3小题)1.有下列说法:(1)﹣3是的平方根;(2)7是(﹣7)2的算术平方根;(3)27的立方根是±3;(4)1的平方根是±1;(5)0没有算术平方根.其中正确的有()A.1个B.2个C.3个D.4个【分析】根据平方根与立方根的定义即可求出答案.【解答】解:(1)﹣3是的平方根,(1)正确;(2)7是(﹣7)2的算术平方根,(2)正确;(3)27的立方根是3,(3)错误;(4)1的平方根是±1,(4)正确;(5)0的算术平方根是0,(5)错误;故选:C.【点评】本题考查平方根与立方根,解题的关键是正确理解平方根与立方根,本题属于基础题型.2.下列等式成立的是()A.B.C.D.【分析】根据立方根的含义和求法,逐项判断即可.【解答】解:∵=﹣1,∴选项A不符合题意;∵=≠,∴选项B不符合题意;∵=﹣3,∴选项C符合题意;∵﹣=﹣2,∴选项D不符合题意.故选:C.【点评】此题主要考查了立方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.3.立方根等于它本身的有()A.0,1 B.﹣1,0,1 C.0 D.1【分析】根据开立方的意义,可得答案.【解答】解:立方根等于它本身的有﹣1,0,1.故选:B.【点评】本题考查了立方根,解题的关键是明确正数的立方根是正数,0的立方根是0,负数的立方根是负数.二.填空题(共3小题)4.已知=﹣3,则a=﹣6 .【分析】根据立方根的意义,列出方程即可解决问题;【解答】解:由题意4a﹣3=﹣27∴a=﹣6,故答案为﹣6【点评】本题考查立方根的意义,解题的关键是学会用转化的思想思考问题,属于中考常考题型.5.的平方根是±3 ,﹣125的立方根是﹣5 .【分析】直接利用平方根、立方根、算术平方根的定义得出答案【解答】解:因为=9,所以的平方根是±3;﹣125的立方根是﹣5.故答案为:±3,﹣5.【点评】此题主要考查了立方根、平方根、算术平方根的定义,正确把握相关定义是解题关键.6.若a2=9,b3=﹣8,则a﹣b=﹣1或5 .【分析】根据平方根和立方根的定义即可求出a,b的值,进一步计算即可.【解答】解:因为a2=9,b3=﹣8,所以a=±3,b=﹣2,所以a﹣b=3﹣(﹣2)=5或a﹣b=﹣3﹣(﹣2)﹣1.故答案为:﹣1或5.【点评】此题主要考查了平方根和立方根,能够根据平方根和立方根的定义正确得出a,b的值是解题关键.三.解答题(共6小题)7.求下列各式中的x(1)(x﹣1)2=9(2)8(x+1)3=﹣27【分析】(1)两边开方,即可得出两个一元一次方程,求出方程的解即可.(2)两边开立方,即可得出一个一元一次方程,求出方程的解即可.【解答】解:(1)开方得:x﹣1=±3,解得:x1=4,x2=﹣2.(2)两边开立方得:2(x﹣1)=﹣3,解得:x=﹣.【点评】本题主要考查了立方根、平方根.解题的关键是能根据平方根和立方根定义得出一元一次方程.8.已知﹣3是2a﹣1的平方根,3a+2b+4的立方根是3,求a+b的平方根.【分析】先根据平方根、立方根的定义得到关于a、b的二元一次方程组,解方程组即可求出a、b的值,进而得到a+b的平方根.【解答】解:由题意,有,解得.∴±==±3.即a+b的平方根为±3.【点评】本题考查了平方根、立方根的定义.如果一个数的平方等于a,这个数就叫做a 的平方根,也叫做a的二次方根.如果一个数x的立方等于a,那么这个数x就叫做a 的立方根.9.一个正方体的体积是125cm3,现将它锯成8块同样大小的正方体小木块.(1)求每个小正方体的棱长.(2)现有一张面积为36cm2长方形木板,已知长方形的长是宽的4倍,若把以上小正方体排放在这张长方形木板上,且只排放一层,最多可以放几个小正方体?请说明理由.【分析】(1)要先根据正方体的体积即可求出每个小正方体的棱长;(2)设长方形宽为x,可得4x2=36,再根据算术平方根的定义解答即可.【解答】解:((1),所以立方体棱长为cm;(2)最多可放4个.设长方形宽为x,可得:4x2=36,x2=9,∵x>0,∴x=3,,横排可放4个,竖排只能放1个,4×1=4个.所以最多可放4个.【点评】此题主要考查了实数的运算,解答此题的关键是把正方形进行分割,可以自己动手试一试.10.(1)若x,y为实数,且x=+4,求(x﹣y)2的平方根;(2)已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.【分析】(1)根据被开方数是非负数,可得x的值,根据开平方,可得答案;(2)根据平方根的意义、立方根的意义,可得答案.【解答】解:(1)由题意得:,解得y=3,∴x=4,∴(x﹣y)2=1,∴(x﹣y)2的平方根是±1.(2)由x﹣2的平方根是±2,2x+y+7的立方根是3,得x﹣2=4,2x+y+7=27,解得x=6,y=8.∴x2+y2=100,∴x2+y2的算术平方根是10.【点评】本题考查了二次根式有意义的条件,用被开方数是非负数得出不等式组是解(1)题关键;利用平方根的意义、立方根的意义是解(2)的关键.11.按要求填空:(1)填表:a0.0004 0.04 4 400(2)根据你发现规律填空:已知:=2.638,则=26.38 ,=0.02638 ;已知:=0.06164,=61.64,则x=3800 .【分析】(1)分别用计算器将0.0004、0.04、4、400开方即可得出答案.(2)将720化为7.2×100,将0.00072化为7.2×10﹣4,继而可得出答案;再根据61.64化为0.06164×10﹣3可得出第二空的答案.【解答】解:(1)=0.02,=0.2,=2,=20;(2)==2.638×10=26.38,==2.638×10﹣2=0.02638;∵=0.06164,=61.64,61.64=0.06164×10﹣3∴x=3800.故答案为:0.02、0.2、2、20;26.38、0.02638;3800.【点评】此题考查了计算器数的开方,属于基础题,解答本题的关键是熟练计算机的运用,难度一般.12.已知是m+3的算术平方根是n﹣2的立方根,试求:(1)m和n的值;(2)A﹣B的值.【分析】根据算术平方根和立方根的定义得出方程组,求出m、n,再求出A、B,即可得出答案.【解答】解:(1)∵A=是m+3的算术平方根,B=是n﹣2的立方根,∴m﹣4=2,2m﹣4n+3=3,解得:m=6,n=3,(2)∵m=6,n=3,∴A==3,B==1,∴A﹣B=3﹣1=2.【点评】本题考查了算术平方根和立方根的定义,能根据算术平方根和立方根的定义求出m、n的值是解此题的关键.。
人教版数学七年级下册 第六章 实数 算术平方根、平方根、立方根的难点突破 专题练习题 含答案
第六章实数算术平方根、平方根、立方根的难点突破一、求算术平方根、平方根、立方根1. 一个自然数的算术平方根是a,则与这个自然数相邻的下一个自然数的算术平方根是2. 一个非负数的两个平方根分别是2a-1和a-5,则这个非负数是多少?3. 若x2=4,y2=9,且x>y,求x-y的平方根4. 已知x-2的平方根是±1,2x+y+17的立方根是3,求x2+y2的平方根和立方根.5. 已知M=m-1m+6是m+6的算术平方根,N=2m-3n+3n+6是n+6的立方根,试求M-N的值.二、算术平方根的非负性6. 若x -3有意义,则x 的取值范围是___________ __.7. 已知y =x -8+8-x +5,求x +y 的值8. 若y =x -12+12-x -6,求xy 的值.9. 已知实数x ,y ,z 满足|4x -4y +1|+132y +z +(z -12)2=0,求(y +z)·x 2的值.三、利用算术平方根、立方根解决实际问题10. 如图,将两个边长为3的正方形对角线剪开,将所得的四个三角形拼成一个大的正方形,则这个大正方形的边长是__________.11. 一种集装箱是正方体,它的体积是343 m3,则这种正方体集装箱的棱长是____________.12. 国际比赛的足球场长在100 m到110 m之间,宽在64 m到75 m之间.某地新建了一个长方形的足球场,其长是宽的1.5倍,面积是7 560 m2,请你判断这个足球场能用于国际比赛吗?并说明理由.13. 在做浮力实验时,小华用一根细线将一个正方体铁块拴住,完全浸入盛满水的圆柱形烧杯中,溢出水的体积为40 cm3;小华又将铁块从烧杯中提起,量得烧杯中的水位下降了0.6 cm.请问烧杯内部的底面半径和铁块的棱长各是多少?(用计算器计算,结果精确到0.01 cm)14. 全球气候变暖导致一些冰川融化并消失,在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长,每一个苔藓都会长成近似圆形,苔藓的直径和其生长年限近似地满足如下的关系式:d=7×t-12(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35 cm,问冰川约是在多少年前消失的?15. 将一个体积为0.216 m3的大立方体铝块改铸成8个一样大的小立方体铝块,求每个小立方体铝块的表面积.四、探究算术平方根、平方根、立方根的变化规律16. 观察分析下列数据:0,-3,6,-3,12,-15,18,…,根据以上数据排列的规律,第n个数据应是_______________________.(n为正整数) 17. 观察下列各式,并用所得出的规律解决问题:(1)2=1.414,200=14.14,20 000=141.4,…0.03=0.173 2,3=1.732,300=17.32,…由此可见,被开方数的小数点每向右移动_______位,其算术平方根的小数点向_______ __移动______ __位;(2)已知5=2.236,50=7.071,则0.5=_____________,500=___________; (3)31=1,31 000=10,31 000 000=100,…小数点变化的规律是:(4)已知310=2.154,3100=4.642,则310 000=__________,-30.1=______________.18. 先观察,再解决问题 3227=2327; 33326=33326; 34463=43463;…(1)请再写出一个类似的式子;(2)请用含n 的式子表示上述规律.19. 不用计算器,探究解决下列问题:(1)已知x 3=10 648,则x 的个位数字一定是____;∵8 000=203<10 648<303=27 000,∴x 的十位数字一定是____,∴x =________;(2)已知x 3=59 319,则x 的个位数字一定是____;∵27 000=303<59 319<403=64 000,∴x的十位数字一定是____,∴x=_________;(3)已知x3=148 877,则x的个位数字一定是____;∵125 000=503<148 877<603=216 000,∴x的十位数字一定是____,∴x=______;(4)按照以上思考方法,直接写出x的值.①若x2=857 375,则x=______;②若x3=373 248,则x=______.答案:一、1. a2+12. 解:根据题意,有(2a-1)+(a-5)=0,解得a=2.∴这个非负数为(2a-1)2=(2×2-1)2=9.3. 解:∵x2=4,y2=9,∴x=±2,y=±3.∵x>y,∴x=±2,y=-3.当x=2,y=-3时,x-y的平方根是±5;当x=-2,y=-3时,x-y的平方根是±1.4. 解:∵x-2的平方根是±1,∴x-2=1,则x=3.∵2x+y+17的立方根是3,∴2x+y+17=27.把x=3代入2x+y+17=27中,得y=4.∴x2+y2=32+42=25,∴x2+y2的平方根是±5,立方根是3 25.5. 解:由题意可知m-1=2,2m-3n+3=3,解得m=3,n=2.∴M=9=3,N=38=2,∴M-N=3-2=1.二、6. x≥37. 由题意可得x -8≥0,且8-x ≥0,∴x =8.当x =8时,y =5,∴x +y =13.8. 由题意可得x -12≥0,且12-x ≥0,∴x =12.当x =12时,y =-6,∴xy =12×(-6)=-3.9. 解:根据题意可得4x -4y +1=0,2y +z =0,z -12=0, ∴x =-12,y =-14,z =12,∴(y +z)·x 2=116. 三、 10. 611. 7m12. 解:这个足球场能用于国际比赛,理由:设足球场的宽为x m ,则长为1.5x m ,由题意得1.5x 2=7 560,∴x 2=5 040.∵x >0,∴x = 5 040.又∵702=4 900,712=5 041,∴70< 5 040<71,∴70<x <71,∴105<1.5x <106.5,符合要求,∴这个足球场能用于国际比赛.13. 解:设铁块的棱长为a cm ,根据题意,得a 3=40,解得a≈3.42.设烧杯内部的底面半径为r cm ,根据题意,得πr 2×0.6=40,解得r≈4.61(舍去负值),则烧杯内部的底面半径约是4.61 cm ,铁块的棱长约是3.42 cm.14. 解:(1)当t =16时,d =7×t -12=7×2=14(cm ),则冰川消失16年后苔藓的直径为14 cm .(2)当d =35时,t -12=5,即t -12=25,解得t =37,则冰川约是在37年前消失的.15. 解:设每个小立方体铝块的棱长为x cm,则8x3=0.216.∴x3=0.027.∴x=0.3.∴6×0.32=0.54(m2),即每个小立方体铝块的表面积为0.54 m2.16. (-1)n+13(n-1)17. (1) 两右一(2) 0.7071 22.36(3) 被开方数的小数点向右(左)移动三位,其立方根的小数点向右(左)移动一位.(4) 21.54 -0.464218. (1) 解:355124=535124.(2) 解:3n+nn3-1=n3nn3-1(n≠1,且n为正整数).19. (1) 2 2 22(2) 9 3 39(3) 3 5 53(4) ① 95② 72。
七年级数学下册单元测试(平方根、立方根)
七年级数学(下)单元测试卷4(6.1平方根,6.1立方根))姓名:_________班级:____________一、选择题(每题3分,共30分)。
1. “16的平方根是4±”用数学式子表示正确的是( ) A. 416±= B. 416±=± C. 416= D. -416-=2. 8-的立方根是( ) A. 2± B. 2 C. 2- D.不存在3. 2±是4的( ) A.平方根 B.相反数C.绝对值D.算数平方根 4. 364的算数平方根是( ) A. 4± B.4 C. 2± D.25. 如图,数轴上点P 表示的数可能是( )A. 7-B. 7C. 10-D. 106. 将一块体积为31000cm 的正方体锯成8块同样大小的小正方体木块,则每个小正方体木块的棱长为( ) A.5cm B.6cm C.7cm D.8cm 7. 若2a -3=++b ,则b a +的算术平方根是( )A.2B.1C.0D. 1± 8. 如果一个有理数的平方根和立方根相同,那么这个数是( ) A. 1± B.0 C.1 D.0和19. 若190+<<k k (k 是整数),则k =( )A.6B.7C.8D.9 10. 在下列说法中:①10的平方根是10±;②-2是4的一个平方根;③94的平方根是32;④0.01的算术平方根是0.1;⑤aa24±=,其中正确的有( )A.1个B.2个C.3个D.4个二、填充题(每题3分,共24分)。
11. 式子“2019”表示的意义是_______________________________ 12. 计算:42--=_____________13. “平方根”节是数学爱好者的节日,这一天的月份和日期的数字正好是当年年份最后两位数字的算术平方根,例如2009年的3月3日,2025年的5月5日,请你再写出本世纪你喜欢的一个“平方根”节,(题中所举例子除外) 年 月 日14. -27的立方根与64的算术平方根的和是 15. 对于任意不相等的两个数a 、b ,定义一种运算a ※b =b a b a -+如下:3※2=2323-+=5,那么12※4=16. 如图,长方形内两相邻正方形的面积是1和9,那么长方形内阴影部分的面积是17. 若一个正数的两个平方根是12-a 和2+-a ,则这个正数是 18. 观察下列各式:514513,413412,312311=+=+=+,……,根据你发现的规律。
人教版七年级数学下册第六章第一节平方根复习试题(含答案) (40)
人教版七年级数学下册第六章第一节平方根习题(含答案) 49的算术平方根是 . 【答案】23 【解析】试题分析:正数的平方根有两个,他们互为相反数.算术平方根是指正的平方根.考点:算术平方根52. 64的立方根是 ;的平方根是 .【答案】4;3±.【解析】试题分析:根据立方根的定义可得64的立方根是4,根据平方根的定义可得9的平方根是3±.考点:立方根、平方根的定义.53.比较大小:215- 21(填上“<”或“>”号) 【答案】>.【解析】 141-,所以1412-.考点:二次根式的大小比较.54.如果n m +=2 ,那么2()m n += ;已知a 、b 分别是136-的整数部分和小数部分,则=-b a 2______________.【答案】16【解析】 试题分析:∵n m +=2,∴4m n +=,∴2()m n +=16;∵34,所以2<136-<3,故a=2,b=62=4-,∴2a b -=4(4-=16考点:1.算术平方根;2.估算无理数的大小;3.二次根式的加减法.55.比较大小:23-____________32-;552____________443.【答案】<;<.【解析】试题分析:23-=-><,∴-<-∵552=51111(2)32=,44411113(3)81==,∵11113281<,∴554423<,故答案为:<;<.考点:1.实数大小比较;2.有理数的乘方;3.有理数大小比较.56.写出一个0到1之间的无理数_________,一个数的算术平方根是3,这个数是_________.【答案】答案不唯一,如:3;9. 【解析】试题分析:0到1之间的无理数不唯一,如:3;∵一个数的算术平方根是3,∴这个数是23=9.故答案为:答案不唯一,如:3;9. 考点:算术平方根.57.在两个连续整数和之间,且,那么、的值分别是 .【答案】a="3" ,b=4【解析】解:,,,58.的算术平方根是.【答案】3.【解析】试题分析:81=9,根据算数平方根的定义可得9的算术平方根是3.考点:算数平方根的定义.59.﹣64的立方根与√16的算术平方根之和是___________.【答案】-2【解析】试题分析:因为﹣64的立方根是-4,√16的算术平方根是2,所以﹣64的立方根与√16的算术平方根之和是-4+2=-2.考点:立方根,算术平方根.60.的算术平方根为.【答案】【解析】试题分析:∵=2,2的算术平方根是,∵的算术平方根为.考点:算术平方根.。
人教版 七年级下册 试题及解析——6.2立方根
6.2立方根一.选择题(共29小题)(= )A.2B.-C.83-D.2-8-的立方根之和是( ) A.0B.4-C.4D.0或4-3.下列等式正确的是( )A.2=2=-2=-0.14.下列说法错误的是( ) A.5是25的算术平方根 B.1的立方根是1± C.1-没有平方根D.0的平方根与算术平方根都是0 5.下列说法正确的是( ) A.3是9的立方根 B.3是2(3)-的算术平方根 C.2(2)-的平方根是2 D.8的平方根是4±6.下列说法正确的是( )A.立方根是它本身的数只能是0和1B.如果一个数有立方根,那么这个数也一定有平方根C.16的平方根是4D.2-是4的一个平方根7.给出下列说法:①2-是4的平方根;的算术平方根是9;③3=-;④2的平其中正确的说法有( ) A.0个B.1个C.2个D.3个8.如果b -是a 的立方根,则下列结论正确的是( )A.3b a -=B.3b a -=C.3b a =D.3b a =9.下列说法正确的是( ) A.9的立方根是3B.算术平方根等于它本身的数一定是1C.2-是4的平方根2 10.下列语句正确的是( ) A.负数没有立方根B.8的立方根是2±C.立方根等于本身的数只有1± 11.下列说法正确的是( ) A.16 的平方根是4 B.只有正数才有平方根 C.不是正数的数都没有平方根D.算术平方根等于立方根的数有两个 12.下列说法不正确的是( ) A.1的平方根是1± B.1-的立方根是1- C.4是2的平方根 D.3-是9的平方根13.8-的立方根是( ) A.2B.12C.2-D.12-14.下列说法错误的个数是( ) (1)16的算术平方根是2(2)立方根等于本身的数有1-、0和1 (3)3-是2(3)-的算术平方根 (4)8的立方根是2± A.0个B.1个C.2个D.3个15.125-( ) A.2-B.4C.8-D.2-或8-16.已知一个正数的两个平方根分别为31a -和5a --,则这个正数的立方根是( )A.2-B.2C.3D.417.将一块体积为31000cm 的正方体锯成8块同样大小的小正方体木块,则每个小正方体木块的棱长为( ) A.5cmB.6cmC.7cmD.8cm18.下列说法正确的是( ) A.3±是27的立方根B.负数没有平方根,但有立方根C.25的平方根是53± 19.64的立方根为( ) A.8B.8-C.4D.4-20.如果236m =,364n =-5=,则m n x +-的值有( )个. A.2个B.3个C.5个D.4个21.下列各式中,正确的是( )4=±B.2C.3=3-22.下列各式中,正确的是( )5=±6=-3-D.3=23.27-的立方根与4的平方根的和是( ) A.1-B.5-C.1-或5-D.5±或1±24.下列说法正确的是( ) A.36的平方根是6± B.3-是2(3)-的算术平方根C.8的立方根是2±D.3是9-的算术平方根25.给出下列说法: ①4-是16的平方根;4;③2=;④a其中,正确的说法有( ) A.1个B.2个C.3个D.4个26.已知a 的平方根是8±,则a 的立方根是( ) A.2B.4C.2±D.4±27.2(的平方根是x ,64的立方根是y ,则x y +的值为( ) A.3B.7C.3或7D.1或728.下列等式中:18,2=,4=±,0.001,34=-,⑦2(25=.其中正确的有( )个. A.2B.3C.4D.529.立方根等于2的数是( )A.8±B.8C.8-二.填空题(共4小题)30.已知a 是27的立方根,则a = .31.若16的算术平方根是m ,27-的立方根是n ,则m n +的值是 .32.3的平方根是 ;的算术平方根是 ;127-的立方根是 . 33.已知一个正数的两个平方根分别为26m -和3m +,则9m -的立方根是 . 三.解答题(共17小题) 34.解方程(1)23(51)480x +-= (2)31252(1)4x -=-35.求下列各式中的x 的值: (1)225(1)121x -= (2)33(2)810x --= 36.求下列各式中的x . (1)25(2)10x += (2)3(4)64x +=-37.求下列各式中的x . (1)2(12)169x -=; (2)3(32)64x -=. 38.解下列方程 (1)2144x = (2)3(1)27x +=39.已如3m n A n m -=-+是3n m -+的算术平方根,232m n B m n -+=+是2m n +的立方根,求B A +的平方根.40.已知2的平方等于a ,21b -是27的立方根,2c ±-表示3的平方根. (1)求a ,b ,c 的值;(2)化简关于x 的多项式:||2()x a x b c --+-,其中4x <.41.已知某正数的两个平方根分别是3a +和215a -,b 的立方根是2-,求a b +值. 42.已知:2x -的平方根是2±,27x y ++的立方根是3,求 (1)x 和y 的值; (2)22x y +的算术平方根.43.正数x 的两个平方根分别为3a -和27a +. (1)求a 的值;(2)求44x -这个数的立方根. 44.若312x -与332y -互为相反数,求12xy+的值. 45.已知3既是1x -的平方根,也是21x y -+的立方根,求22x y -的平方根. 46.请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的表面积.47.已知21b +的平方根为3±,321a b +-的算术平方根为4,求3b a -的立方根.48.已知a A =是3b +的算术平方根,26a b B -=2a -的立方根,求52A B -的值.49.已知3x +的立方根为2,31x y +-的平方根为4±,求35x y +的算术平方根.50.(1)已知23b +的平方根是3±,321a b ++的算术平方根为4,求36a b +的立方根;(2)已知5a =,29b =.参考答案与试题解析一.选择题(共29小题)(= )A.2B.-C.83-D.2-2-, 故选:D .8-的立方根之和是( ) A.0B.4-C.4D.0或4-4=,4∴的平方根是2±,8-Q 的立方根是2-,2(2)0+-=或2(2)4-+-=,故选:D .3.下列等式正确的是( )A.2=2=-2=-0.1【解析】A 、2=±,错误;B 2,错误;C 2=-,正确;D 0.1=,错误;故选:C .4.下列说法错误的是( ) A.5是25的算术平方根 B.1的立方根是1± C.1-没有平方根D.0的平方根与算术平方根都是0【解析】A .5是25的算术平方根,此选项说法正确;B .1的立方根是1,此选项说法错误;C .1-没有平方根,此选项说法正确;D .0的平方根与算术平方根都是0,此选项说法正确;故选:B .5.下列说法正确的是( ) A.3是9的立方根 B.3是2(3)-的算术平方根 C.2(2)-的平方根是2D.8的平方根是4±【解析】A 、3是9的平方根,不符合题意;B 、3是2(3)-的算术平方根,符合题意;C 、2(2)-的平方根是2±,不符合题意;D 、16的平方根是4±,不符合题意,故选:B .6.下列说法正确的是( )A.立方根是它本身的数只能是0和1B.如果一个数有立方根,那么这个数也一定有平方根C.16的平方根是4D.2-是4的一个平方根【解析】A 、立方根是它本身的数有1-、0和1,故错误,不符合题意;B 、负数有立方根但没有平方根,故错误,不符合题意;C 、16的平方根是4±,故错误,不符合题意;D 、2-是4的一个平方根,正确,符合题意,故选:D .7.给出下列说法:①2-是4的平方根;的算术平方根是9;③3=-;④2的平其中正确的说法有( ) A.0个B.1个C.2个D.3个【解析】①2-是4的平方根,说法正确;③3=,原题说法错误;④2的平方根是 正确的说法有1个, 故选:B .8.如果b -是a 的立方根,则下列结论正确的是( ) A.3b a -=B.3b a -=C.3b a =D.3b a =【解析】b -Q 是a 的立方根,3()b a ∴-=,即3a b =-, 故选:A .9.下列说法正确的是( ) A.9的立方根是3B.算术平方根等于它本身的数一定是1C.2-是4的平方根2【解析】A .27的立方根是3,此选项错误;B .算术平方根等于它本身的数是1和0,此选项错误;C .2-是4的平方根,此选项正确;D .2故选:C .10.下列语句正确的是( ) A.负数没有立方根B.8的立方根是2±C.立方根等于本身的数只有1±【解析】A .负数有一个负的立方根,此选项错误;B .8的立方根是2,此选项错误;C .立方根等于本身的数有1±和0,此选项错误;D .2==-,此选项正确;故选:D .11.下列说法正确的是( ) A.16 的平方根是4 B.只有正数才有平方根 C.不是正数的数都没有平方根D.算术平方根等于立方根的数有两个 【解析】A .16的平方根是4±,此选项错误;B .正数和零都有平方根,此选项错误;C .0不是正数,也有平方根,是0,此选项错误;D .算术平方根等于立方根的数有两个,是0和1,此选项正确;故选:D .12.下列说法不正确的是( ) A.1的平方根是1± B.1-的立方根是1- C.4是2的平方根D.3-是9的平方根【解析】A 、1的平方根是1±,正确,不合题意;B 、1-的立方根是1-,正确,不合题意;C 、4是16的一个平方根,故此选项错误,符合题意;D 、3-是9的平方根,正确,不合题意;故选:C .13.8-的立方根是( ) A.2B.12C.2-D.12-【解析】3(2)8-=-Q , 8∴-的立方根是2-,故选:C .14.下列说法错误的个数是( ) (1)16的算术平方根是2(2)立方根等于本身的数有1-、0和1 (3)3-是2(3)-的算术平方根 (4)8的立方根是2±A.0个B.1个C.2个D.3个【解析】(1)16的算术平方根是4,此结论错误; (2)立方根等于本身的数有1-、0和1,此结论正确; (3)3是2(3)-的算术平方根,此结论错误; (4)8的立方根是2,此结论错误; 故选:B .15.125-( ) A.2-B.4C.8-D.2-或8-【解析】125-的立方根为5-,Q9,∴3或3-,则125-2-或8-, 故选:D .16.已知一个正数的两个平方根分别为31a -和5a --,则这个正数的立方根是( ) A.2-B.2C.3D.4【解析】Q 一个正数的两个平方根分别为31a -和5a --, 3150a a ∴---=,解得:3a =, 318a ∴-=,这个数是2864=, 64的立方根为4, 故选:D .17.将一块体积为31000cm 的正方体锯成8块同样大小的小正方体木块,则每个小正方体木块的棱长为( ) A.5cmB.6cmC.7cmD.8cm105()2cm ==, 故选:A .18.下列说法正确的是( ) A.3±是27的立方根B.负数没有平方根,但有立方根C.25的平方根是53±【解析】A 、3是27的立方根,故本选项错误;B 、负数没有平方根,但有立方根,故本选项正确;C 、25的平方根是5±,故本选项错误;D ,故本选项错误;故选:B .19.64的立方根为( ) A.8B.8-C.4D.4-【解析】64的立方根是4. 故选:C .20.如果236m =,364n =-5=,则m n x +-的值有( )个. A.2个B.3个C.5个D.4个【解析】236m =Q ,364n =-5=, 6m ∴=或6-、4n =-、5x =或5-,当6m =、4n =-、5x =时,6453m n x +-=--=-; 当6m =、4n =-、5x =-时,6457m n x +-=-+=; 当6m =-、4n =-、5x =时,64515m n x +-=---=-; 当6m =-、4n =-、5x =-时,6455m n x +-=--+=-; 故选:D .21.下列各式中,正确的是( )4=±B.2C.3=3-4=,故A 错误;2=,故B 错误;3=±,故C 错误;3=,故D 正确.故选:D .22.下列各式中,正确的是( )5=±6=-3-D.3=【解析】A 5=,故此选项错误;B 6,故此选项错误;C 3=-,正确;D 、3=-,故此选项错误;故选:C .23.27-的立方根与4的平方根的和是( ) A.1-B.5-C.1-或5-D.5±或1±【解析】27-的立方根是3-,4的平方根是2±, 故27-的立方根与4的平方根的和是:1-或5-. 故选:C .24.下列说法正确的是( ) A.36的平方根是6± B.3-是2(3)-的算术平方根C.8的立方根是2±D.3是9-的算术平方根【解析】A 、36的平方根是6±,故A 正确; B 、3是2(3)-的算术平方根,故B 错误; C 、8的立方根是2,故C 错误; D 、9-没有算术平方根,故D 错误. 故选:A . 25.给出下列说法: ①4-是16的平方根;4;③2=;④a 其中,正确的说法有( ) A.1个B.2个C.3个D.4个【解析】①4是16的平方根,正确;4=,4的算术平方根是2,故错误;③2=,正确;④a 0)a …,故错误. 其中,正确的说法有2个, 故选:B .26.已知a 的平方根是8±,则a 的立方根是( ) A.2B.4C.2±D.4±【解析】解;已知a 的平方根是8±, 64a =,4=,故选:B .27.2(的平方根是x ,64的立方根是y ,则x y +的值为( ) A.3B.7C.3或7D.1或7【解析】2(9=Q ,2(∴的平方根是3±,即3x =±,64Q 的立方根是y ,4y ∴=,当3x =时,7x y +=, 当3x =-时,1x y +=. 故选:D .28.下列等式中:18,2=,4=±,0.001,34=-,⑦2(25=.其中正确的有( )个. A.2 B.3C.4D.5【解析】14=,故本项错误;2-,故本项错误;4=,故本项错误;0.001=,故本项正确;34=-,故本项正确;=⑦2(5=,故本项错误; 综上可得④⑤⑥正确,共三个. 故选:B .29.立方根等于2的数是( )A.8±B.8C.8-【解析】2Q 的立方等于8, 8∴的立方根等于2.故选:B .二.填空题(共4小题)30.已知a 是27的立方根,则a = 3 . 【解析】a Q 是27的立方根, 3a ∴=.故答案为:3.31.若16的算术平方根是m ,27-的立方根是n ,则m n +的值是 1 . 【解析】16Q 的算术平方根是m ,27-的立方根是n , 4m ∴=,3n =-,4(3)1m n ∴+=+-=,故答案为:1.32.3的平方根是 的算术平方根是 ;127-的立方根是 .【解析】3的平方根是;127-的立方根是13-,故答案为:,13-.33.已知一个正数的两个平方根分别为26m -和3m +,则9m -的立方根是 2- . 【解析】由题意可知:2630m m -++=, 1m ∴=, 98m -=-,8∴-的立方根是2-,故答案为:2-三.解答题(共17小题) 34.解方程(1)23(51)480x +-= (2)31252(1)4x -=-【解析】(1)23(51)480x +-=,23(51)48x +=, 2(51)16x +=, 514x +=±, 55x =-或53x =,解得1x =-或0.6x =;(2)31252(1)4x -=-, 3125(1)8x -=-, 1 2.5x -=-, 1.5x =-.35.求下列各式中的x 的值:(2)33(2)810x --= 【解析】(1)225(1)121x -=, 2121(1)25x -=, 1 2.2x -=±, 1.2x =-或 3.2x =;(2)33(2)810x --=,33(1)81x -=, 3(1)27x -=, 13x -=, 4x =.36.求下列各式中的x . (1)25(2)10x += (2)3(4)64x +=-【解析】(1)25(2)10x +=Q ,2(2)2x ∴+=,则2x +=12x ∴=-+22x =--;(2)3(4)64x +=-Q , 44x ∴+=-,则8x =-.37.求下列各式中的x . (1)2(12)169x -=;【解析】(1)开平方,得1213x -=或1213x -=-, 6x ∴=-或7x =;(2)开立方,得324x -=, 2x ∴=.38.解下列方程 (1)2144x = (2)3(1)27x +=【解析】(1)直接开平方,得12x ==±; (2)直接开立方,得13x +=, 2x ∴=.39.已如m A =3n m -+的算术平方根,2m n B -=2m n +的立方根,求B A +的平方根.【解析】由题意可得2233m n m n -=⎧⎨-+=⎩,∴42m n =⎧⎨=⎩,1m A ∴==,22m B -=,B A ∴+的平方根为±40.已知2的平方等于a ,21b -是27的立方根,表示3的平方根. (1)求a ,b ,c 的值;(2)化简关于x 的多项式:||2()x a x b c --+-,其中4x <. 【解析】(1)由题意知224a ==, 213b -=,2b =; 23c -=,5c =;(2)4x <Q , ||2()x a x b c ∴--+- |4|2(2)5x x =--+- 4245x x =---- 35x =--.41.已知某正数的两个平方根分别是3a +和215a -,b 的立方根是2-,求a b +值. 【解析】根据题意知32150a a ++-=,且3(2)b =-, 4a ∴=,8b =-,则4(8)4a b +=+-=-.42.已知:2x -的平方根是2±,27x y ++的立方根是3,求 (1)x 和y 的值; (2)22x y +的算术平方根.【解析】(1)根据题意知24x -=,2727x y ++=, 解得:6x =,8y =;(2)223664100x y +=+=Q ,22x y ∴+的算术平方根是10.43.正数x 的两个平方根分别为3a -和27a +. (1)求a 的值;(2)求44x -这个数的立方根.【解析】(1)Q 正数x 的两个平方根是3a -和27a +, 3(27)0a a ∴-++=,解得:10a =-(2)10a =-Q , 313a ∴-=,2713a +=-.∴这个正数的两个平方根是13±, ∴这个正数是169.4444169125x -=-=-, 125-的立方根是5-.44.若312x -与332y -互为相反数,求12xy+的值. 【解析】Q 312x -与332y -互为相反数,∴3312320x y -+-=,12320x y ∴-+-=, 123x y +=,∴1233x yy y+==. 45.已知3既是1x -的平方根,也是21x y -+的立方根,求22x y -的平方根. 【解析】根据题意得192127x x y -=⎧⎨-+=⎩①②,由①得:10x =,把10x =代入②得:8y =-, ∴108x y =⎧⎨=-⎩,222210(8)36x y ∴-=--=, 36Q 的平方根是6±,22x y ∴-的平方根是6±.46.请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长; (2)求该长方体纸盒的表面积.【解析】(1)设魔方的棱长为xcm ,可得:3216x =, 解得:6x =答:该魔方的棱长6cm ;(2)设该长方体纸盒的长为ycm ,则26600y =,故2100y =,解得:10y =±因为y 是正数,所以10=101041062520⨯⨯+⨯⨯=(平方厘米)答:该长方体纸盒的表面积为520平方厘米.47.已知21b +的平方根为3±,321a b +-的算术平方根为4,求3b a -的立方根.【解析】由题意可知:221(3)9b +=±=,4b ∴=,2321416a b +-==,38116a ∴+-=,3a =,31239b a ∴-=-=,9∴.48.已知a A =是3b +的算术平方根,26a b B -=2a -的立方根,求52A B -的值.【解析】a A =Q 3b +的算术平方根,26a b B -=2a -的立方根, ∴22633a b a b -=⎧⎨-+=⎩, 解得:31a b =⎧⎨=⎩, 2A ∴=,1B =,则原式1028=-=.49.已知3x +的立方根为2,31x y +-的平方根为4±,求35x y +的算术平方根.【解析】由3x +的立方根为2,31x y +-的平方根为4±,得:383116x x y +=⎧⎨+-=⎩,解得:52x y =⎧⎨=⎩, 35151025x y ∴+=+=,25Q 的算术平方根为5,35x y ∴+的算术平方根为550.(1)已知23b +的平方根是3±,321a b ++的算术平方根为4,求36a b +的立方根;(2)已知5a =,29b =.【解析】(1)23b +Q 的平方根为3±, 239b ∴+=,即3b =,321a b +-Q 的算术平方根为4, 32116a b ∴+-=,解得:3a =,3627a b ∴+=,36a b ∴+的立方根是3;(2)29b =Q ,3b ∴=或3b =-,当3b =;当3b =-3.或3.。
初一数学下册综合算式专项练习题平方根与立方根运算
初一数学下册综合算式专项练习题平方根与立方根运算初一数学下册综合算式专项练习题:平方根与立方根运算算数是我们日常生活中必不可少的一部分,我们时常会遇到各种各样的计算问题。
在初一下学期的数学课程中,我们将学习到关于平方根和立方根的运算。
本文将重点介绍综合算式专项练习题,并对平方根和立方根进行详细的讲解和演示。
1. 平方根平方根是指一个数的平方等于这个数本身。
例如,数学符号√2表示的就是2的平方根。
计算平方根可以帮助我们解决一些与平方相关的问题。
练习题1:计算√25。
解答:√25 = 5。
因为5的平方等于25。
练习题2:计算√16。
解答:√16 = 4。
因为4的平方等于16。
练习题3:计算√36。
解答:√36 = 6。
因为6的平方等于36。
2. 立方根类似平方根,立方根是指一个数的立方等于这个数本身。
我们用符号³√来表示立方根。
练习题4:计算³√8。
解答:³√8 = 2。
因为2的立方等于8。
练习题5:计算³√27。
解答:³√27 = 3。
因为3的立方等于27。
练习题6:计算³√64。
解答:³√64 = 4。
因为4的立方等于64。
3. 平方根和立方根运算在实际运算中,我们有时需要对平方根和立方根进行一些组合运算。
下面是一些相关的练习题。
练习题7:计算√25 + ³√8。
解答:√25 + ³√8 = 5 + 2 = 7。
练习题8:计算√16 + ³√27。
解答:√16 + ³√27 = 4 + 3 = 7。
练习题9:计算√36 - ³√64。
解答:√36 - ³√64 = 6 - 4 = 2。
4. 综合题目现在让我们来解决一些综合的平方根和立方根运算题目。
练习题10:计算√(25 + 36)。
解答:首先计算括号内的算式:25 + 36 = 61。
然后计算√61。
这个数无法被简化为整数,所以我们保留√61作为答案。
人教版七年级数学下册第六章第一节平方根试题(含答案) (26)
人教版七年级数学下册第六章第一节平方根复习试题(含答案)16的平方根是()A.4B.4-C.4±D.2±【答案】D【解析】试题分析:16=4,则4的平方根为±2.考点:平方根32.不使用计算器,你能估算出126的算术平方根的大小应在哪两个整数之间吗?().A.10~11之间B.11~12之间C.12~13之间D.13~14之间【答案】B.【解析】试题分析:直接利用算术平方根的定义分析得出答案.∵211=121,212=144,∴126的算术平方根的大小应在整数之间11~12之间.故选:B.考点:估算无理数的大小;算术平方根.33.16的平方根是()A.±2 B.2 C.±4 D.4【答案】A【解析】试题分析:先求出16的算术平方根为4,再根据平方根的定义求出4的平方根即可. ∵16 =4,4的平方根为±2, ∴16的平方根为±2.考点:(1)、平方根;(2)、算术平方根.34.矩形ABCD 的面积是16,它的长与宽的比为4:1,则该矩形的宽为( )A .1B .2C .3D .4【答案】B【解析】试题分析:设矩形的宽为x ,则长为4x .根据题意得:4x 2=16,所以x 2=4.根据算术平方根的意义可得x=2.故选B .考点:算术平方根35.若一个正数的两个平方根分别是1a -和3a -,则a 的值为( )A .-2B .2C .1D .4 【答案】B【解析】分析:根据一个正数的两个平方根互为相反数进行分析解答即可.详解:∵一个正数的两个平方根分别是1a -和3a -,∵(1)(3)0a a -+-=,解得:2a =.故选B.点睛:熟知;“一个正数的两个平方根互为相反数,两个相反数的和等于0”是解答本题的关键.36.下列说法正确的是()A.负数没有立方根B.如果一个数有立方根,那么它一定有平方根C.一个数有两个立方根D.一个数的立方根与被开方数同号【答案】D【解析】试题分析:任何数都有且只有一个立方根,负数的立方根为负数,正数的立方根为正数,零的立方根为零;只有非负数有平方根.考点:(1)、立方根;(2)、平方根37()A.4 B.4±C.2D.2±【答案】D【解析】试题分析:本题考查了算术平方根,求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.根据算术平方根的定义:一个正数x的平方等于a,即2x=a,那么这个正数x叫做a的算术平方根..∵2±2.(2)考点:算术平方根38.在CCTV“开心辞典”栏目中,主持人问这样一道题目:“a是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,请问:a ,b ,c 三数之和是”( )A .﹣1B .0C .1D .2【答案】B【解析】【分析】先求出a ,b ,c 的值,再把它们相加即可.【详解】解:由题意,得:a =1,b =﹣1,c =0,故a +b +c =1﹣1+0=0.故选B .【点睛】此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.39.若42=a ,92=b ,且0>ab ,则a +b 的值为( )A 、5±B 、1±C 、5D 、1-【答案】A【解析】试题分析:根据平方根的性质可得:a=±2,b=±3,根据ab>0,则a=2,b=3或a=-2,b=-3,则a+b=2+3=5或a+b=-2+(-3)=-5.考点:(1)、平方根;(2)、分类讨论思想40.估算231 的值( )A、在1和2之间B、在2和3之间C、在3和4之间D、在4和5之间【答案】C【解析】试题分析:25<31<36,则5<31<6,即3<31-2<4. 考点:无理数的估算。
人教版七年级数学下册核心考点专题题型归纳04 平方根、立方根以及实数 (原卷版)
专题04 平方根、立方根以及实数【思维导图】◎考点题型1 求一个数的算术平方根例.(江苏·南师附中树人学校八年级期末)10的算术平方根是()A.10B C.D.10变式1.(江苏·扬州市江都区实验初级中学八年级阶段练习)下列说法正确的是() A.5-是25的平方根B.4±是16的算术平方根C.2是-4的算术平方根D.1的平方根是它本身)变式2.(江苏·A.3B.9±C.9-D.9变式3.(海南鑫源高级中学八年级期中)下列各数中,没有算术平方根的是( ) A .0.1 B .9 C .3(1)- D .0◎考点题型2 利用算术平方根的非负性解题例.(福建泉港·八年级期末)若实数x ,y 满足30x -=.则以x ,y 的值为两边长的等腰三角形的周长是( )A .9B .12C .15D .12或15变式1.(广东·40b -=,那么a b -=( )A .1B .-1C .-3D .-5变式2.(江苏兴化·八年级期中)已知实数x ,y 满足30x -,则以x ,y 的值为两边长的等腰三角形的周长为( )A .12B .15C .18D .12或15变式3.(云南·普洱市思茅区第四中学七年级期中)若1x -互为相反数,则xy 的值为( )A .6-B .5-C .5D .6◎考点题型3 估计算术平方根的取值范围例.(福建· )A .在1~2之间B .在2~3之间C .在3~4之间D .在4~5之间变式1.(安徽包河·最接近的整数是( )A .3B .4C .5D .7变式2.(重庆巴蜀中学一模)估计2的值应在( )A .4和5之间B .3和4之间C .2和3之间D .1和2之间变式3的运算结果应在哪两个连续自然数之间( ) A .1和2 B .2和3 C .3和4 D .4和5◎考点题型4 求算术平方根的整数部分和小数部分 2geti例.(北京朝阳·七年级期末)将边长分别1和2的长方形如图剪开,拼成一个与长方形面积相等的正方形,则该正方形的边长最接近整数( )A .4B .3C .1D .0变式.(北京·中考真题)已知2222431849,441936,452025,462116====.若n 为整数且1n n <<+,则n 的值为( )A .43B .44C .45D .46◎考点题型5 平方根的概念理解例.(山东·枣庄市台儿庄区教育局教研室八年级期中)下列说法错误的是( )A .1的平方根是±1B .1-的立方根是1-C .2的平方根D .3-变式1.(海南海口·八年级期中)下列说法正确的是( )A ±5B .﹣42的平方根是±4C .64的立方根是±4D )2=2变式2.(湖南·衡阳市华新实验中学八年级期中) 下列说法不正确的是( )A .3-是9的一个平方根B 8的立方根C .36的平方根是6±D .16的平方根是4变式3.(海南华侨中学八年级期中)下列说法中,其中不正确的是( )A .4的算术平方根是2B .2的一个平方根C .()21-的立方根是 1 D◎考点题型6 求一个数的平方根例.(江苏省无锡市经开区2021-2022学年八年级上学期期末数学试题)下列各式中,正确的是( )A .4± B 3=± C 3= D 4=-变式1.(广东大埔·八年级期末)9的平方根是( )A .3B .3±C .3-D .2±变式2.(四川巴中·八年级期末)下列说法正确的是( )A .1的平方根是1B .(﹣4)2的算术平方根是4C±3 D 是最简二次根式变式3(重庆万州·八年级期末)下列等式正确的是( ).A 8=±B .8=C .8±D 4=±◎考点题型7 求代数式的平方根例.(2019·浙江杭州·九年级)已知()24a -,则-a b 的平方根是( )A B C .D .变式1.(2019·河南兰考·八年级阶段练习)在实数范围内,|100|0b -=,则a 与b 的积的算术平方根是( )A .0B .10C .10-D .10±变式2.(2020·贵州·贵阳市白云区第九中学八年级阶段练习)若是169的算术平方根,是121的负的平方根,则(+)2的平方根为( )A .2B .4C .±2D .±4变式3.(2019·河南·南阳市第三中学八年级阶段练习)若3m =,代数式3m ( ) A .7 B .11 C .7- D .9±◎考点题型8 已知一个数的平方根,求这个数例.(全国·八年级)已知2m ﹣1和5﹣m 是a 的平方根,a 是( )A .9B .81C .9或81D .2变式1.(江苏·江阴市璜塘中学八年级阶段练习)如果一个正数a 的两个不同平方根是2x -2和6-3x ,则这个正数a 的值为( )A .4B .6C .12D .36变式2.(全国·八年级课时练习)若21x +和7x -是一个正数的平方根,则这个正数为( ) A .25 B .225 C .25或225 D .25±变式3.(湖南·长沙市北雅中学七年级阶段练习)一个正数的两个平方根分别是21a -与2a -+,则这个正数是( )A .1-B .3C .9D .3-◎考点题型9 利用平方根解方程例.(四川绵阳·七年级期末)已知2(23)4x -=,则x 的所有取值的和为( )A .0B .2C .52D .3变式1.(安徽无为·七年级期中)物体自由下落时,下落距离h (单位:米)可用公式25h t =来估算,其中t (t >0单位:秒)表示物体下落的时间.若一个篮球掉入80米深的山谷中,落入谷底前不与其他物体接触,则该篮球掉落到谷底需要的时间为( )A .2秒B .4秒C .16秒D .20秒变式2.(辽宁连山·九年级期末)方程x 2-9=0的解是( )A .x 1=3,x 2=-3B .x =0C .x 1=x 2=3D .x 1=x 2=-3变式3.(全国·九年级单元测试)若2(22)x +=,则x 的值是( )A4 B 2 C 2+2 D 2或2◎考点题型10 立方根的概念理解例.(重庆实验外国语学校七年级期末)下列运算中,正确的是( )A 2=B 2=-C .33=D 3=变式1.(贵州六盘水·八年级阶段练习)平方根和立方根都等于它本身的数是( ) A .±1 B .1 C .0 D .﹣1变式2.(浙江·九年级专题练习)下列各式中,错误的是( )A .B .(a ﹣b )2=(b ﹣a )2C .|﹣a |=aD .2a =变式3.(云南·昆明市实验中学七年级期中)下列计算正确的是( )A 2-B 3±C 3=-D .5=◎考点题型11 求一个数的立方根例.(福建洛江·八年级期末)−8 的立方根是( )A .−2B .2C .±D .64变式1.(广西港口·七年级期中)下列语句正确的是( )A .8的立方根是2B .﹣3是27的立方根C .125216的立方根是±56 D .(﹣1)2的立方根是﹣1变式2.(辽宁凌海·x ,27-的立方根是y ,则2x y -的值为( )A .7B .11C .1-或7D .11或5-变式3.(山东·( )A .28.72B .0.2872C .13.33D .0.1333◎考点题型12 已知一个数的立方根,求这个数例.(江西新余· 2.938 6.329=,=( ) A .632.9 B .293.8 C .2938 D .6329变式1.(河北· 6.882≈,68.82,则x 的值约为( )A .326000B .32600C .3.26D .0.326变式2.(甘肃·平川区四中七年级期中)已知x =6,y 3=-8,且0x y +<,则xy =( ) A .-8 B .-4 C .12 D .-12变式3.(2019·广东·佛山市南海区大沥镇许海初级中学八年级阶段练习)a+3的算术平方根是3,b-2的立方根是2, )A B .C .±6 D .6◎考点题型13 算术平方根和立方根的综合应用例.(山东薛城·八年级期中)已知x 为实数,=0,则x 2+x ﹣3的算术平方根为( )A .3B .2C .3和﹣3D .2和﹣2变式1.(2020·甘肃·武威第九中学七年级期中)若a,b ,则a+b 的值是( )A .4B .4或0C .6或2D .6变式2.(2020·河北·3270b -=,那么6()a b +的立方根是( )A .-1B .1C .3D .7变式3.(广东·连南瑶族自治县教师发展中心八年级期中)实数a ,b 在数轴上对应的点的位置如图||a b +化简的结果( )A .2a b +B .bC .2a b -D .3b◎考点题型14 无理数的概念理解例.(广东揭东·,2272π中无理数有( ) A .4个 B .3个 C .2个 D .1个变式1.(河南·郑州市第三中学八年级期末)下列各数:(每相邻两个3之间依次多一个1),2π,13无理数有( ) A .1个 B .2个C .3个D .4个 变式2.(湖南·株洲市天元区雷打石学校八年级期末)下列各数是无理数的是( )AB C .π D .227变式3.(江苏江都·2,72π-,无理数的个数有( ) A .1个 B .2个 C .3个 D .4个◎考点题型15 实数的概念理解例.(全国·七年级课时练习)下列命题:①无理数都是实数;②实数都是无理数;③无限小数都是无理数:④带根号的数都是无理数;⑤不带根号的数都是有理数,其中错误的命题的个数是( )A .1B .2C .3D .4变式1.(福建·厦门双十中学八年级阶段练习)已知实数,m n 满足20n -=,则m n +的值为( )A .2B .1-C .1D .3变式2.(浙江·九年级专题练习)下列说法其中错误的个数( )①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③16的平方根是4±,用式子表示4=±;④负数没有立方根;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0. A .0 B .1 C .2 D .3变式3.(全国·七年级期末)下列说法中不正确的是( )A .0是绝对值最小的实数B 2=C .3是9的一个平方根D .负数没有立方根◎考点题型16 实数的分类例.(甘肃兰州·八年级期中)下列说法不正确的是( )A .有理数和无理数统称为实数B .实数是由正实数和负实数组成C .无限循环小数是有理数D .实数和数轴上的点一一对应变式1.(湖南·衡阳市华新实验中学八年级期中) 下列说法正确的是( )A .定理是真命题B .真命题是定理C .实数包括正实数和负实数D .无理数是实际不存在的数变式2.(广东普宁·八年级期中)下面说法中,正确的是( )A .实数分为正实数和负实数B .带根号的数都是无理数C .无限不循环小数都是无理数D .平方根等于本身的数是1和0变式3.(山东牡丹·八年级阶段练习)下列说法正确的是( ).A .实数分为正实数和负实数B .无理数与数轴上的点一一对应C .2-是4的平方根D .两个无理数的和一定是无理数◎考点题型17 实数的性质例.(江苏江阴·1的相反数是( )A .1+B .1C .1-+D .1-变式1.(2020·浙江省开化县第三初级中学七年级期中)下列说法正确的是( ) A .绝对值等于它本身的数一定是正数B .一个数的相反数一定比它本身小C .负数没有立方根D .实数与数轴上的点一一对应变式2.(2020·全国·八年级单元测试)化简3|的结果正确的是( )A 3B .3C 3D .3变式3.(全国·七年级单元测试)下列各组数中互为相反数的一组是( )A .2与12B .|2|-C .-2D .2◎考点题型18 实数与数轴例.(浙江海曙·七年级期末)如图,面积为5的正方形ABCD 的顶点A 在数轴上,且表示的数为1,若点E 在数轴上,(点E 在点A 的右侧)且AB AE =,则E 点所表示的数为( )A B .1 C D 2变式1.(重庆市实验学校八年级期中)如图,点C 所表示的数是( )A B C .1D 变式2.(北京·八年级期中)如图,数轴上的点A 表示的数是1-,点B 表示的数是1,CB AB ⊥于点B ,且2BC =,以点A 为圆心,AC 为半径画弧交数轴于点D ,则点D 表示的数为( )A.2.8 B .C .1 D .1变式3.(上海市罗南中学七年级期中)如图,数轴上点A 表示的数可能是( )A B C D◎考点题型19 实数的大小比较例.(重庆·忠县花桥镇初级中学校九年级期中)在实数4-,0,3-,2-中,最小的数是( ) A .4- B .0 C .3- D .2-变式1.(浙江北仑·223,0,7--中,最小的是( )A B .3- C .0 D .227-变式2.(河南郑州·九年级期末)在实数|﹣3.14|,﹣3,﹣π中,最小的数是( )A B.﹣3C.|﹣3.14|D.﹣π变式3.(广东阳山·八年级期末)在﹣3,0,2,,最小的数是()A.B.﹣3C.0D.2◎考点题型20 程序设计与实数运算例.(山东张店·二模)在使用科学计算器时,依次按键的方法如图所示,显示的结果在数轴上对应的点可以是()A.点A B.点B C.点C D.点D变式1.(全国·七年级期中)有一个数值转换器,原理如下:当输入的x为64时,输出的y是()A.B.2C D.变式2.(全国·七年级期中)按如图所示的程序计算,若开始输入的值为9,则最后输出的y值是()A B.C.3D.±3变式3(2020·福建惠安·八年级期中)有一个数值转换器,流程如下:当输入的x为256时,输出的y是()AB.CD◎考点题型21 新定义下的实数运算例.(河南南召·九年级期末)用※定义一种新运算:对于任意实数m 和n ,规定m ※n =m 2n -mn -3n ,如:1※2=12×2-1×2-3×2=-6.则(-2))A.B.-C.D.变式1.(广西·南宁二中七年级期末)规定一种新运算:b a b a a *=-,如2424412*=-=-.则()2*3-的值是( ).A .10- B .6- C .6 D .8变式2.(北京市第六十六中学七年级期中)a 为有理数,定义运算符号▽:当a >-2时,▽a =-a ;当a <-2时,▽a = a ;当a =-2时,▽a = 0.根据这种运算,则▽[4+▽(2-5)]的值为( ) A .1- B .7 C .7- D .1变式3.(贵州六盘水·九年级期中)对于任意实数a ,b ,定义一种新运算“☆”如下:22()()a b a a b a b ab b a b ⎧+≥=⎨+<⎩☆,若236m =☆,则实数m 等于( ) A .8.5 B .4 C .4或 4.5- D .4或 4.5-或8.5◎考点题型22 与实数运算的规律题例.(辽宁·阜新市第一中学七年级期中)如图五个正方形中各有四个数,各正方形中的四个数之间都有相同的规律,根据此规律,可推测出m 的值为( )A .0B .1C .4D .8变式1.(福建·厦门市集美区乐安中学八年级阶段练习)如图是一个按某种规律排列的数阵,根据数阵排列的规律,第2021行从左向右数第2020个数是( )A .2020B .2021 CD变式2.(湖南·雨花外国语学校八年级开学考试)观察下列运算(x ﹣1)(x +1)=x 2﹣1(x ﹣1)(x 2+x +1)=x 3﹣1(x ﹣1)(x 3+x 2+x +1)=x 4﹣1我们发现规律:(x ﹣1)(xn ﹣1+xn ﹣2+…+x 2+x +1)=xn ﹣1(n 为正整数):利用这个公式计算:32021+32020+…+33+32+3=( )A .32022﹣1B .2022312-C .2022312+D .2022332- 变式3.(辽宁连山·七年级期中)如图在表中填在各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是( )A .216B .147C .130D .442。
平方根立方根练习题及答案
平方根立方根练习题及答案1. 求 \( \sqrt{16} \) 的值。
2. 求 \( \sqrt{81} \) 的值。
3. 求 \( \sqrt[3]{27} \) 的值。
4. 求 \( \sqrt[3]{64} \) 的值。
5. 求 \( \sqrt{0.36} \) 的值。
6. 求 \( \sqrt[3]{-27} \) 的值。
7. 判断 \( \sqrt{64} \) 是否等于 \( \sqrt{16} \times \sqrt{4} \)。
8. 求 \( \sqrt[3]{8} \) 并将其与 \( \sqrt[3]{2} \) 进行比较。
答案1. \( \sqrt{16} = 4 \),因为 \( 4^2 = 16 \)。
2. \( \sqrt{81} = 9 \),因为 \( 9^2 = 81 \)。
3. \( \sqrt[3]{27} = 3 \),因为 \( 3^3 = 27 \)。
4. \( \sqrt[3]{64} = 4 \),因为 \( 4^3 = 64 \)。
5. \( \sqrt{0.36} = 0.6 \),因为 \( 0.6^2 = 0.36 \)。
6. \( \sqrt[3]{-27} = -3 \),因为 \( (-3)^3 = -27 \)。
7. \( \sqrt{64} \) 等于 \( 8 \),而 \( \sqrt{16} \times\sqrt{4} \) 也等于 \( 4 \times 2 = 8 \),所以判断正确。
8. \( \sqrt[3]{8} \) 等于 \( 2 \)(因为 \( 2^3 = 8 \)),而\( \sqrt[3]{2} \) 约等于 \( 1.26 \),所以 \( \sqrt[3]{8} \) 大于 \( \sqrt[3]{2} \)。
这些练习题和答案可以帮助学生更好地理解和掌握平方根和立方根的概念。
通过这些练习,学生可以提高他们的计算能力和对数学概念的理解。
部编数学七年级下册专题02平方根与立方根(解析版)含答案
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!2022-2023学年人教版七年级数学下册精选压轴题培优卷专题02 平方根与立方根一.选择题(共9小题,满分18分,每小题2分)1.(2分)(2022春•西山区期末)如果a+1的算术平方根是2,27的立方根是1﹣2b,则b a=( )A.﹣1B.1C.﹣3D.3解:∵a+1的算术平方根是2,27的立方根是1﹣2b,∴a+1=4,1﹣2b=3,∴a=3,b=﹣1,∴b a=(﹣1)3=﹣1.故选:A.2.(2分)(2021秋•榕城区期末)下列说法中,正确的是( )①﹣64的立方根是﹣4;②49的算术平方根是7;③的平方根为±;④的平方根是.A.①②B.②③C.③④D.②④解:①﹣64的立方根是﹣4,原说法正确;②49的算术平方根是7,原说法正确;③﹣没有平方根,原说法错误;④的平方根是±,原说法错误;正确的有①②;故选:A.3.(2分)(2022春•定远县期末)如果≈1.333,≈2.872,那么约等于( )A.28.72B.0.2872C.13.33D.0.1333解:∵≈1.333,∴=≈1.333×10=13.33.故选:C.4.(2分)(2021春•武汉月考)一块边长为a厘米的正方形纸片,若沿着边的方向裁出一块面积为120平方厘米的长方形纸片,使它的长宽之比为4:3,在尽可能节约材料的前提下,a的值可能是( )A.12B.13C.14D.15解:设长方形纸片的长为4x厘米,宽为3x厘米,则有 4x•3x=120,整理得,12x2=120,化简得,x2=10,解得,x=(负数舍去)故长方形纸片的长为厘米,宽为厘米,由于该长方形纸片是从一块正方形纸片上沿着边的方向剪下来的,故正方形的边长至少是厘米,=,,即12<<13,且题干中要求“尽可能节约材料”,故正方形的边长应该在满足条件的前提下尽可能取小的数,故a的值可能是13,故选:B.5.(2分)(2021春•饶平县校级期末)已知,则的值是( )A.1B.2C.3D.4解:∵,∴1﹣a=﹣8,a=9,∴==3,故选:C.6.(2分)(2021春•饶平县校级期末)的算术平方根是( )A.(x2+4)4B.(x2+4)2C.x2+4D.解:∵=x2+4,∴的算术平方根是.故选:D.7.(2分)(2020春•合川区期末)已知M=是9的算术平方根,7a+3b﹣1的平方根为±4,N=,则M+2N的立方根为( )A.﹣1B.1C.﹣2D.2解:∵9的算术平方根是3,∴M==3,∴5a+2b=9,又∵7a+3b﹣1的平方根为±4,∴7a+3b﹣1=16,∴,解得a=﹣7,b=22,∴N====﹣2,∴M+2N=3+2×(﹣2)=3﹣4=﹣1,而﹣1的立方根为﹣1,∴M+2N的立方根为﹣1,故选:A.8.(2分)(2015•杭州模拟)已知边长为a的正方形面积为10,则下列关于a的说法中:①a是无理数;②a是方程x2﹣10=0的解;③a是10的算术平方根;④a满足不等式组正确的说法有( )A.1个B.2个C.3个D.4个解:因为边长为a的正方形面积为10,所以可得a=,则①a是无理数,正确;②a是方程x2﹣10=0解,正确;③a是10的算术平方根,正确;④解不等式组,得:3<a<4,而,正确;故选:D.9.(2分)(2014•台湾)已知9.972=99.4009,9.982=99.6004,9.992=99.8001,求之值的个位数字为何?( )A .0B .4C .6D .8解:∵9.972=99.4009,9.982=99.6004,9.992=99.8001,∴<<,∴9.98<<9.99,∴998<<999,即其个位数字为8.故选:D .二.填空题(共11小题,满分22分,每小题2分)10.(2分)(2022春•海淀区校级期中)将边长分别为1和2的长方形如图剪开,拼成一个与长方形的面积相等的正方形,则该正方形的边长最接近整数 1 .解:设拼成后的正方形的边长为x (x >0).由题意得,x 2=2.∴x =≈1.414.∴该正方形的边长最接近整数1.故答案为:1.11.(2分)(2022秋•金台区月考)已知b 有两个平方根分别是a +3与2a ﹣15,则b 为 49 .解:由题意得:a +3+(2a ﹣15)=0.解得:a =4.∴(a +3)2=72=49.故答案为:49.12.(2分)(2022春•瑶海区期中)若记[x ]表示任意实数的整数部分,例如:[4.2]=4、[]=1、…,则[]﹣[]+[]﹣[]+……+[]﹣[](其中“+”、“﹣”依次相间)的值为 ﹣3 .解:原式=1﹣1+1﹣2+2﹣2+2﹣2+3﹣3+••+7﹣7=﹣3.故答案为:﹣3.13.(2分)(2022•易县二模)一个数的平方根是a+4和2a+5,则a= ﹣3 ,这个正数是 1 .解:∵一个数的平方根是a+4和2a+5,∴a+4+2a+5=0,∴a=﹣3,∴这个数的平方根是±1,这个数是1,故答案为﹣3,1.14.(2分)(2022•海州区校级三模)计算:的值是 3 .解:=3,故答案为:3.15.(2分)(2022•雨花区模拟)面积为2的正方形的边长为 .解:面积为2的正方形的边长为;故答案为:.16.(2分)(2022春•长葛市期末)已知5x﹣2的立方根是﹣3,则x+69的算术平方根是 8 .解:∵5x﹣2的立方根是﹣3,∴5x﹣2=﹣27,解得:x=﹣5,∴x+69=﹣5+69=64,∴x+69的算术平方根是8;故答案为:8.17.(2分)(2022春•康巴什期末)有一个数值转换器,流程如下:当输入的x值为64时,输出的y值是 .解:=8,是有理数,8的立方根是2,是有理数,2的算术平方根是.故答案为:.18.(2分)(2022春•河北区校级期中)若5x+19的立方根是4,则2x+7的平方根是 ±5 .解:∵5x+19的立方根是4,∴5x+19=64,解得x=9则2x+7=2×9+7=25,∴25的平方根是±5故答案±5.19.(2分)(2021春•上海期中)求值:= .解:∵.∴.故答案为:.20.(2分)(2021春•梁子湖区期中)已知≈1.2639,≈2.7629,则≈ ﹣0.12639 .解:∵≈1.2639,∴==×=﹣×≈﹣0.12639.故答案为:﹣0.12639.三.解答题(共9小题,满分60分)21.(6分)(2022春•鼓楼区期中)一个正数b的两个平方根分别是a﹣2与1﹣2a.(1)求ab的值;(2)求关于x的方程2ax2+5=﹣3的解.解:∵一个正数b的两个平方根分别是a﹣2与1﹣2a,∴a﹣2+1﹣2a=0,解得a=﹣1,当a=﹣1时,a﹣2=﹣3,∴b=9,∴ab=﹣9,答:ab的值为﹣9;(2)当a=﹣1时,原方程可变为﹣2x2+5=﹣3,即x2=4,∴x==±2,答:关于x的方程2ax2+5=﹣3的解为x=±2.22.(6分)(2022春•武邑县校级期末)某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来400m2的正方形场地改建成315m2的长方形场地,且其长、宽的比为5:3.(1)求原来正方形场地的周长;(2)如果把原来正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由.解:(1)=20(m),4×20=80(m),答:原来正方形场地的周长为80m.(2)设这个长方形场地宽为3am,则长为5am.由题意有:3a×5a=315,解得:a=,∵3a表示长度,∴a>0,∴a=,∴这个长方形场地的周长为 2(3a+5a)=16a=16(m),∵80=16×5=16×>16,∴这些铁栅栏够用.答:这些铁栅栏够用.23.(6分)(2022春•黔西南州月考)已知是n﹣m+3的算术平方根,是m+2n 的立方根,求B﹣A的平方根.解:由题意得:m﹣2=2,m﹣2n+3=3,解得:m=4,n=2,则A==1,B=,∴B﹣A=2﹣1=1,则B﹣A的平方根为:±1.24.(6分)(2022春•江汉区期中)阅读下列材料:已知59319的立方根是正整数,要得到的结果,可以按如下步骤思考:第一步:确定的位数,因为103=1000,1003=1000000,而100<59319<1000000,所以10<<100,由此得是两位数;第二步:确定个位数字,因为59319的个位上的数是9,而只有9的立方的个位上的数是9,所以的个位上的数是9;第三步:确定十位数字,划去59319后面的三位319得到59,因为33=27,43=64,而27<59<64,所以的十位上的数字是3;综合以上可得,=39.请根据上述内容,完成以下问题:(1)若为正整数,它的个位上的数是m,x的个位上的数是n,请将下表填写完整;m123456789n187 4 5 6 3 2 9(2)已知262144,474552都是整数的立方,则= 64 ,= 7.8 ;(3)已知71289是某正整数a的平方,则a= 267 .解:(1)43=4×4×4=64,63=6×6×6=216,83=8×8×8=512,故答案为:4,6,2;(2)①要得到的结果,可以按如下步骤思考:第一步:确定的位数,因为103=1000,1003=1000000,而100<262144<1000000,所以10<<100,由此得是两位数;第二步:确定个位数字,因为626144的个位上的数是4,而只有4的立方的个位上的数是4,所以的个位上的数是4;第三步:确定十位数字,划去262144后面的三位144得到262,因为63=216,73=343,而216<262<343,所以的十位上的数字是6;综合以上可得,=64;②要得到的结果,即要得到的结构,也就是,我们可以先求出的结果,可以按如下步骤思考:第一步:确定的位数,因为103=1000,1003=1000000,而100<474552<1000000,所以10<<100,由此得是两位数;第二步:确定个位数字,因为474552的个位上的数是2,而只有8的立方的个位上的数是2,所以的个位上的数是8;第三步:确定十位数字,划去474552后面的三位552得到474,因为73=343,83=512,而343<474<512,所以的十位上的数字是7;综合以上可得,=78,所以====7.8,故答案为:64,7.8;(3)因为2672=267×267=71289,所以a==267,故答案为:267.25.(6分)(2022春•东湖区期中)为了切实减轻学生的课业负担,各地中小学积极响应,开展一系列形式多样的课后服务.某次晚托兴趣活动中:(1)小红用两个大小一样的小正方形纸片,剪拼出了一个面积400cm2的大正方形纸片.如图,则每个小正方形的边长是 10cm ;(2)小美想用这块面积为400cm2的大正方形纸片,沿着边的方向裁出一块面积为300cm2的长方形纸片,使它的长宽之比为6:5,且要求长方形的四周至少留出1cm的边框.请你用所学过的知识来说明,能否用这块纸片裁出符合要求的纸片.解:(1)由拼图可知,每个小正方形的面积为200cm2,所以小正方形的边长为=10(cm),故答案为:10cm;(2)不能,理由:设长方形的长为6a,则宽为5a,由长方形的面积可得,6a•5a=300,解得a=(a>0),所以这个长方形的长为6,宽为5,因为6+2>20,所以,不能剪出符合条件的长方形.26.(8分)(2022春•武昌区校级期中)小丽手中有块长方形的硬纸片,若将该硬纸片的长减少5cm,宽增加4cm,就成为一个正方形硬纸片,并且这两个图形的面积相等.(1)求这块长方形的硬纸片的长、宽各是多少?(2)现小丽想用这块长方形的硬纸片,沿着边的方向裁出一块长与宽的比为3:2,面积为360cm2的新长方形纸片,请判断小丽能否裁出,并说明理由.解:(1)设长方形的长为xcm,宽为ycm,则,解得,,答:这个长方形的长、宽分别是25cm,16cm;(2)小明不能,成功.设裁出的长为3acm,宽为2acm,则3a⋅2a=360,解得,a==2,∴裁出的长为3×<25cm,宽为2×=4<16cm,∴小丽能.27.(8分)(2022春•扶沟县期末)如图,用两个边长为cm的小正方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片长宽之比为3:2,且面积为30cm2?请说明理由.解:不能,因为大正方形纸片的面积为()2+()2=36cm2,所以大正方形的边长为6cm,设截出的长方形的长为3bcm,宽为2bcm,则6b2=30,所以b=(取正值),所以3b=3=>,所以不能截得长宽之比为3:2,且面积为30cm2的长方形纸片.28.(6分)(2022春•临洮县期中)已知2a﹣7的平方根是±5,2a+b﹣1的算术平方根是4,求﹣+b的值.解:∵±=±5,∴2a﹣7=25,∴a=16;∵=4,∴2a+b﹣1=16,∴2a+b=17,∴b=﹣15;∴﹣+b=﹣4+(﹣15)=﹣19.29.(8分)(2022春•曲阜市期中)探索与应用.先填写下表,通过观察后再回答问题:a…0.00010.01110010000……0.01x1y100…(1)表格中x= 0.1 ;y= 10 ;(2)从表格中探究a与数位的规律,并利用这个规律解决下面两个问题:①已知≈3.16,则≈ 31.6 ;②已知=1.8,若=180,则a= 32400 ;(3)拓展:已知,若,则z= 0.012 .解:(1)x=0.1,y=10,故答案为:0.1,10;(2)①≈31.6,a=32400,故答案为:31.6,32400;(4)z=0.012,故答案为:0.012。
最新最新人教版初一数学下册平方根、立方根试题
..................................................................最新精品资料推荐 (1)2013—2014学年七年级数学(下)周末辅导资料(04)一、知识点梳理:1、平方根:如果一个数的平方等于a ,那么这个数就叫做a 的平方根(二次方根). 若a x =2)(0≥a ,则х叫做a 的平方根.即x =a ±2、立方根: 如果一个数的立方等于a ,这个数就叫做a 的立方根.(也称数a 的三次方根) 若x 3=a ,则x 叫做a 的立方根,或称x 叫做a 的三次方根。
即x =3a 二、典型例题:例1:(1)如果9=x ,那么x =________;如果92=x ,那么=x ________ (2)如果x 的一个平方根是7.12,那么另一个平方根是________.(3)一个正数的两个平方根的和是________.一个正数的两个平方根的商是________. (4)若一个实数的算术平方根等于它的立方根,则这个数是_________; (5)若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ;【课堂练习1】1、算术平方根等于它本身的数有________,立方根等于本身的数有________.2、81的平方根是_______,4的算术平方根是_________;3、若一个数的平方根是8±,则这个数的立方根是 ;4、12+x 的算术平方根是2,则x =________.5、已知0)3(122=++-b a ,则=332ab ;例2:若9x 2=,那么(4-x)的算术平方根是多少?例3: 已知x 的平方根是2a+3和1-3a ,y 的立方根为a ,求x+y 的值.例4:(1)已知a 是7的整数部分,b 是7的小数部分,求22)2b ()a (++-的值。
(2)已知(x-1)2+│x-y+z+1│=0,求x+y+z 的平方根.例5:求下列各式中的x 的值:(1)()23216x += (2)31(21)42x -=-三、强化训练:1. 81 的算术平方根是 ( ) A .9 B.-9 C. ±9 D. 32. 27-). A .0 B .6 C .-12或6 D .0或-63. 一个数若有两个不同的平方根,则这两个平方根的和为( )..................................................................最新精品资料推荐 (2)A 、大于0B 、等于0C 、小于0D 、不能确定 4. 下列说法错误的是( )A. 1的平方根是±1B. –1的立方根是–1C. 2是2的算术平方根D. –3是2)3(-的平方根 5.下列说法正确的是( )A.064.0-的立方根是0.4B.9-的平方根是3±C.16的立方根是316D.0.01的立方根是0.000001 6. 下列说法中正确的是 ( )A. 实数2a -是负数B. a a =2C. a -一定是正数D. 实数a -的绝对值是a7. 144的算术平方根是 ,16的平方根是 ; 8、327= , 64-的立方根是 ; 9、7的平方根为 ,21.1= ;10、一个数的平方是9,则这个数是 ,一个数的立方根是1,则这个数是 ; 11、若164=x ,则x= ;若813=n ,则n= ; 12、若0|2|1=-++y x ,则x+y= ;13、计算:381692553+-= ; 14、求下列各式的值: (1)40083321633⨯--- (2)49.0381003⨯-⨯(3) 233221-+-+- (4)15、求下列各式中的x 的值:(1)0492=-x ; (2)0142=-x ; (3) 16461)21(3=-+x16、若一正数a 的两个平方根分别是2m-3和5-m,求a 的值。
(人教版)七年级数学下册第六章第1节《平方根、立方根》同步练习(含答案)
课题:6.1平方根授课类型:新授 执笔人: 修改人: 审核人学习目标:1.掌握平方根的概念,明确平方根和算术平方根之间的联系和区别;2.能用符号正确地表示一个数的平方根,理解开平方运算和乘方运算之间的互逆关系; 3.培养学生的探究能力和归纳问题的能力. 学习重点:平方根的概念和求数的平方根. 学习难点:平方根和算术平方根的联系与区别 . 教学过程: 一 、复习引入: 1. 什么叫算术平方根? 2. 求下列各数的算术平方根: (1)400; (2)1; (3)6449; (4)0.0001 (5)0 二、新授:问题: 如果一个数的平方等于9,这个数是多少? 又如:2542=x ,则x 等于多少呢? 填表:1.平方根的概念:如果一个数的平方等于a ,那么这个数就叫做a 的____________.即:如果a x =2,那么x 叫做a 的平方根.记作:±a ,读作“正、负根号a ”. 2. 开平方的概念:求一个数a 的平方根的运算,叫做_____________.例如:±3的平方等于9,9的平方根是±3,所以平方与开平方互为逆运算.例2:求下列各数的平方根:(1) 100 (2) 169(3) 0.25 (4)0思考:正数的平方根有什么特点?0的平方根是多少?负数有平方根吗?归纳:正数有____ 个平方根,它们____________________; 0的平方根是_________;负数_______________________________.引入符号:正数a 的算术平方根可用a 表示;正数a 的负的平方根可用-a 表示,正数a 的平方根可以用a ±表示. 例3:求下列各式的值:(1)144,(2)-81.0,(3)196121±(4)256,(5)()256 , (6三、课堂练习:课本第75页练习 1、2、3 1. 下面说法正确的是( )A 、 0的平方根是0 ;( )B 、 1的平方根是1;( )C 、 ﹣1的平方根是﹣1;( )D 、 (﹣1)2平方根是﹣1. ( ) 2. 求下列各数的平方根: (1)0.49 (2)4936(3)81 (4)0 (5)-100四、课堂检测:1.算术平方根等于它本身的数是__________________. 2. 下列各数没有平方根的是( )A 、64B 、0C 、(﹣2)3D 、(﹣3)43.(-3)2的平方根是( )A 、3B 、-3C 、±3D 、±94.下列各数有平方根吗?如果有,求出它的平方根;如果没有,说明理由. ⑴ 256 ⑵ 0 ⑶ (-4)2 ⑷ 1001⑸ -645.求下列各式的值-★6. x+2和3x -14是同一个数的平方根,则x 等于( ) A.-2 B.3或4 C.8 D.36.2《立方根》同步练习知识点:立方根:一般地,如果一个数的立方等于a ,那么这个数是a 的立方根 立方根性质:正数的立方根是正数 0的立方根是0 负数的立方根是负数3a - = —3a同步练习:【模拟试题】(共60分钟,满分100分) 一、认认真真选(每小题4分,共40分) 1.下列说法不正确的是( ) A.-1的立方根是-1 B.-1的平方是1 C.-1的平方根是-1 D.1的平方根是±1 2.下列说法中正确的是( ) A.-4没有立方根B.1的立方根是±1C.361的立方根是61D.-5的立方根是35-3.在下列各式中:327102=34,3001.0=0.1,301.0=0.1,-33)27(-=-27,其中正确的个数是( ) A.1B.2C.3D.4﹡4.若m<0,则m 的立方根是( )A.3mB.-3mC.±3mD.3m -﹡5.如果36x -是x -6的三次算术根,那么x 的值为( ) A.0 B. 3 C.5 D.66.已知x 是5的算术平方根,则x2-13的立方根是( ) A.5-13 B.-5-13 C.2 D.-27.在无理数5,6,7,8中,其中在218+与2126+之间的有( )A.1个B.2个C.3个D.4个﹡8.一个正方体的体积为28360立方厘米,正方体的棱长估计为( ) A.22厘米 B.27厘米 C.30.5厘米D.40厘米﹡9.已知858.46.23=,536.136.2=,则00236.0的值等于( ) A .485.8 B .15360 C .0.01536 D .0.04858﹡﹡10.若81-x3x 的值是( )A.0B. 21C. 81D. 161二、仔仔细细填(每小题4分,共32分)11.-81的立方根是 ,125的立方根是 。
七年级数学下册 春季课程 第三讲 平方根与立方根的认识试题(新版)新人教版
第三讲 平方根与立方根的认识课程目标1.了解平方根、算术平方根的概念,会用根号表示数的平方根. 2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根. 3. 了解立方根的含义;4. 会表示、计算一个数的立方根,会用计算器求立方根.课程重点 会用根号表示数的平方根,并会用开方运算求某些非负数的平方根 课程难点 开方运算求某些非负数的平方根 教学方法建议 熟悉掌握概念,熟练各种题型变换一、知识梳理:要点一:平方根、算术平方根及立方根的概念 1.算术平方根的定义如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);a 的算术平方根记作a ,读作“a 的算术平方根”,a 叫做被开方数.要点诠释:当式子a 有意义时,a 一定表示一个非负数,即a ≥0,a ≥0. 2.平方根的定义如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. a (a ≥0)的平方根的符号表达为(0)a a ±≥,其中a 是a 的算术平方根. 3.立方根的定义(1)如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根.这就是说,如果3x a =,那么x 叫做a 的立方根.求一个数的立方根的运算,叫做开立方.要点诠释:一个数a 的立方根,用3a 表示,其中a 是被开方数,3是根指数. 开立方和立方互为逆运算.(2)立方根的特征:正数的立方根是正数,负数的立方根是负数,0的立方根是0.要点诠释:任何数都有立方根,一个数的立方根有且只有一个,并且它的符号与这个非零数的符号相同. 两个互为相反数的数的立方根也互为相反数.要点二:平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:a ±和a 2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.要点三:平方根及立方根的性质平方根的性质:2(0)||0(0)(0)aa a a a a a >⎧⎪===⎨⎪-<⎩()()20aaa =≥立方根的性质: 33a a -=- 33a a =()33aa =要点诠释:立方根第一个公式可以将求负数的立方根的问题转化为求正数的立方根的问题.要点四:平方根及立方根小数点位数移动规律平方根小数点位数移动规律:被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.例如:62500250=,62525=, 6.25 2.5=,0.06250.25=.平方根及立方根小数点位数移动规律:被开方数的小数点向右或者向左移动3位,它的立方根的小数点就相应地向右或者向左移动1位.例如,30.000 2160.06=,30. 2160.6=,3 2166=,3216000 60=.二、课堂精讲: 【典型例题】类型一:平方根、算术平方根及立方根的概念例1:(1)已知2a ﹣1的平方根是±3,3a+b ﹣9的立方根是2,c 是的整数部分,求a+b+c 的平方根.(2)、下列结论正确的是( ) A .64的立方根是±4B .12-是16-的立方根 C .立方根等于本身的数只有0和1 D .332727-=- 【随堂演练1】【变式1】已知2a -1与-a +2是m 的两个不同的平方根,求m 的值.【变式2】下列说法正确的是( )A .一个数的立方根有两个B .一个非零数与它的立方根同号C .若一个数有立方根,则它就有平方根D .一个数的立方根是非负数【变式3】下列说法正确的是( ) A .﹣4的立方是64 B . 0.1的立方根是0.001 C . 4的算术平方根是16D . 9的平方根是±3例2:x 为何值时,下列各式有意义?(1) 2x 4x -11x x ++-1x -.【随堂演练2】【变式1】已知4322232b a a =--,求11a b+的算术平方根.类型二、平方根及立方根的运算 例3:求下列各式的值. (1)2222252434-+; (2)111200.36900435--. (3)327102-- (4)3235411+⨯ (5)336418-⋅ (6)23327(3)1-+--- (7)10033)1(412)2(-+÷-- 【思路点拨】(1)首先要弄清楚每个符号表示的意义.(2)注意运算顺序.【随堂演练3】【变式1】计算:(1)30.008-=______;(2)=364611______; (3)=--312719______.(4)=-33511)(______.类型三、利用平方根或立方根解方程 例4:求下列各式中的x .(1)23610;x -= (2)()21289x +=;(3)()2932640x +-=(4)(x ﹣2)3=﹣125.【变式1】求出下列各式中的a :(1)若3a =0.343,则a =______;(2)若3a -3=213,则a =______; (3)若3a +125=0,则a =______;(4)若()31a -=8,则a =______.【变式2】求下列等式中的x :(1)若21.21x =,则x =______; (2)2169x =,则x =______; (3)若29,4x =则x =______; (4)若()222x =-,则x =______.类型四、平方根与立方根的综合应用例5:已知a 、b |0b -=,解关于x 的方程2(2)1a x b a ++=-.【随堂演练5】【变式10=,求20112012x y +的值.例6:(1)小丽想用一块面积为4002cm 的正方形纸片,沿着边的方向裁出一块面积为3002cm 的长方形纸片,使它长宽之比为2:3,请你说明小丽能否用这块纸片裁出符合要求的长方形纸片.(2)在做物理实验时,小明用一根细线将一个正方体铁块拴住,完全浸入盛满水的圆柱体烧杯中,并用一量筒量得铁块排出的水的体积为643cm ,小明又将铁块从水中提起,量得烧杯中的水位下降了169πcm .请问烧杯内部的底面半径和铁块的棱长各是多少?【变式1】某小区为了促进全民健身活动的开展,决定在一块面积约为1000m 2的正方形空地上建一个篮球场,已知篮球场的面积为420m 2,其中长是宽的倍,篮球场的四周必须留出1m 宽的空地,请你通过计算说明能否按规定在这块空地上建一个篮球场? 【变式2】将棱长分别为和的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为____________.(不计损耗)三、课后作业:【平方根——巩固练习A 组】一.选择题1.下列说法中正确的有( ).①只有正数才有平方根. ②2-是4的平方根. ③16的平方根是4±.④2a 的算术平方根是a . ⑤2(6)-的平方根是6-.⑥ 93=±.A .1个B .2个C .3 个D .4个 2.若m =40-4,则估计m 的值所在的范围是( )A .1<m <2 B. 2<m <3 C. 3<m <4 D. 4<m <5 3. 试题下列说法中正确的是( )A.4是8的算术平方根B.16的平方根是4C.6是6的平方根D.-a 没有平方根 4. 能使x -3的平方根有意义的x 值是( )A. x >0B. x >3C. x ≥0D. x ≥3 5.若=a ,则a 的值为( )A .1B .﹣1C .0或1D .±16. 若x ,y 为实数,且|x +1|1y -=0,则2013x y ⎛⎫⎪⎝⎭的值是( )A.0B.1C.-1D.-xx二.填空题7. 若10404102=,则 1.0404=__________.8. 如果一个正方形的面积等于两个边长分别是3cm 和5cm 的正方形的面积的和,则这个正方形的边长为 ________. 9. 下列各数:81,1625,1.44,124,81的平方根分别是_______________;算术平方根分别是_______________.10.(1)25的平方根是________;(2)()25-的平方根是________,算术平方根是________; (3)2x 的平方根是________,算术平方根是________; (4)()22x +的平方根是________,算术平方根是________. 11.已知,求a ﹣b= . 12. 若,则____________.三.解答题13.x 为何值时,下列各式有意义?(1)2;x (2);x - (3)2;x (4) 1.x -14.已知:|x ﹣1|+(y ﹣2)2+=0,求x+y+z 值的平方根.15.如图,实数a ,b 对应数轴上的点A 和B ,化简2222()()a b a b a b +---+【立方根——巩固练习B 组】一.选择题1.下列结论正确的是( )A .2764的立方根是34± B .1125-没有立方根 C .有理数一定有立方根D .()61-的立方根是-12.如果-b 是a 的立方根,则下列结论正确的是( )A .-3b =aB .-b =3aC .b =3aD .3b =a3.下列说法中正确的有( )个. ① 负数没有平方根,但负数有立方根.②49的平方根是28,327±的立方根是23±⋅ ③如果()322x =-,那么x =-2. ④算术平方根等于立方根的数只有1. A .1 B .2 C .3 D .4 4.x 是()29-的平方根,y 是64的立方根,则x y +=( )A. 3B. 7C.3,7D. 1,7 5.的立方根是( )A .﹣1B . 0C . 1D . ±16. 有如下命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数同号;④如果一个数的立方根是这个数本身,那么这个数是1或0,其中错误的是( )A.①②③B.①②④C.②③④D.①③④ 二.填空题7.3311x x -+-中的x 的取值范围是______,11x x -+-中的x 的取值范围是______.8.-8的立方根与81的平方根的和是______. 9.若330,x y += 则x 与y 的关系是______. 10.计算= .11. 如果344,a +=那么()367a -的值是______. 12.若,则____________.三.解答题13.321a -313b -ab的值.14.已知5x+19的立方根是4,求2x+7的平方根.15.已知M=是m+3的算术平方根,N=是n﹣2的立方根,试求M﹣N的值.如有侵权请联系告知删除,感谢你们的配合!。
人教版数学七年级下册第六章《平方根,立方根、实数》典型例题精练
平方根与算术平方根的平方根是 .题二:43的平方根是 .题三:()a c 2240-+-=题四:已知a 、b 、c (a c 20-+-=,求a 、b 、c 的值.的平方根是 .的平方根是 ..题七:已知一个正数的平方根分别是3-a 和2a +3,求这个正数.题八:若一个正数的平方根分别为3a +1和4-2a ,求这个正数.题九: 1.311≈ 4.147≈,求-的值是多少?题十:7.35≈,求的值是多少?题十一:解方程:2(x+2)2+2=4.题十二:解方程:3(x+2)2+6=33.立方根与实数题一:有如下命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数同号;④如果一个数的立方根是这个数本身,那么这个数是1或0,其中错误的是() A.①②③B.①②④C.②③④D.①③④题二:有如下命题:①无理数就是开方开不尽的数;②一个实数的立方根不是正数就是负数;③无理数包括正无理数,0,负无理数;④如果一个数的立方根是这个数本身,那么这个数是l或0.其中错误的个数是()A.1 B.2 C.3 D.4题三:下列说法:①无限小数都是无理数;②无理数都是无限小数;③带根号的数都是无理数;④所有有理数都可以用数轴上的点表示;⑤数轴上所有点都表示有理数;⑥所有实数都可以用数轴上的点表示;⑦数轴上所有的点都表示实数,其中正确的有.题四:下列说法中,正确的有()个(1)无限小数都是无理数; (2)无理数都是无限小数;(3)正实数包括正有理数和正无理数; (4)实数可以分为正实数和负实数两类.A.1 B.2 C.3 D.4题五:若|a-b+2|22a+2b的立方根.题六:(b-27)2题七:已知一个铜质的五棱柱的底面积为16cm2,高为4cm,现将它熔化后铸成一个正方体的铜块(不计损耗),那么铸成的铜块的棱长是_____.题八:一块棱长6m的正方体钢坯,重新溶铸成一个横截面积18m2的长方体钢坯,铸成的长方体钢坯有多长?题九:把下列各数分别填在相应的括号内:23.14,2,1,300%35π-----整数{ …};分数{ …};无理数{ …}.题十:把下列各数分别填在相应的括号内:31 3.14 3.1,0,1.410,211,,42π---⨯-,,整数{ …};分数{ …};无理数{ …}.题十一:按要求分别写出一个大于8且小于9的无理数:(1)用一个平方根表示:;(2)用一个立方根表示:;(3)用含π的式子表示:;(4)用构造的方法表示:.题十二:按要求分别写出一个大于4且小于5的无理数:(1)用一个平方根表示:;(2)用一个立方根表示:;(3)用含π的式子表示:;(4)用构造的方法表示:.题十三:下面4种说法:①两个无理数的差一定是无理数;②两个无理数的商一定是无理数;③一个无理数与一个有理数的差仍是无理数;④一个无理数与一个有理数的积仍是无理数.其中,正确的说法个数为()A.1 B.2 C.3 D.4题十四:关于无理数,有下列说法:①2个无理数之和可以是有理数;②2个无理数之积可以是有理数;③开方开不尽的数是无理数;④无理数的平方一定是有理数;⑤无理数一定是无限不循环小数.其中,正确的说法个数为()A.1 B.2 C.3 D.4平方根与算术平方根题一:=5,∴5的平方根是的平方根是.题二:±8.详解:∵43=64,而8或-8的平方等于64,∴43的平方根是±8.题三:.()-+-=240a c2∴a-2=0,b-3=0,c-4=0,∴a=2,b=3,c=4..题四: 5,.详解:由题意得,b 50-=,a 0-=,c 0-=,解得a ==b 5=,c ==题五:7=,∴7的平方根是的平方根是题六: 9±.81=,∴81的平方根是9±9±.题七: 81.详解:由题意得,3-a +2a +3=0,解得a = -6,则3-a =9,故这个正数为81.题八: 196.详解:3a +1+4-2a =0,解得a = -5,则3a +1=3×(-5)+1=-14,故这个正数为(-14)2 =196.题九: 0.04147-.1.311≈ 4.147≈,∴0.04147-≈-.题十: 7350.7.35≈,7.3510007350=≈⨯=.题十一: -1,-3.详解:等式两边同时减去2,得2(x +2)2=2, 等式两边同时除于2,得(x +2)2=1,则x+2=1或x+2= -1,解得x= -1或x= -3.题十二:1,-5.详解:等式两边同时减去6,得3(x+2)2=27,等式两边同时除于3,得(x+2)2=9,则x+2=3或x+2= -3,解得x=1或x= -5.立方根与实数题一:B.详解:①负数有立方根,故错误;②一个实数的立方根是正数、0、负数,故错误;③一个正数或负数的立方根与这个数同号,故正确;④如果一个数的立方根是这个数本身,那么这个数是±1或0,故错误.故选B.题二:D.详解:①开方开不尽的数是无理数,但无理数就是开方开不尽的数是错误的,故①错误;②一个实数的立方根不是正数就是负数,还可能包括0,故②错误;③无理数包括正无理数,0,负无理数,不包括0,故③错误;④如果一个数的立方根是这个数本身,那么这个数是l或0,这个数还可能是-1,故④错误.故选D.题三:②④⑥⑦.详解:∵无限不循环小数小数是无理数,无限循环小数是有理数,∴①错误;∵无理数都是无限小数正确,∴②正确;∵所有有理数和无理数都可以用数轴上的点表示,∴④正确;∵数轴上所有点都表示实数,∴⑤错误;∵所有实数都可以用数轴上的点表示正确,∴⑥正确;∵数轴上所有的点都表示实数正确,∴⑦正确;即正确的有②④⑥⑦.题四:B.详解:(1)无限不循环小数是无理数,故本小题错误;(2)符合无理数的定义,故本小题正确;(3)符合实数的分类,故本小题正确;(4)实数分正实数、负实数和0,故本小题错误.故选B.题五:-2.详解:∵|a-b+2|∴a−b+2=0,a+b−1=0,解得a=1-,b2∴22a+2b=22×(1-)+211+3= -8,2∵(-2)3= -8,∴22a+2b的立方根是-2.题六:-(b-27)2互为相反数,b-27)2 =0,,(b-27)2≥0,,(b-27)2=0,∴a= -8,b=27,-2-3= -5.-题七:4cm.详解:∵铜质的五棱柱的底面积为16cm2,高为4cm,∴铜质的五棱柱的体积V=16×4=64cm3,设熔化后铸成一个正方体的铜块的棱长为a cm,则a3=64,解得a=4cm.题八:12m.详解:根据题意,得6×6×6÷18=216÷18=12(m),答:锻成的钢材长12m.题九: 见详解.详解:整数2,300%--…};分数{23.14, 3.131131113,15--…};无理数{3π-…}. 题十: 见详解.详解:整数{3110,211,4⨯-,…};分数 3.14 3.1-,…}; 无理数{2π,…}.题十一: (3)5+π;(4)8.248372147284….详解:根据,根据π的值,写出符合条件的数即可;根据无理数的定义写出一个无规律的数即可.故答案为:;;(3)5+π;(4)8.248372147284….题十二: ;(3)1+π;(4)4.1234567895432867….详解:根据,之间的一个数即可;根据,π的值,写出符合条件的数即可;根据无理数的定义写出一个无规律的数即可.故答案为:;(3)1+π;(4)4.1234567895432867…. 题十三: A .0=;=;1③一个无理数与一个有理数的差仍是无理数,正确;④一个无理数与一个有理数的积仍是无理数,错误,×0=0.则其中正确的有1个.故选A.题十四:D.详解:①2(33=,本选项正确,②2个无理数之积可以是有理数,如1=,本选项正确,③开方开不尽的数是无理数,本选项正确,④无理数的平方一定是有理数,如2π:本选项错误,⑤无理数一定是无限不循环小数,本选项正确,故选D.。
人教版七年级数学下册第六章第一节平方根试题(含答案) (40)
人教版七年级数学下册第六章第一节平方根复习试题(含答案)已知2a ﹣1的平方根是±3,3a+b ﹣1的立方根是2,求2a ﹣b 的平方根.【答案】±4【解析】试题分析:根据平方根和立方根得出2a ﹣1=9,3a+b ﹣1=8,求出a 、b 的值即可.解:∵2a ﹣1的平方根是±3,∴2a ﹣1=9,a=5,∵3a+b ﹣1的立方根是2,∴3a+b ﹣1=8,∴b=﹣6,∴2a ﹣b=16,∴2a ﹣b 的平方根是±4.【点评】本题考查了对平方根和立方根定义的应用,关键是能根据题意得出算式2a ﹣1=9和3a+b ﹣1=8.52.|5|+(-12)-2--1)0.【答案】9.【解析】试题分析:原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及平方根、立方根定义计算即可得到结果.试题解析:原式=5+4+3-2-1=9.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.53.已知x是的整数部分,y是的小数部分,求x(﹣y)的值.【答案】9【解析】试题分析:由于3<<4,由此可确定的整数部分x,接着确定小数部分y,然后代入所求代数式中计算出结果即可.解:∵3<<4,∴的整数部分x=3,小数部分y=﹣3,∴﹣y=3,∴x(﹣y)=3×3=9.54.求下列x的值.(1)2x3=﹣16 (2)(x﹣1)2=4.【答案】【解析】试题分析:(1)先求出x3,再根据立方根的定义求出x.(2)根据平方根的意义先求出x﹣1,再求出x.解:(1)∵2x3=﹣16,∴x2=﹣8,∴x=﹣2.(2)∵(x﹣1)2=4,∴x﹣1=±2,∴x=﹣1或3.55.求下列各式的值(1)﹣﹣(2)﹣12+(﹣2)3×.【答案】(1)原式=0;(2)原式=﹣3【解析】试题分析:(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用乘方的意义,平方根、立方根定义,以及乘法法则计算即可得到结果.解:(1)原式=3﹣6+3=0;(2)原式=﹣1﹣1﹣1=﹣3.三、填空题56.25的平方根是__________【答案】±5【解析】试题分析:根据算术平方根的计算法则可得:25=5,则5的平方根为±5.考点:平方根的计算的立方根是,81的平方根是。
人教版七年级数学下册《平方根和立方根》同步练习含答案
第4讲 算术平方根、平方根、立方根Ⅰ、算术平方根如果一个正数x 的平方等于a ,那个这个正数x 叫做a 的算术平方根,记作_________;0的算术平方根是________Ⅱ、平方根如果一个数的平方等于a ,那个这个数叫做a 的平方根或者二次方根,记作_________;求一个数的________的运算,叫做开平方。
公式补充:①a )a (2= ②|a |a 2=一.练习:(预习自主完成)1. 81的算术平方根是( ) A .9± B .9 C .-9 D .32) A. 49- B. 23 C. 49 D. 23- 3.下列说法不正确的是( )A 、9的算术平方根是3B 、0的算术平方根是0C 、负数没有算术平方根D 、 因为2x a =,所以x 叫做a 的算术平方根4. 如果5.1=y ,那么y 的值是( ) A .2.25 B .22.5 C .2.55 D .25.55. 计算()22-的结果是( ) A .-2 B .2 C .4 D .-46. 下列各式中正确的是( )A .525±=B .()662-=-C .()222-=D .()332=-7. 下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a 的算术平方根是a ;④(π-4)的算术平方根是π-4;⑤算术平方根不可能是负数。
其中,不正确的有( )A. 2个B. 3个C. 4个D. 5个228. 已知5x 2=,则x 为( )A. 5B. -5C. ±5D. 以上都不对9.一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( )A .a+1 B .a2+1 C .a +1 D .1a 2+二、填空题:1. 一个数的算术平方根是25,这个数是______; 算术平方根等于它本身的数有______;81的算术平方根是__________。
2. 144=_____4925=________ 0025.0=_______()=2196________()=-28________3. 当______m 时,m -3有意义; 4.已知0)3b (1a 22=+++,则=32ab ________。
人教版七年级数学下册第六章第二节立方根复习试题(含答案) (67)
人教版七年级数学下册第六章第二节立方根复习试题(含答案)计算:(-1)25︱【答案】0【解析】试题分析:先求平方,算术平方根,立方根,绝对值,最后再求和 试题解析:原式=1+2+2-5=0考点:实数的运算62.计算(本题16分)(1)-7+3+(-6)-(-7)(2))4(5)100(-⨯÷-(3)384-+(4))8365121()24(+-⨯-【答案】(1)—3 (2)80 (3)0 (4)9【解析】试题分析:(1)直接 按照有理数的加减运算法则计算即可;(2)先判断符合再把绝对值相乘除;(3)先开方再计算;(4)利用有理数的分配律计算即可.试题解析:(1)-7+3+(-6)-(-7) =-7+3-6+7=-3;(2))4(5)100(-⨯÷-=100÷5⨯4=80;(3)384-+ =2+(-2)=0;(4))8365121()24(+-⨯-=83246524121)24(⨯-⨯+⨯- = -2+20-9=9考点:有理数的混合运算.63.(6分)计算:()031200745sin 2821-︒--⎪⎭⎫ ⎝⎛- 【答案】-1【解析】 试题分析:先计算负指数、零指数,开方再按照实数的运算计算即可. 试题解析:()031200745sin 2821-︒--⎪⎭⎫ ⎝⎛-=2-2-1=-1 考点:开方,零指数,负指数,实数的运算.64.计算:(1)已知:(x +2)2=25,求x ;(2)计算:【答案】1)3,-7 (2)125【解析】试题分析:(1)根据平方根的意义可先求出x+2的值,然后可求出x 的值;(2)先将各根式化简,然后进行有理数的加减即可.试题解析:(1)因为(x +2)2=25,所以25,25x x +=±=-±,所以123,7x x ==-;(2)3416825+-+=4-2+25=.考点:1.平方根;2.二次根式;3.三次根式.652π⎛⎫-+ ⎪3⎝⎭-.【答案】-2【解析】试题分析:原式=3-2+1-4=-2.考点:1.算术平方根2.立方根3.非零数的0次方66.(本题6分)计算:(1)2(2)2(1【答案】(1)8;(2)【解析】试题分析:(1)原式=3658-++=;(2)原式=341-+=考点:实数的运算.三、填空题67.命题“如果两个实数相等,那么它们的立方值相等”的逆命题是,它是(真或假)命题.【答案】如果两个实数的立方值相等,那么这两个实数相等;真.【解析】试题分析:根据逆命题的定义可知,命题“如果两个实数相等,那么它们的立方值相等”的逆命题是“如果两个实数的立方值相等,那么这两个实数相等”,它是正确的,所以是真命题.故答案为:如果两个实数的立方值相等,那么这两个实数相等;真. 考点:命题与逆命题;真命题与假命题.68.一个数的算术平方根和这个数的立方根相等,则这个数是_____.【答案】0和1【解析】1的算术平方根是1,1的立方根是1,0的算术平方根是0,0的立方根是0,即算术平方根等于立方根的数只有1和0,故答案为0和1.69.化简:16=__________,33)2(-=__________,3335-=______________ 【答案】4, -2 ,32【解析】试题分析:根据平方根与立方根的性质,4=2=-,(5=-=考点:平方根与立方根70.如果a 是4的平方根,b 是27的立方根,则a+b=______.【答案】5或1【解析】【分析】【详解】解:根据a 是4的平方根可知a=±2,b 是27的立方根,可知b=3, 因此a+b=2+3=5或a+b=-2+3=1.故答案为:5或1.【点睛】本题考查平方根与立方根.。
(完整word版)最新人教版初一数学下册平方根、立方根试题
2013— 2014学年七年级数学(下)周末辅导资料(04)理想文化教育培训中心学生姓名 __________ 得分 ________ 一、知识点梳理:1、平方根:如果一个数的平方等于 a ,那么这个数就叫做a 的平方根(二次方根).若X a a 0,贝Ux 叫做a 的平方根.即x = a 2、立方根: 如果一个数的立方等于a ,这个数就叫做a 的立方根.(也称数a 的三次方根) 若x =a ,则x 叫做a 的立方根,或称x 叫做a 的三次方根。
即x = 3 a3、两个重要公式:⑴牯2 a | a(a 0)1 a(a 0)二、典型例题:例1: (1)如果x 9,那么x = ______________ 如果x 2 9,那么x ____________(2) ___________________________________________________ 如果x 的一个平方根是7.12,那么另一个平方根是 ____________________________________ .(3) _________________________________ 一个正数的两个平方根的和是 _________ •一个正数的两个平方根的商是 ________________ .(4) ________________________________________________________ 若一个实数的算术平方根等于它的立方根,则这个数是 _________________________________ ;(5) ___________________________________________ 若一个正数的平方根是2a 1和a 2,则a ___________________________________________ ,这个正数是 _________ ;【课堂练习1】1、 算术平方根等于它本身的数有 ________ 立方根等于本身的数有 _________ .2、 廁的平方根是 ________ ,脑的算术平方根是 __________ ;3、 若一个数的平方根是 8,则这个数的立方根是 ____________ ;4、 2x 1的算术平方根是2,则x = _________ .5、 已知 2a 1 (b 3)20,则 3 2ab _____________________________ ; 3 例2:若x 2 9,那么(4-x)的算术平方根是多少?(2)V a a a(a 0)例3: 已知x 的平方根是2a+3和1-3a , y 的立方根为a ,求x+y 的值.例4: (1)已知a 是刀的整数部分,b 是;7的小数部分,求(a )2 (b 2)2的值(2)已知(x-1 ) 2+5、. y 5x + | x-y+z+1例5:求下列各式中的x 的值:(2)2(2x 1)3 4三、强化训练:1. 81的算术平方根是 ( )A. 9B. — 9C. 9D. 32. 27的立方根与.87的平方根之和是( ).A. 0 B . 6 C . — 12 或 6 D . 0 或—63. 一个数若有两个不同的平方根,则这两个平方根的和为() A 、大于0 B 、等于0 C 、小于0 D 、不能确定 4.卜列说法错误的是( )A. 1 的平方根是土 1B. -1的立方根是-1I =0,求x+y+z 的平方根.(1) 3x 2 2 16-3 是■..(3)2的C. -2是2的算术平方根 D.平方根5. 下列说法正确的是(10、一个数的平方是9,则这个数是,一个数的立方根是1,则这个数是11、若 x 4 16,则 x= ;若 3n 81,则 n=12、若、x 1 |y 2| 0 ,则 x+y=13、 计算:5:716 3-8= --------------------------- 14、 求下列各式的值:15、求下列各式中的x 的值: (1) x 2 49 0 ; 16、若一正数a 的两个平方根分别是6. A.7. 9、 A. 0.064的立方根是0.4 C.16的立方根是t'16 F 列说法中正确的是实数a 2是负数 B. 144的算术平方根是 127 = 7的平方根为 B. D.0.01 9的平方根是 3 的立方根是0.000001 a C. ,16的平方根是 ,.64的立方根是 ,1.21 = a 一定是正数 D. 实数a 的绝对值是a I 3 (1) 3 216 3 3.. 400 \ 8 (2) .100 3 8 3 0.49(3) 1 v'2| |<2 <3| |<3 2⑵ 4x 2 1 0;⑶(1 2x)3 色 1 64 (4)+ J&49 +2m-3和5-m,求a的值17、已知:x —2的平方根是土2, 2 x + y +7的立方根是3,求x 2+ y 2的平方根.18、一个正方体的体积是16另一正方体的体积是这个正方体体积的4倍,求另一个正方体的表面积1 9、观察卜列等式•第1个等式:a111(11);1323第2个等式:a211J1-) 35235第3个等式:a311(!!);57257第4个等式:a411(1$;79279请解答下列问题:(1)________________________________ 按以上规律列出第5个等式:a5= = ___________________________________ ;(2)_____________________________________ 用含有n的代数式表示第n个等式:a n= __________________________________ = ____ (n为正整数);(3)求a1+a e+a3+a4+…+ae o 的值.。
人教版七年级数学下册第六章第二节立方根复习试题(含答案) (54)
人教版七年级数学下册第六章第二节立方根复习试题(含答案)169的平方根是__________,__________【答案】±432【解析】试题解析:2416,39⎛⎫±=⎪⎝⎭16 9的平方根是43±.8,=8的立方根是2.故答案为:4,2.3±32.若a、b互为相反数,c、d【答案】―1【解析】根据题意得:a+b=0,cd=-1,1==-1. 故答案是:-1.33.若,则x=__________【答案】0或1.【解析】==1==x=0或1.故答案是:0或-1.342=,则 ()23x +的平方根是__________.【答案】8±【解析】 试题解析:332,x +=332,x ∴+= 解得: 5.x =()2364,x ∴+=64的平方根是8.±故答案为:8.±35.49的平方根是______, -8的立方根是_____.【答案】±7 -2【解析】∵(±7)2=49,∴49的平方根是±7,即7=±;∵(-2)3=-8,∴-8的立方根是-2,2=-.故答案为:±7; -2. 36.计算:3=__________.【答案】2【解析】解:32=,故答案为:2.37.一个立方体的体积是216 cm 3,则这个立方体的棱长是__________cm.【答案】6【解析】试题解析:设这个立方体棱长为xcm,则x3=216,解得x=6.所以这个立方体的棱长为6cm.38___________;81的算术平方根是________;=____________.【答案】±2 9 -4【解析】,±;∵92=81,∴81的算术平方根是9;-64的立方根,=4-.39≈≈≈______ .0.716 1.542【答案】7.16【解析】【分析】【详解】=0.716,=7.16.故答案为7.16.【点睛】本题考查了被开方数的变化与立方根的值的变化之间的变化规律.当被开方数的小数点每向右(或向左)移动3位,它的立方根的小数点就相应的向右(或向左)移动1位.40.64的平方根是____ ___,立方根是___ ___;【答案】±8,4【解析】∵(±8)2=64,∵64的平方根是±8,∵64的平方根是4,故答案:±8,4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013—2014学年七年级数学(下)周末辅导资料(04) 理想文化教育培训中心学生姓名___________ 得分 _________
一、知识点梳理:
1、平方根:如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根).
若x a a 0,贝Ux叫做a的平方根.即x = a
2、立方根:如果一个数的立方等于a,这个数就叫做a的立方根.(也称数a的三次方根)
若x'=a,则x叫做a的立方根,或称x叫做a的三次方根。
即x =3a
3、两个重要公式:(1斤a? a| a(a 0) (2) ^a' a
(3) (i a) a(a 0)
1 a(a 0)
二、典型例题:
例1: (1)如果x 9,那么x= ______________ 如果x2 9,那么x ____________
(2)___________________________________________________ 如果x的一个平方根是7.12,那么另一个平方根是____________________________________ .
(3)_________________________________ 一个正数的两个平方根的和是_________ •一个正数的两个平方根的商是__________________ .
(4)________________________________________________________ 若一个实数的算术平方根等于它的立方根,则这个数是_________________________________ ;
(5)___________________________________________ 若一个正数的平方根是2a 1和a 2,则a ___________________________________________ ,这个正数是 _________ ;
【课堂练习1】
1、算术平方根等于它本身的数有________ 立方根等于本身的数有 _________ .
2、的平方根是________ ,扁的算术平方根是 ___________ ;
3、若一个数的平方根是8,则这个数的立方根是____________
4、2x 1的算术平方根是2,则x = _________ .
5、已知2a 1 (b 3)20,则 3 2ab _____________________________ ;
\ 3
2
例2:若x 9,那么(4-x)的算术平方根是多少?
例3: 已知x 的平方根是2a+3和1-3a ,y 的立方根为a ,求x+y 的值.
例4: (1)已知a 是7的整数部分,b 是■ 7的小数部分,求(a )2 (b 2)2的值
(2)已知(x-1 ) 2+5、. y 5x + | x-y+z+1 例5:求下列各式中的x 的值:
⑵ 2(2x 1)3 4
三、强化训练:
1. . 81的算术平方根是 ( )
A. 9
B. — 9
C. 9
D. 3
2. 27的立方根与•浙的平方根之和是( ).
A. 0 B . 6 C . — 12 或 6 D . 0 或—6
3. 一个数若有两个不同的平方根,则这两个平方根的和为(
)
A 、大于0
B 、等于0
C 、小于0
D 、不能确定
4.卜列说法错误的是( )
A. 1 的平方根是土 1
B. - 1的立方根是-1
C. 2是2的算术平方根
D. - 3是•;( 3)2的平方根
5.下列说法正确的是( )
I =0,求x+y+z 的平方根.
(1) 3x 2 2 16
A. 0.064的立方根是0.4
B. 9的平方根是3
C.16的立方根是
D.0.01的立方根是0.000001
6.下列说法中正确的是()
A.实数a2是负数
B. a
C. a 一定是正数
D. 实数a的绝对值是a
7. 144的算术平方根是尿的平方根是;
8 127 = ___________ , 64的立方根是 ___________
9、7的平方根为_____________ ,.1.21 = ____________ ;
10、一个数的平方是9,则这个数是________ ,一个数的立方根是1,则这个数是
11、若x4 16,则x= _______ ;若3n 81,则n=_ ;
12、____________________________________ 若、x 1 |y 2| 0,则x+y= ;
13、计算:\ 25 16 3 8 =
5 Y 9
14、求下列各式的值:
I 3-
(1)3216 3 3 3.400
\ 8
15、求下列各式中的x的值:
(1)x2 49 0 ;(2)4x2 1 0 ;(2) 100 3 8 3 0.49
(3) 1 v'2| |<2 ^3 |V3 2
(1 2x)361 64
(4)
1
16、若一正数a的两个平方根分别是2m-3和5-m,求a的值
17、已知:x — 2的平方根是土 2, 2x +y +7的立方根是3,求x 2+ y 2的平方根.
18、一个正方体的体积是16c :
T 另一正方体的体积是这个正方体体积的 4倍,求另一个正方体的表 面积
19、观察下列等式:
请解答下列问题:
(1) 按以上规律列出第5个等式:35= __ = ____ ;
(2) 用含有n 的代数式表示第n 个等式:a n = __ = ____
(
n 为正整数); (3) 求 31+32+33+34 3100 的值.
第1个等式: 第2个等式: 第3个等式: 第4个等式:
a 2 (
1
1 2
1 1 ,1 1
( - 5 7 2 5 7
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。