频数分布表、直方图概念

合集下载

7.4频数分布表和频数分布直方图

7.4频数分布表和频数分布直方图

(2)视力在4.9及4.9以
上的同学占调查学生的比
频 60

()
例为_3_/8__ ;
名 50
(3)如果视力在第1,2,3 40
组范围内均属视力不良,那 30
么该校约共有_1_25_0_名学 20
生视力不良,应给予治疗、 矫正。
10
第3组
第2组 第1组
第4组 第5组 视力
3.95 4.25 4.55 4.85 5.15 5.45
()
才艺展示
1.一次统计七年级若干名学生每分跳绳次数的频数分布直方图如图. 请根据这个直方图回答下面的问题:
(1)参加测试的总人数是多少? 15人
(2)自左至右最后一组的频数、频率分别是多少?
频数是3
频率是0.2
(3)数据分组时,组距是多少?
组距是25次


七年级若干名学生每分跳绳次数的频数分布 直方图
合计
20 ___2_5__
30 10 5 100
3.每年的6月6日是全国的爱眼日,让我们行动起来, 爱护我们的眼睛!某校为了做好全校2000名学生的眼 睛保健工作,对学生的视力情况进行一次抽样调查, 如图,是利用所得数据绘制的频数分布直方图。请你 根据此图提供的信息,回答下列问题:
(1)本次调查共抽测了__16_0 _名学生;
82.5; 82.5~87.5; 87.5~92.5)
解: 20名学生每分脉搏跳动次数的频数分布表
组别(次) 67.5~72.5 72.5~77.5 77.5~82.5 82.5~87.5 87.5~92.5
频数 2 4 9 3 2
20名学生每分脉搏跳动次数的频数分布直方图

数 10

频数分布表与直方图

频数分布表与直方图

THANKS
感谢观看
均匀分布
数据在各个区间内的频数或频 率大致相等,表示数据分布较 为均匀。
双峰分布
数据呈现两个明显的峰值,表 示数据可能存在两个不同的集
中区域。
03
频数分布表与直方图关系
数据呈现方式比较
频数分布表
通过表格形式展示数据分布情况,横 轴为数据分组,纵轴为频数或频率。
直方图
通过图形形式展示数据分布情况,横 轴为数据分组,纵轴为频数或频率, 各矩形面积总和表示所有数据点的数 量。
可以是水平的。
数据表示Βιβλιοθήκη 02直方图用矩形的面积表示频数或频率,而条形图的条形长度直
接表示数据值。
数据间隔
03
直方图的矩形通常是连续的,没有间隔,而条形图的条形之间
通常有间隔。
常见直方图形状解读
钟型分布
数据呈现中间高、两边低的形 状,类似于钟的轮廓,表示数
据分布较为集中。
偏态分布
数据分布偏向一侧,可能是左 偏或右偏,表示数据在某个方 向上存在较多的极端值。
调整柱子形状
可以选择不同的柱子形状,如矩形、圆形等,以更好地展示数据 分布。
调整柱子颜色
可以通过调整柱子颜色来区分不同的数据组,使得直方图更加直 观易懂。
添加图例
为不同的数据组添加图例,以便读者更好地理解直方图。
添加标题、坐标轴标签等元素
添加标题
为直方图添加标题,简要说明数据的来源和含义。
添加坐标轴标签
05
直方图制作步骤及注意事 项
根据频数分布表绘制直方图
确定组数
根据数据的分布规律,选择合适的组数,通常组数选择在5-15之 间。
确定组距
根据数据的范围和组数,计算合适的组距,使得数据能够均匀地分 布在各个组中。

频数分布表和频数分布直方图(课件)

频数分布表和频数分布直方图(课件)

课堂练习
1.为了绘制一组数据的频数直方图,首先要算出这组 数据的变化范围,数据的变化范围是指数据的( C ) A.最大值 B.最小值 C.最大值与最小值的差 D.个数
课堂练习
2.一组数据的最小数是12,最大数是38,如果分组的组
距相等,且组距为3,那么分组后的第一组为( B )
A.11.5~13.5
为了参加全校各年级之间的广播操比赛,七年级准备从63名同学中挑出身
高相差不多的40名同学参加比赛为此收集到这63名同学的身高(单位:cm)
如下:
158 158 160 168 159 159 151 158 159 168 158 154 158 154 169 158 158 158 159 167 170 153 160 160 159 159 160 149 163 163 162 172 161 153 156 162 162 163 157 162 162 161 157 157 164 155 156 165 166 156 154 166 164 165 156 157 153 165 159 157 155 164 156
典型例题
例题1 已知一组数据,最大值为93,最小值为22,
现要把它分成6组,则下列组距合适的是( B )
A.9
B.12
C.15
D.18
典型例题Βιβλιοθήκη 例题2 在绘制频数直方图时,计算出最大值与最小值
的差为25 cm,若取组距为4 cm,则组数为( D )
A.4组
B.5组
C.6组
D.7组
典型例题
例题3 某中学部分同学参加全国初中数学竞赛,并取得了优异的成 绩,指导老师统计了所有参赛同学的成绩(成绩都是整数,试 题满分120分),并且绘制了如图的频数直方图(每组中含最低分 数,但不含最高分数),请回答: (1)该中学参加本次数学竞赛的共有多少人? (2)如果成绩在90分以上(含90分)的同学获奖, 那么该中学参赛同学的获奖率是多少? (3)图中还提供了其他信息,例如该中学没有 获得满分的同学等,请再写出两条信息.

(课件)频数分布表和频数分布直方图

(课件)频数分布表和频数分布直方图

直方图,根据图形提供的信息,回答下列问题:
(1)该单位职工有多少? 解:该单位职工有50人 (2)不小于38岁但小于44的职工人 数占职工总人数的百分比是多少? 不小于38岁但小于44的职工 人数占职工总人数的60% (3)如果42岁职工有4人,那么 年龄42岁以上的职工有多少?
年龄(岁) 34 36 38 40 42 44 46 48
第4 组 第5 组
视力
5.15
5.45
下表是从场口镇中学随机抽取的部 分同学的视力情况频数分布表
视力 3.95~4.25
4.25~4.55
频数 2
频率 0.04
6
23
18
0.12
0.46 0.36
4.55~4.85 4.85~5.15
5.15~5.45
合计
1
50
0.02
1.00
(1)、请你把上表补充完整; (2)、请你根据频数分布表,画出频数分布直方图
40
20
49.5 59.5 69.5 79.5 89.5 99.5
分 数
下面请同学们总结一下直方图的特点:
下表是从新星中学随机抽出的部分同学的视力情况频数分布表。
(1)请你把下表补充完整(每一组含最小值,但不含最大值);
学 以 致 用
视力
3.92~4.25 4.25 ~ 4.55 4.55~4.85 4.85~5.15
分组 22.5~ 24.5 2 24.5~ 26.5 3 26.5~ 28.5 8 28.5~ 30.5 4 30.5~ 合计 32.5
解: (4)列频数分布表:
频数记录
频数
3
20
例题:已知一个样本:27,23,25,27,29,

《频数分布表与直方图》PPT课件

《频数分布表与直方图》PPT课件

直方图是为了把表中的结果直观地表示出来,它
们是频数分布的“数”与“形”的两种不同形式,
互相补充.
(来自《点拨》)
知2-练
1 某学校八年级共有你n名男生. 现测量他们的身高 (单位:cm. 结果精确到1 cm),依据数据绘制的 频数分布直方图如图所示(为了避免有些数据落 在分组的界限上,对作为分点的数保留一位小数).
的学生为正常,试求身高正常的学生的百分比.
知2-讲
导引知:先识确点定最大值与最小值的差为180-140=40(cm),故可
将数据按组距为5进行分组,可分40÷5=8(组). 解:(1)计算这组数据的最大值与最小值的差为180-140=
40(cm). 确定组数与组距,将数据按组距为5进行分组,可分 为40÷5=8(组),即每个小组的范围分别是140≤x< 145,145≤x<150,150≤x<155,155≤x<160,160≤ x<165,165≤x<170,170≤x<175,175≤x≤180. 其中x为学生身高.
C.8组
D.10组
导引:因为这组数据的最大值是187,最小值是140,最 大值与最小值的差是47,且 47 7 5 ,所以应 66 分为8组. 答案:C
总结
知1-讲
确定组数的方法:若最大值与最小值的差除 以组距所得的商是整数,则这个商即为组数;若 最大值与最小值的差除以组距所得的商是小数, 则这个商的整数部分+1即为组数.
知2-讲
知2-讲
例2 某中学部分同学参加全国初中数学竞赛,取得了优异的成
绩,指导老师统计了所有参赛同学的成绩(成绩都是整数, 试题满分120分),并且绘制了如图所示的频数分布直方图 (每组中含最低分数,但不含最高分数),请回答: (1)该中学参加本次数学竞

数学知识点总结之频数分布直方图

数学知识点总结之频数分布直方图

1.频数与频率:每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率。

2.频数分布表: 运用频数分布直方图进行数据分析的时候,一般先列出它的分布表,其中有几个常用的公式:各组频数之和等于抽样数据总数;各组频率之和等于1;数据总数某各组的频率=相应组的频数。

画频数分布直方图的目的,是为了将频数分布表中的结果直观、形象地表示出来。

3.频数分布直方图:(1)当收集的数据连续取值时,我们通常先将数据适当分组,然后再绘制频数分布直方图。

(2)绘制的频数分布直方图的一般步骤:①计算最大值与最小值的差(极差),确定统计量的范围;②决定组数和组距,数据越多,分的组数也应当越多;③确定分点;④列频数分布表;⑤画频数分布直方图。

初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为某轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

初中数学知识点:平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。

平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。

通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。

水平的数轴叫做某轴或横轴,铅直的数轴叫做Y轴或纵轴,某轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

频数分布图与频数分布直方图的区别

频数分布图与频数分布直方图的区别

一、基本概念1.频数:落在不同小组中的数据个数为该组的频数.各组的频数之和等于这组数据的总数.注:在统计频数多少的时候,我们一般通过数“正”字的方法累计.2.频率:频数与数据总数的比,即频率=各组频率之和为1.频率大小反映了各组频数在数据总数中所占的份量3.组数:把全体样本分成的组的个数称为组数.4.组距:把所有数据分成若干个组,每个小组的两个端点的距离。

5.极差:用样本数据中的最大值减去最小值。

组距=极差除以组数二、列频数分布表的注意事项运用频数分布直方图进行数据分析的时候,一般先列出它的分布表,其中有几个常用的公式:各组频数之和等于抽样数据总数;各组频率之和等于1;数据总数×各组的频率=相应组的频数.画频数分布直方图的目的,是为了将频数分布表中的结果直观、形象地表示出来,其中组距、组数起关键作用,分组过少,数据就非常集中;分组过多,数据就非常分散,这就掩盖了分布的特征,当数据在100以内时,一般分5~12组.编辑本段三、直方图的特点通过长方形的高代表对应组的频数与组距的比(因为比是一个常数,为了画图和看图方便,通常直接用高表示频数),这样的统计图称为频数分布直方图.它能:①清楚显示各组频数分布情况;②易于显示各组之间频数的差别.编辑本段四、制作频数分布直方图的步骤1.找出所有数据中的最大值和最小值,并算出它们的差.2.决定组距和组数.3.确定分点4.列出频数分布表.5.画频数分布直方图.编辑本段五、频数分布折线图的制作我们可以在直方图的基础上来画,先取直方图各矩形上边的中点,然后在横轴上取两个频数为0的点,这两点分别与直方图左右两端的两个长方形的组中值(矩形宽的中点)相距一个组距,将这些点用线段依次联结起来,就得到了频数分布折线图.编辑本段六、条形图和直方图的区别1.条形图是用条形的高度表示频数的大小,而直方图实际上是用长方形的面积表示频数,当长方形的宽相等的时候,可以用矩形的的高表示频数;2.条形图中,横轴上的数据是孤立的,是一个具体的数据,而直方图中,横轴上的数据是连续的,是一个范围;3.条形图中,各长方形之间有空隙,而直方图中,各长方形是靠在一起的,中间无空隙;编辑本段七、与统计图有关的数学思想方法1.数形结合:从统计图中,能看出各组数据的特点,可进一步应用这些数据特点解决实际问题.通过整理数据,根据要求绘制统计图,可进一步分析数据、做出决策.2.类比:绘制频数分布直方图和绘制条形图类似,如果长方形的宽一样,那么长方形的高度之比就是各组内数据个数之比.编辑本段八、如何画频数分布直方图①集中和记录数据,求出其最大值和最小值。

频数分布表和频数分布直方图

频数分布表和频数分布直方图

4.25~4.55 6
0.12
4.55~4.85 23
0.46
4.85~5.15 18
0.36
5.15~5.45 1
0.02
合计
50
1.00
(1)、请你把上表补充完整;
(2)、请你根据频数分布表,画出频数分布直方图
如果视力在4.85以下就属于不正常范围,
人数
那么请你分析一下我们学校的视力情况,
28
(3)确定分点; 确定分点的方法有多 种。通常为了使得每 个数据都落在相应的 组内,可取比数据多 一位小数来分组;
(4)列频数分布表: 把数据划记到相应的 组中,统计每组中相 应数据出现的频数.
(5)画频数分布直方图.注意:各个“条形”之间就 应该是连续的,不应该有间隔,当各组的组距相等 时,所画的各个条形的宽度也应该是相同的;
这就是频数分布表
53 65 74 77
成绩段 49.5~ 59.5~ 69.5~ 79.5~ 89.5~
59.5 69.5 79.5 89.5 99.5
频数记录
正 正正 正正 正
频数
2
9
10 14
5
人数
16
15 14 13 12 11 10
9 8
7 6 5 4 3 2 1
这就是频数 分布直方图
49.5 59.5 69.5 79.5 89.5 99.5 分数
在怎这样组描数述据、中分1析6这3c5m0的名频学数生是身多高少的?分布情况呢?
频率呢?
7.4 频数分布表和频数分布直方图
某中学为了了解八年级学生身高的范围和整体分布 情况,抽样调查了八年级50名同学的身高,结果如下 (单位:㎝) 150 148 159 156 157 163 156 164 156 159 169 163 170 162 163 164 155 162 153 155 160 165 160 161 166 159 161 157 155 167 162 165 159 147 163 172 156 165 157 164 152 156 153 164 165 162 167 151 161 162

(完整)频数分布表和频数分布图

(完整)频数分布表和频数分布图

频数分布表与频数分布图频数是指某一随机事件在n次试验中出现的次数。

各种随机事件在n次试验中出现的次数分布就称为频数分布。

对一批数据,将其频数分布用表格的形式表示出来就构成了频数分布表。

(1)编制频数分布表的步骤编制频数分布表是数据整理的基本方法,下面我们结合一个实例来说明频数分布表的编制步骤。

例1.一次物理测验之后,某班48位同学的成绩如下.86 77 63 78 92 72 66 87 75 83 74 47 83 81 76 82 97 69 82 88 7167 65 75 70 82 77 86 60 93 71 80 76 78 57 95 78 64 79 82 68 7473 84 76 79 86 68;根据这一成绩编制频数分布表,其具体步骤是:①求全距(用R表示)。

全距是原始数据中的最大值与最小值之差,即R=max{xi}-min{xi}。

式中R是全距,max{xi}为这批数据中的最大数,min{xi}为这批数据中的最小数.在本例中,max{xi}=97,min{xi}=47,因此R=97—47=50.②定组数(用K表示)。

根据全距决定组数(K)。

组数就是对这批数据分组的个数。

一般而言,组数以10组为宜,多至20组,少至5组。

若组数太多,便会失去实行分组化繁为简的作用;若组数太少,又会引起计算结果的失真。

组数与数据的个数有关,若数据多时,要分10组以上;数据少时,可分5—10组。

③定组距(用i表示)。

组距就是每一个组内包含的间距,即组距(i)是指每个小组的组上限(即组的终点值)与组下限(即组的起点值)之间的距离.显然,在一批数据中,组距一般是相同的.组数与组距有关,组距越小,则组数越多;组距越大,则组数越少.根据上面的讨论,我们得到全距R、组距i、组数K三者之间的关系即i=或K=根据上式,由全距R、组距i决定组数时,将全距R除以组距后取整数即得组数i。

在本例中,全距R=50,若取组距i=5,则组数K=10.④列组限。

频数分布表和频率分布直方图课件

频数分布表和频率分布直方图课件

Excel制作频数分布表和频率分布直方图方法总结
频数分布表和频率分布直 方图
频数分布表和频率分布直方图是数据分析中常用的工具。通过本课件,我们 将介绍它们的定义、制作方法以及应用范围和重要性。
为什么需要频数分布表和频率 分布直方图?
频数分布表和频率分布直方图帮助我们更好地理解和解释数据。通过可视化 数据,我们可以发现模式、趋势和异常值,从而做出有意义的数据分析。
Excel提供了便捷的功能和工具来制作频数分布表和频率分布直方图。学习如 何使用Excel进行制作,并注意一些细节,可以更高效地进行数据分析。
结论
频数分布表和频率分布直方图在数据分析中应用广泛且具有重要性。它们帮助我们理解数据、发现规律,并为 数据分析提供有力支持。
参考资料
频数分布表知识点总结
频率分布直方图知识点总结
频数பைடு நூலகம்布表
频数是指某个数值或区间在数据集中出现的次数。制作频数分布表可以帮助 我们了解数据的分布情况和集中程度,从而更好地进行统计分析。
频率分布直方图
频率是指某个数值或区间在数据集中出现的频率或概率。通过制作频率分布 直方图,我们可以直观地展示数据的分布情况和集中程度。
使用Excel绘制频数分布表和频 率分布直方图

频数分布直方图的定义频数分布直方图的特点制作频数分布直方图的步骤注意事项

频数分布直方图的定义频数分布直方图的特点制作频数分布直方图的步骤注意事项

一、频数分布直方图的特点①能够显示各组频数分布的情况;②易于显示各组之间频数的差别。

二、制作频数分布直方图的步骤:(1)计算极差(即最大数据与最小数据之差);(2)确定组距与组数,这主要根据数据的多少及不同数据的个数来决定,一般100个以内的数据大概分7~12组,数据越多,分的组数相应也越多;(3)决定分点,主要原则是避免一些数据刚好在两组的交点上;(4)用横轴表示各分组数据,纵轴表示各组数据的频数,作出直方图。

三、制作频数分布直方图的方法:①集中和记录数据,求出其最大值和最小值。

数据的数量应在100个以上,在数量不多的情况下,至少也应在50个以上。

我们把分成组的个数称为组数,每一个组的两个端点的差称为组距。

②将数据分成若干组,并做好记号。

分组的数量在5-12之间较为适宜。

③计算组距的宽度。

用最大值和最小值之差去除组数,求出组距的宽度。

④计算各组的界限位。

各组的界限位可以从第一组开始依次计算,第一组的下界为最小值减去最小测定单位的一半,第一组的上界为其下界值加上组距。

第二组的下界限位为第一组的上界限值,第二组的下界限值加上组距,就是第二组的上界限位,依此类推。

⑤统计各组数据出现频数,作频数分布表。

⑥作直方图。

以组距为底长,以频数为高,作各组的矩形图。

四、频数分布直方图的定义:在统计数据时,按照频数分布表,在平面直角坐标系中,横轴标出每个组的端点,纵轴表示频数,每个矩形的高代表对应的频数,称这样的统计图为频数分布直方图。

相关概念:组数:在统计数据时,我们把数据按照不同的范围分成几个组,分成的组的个数称为组数。

组距:每一组两个端点的差。

1、频数分布直方图的定义在统计数据时,按照频数分布表,在平面直角坐标系中,横轴标出每个组的端点,纵轴表示频数,每个矩形的高代表对应的频数,称这样的统计图为频数分布直方图。

4、相关概念:组数:在统计数据时,我们把数据按照不同的范围分成几个组,分成的组的个数称为组数。

组距:每一组两个端点的差。

用Excel做直方图(2):频率分布直方图

用Excel做直方图(2):频率分布直方图

用Excel做直方图(2):频率分布直方图一、什么是直方图1、定义直方图是一种条形图,是以组距为底边、以频数为高度的一系列连接起来的直方型矩形图2、相关概念组数:在统计数据时,把数据按照不同的范围分成几个组,分成的组的个数称为组数。

组距:每一组两个端点的差规格上限:Tu规格下限:Tl公差中心:M=3、步骤1. 求出其最大值和最小值。

2. 将数据分成若干组,并做好记号。

3. 计算组距的宽度。

用最大值和最小值之差(极差)去除组数,求出组距的宽度。

4. 计算各组的界限位。

各组的界限位可以从第一组开始依次计算,第一组的下界为最小值减去最小测定单位的一半,第一组的上界为其下界值加上组距。

第二组的下界限位为第一组的上界限值,第二组的下界限值加上组距,就是第二组的上界限位,依此类推。

5. 统计各组数据出现频数,作频数分布表。

6. 作直方图。

以组距为底长,以频数为高,作各组的矩形图。

4、注意事项:1. 数据量在50个以上2. 分组数在5~12个为宜3. 在直方图上应标注出公差范围(T)、样本容量(n)、样本平均值(x)、样本标准偏差值(s)和x的位置二、实战:用Excel做直方图1、获取数据源按照上节内容讲的随机数发生器,我们随机生成均值为0,标准差为1的100个符合正态分布的数据,用这100个数据来做频率分布直方图。

生成的数据如A列所示。

2、计算相应值我们要算出这组数据的个数,最大值、最小值、平均值、极差(最大值-最小值)、组数和组距。

相应的公式如下图所示。

组数:其中组数是这组数组被分成组的个数,是对数据个数开方然后向上取整求出。

组距:组距是每一组数两个端点的差,用极差除以组数求得。

这里提供另外一种直接生成数据描述性统计分析的值的方法,Excel——数据分析工具库——描述统计分析工具,直接生成关于一组数据的“描述统计”分析工具用于生成数据源区域中数据的单变量统计分析报表,组数和组距还是要手动公式输入,这里的描述性统计分析只是用来提供有关数据趋中性和易变性的信息。

中考数学复习频数分布表与频数分布直方图【培优讲练】

中考数学复习频数分布表与频数分布直方图【培优讲练】

7.4 频数分布表与频数分布直方图同步培优讲练综合1.组距:把所有数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围).2.频数分布表:把各个组别中相应的频数分布用表格的形式表示出来,所得表格就是频数分布表.频数分布表能清楚地反映一组数据的大小分布情况.将一批数据分组,一般数据越多,分的组也越多.当数据在100个以内时,按照数据的多少,常分成5~12组.在分组时,要灵活确定组距,使所分组数合适,一般组数为的整数部分+1.组距(2)制作频数分布表的一般步骤:①计算最大值与最小值的差;②决定组距和组数;③确定分点;④列频数分布表.3.频数分布直方图根据频数分布表,用横轴表示各分组数据、纵轴表示各组数据的频数,绘制条形统计图.这样的条形统计图,直观地呈现了频数的分布特征和变化规律,称为频数分布直方图.4.画频数分布直方图的步骤(1)计算最大值与最小值的差;(2)决定组距与组数;(3)列频数分布表;(4)画频数分布直方图.5. 频数分布直方图与条形图的联系与区别(1)联系:它们都是用矩形来表示数据分布情况的;当矩形的宽度相等时,都是用矩形的高来表示数据分布情况的;频数分布直方图是特殊的条形统计图.(2)区别:①由于分组数据具有连续性,频数分布直方图中各“条形”之间通常是连续排列,中间没有间隙,而条形图中各“条形”是分开排列的,中间有一定的间隙;②条形统计图用横向指标表示考察对象的类别,用纵向指标表示不同对象的数量. 频数分布直方图横向指标表示考察对象数据的变化范围,用纵向指标表示相应范围内数据的频数.一、组距【例1】一个样本最大值为143,最小值为50,取组距为10,则可以分成 组.【例2】一组数据的最大值与最小值的差为2.8 cm,若取组距为0.4 cm,应将该数据分为 组.二、 频数分布直方图【例1】某校为了解学生参与“凤城悦读”的情况,随机抽取了50名学生,并统计他们平均每天的课外阅读时间t (单位:)min ,然后利用所得数据绘制成如图不完整的统计图表: 课外阅读时间频数分布表:根据图表中提供的信息,回答下列问题: (1)a = ,b = ; (2)将频数分布直方图补充完整;(3)若全校有1200课外阅读时间不少于50min ?【例2】小文同学统计了他所在小区部分居民每天微信阅读的时间,绘制了直方图.得出了如下结论:①样本中每天阅读微信的时间没人超过1小时,由此可以断定这个小区的居民每天阅读微信时间超过1小时的很少;②样本中每天微信阅读不足20分钟的人数大约占16%;③选取样本的样本容量是60;④估计所有居民每天微信阅读35分钟以上的人数大约占总居民数的一半左右.其中正确的是()A.①②③B.①②④C.①③④D.②③④【例3】为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是()①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②三、综合应用(与条形统计图、扇形图的结合)【例1】为了了解春节晚会群众喜爱节目类型(“歌舞类”、“语言类”、“戏曲类”、“其他”)情况,对某地区的部分群众的喜爱节目类型做了调查,其中每人只能填选一项,现根据调查情况绘制了如图直方图和扇形统计图.请根据图中信息解答下列问题:(1)此次调查中一共调查了多少人?(2)求所调查的群众中,喜爱“戏曲”的人数,并补全直方图的空缺部分;(3)若该地区共有人口360万人,估计该地区喜爱“语言类”约有多少人.【例2】某校为了解九年级学生休息日时每天学习的时长情况,随机抽取了n名九年级学生进行调查,据调查每名学生休息日时每天学习时长都少于5小时.该校将所收集的数据分组整理,绘制了如图所示的频数分布直方图和扇形统计图.根据图中信息,解答下列问题:(1)在这次调查活动中,采取的调查方式是.(填写“全面调查”或“抽样调查”)(2)求n的值.(3)若该校九年级共有450名学生,请估计该校休息日时每天学习时长在3≤t<4范围的学生人数.3≤t<43≤t<4【例3】为了得到一种零件的加工精度,从中抽出40个进行检测,其尺寸数据如下(单位:cm):161 165 164 166 160 158 163162 168 159 147 170 167 151164 159 152 159 149 172 162157 162 169 156 164 163 157163 165 173 159 157 169 165154 153 163 168 169将数据适当分组,并绘制相应的频数分布直方图,图中所反映出这种零件的尺寸在哪个范围内的最多?1.某校组织部分学生参加安全知识竞赛,并将成绩整理后绘制成频数分布直方图,图中从左至右前四组的百分比分别是4%,12%,40%,28%,第五组的频数是8.则:①参加本次竞赛的学生共有100人;②第五组的百分比为16%;③成绩在70-80分的人数最多;④80分以上的学生有14人.其中正确的有( )A.1个B.2个C.3个D.4个2.某校在举办的“优秀小作文”评比活动中,共征集到小作文若干篇,对小作文评比的分数(分数均为整数)整理后,画出如图所示的频数分布直方图.已知从左到右5个小长方形的高的比为1∶3∶7∶6∶3,如果分数大于或等于80分以上的小作文有72篇,那么这次评比中共征集到的小作文有篇.3、三台县某中学“五.四”青年节举行了“班班有歌声”歌咏比赛活动.比赛聘请了10位教师和10位学生担任评委,其中甲班的得分情况如统计表和统计图.老师评委评分统计表:学生评委评分折线统计图师生评委评分频数分布直方图(1)补全频数分布直方图.(2)计分办法规定:老师评委、学生评委的评分各去掉一个最高分、一个最低分,并且按教师、学生各占60%、40%的方法计算各班最后得分,知甲班最后得分94.4分,试求统计表中的x.4、扬州市“五个一百工程”在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如下不完整的频数分布表和频数分布直方图.每天课外阅读时间t/h 频数频率0<t≤0.5 240.5<t≤1 36 0.31<t≤1.5 0.41.5<t≤2 12 b合计 a 1根据以上信息,回答下列问题:(1)表中a= ,b= ;(2)请补全频数分布直方图;(3)若该校有学生1200人,试估计该校学生每天课外阅读时间超过1h的人数5、为了掌握八年级数学考试卷的命题质量与难度系数,命题组教师赴外地选取一个水平相当的八年级班级进行预测,将考试成绩的分布情况进行处理分析,制成如下图表(成绩得分均为整数):组别成绩分组频数A 47.5-59.5 2B 59.5-71.5 4C 71.5-83.5 aD 83.5-95.5 10E 95.5-107.5 bF 107.5-120 6图7-4-7根据图表中提供的信息解答下列问题:(1)在频数分布表中,a= ,b= ;在扇形统计图中,m= ,n= .(2)补全频数分布直方图.(3)已知全区八年级共有200个班(平均每班有40人),用这份试卷进行检测,108分及以上为优秀,预计优秀的人数约为人,72分及以上为及格,预计及格的人数约为人.7.4 频数分布表与频数分布直方图同步培优讲练综合1.组距:把所有数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围).2.频数分布表:把各个组别中相应的频数分布用表格的形式表示出来,所得表格就是频数分布表.频数分布表能清楚地反映一组数据的大小分布情况.将一批数据分组,一般数据越多,分的组也越多.当数据在100个以内时,按照数据的多少,常分成5~12组.在分组时,要灵活确定组距,使所分组数合适,一般组数为的整数部分+1.(3)制作频数分布表的一般步骤:①计算最大值与最小值的差;②决定组距和组数;③确定分点;④列频数分布表.3.频数分布直方图根据频数分布表,用横轴表示各分组数据、纵轴表示各组数据的频数,绘制条形统计图.这样的条形统计图,直观地呈现了频数的分布特征和变化规律,称为频数分布直方图.4.画频数分布直方图的步骤(1)计算最大值与最小值的差;(2)决定组距与组数;(3)列频数分布表;(4)画频数分布直方图.5. 频数分布直方图与条形图的联系与区别(1)联系:它们都是用矩形来表示数据分布情况的;当矩形的宽度相等时,都是用矩形的高来表示数据分布情况的;频数分布直方图是特殊的条形统计图.(2)区别:①由于分组数据具有连续性,频数分布直方图中各“条形”之间通常是连续排列,中间没有间隙,而条形图中各“条形”是分开排列的,中间有一定的间隙;②条形统计图用横向指标表示考察对象的类别,用纵向指标表示不同对象的数量. 频数分布直方图横向指标表示考察对象数据的变化范围,用纵向指标表示相应范围内数据的频数.四、组距【例1】一个样本最大值为143,最小值为50,取组距为10,则可以分成组.【答案】10最大值-最小值组距【解析】解:极差为1435093-=, 93109.3∴÷=,∴可以分成10组,故答案为:10.【例2】一组数据的最大值与最小值的差为2.8 cm,若取组距为0.4 cm,应将该数据分为 组. 【答案】8 【解析】因为一组数据的最大值与最小值的差为2.8 cm,组距为0.4 cm,2.8÷0.4=7,所以应将该数据分为8组.五、频数分布直方图【例1】某校为了解学生参与“凤城悦读”的情况,随机抽取了50名学生,并统计他们平均每天的课外阅读时间t (单位:)min ,然后利用所得数据绘制成如图不完整的统计图表: 课外阅读时间频数分布表:根据图表中提供的信息,回答下列问题: (1)a = ,b = ; (2)将频数分布直方图补充完整;(3)若全校有1200名学生,估计该校有多少名学生平均每天的课外阅读时间不少于50min ?【答案】见解析【解析】解:(1)总人数48%50÷=人, 5040%20a ∴=⨯=,16100%32%50b =⨯=, 故答案为20,32%.(2)频数分布直方图,如图所示.(3)20162 120091250++⨯=,答:估计该校有912名学生平均每天的课外阅读时间不少于50min.【例2】小文同学统计了他所在小区部分居民每天微信阅读的时间,绘制了直方图.得出了如下结论:①样本中每天阅读微信的时间没人超过1小时,由此可以断定这个小区的居民每天阅读微信时间超过1小时的很少;②样本中每天微信阅读不足20分钟的人数大约占16%;③选取样本的样本容量是60;④估计所有居民每天微信阅读35分钟以上的人数大约占总居民数的一半左右.其中正确的是()B.①②③B.①②④C.①③④D.②③④【答案】【解析】由直方图可得,样本中每天阅读微信的时间没人超过1小时,由此可以断定这个小区的居民每天阅读微信时间超过1小时的很少,故①正确;样本中每天微信阅读不足20分钟的人数大约占:(48)(4814201612)100%16%+÷+++++⨯≈,故②正确;选取样本的样本容量是:481420161274+++++=,故③错误;(101612)740.51++÷≈,即所有居民每天微信阅读35分钟以上的人数大约占总居民数的一半左右,故④正确:故选:B.【例3】为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是()①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②【答案】C【解析】解:①根据频数分布直方图,可得众数为6080-元范围,故每人乘坐地铁的月均花费最集中的区域在6080-元范围内,故①错误;②每人乘坐地铁的月均花费的平均数8760087.61000==元,故每人乘坐地铁的月均花费不在40~60元范围内,故②错误;③每人乘坐地铁的月均花费的中位数约为80元,在60~100元范围内,故③正确;④为了让市民享受到更多的优惠,若使50%左右的人获得折扣优惠,则乘坐地铁的月均花费达到80元以上的人可以享受折扣,故④正确.故选:C.六、综合应用(与条形统计图、扇形图的结合)【例1】为了了解春节晚会群众喜爱节目类型(“歌舞类”、“语言类”、“戏曲类”、“其他”)情况,对某地区的部分群众的喜爱节目类型做了调查,其中每人只能填选一项,现根据调查情况绘制了如图直方图和扇形统计图.请根据图中信息解答下列问题:(1)此次调查中一共调查了多少人?(2)求所调查的群众中,喜爱“戏曲”的人数,并补全直方图的空缺部分;(3)若该地区共有人口360万人,估计该地区喜爱“语言类”约有多少人.【答案】(1)150 (2) 30 45 (3)108【解析】解:(1)3926%150÷=(人),答:此次调查中一共调查了150人;(2)所调查的群众中,喜爱“戏曲”的人数为15020%30⨯=(人),喜爱“语言”的人数为150(363039)45-++=(人),补全图形如下:(3)该地区喜爱“语言类”约有45360108150⨯=(万人).【例2】某校为了解九年级学生休息日时每天学习的时长情况,随机抽取了n名九年级学生进行调查,据调查每名学生休息日时每天学习时长都少于5小时.该校将所收集的数据分组整理,绘制了如图所示的频数分布直方图和扇形统计图.根据图中信息,解答下列问题:(1)在这次调查活动中,采取的调查方式是.(填写“全面调查”或“抽样调查”)(2)求n的值.(3)若该校九年级共有450名学生,请估计该校休息日时每天学习时长在3≤t<4范围的学生人数.【答案】(1)抽样调查 (2)50 (3)135【解析】解:(1)在这次调查活动中,采取的调查方式是抽样调查, 故答案为:抽样调查; (2)1020%50n =÷=;(3)样本中每天学习时长在“3≤t <4”范围的学生人数为50(510164)15-+++=(人),∴1545013550⨯=(人), ∴该校九年级休息日时每天学习时长在“3≤t <4”范围的学生人数约为135人.【例3】为了得到一种零件的加工精度,从中抽出40个进行检测,其尺寸数据如下(单位:cm): 161 165 164 166 160 158 163 162 168 159 147 170 167 151 164 159 152 159 149 172 162 157 162 169 156 164 163 157 163 165 173 159 157 169 165 154 153 163 168 169将数据适当分组,并绘制相应的频数分布直方图,图中所反映出这种零件的尺寸在哪个范围内的最多? 【答案】见解析【解析】(1)计算最大值与最小值的差:在样本数据中,最大值是173cm,最小值是147 cm,它们的差是173-147=26(cm).(2)决定组距与组数:设组距为4 cm,则最大值-最小值组距=264=6.5,所以应分7组.(3)确定分点:把起点数147减去0.5,即147-0.5=146.5.这样依次分为:146.5-150.5,150.5-154.5,…,166.5-170.5,170.5-174.5. (4)列频数分布表:分组 频数 146.5-150.5 2 150.5-154.54154.5-158.5 5158.5-162.5 9162.5-166.5 11166.5-170.5 7170.5-174.5 2(5)画频数分布直方图,如图.从图中可以看出这种零件的尺寸在162.5-166.5 cm范围内的最多.1.某校组织部分学生参加安全知识竞赛,并将成绩整理后绘制成频数分布直方图,图中从左至右前四组的百分比分别是4%,12%,40%,28%,第五组的频数是8.则:①参加本次竞赛的学生共有100人;②第五组的百分比为16%;③成绩在70-80分的人数最多;④80分以上的学生有14人.其中正确的有( )A.1个B.2个C.3个D.4个【答案】B【解析】①参加本次竞赛的学生共有8÷(1-4%-12%-40%-28%)=50(人),此项错误;②第五组的百分比为1-4%-12%-40%-28%=16%,此项正确;③成绩在70-80分的人数最多,此项正确;④80分以上的学生有50×(28%+16%)=22(人),此项错误.故选B2.某校在举办的“优秀小作文”评比活动中,共征集到小作文若干篇,对小作文评比的分数(分数均为整数)整理后,画出如图所示的频数分布直方图.已知从左到右5个小长方形的高的比为1∶3∶7∶6∶3,如果分数大于或等于80分以上的小作文有72篇,那么这次评比中共征集到的小作文有篇.【答案】160【解析】由题意可得,这次评比中共征集到的小作文有72÷920=160(篇)3、三台县某中学“五.四”青年节举行了“班班有歌声”歌咏比赛活动.比赛聘请了10位教师和10位学生担任评委,其中甲班的得分情况如统计表和统计图. 老师评委评分统计表:(1)补全频数分布直方图.(2)计分办法规定:老师评委、学生评委的评分各去掉一个最高分、一个最低分,并且按教师、学生各占60%、40%的方法计算各班最后得分,知甲班最后得分94.4分,试求统计表中的x . 【答案】见解析【解析】解:(1)依题意共有20个数据,自左向右第四组的频数为2034625----=⋯⋯(2分) (2)设x 表示有效成绩平均分,则1(9595949596979593)958x =+++++++=,0.6950.494.4x ⨯+⨯=教师,∴94x =教师,又共10位老师评委,去掉一个最高分、一个最低分后只有8位评委评分有效∴老师评委的有效总分为948752⨯=,在x ,91,98三个数中留下的数为752(94969391929693)97-++++++=, 97x ∴=.4、扬州市“五个一百工程”在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如下不完整的频数分布表和频数分布直方图.每天课外阅读时间t/h频数频率0<t≤0.5 240.5<t≤1 36 0.31<t≤1.5 0.41.5<t≤2 12 b合计 a 1根据以上信息,回答下列问题:(1)表中a= ,b= ;(2)请补全频数分布直方图;(3)若该校有学生1200人,试估计该校学生每天课外阅读时间超过1h的人数【答案】(1) 120 0.1 (2)见解析(3)600【解析】解:(1)a=36÷0.3=120,b=12÷120=0.1.故答案为120,0.1.(2)1<t≤1.5的人数为120×0.4=48.补全图形如下:(3)估计该校学生每天课外阅读时间超过1 h的人数为1200×(0.4+0.1)=600(人)5、为了掌握八年级数学考试卷的命题质量与难度系数,命题组教师赴外地选取一个水平相当的八年级班级进行预测,将考试成绩的分布情况进行处理分析,制成如下图表(成绩得分均为整数):组别成绩分组频数A 47.5-59.5 2B 59.5-71.5 4C 71.5-83.5 aD 83.5-95.5 10E 95.5-107.5 b F107.5-1206图7-4-7根据图表中提供的信息解答下列问题:(1)在频数分布表中,a= ,b= ;在扇形统计图中,m= ,n= . (2)补全频数分布直方图.(3)已知全区八年级共有200个班(平均每班有40人),用这份试卷进行检测,108分及以上为优秀,预计优秀的人数约为 人,72分及以上为及格,预计及格的人数约为 人. 【答案】(1) 8、10、10、25 (2)见解析 (3)1200 6800 【解析】12.解:(1)因为被调查的总人数为2÷5%=40(人),所以a=40×20%=8,b=40-(2+4+8+10+6)=10,m%=440×100%=10%,n%=1040×100%=25%,即m=10,n=25.故答案为8,10,10,25. (2)补全频数分布直方图如下:(3)预计优秀的人数约为200×40×15%=1200(人),预计及格的人数约为200×40×(1-5%-10%)=6800(人).故答案为1200,6800.。

频数分布表、直方图概念

频数分布表、直方图概念

一、数据的分组整理将一组数据分成若干个数段,每个分数段是一个“组区间”,分数段两端的数值是“组限”,在一组两端数值中最大的数值为上限,最小的数值为下限,分数段的最大值与最小值的差为“组距” ,分数段的个数是“组数”小结:分组整理的方法 -⑴确定分组的方法并分组141 165 144 171 145 145 158 150 157 150①计算极差;154 168 168 155 155 169 157 157 157 158②确定组距和组数,组数极差,组数取大于商的最小整数;组距149 150 150 160 152 152 159 152 159 144 ③决定组限并分组。

注意各分数段中的分数, 通常包括分154 155 157 145 160 160 160 158 162 155162 163 155 163 148 163 168 155 145 172二、频数、频率与频数分布表频数:落在各个小组内的数据的个数是这一小组的频数。

(每个分数段的分数的个数)频率:每个小组的频数与数据总数的比值叫做这一小组的频率。

计算公式:想一想:根据上表,回答以下问题 ⑴组数是多少?举例说明组区间是什么? ⑵在“80~90 ”这一组中,组限各是什么?哪个是下限,哪个是上限?组距是多少?频数是多少?频率有多大?⑶假设在“ 70~80 ”这一组中,如果频数已知,频率漏掉,怎样补上? 如果频数漏掉,怎样补上?如果频数、频率都漏掉,又怎样补上? 小结规律:① 各小组的频数之和等于数据总数; ② 各小组的频率之和等于 1。

观察频数分布表,从以下几方面对数据分布信息进行分析: ⑴数据在哪个组分布最多最集中(称该组为众数组) ,在哪个组分布最少,各占总数的比值(或百分比)是多少。

⑵各组数据分布的数量变化趋势是什么。

⑶测算中位数在哪个组(该组称为中位数组),获得数据分布状态的信息。

⑷测算平均数=各组组中值X 该组频率的积之和 (组中值=上限 下限),从2中体会频数分布的作用。

7.4 频数分布表和频数分布直方图

7.4 频数分布表和频数分布直方图

自主空间
学习 目标
学习 重点 学习 难点
教学流程
为配和新课程的实施,某市举行了“应用与创新”知识竞赛,共有 1 万名学生参加了这次竞赛(满分 100 分,得分全为整数) .为了解本次竞 赛成绩情况,从中随机抽取了部分学生的竞赛成绩,进行统计,整理见 下表: 组别 预 习 导 航 1 2 3 4 5 合 分 组 频 60 120 180 130
四、 提炼总结: 画频数分布直方图必须要分组,组数就等于最大值与最小值的差除以 组距。 1、某地区为了增强市民的法制观念,抽调了一部分市民进行了 一次知识竞赛,竞赛成绩(得分取整数)进行整理后分成五组, 并绘制成频数分布直方图,请结合直方图提供的信息填空: ⑴共抽取了_______人参赛; ⑵60.5~70.5 这一分数段的频数 是________,频率是________.
49.5~59.5 59.5~69.5 69.5~79.5 79.5~89.5 89.5~99.5 计
解答下列问题: ⑴在这个问题中,样本容量 a = ; ⑵第五小组的频数 b = , 第四小组的频率 c =

一、新知探究:抽样测量某中学七年级 50 名同学的身高,结果如下(单 位:cm) 150 148 159 156 157 163 156 164 156 159 合 作 探 究 169 163 170 162 163 164 155 162 153 155 160 165 160 161 166 159 161 157 155 167 162 165 159 147 163 172 156 165 157 164 152 156 153 164 165 162 167 151 161 162 说明: 1.课前统计好全班每个同学的身高,单位(cm) . 2.分析这组数据,需要制作频数分布表,从而问题的关键转移到了 “频数分布表”制作的核心——分组.

频数分布直方图

频数分布直方图

频数分布直方图引言频数分布直方图是一种用于可视化频数分布的图表。

频数分布是指将一组数据按照数值范围进行分类,并统计每个类别中数据出现的次数。

频数分布直方图有助于展示数据的分布情况,帮助我们了解数据的集中程度、离散程度以及可能存在的异常值。

它是统计学中最为常见的可视化工具之一,被广泛用于数据分析和数据科学的领域。

绘制频数分布直方图的步骤要绘制频数分布直方图,需要经过以下几个步骤:1.确定数据的范围,即最小值和最大值。

2.使用数据范围和每个区间的宽度来确定区间的个数。

3.将数据按照区间进行分类,并统计每个区间中数据的频数。

4.绘制直方图,横轴表示区间,纵轴表示频数。

5.对于连续变量,可以将直方图转换为频率分布直方图,将纵轴改为表示相对频数。

下面将通过一个例子来演示如何绘制频数分布直方图。

示例假设我们有一组学生成绩的数据,我们希望绘制这些成绩的频数分布直方图。

首先,我们需要确定数据的范围和区间的宽度。

假设我们的数据范围是 0 到100,我们可以选择将数据划分为 10 个等宽的区间,每个区间的宽度为 (100-0)/10 = 10。

接下来,我们将数据按照区间进行分类,并统计每个区间中数据的频数。

假设我们有以下数据:89, 78, 92, 85, 95, 76, 88, 91, 82, 87, 90, 84, 93, 80, 79, 88, 94, 81, 83, 86根据区间范围和宽度,我们可以将数据分为以下 10 个区间:[0-10), [10-20), [20-30), [30-40), [40-50), [50-60), [60-70), [70-8 0), [80-90), [90-100]统计每个区间中数据的频数,我们得到以下结果:[0-10): 0[10-20): 0[20-30): 0[30-40): 0[40-50): 0[50-60): 0[60-70): 1[70-80): 4[80-90): 8[90-100]: 7现在我们可以绘制直方图。

频数分布直方图与频率分布直方图

频数分布直方图与频率分布直方图

解 100个数据中,最大值为135,最小值为80,极差为135-80=55. 取组距为5, 则组数为555=11.
频率分布表如下:
分组
[80,85) [85,90) [90,95) [95,100) [100,105) [105,110) [110,115) [115,120) [120,125) [125,130) [130,135] 合计
2.
样本分组 与组距的比值
频率
的面积
各小长方形
等于1
思考辨析 判断正误
SI KAO BIAN XI PAN DUAN ZHENG WU
1.频率分布直方图的纵轴表示频率.( × ) 2.频数分布直方图中每一组数对应的矩形高度与频数成正比.( √ ) 3.频率分布直方图中小长方形的面积表示该组的个体数.( × ) 4.频率分布直方图中所有小长方形面积之和为1.( √ )
解 频率分布表如下:
分组 [-20,-15) [-15,-10) [-10,-5)
[-5,0) [0,5) [5,10)
[10,15) [15,20] 合计
频数 7 11 15 40 49 41 20 17
200
频率 0.035 0.055 0.075 0.200 0.245 0.205 0.100 0.085 1.000
第五章 5.1.3 数据的直观表示
学习目标
XUE XI MU BIAO
1.会列频率分布表,会画频数分布直方图、频率分布直方图、频数分 布折线图和频率分布折线图.
2.能够利用图形解决实际问题.

知识梳理

题型探究

随堂演练

课时对点练
1
PART ONE

频数分布表与频数分布直方图

频数分布表与频数分布直方图
随着可视化技术的不断创新和发展,未来的频数分布直方图将更加生动、直观和交互性更强,能够更好地满足用户对 数据可视化的需求。
大数据整合与共享
未来将有更多的数据整合和共享平台出现,频数分布表与频数分布直方图将作为重要的数据分析工具, 为全球范围内的数据共享和分析提供支持。
谢谢
THANKS
频数分布直方图的优点
可以直观地看出数据的分布趋势和异常值,便于进行定性分析;通过颜色的深浅、柱子的高低可以快 速判断数据的集中和离散程度。缺点:无法详细记录每个数据值的频数,定量分析时需要结合其他工 具或方法。
04 频数分布表与频数分布直方图的应用
CHAPTER
在统计学中的应用
描述数据分布特征
频数分布表和直方图可以清晰地展示数据的 分布情况,帮助我们了解数据集中和离散的 程度。
数据探索和可视化
通过频数分布直方图,我们可以直观地了解数据 的分布情况,进一步探索数据之间的关系和规律。
3
对比不同数据集
通过比较不同数据集的频数分布表和直方图,我 们可以发现它们之间的差异和相似之处,进而进 行数据分析和解释。
在实际生活中的应用
人口普查数据统计
在人口普查中,频数分布表和直 方图被广泛应用于展示不同地区、
03 频数分布表与频数分布直方图的比较
CHAPTER
特点比较
频数分布表
以表格形式展示数据的频数分布情况 ,可以清晰地看出数据的数量和分布 特征。
频数分布直方图
以图形方式展示数据的频数分布情况 ,可以直观地看出数据的分布趋势和 异常值。
应用场景比较
频数分布表
适用于需要详细了解数据分布情况,进行定量分析的场景。例如,在市场调研中,可以使用频数分布表来分析不 同年龄段、性别等人群的数量分布情况。

频数分布表与直方图PPT课件

频数分布表与直方图PPT课件

知识要点
频数分布表和直方图的制作
解:(1)计算最大值与最小值的差.
在样本数据中,最大值是7. 4,最小值是4.0,它们的差是
7. 4-4.0=3. 4.
(2)决定组距与组数.
在本例中,最大值与最小值的差是3.4. 如果取组距为0.3,
那么由于
3.4 11 1 , 0.3 3
可分成12组,组数适合. 于是取组距为0.3, 组数为12.
155 198 175 158 158 124 154 148 169 120 190 133 160 215 172 126 145 130 131 118 108 157 145 165 122 106 165 150 136 144 140 159 110 134 170 168 162 170 205 186 182 156 138 187 100 142 168 218 175 146
6.5 6.4 6.7 5.8 5.9 5.9 5.2 4.0 5.4 4.6 5.8 5.5 6.0 6.5 5.1 6.5 5.3 5.9 5.5 5.8 6.2 5.4 5.0 5.0 6.8 6.0 5.0 5.7 6.0 5.5 6.8 6.0 6.3 5.5 5.0 6.3 5.2 6.0 7.0 6.4 6.4 5.8 5.9 5.7 6.8 6.6 6.0 6.4 5.7 7.4 6.0 5.4 6.5 6.0 6.8 5.8 6.3 6.0 6.3 5.6 5.3 6.4 5.7 6.7 6.2 5.6 6.0 6.7 6.7 6.0 5.5 6.2 6.1 5.3 6.2 6.8 6.6 4.7 5.7 5.7 5.8 5.3 7.0 6.0 6.0 5.9 5.4 6.0 5.2 6.0 6.3 5.7 6.8 6.1 4.5 5.6 6.3 6.0 5.8 6.3

解读频数分布表和频数分布直方图

解读频数分布表和频数分布直方图

解读频数分布表和频数分布直方图频数分布表和频数分布直方图是两种常见的统计表现形式,在实际问题中应用非常广泛.为帮助同学们更好地任何认识这两种统计方式,现从以下几个方面加以分析,供参考.一、正确理解频数的概念频数是记录数据时某个对象出现的次数,它能反映每个对象出现的频繁程度.二、作频数分布表和频数分布直方图的一般步骤在整理和描述数据时,往往把数据按照范围进行分组.先用频数分布表整理数据,然后用横轴表示数据范围,纵轴表示各小组的频数,以各组的频数为高画出与这一组对应的矩形,得到频数分布直方图.画频数分布直方图的一般步骤如下:1.计算出数据中最大值与最小值的差;2.确定组距与组数,100个以内数据一般分为5~12组;3.决定分点,常使分点比所统计数据多一位小数,并且把第一组的起点稍微减少一点;4.列频数分布表,用唱票法对数据进行频数累计;5.建立平面直角坐标系,用横轴表示数据范围,纵轴表示频数,画出频数分布直方图,这样画出的长方形的高就代表频数,各小组的频数之和等于数据总数.如果取直方图中每一个长方形上边的中点,然后在横轴上直方图的左右两边取两个频数为0的点,它们分别与直方图左右相距半个组距,将这些点用线段依次连接起来,就得到频数分布折线图.频数分布折线图可以更好地刻画数据的总体规律.三、画频数分布直方图的注意事项1.分组时,不能出现数据中同一数据在两个组的情况,为了避免出现这种情况,通常在分组时,每组两端的两个数据要比题中数据单位多一位,比如题中所给数据都是整数,分组时加或减0.5即可.2.组距和组数的确定没有固定的标准,这要凭借经验和研究的具体问题来决定.通常数据越多,分的组也越多,当数据在100个以内时,根据数据的多少通常分成5~12组.例 2008年5月12日,四川汶川发生里氏8.0级特大地震,举国震惊.一方有难,八方支援,某学校开展了向灾区“希望小学”捐赠图书的活动.全校1200名学生每人都捐赠了一定数量的图书.已知各年级人数比例的扇形统计图如图1所示.学校为了了解各年级捐赠情况,从各年级中随机抽查了部分学生,进行了捐赠情况的统计调查,绘制成图2所示的频数分布直方图.根据以上信息解答下列问题:(1)从图2中我们可以看出人均捐赠图书最多的是 .(2)九年级约捐赠图书多少册?(3)全校大约共捐赠图书多少册?图 2九年级八年级 七年级年级人数捐赠数/册654.5图 1 九年级35%八年级 30%七年级35%解析:(1)从统计图中可以看出,人均捐赠图书最多的是八年级.(2)九年级的学生有1200×35%=420(人),估计九年级共捐赠图书420×5=2100(册).(3)七年级的学生有1200×35%= 420(人),估计七年级共捐赠图书420×4.5=1890(册).八年级的学生有1200×30%=360(人),估计八年级共捐赠图书360×6=2160(册).全校大约共捐赠图书1890+2160+2100=6150(册).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、数据的分组整理
将一组数据分成若干个数段,每个分数段是一个“组区间”,分数段两端的数值是“组限”,在一组两端数值中最大的数值为上限,最小的数值为下限,分数段的最大值与最小值的差为“组距”,分数段的个数是“组数”。

小结:分组整理的方法——⑴确定分组的方法并分组 ①计算极差; ②确定组距和组数,组距
极差组数
≈,组数取大于商的最小整数;
③决定组限并分组。

注意:各分数段中的分数,通常包括分数段的最低分,不包括最高分。

二、频数、频率与频数分布表
频数:落在各个小组内的数据的个数是这一小组的频数。

(每个分数段的分数的个数)
频率:每个小组的频数与数据总数的比值叫做这一小组的频率。

计算公式:
数据的总个数
这组的频数每组的频率
=
想一想:根据上表,回答以下问题 ⑴组数是多少?举例说明组区间是什么?
⑵在“80~90”这一组中,组限各是什么?哪个是下限,哪个是上限?组距是多少?频数是多少?频率有多大? ⑶假设在“70~80”这一组中,如果频数已知,频率漏掉,怎样补上?如果频数漏掉,怎样补上?如果频数、频率都漏掉,又怎样补上? 小结规律:
①各小组的频数之和等于数据总数; ②各小组的频率之和等于1。

观察频数分布表,从以下几方面对数据分布信息进行分析:
⑴数据在哪个组分布最多最集中(称该组为众数组),在哪个组分布最少,各占总数的比值(或百分比)是多少。

⑵各组数据分布的数量变化趋势是什么。

⑶测算中位数在哪个组(该组称为中位数组),获得数据分布状态的信息。

⑷测算平均数=各组组中值×该组频率的积之和(组中值=2
下限上限+),从
中体会频数分布的作用。

1.频数分布直方图
根据上节所列频数分布表,以每小组的组距为宽,频数为高,画出各小组的频数条形图,从而画出频数分布直方图。

注意:
①单位 ②连续性 ③科学性与美观兼顾 频数分布直方图的意义:
直观表示了一组数据在各小组分布的多少。

2.频数分布折线图
把“频数分布直方图”中的每个条形图的上边中点依次联结成折线段,就画成了频数分布折线图。

为了便于观察频数分布折线图两边的变化趋势,有时也用线段联结直方图最左边条形图上边中点和它外边等距区间的中点(条形图外用虚线),以及直方图最右边条形图上边中点和它外边等距区间的中点(条形图外用虚线)。

频数分布折线图直观的意义:表示了一组数据在各小组分布的变化趋势和整体分布形态。

相关文档
最新文档