eviews时间序列分析

合集下载

时间序列 eviews操作

时间序列 eviews操作

1.打开EVIEWS新建一个工作文件,步骤如下:
出现如下对话框,选择数据频率为季度,开始日期为1989年1季度,结束日期为2004年4季度,即为工作文件的范围区间。

点击ok生成工作文件
2.若要改变工作文件的范围区间,双击Range,出现如下对话框
3.利用命令series 生成时间序列gdp
点击Edit+/-改变数据的编辑状态,打开EXCEL文件将数据复制粘贴到数据区域,查看数据序列的折线图,步骤如下:
结果:
从图中可看出时间序列有明显的季节波动。

4.对gdp序列进行描述统计分析:
5.对原GDP数据进行季节调整,调整后时间序列存为GDP_SA
6.做出折线图:
由图知序列受季节影响程度变小。

7.进行单位根检验,结果如下:
计算自相关函数和偏相关函数如下:
9.利用方程建立ARMA(3,3)模型
10.建立组,包括gdp gdp_sa dgdp
建组后展示如下:
11.将建组后的收据以EXCEL格式输出:
点击ok即可。

如何用eviews分析时间序列课程

如何用eviews分析时间序列课程

如何用eviews分析时间序列课程时间序列分析是一种常用的数据分析方法,通过对一系列时间上连续测量的数据进行观察、描述和分析,可以发现其中的规律和趋势,从而预测未来的发展走势。

Eviews是一种专业的时间序列分析软件,具有强大的数据处理和统计分析功能。

本文将介绍如何使用Eviews进行时间序列分析。

首先,打开Eviews软件,并导入需要分析的时间序列数据。

在Eviews的工作区中,选择“File”菜单下的“Open”选项,然后选择需要导入的数据文件,点击“Open”按钮导入数据。

导入数据后,可以在Eviews的对象浏览器中看到导入的数据对象。

接下来,对时间序列数据进行初步的观察和描述分析。

在对象浏览器中,选择需要分析的数据对象,右键点击并选择“Open as Group”选项,将数据对象打开为一个分析组。

然后,在Eviews的对象浏览器中,选择分析组,在右侧窗口中可以看到该组中包含的所有时间序列数据。

可以通过列出每个时间序列的统计概要、绘制时间序列图、查看自相关和偏自相关等方式对数据进行初步的观察和描述分析。

接下来,进行时间序列模型的构建和估计。

在Eviews的操作菜单中,选择“Quick”菜单下的“Estimate Equation”选项,打开方程估计窗口。

在方程估计窗口中,选择需要构建的时间序列模型类型,如AR、MA、ARMA等。

然后,在“Dependent Variable”栏目中选择需要分析的时间序列数据,将其作为因变量。

在“Independent Variables”栏目中选择需要作为自变量的时间序列数据,可以根据需求选择多个自变量。

点击“OK”按钮,Eviews将根据所选择的时间序列模型类型和数据进行模型的估计。

估计完成后,可以查看估计结果。

在方程估计窗口中,可以看到估计结果的统计指标、系数估计值、显著性水平等信息。

可以根据需要查看和分析各个系数的显著性水平、置信区间等信息,判断模型的有效性和可靠性。

Eviews时间序列分析报告实例

Eviews时间序列分析报告实例

Eviews时间序列分析实例时间序列是市场中经常涉与的一类数据形式,本书第七章对它进展了比拟详细的介绍。

通过第七章的学习,读者了解了是时间序列,并接触到有关时间序列分析方法的原理和一些分析实例。

本节的主要内容是说明如何使用Eviews软件进展分析。

一、指数平滑法实例所谓指数平滑实际就是对历史数据的加权平均。

它可以用于任何一种没有明显函数规律,但确实存在某种前后关联的时间序列的短期。

由于其他很多分析方法都不具有这种特点,指数平滑法在时间序列中仍然占据着相当重要的位置。

〔-〕一次指数平滑一次指数平滑又称单指数平滑。

它最突出的优点是方法非常简单,甚至只要样本末期的平滑值,就可以得到结果。

一次指数平滑的特点是:能够跟踪数据变化。

这一特点所有指数都具有。

过程中添加最新的样本数据后,新数据应取代老数据的地位,老数据会逐渐居于次要的地位,直至被淘汰。

这样,值总是反映最新的数据结构。

一次指数平滑有局限性。

第一,值不能反映趋势变动、季节波动等有规律的变动;第二,这种方法多适用于短期,而不适合作中长期的;第三,由于值是历史数据的均值,因此与实际序列的变化相比有滞后现象。

指数平滑是否理想,很大程度上取决于平滑系数。

Eviews提供两种确定指数平滑系数的方法:自动给定和人工确定。

选择自动给定,系统将按照误差平方和最小原如此自动确定系数。

如果系数接近1,说明该序列近似纯随机序列,这时最新的观测值就是最理想的值。

出于的考虑,有时系统给定的系数不是很理想,用户需要自己指定平滑系数值。

平滑系数取值比拟适宜呢?一般来说,如果序列变化比拟平缓,平滑系数值应该比拟小,比如小于0.l;如果序列变化比拟剧烈,平滑系数值可以取得大一些,如0.3~0.5。

假如平滑系数值大于0.5才能跟上序列的变化,明确序列有很强的趋势,不能采用一次指数平滑进展。

[例1]某企业食盐销售量。

现在拥有最近连续30个月份的历史资料〔见表l〕,试下一月份销售量。

表1 某企业食盐销售量单位:吨解:使用Eviews对数据进展分析,第一步是建立工作文件和录入数据。

Eviews时间序列分析

Eviews时间序列分析

时间序列分析实验指导42-2-450100150200250统计与应用数学学院前言随着计算机技术的飞跃发展以及应用软件的普及,对高等院校的实验教学提出了越来越高的要求。

为实现教育思想与教学理念的不断更新,在教学中必须注重对大学生动手能力的培训和创新思维的培养,注重学生知识、能力、素质的综合协调发展。

为此,我们组织统计与应用数学学院的部分教师编写了系列实验教学指导书。

这套实验教学指导书具有以下特点:①理论与实践相结合,书中的大量经济案例紧密联系我国的经济发展实际,有利于提高学生分析问题解决问题的能力。

②理论教学与应用软件相结合,我们根据不同的课程分别介绍了SPSS、SAS、MATLAB、EVIEWS等软件的使用方法,有利于提高学生建立数学模型并能正确求解的能力。

这套实验教学指导书在编写的过程中始终得到财经大学教务处、实验室管理处以及统计与应用数学学院的关心、帮助和大力支持,对此我们表示衷心的感谢!限于我们的水平,欢迎各方面对教材存在的错误和不当之处予以批评指正。

统计与数学模型分析实验中心2007年2月目录实验一EVIEWS中时间序列相关函数操作········ - 1 - 实验二确定性时间序列建模方法··········- 10 - 实验三时间序列随机性和平稳性检验·········- 21 - 实验四时间序列季节性、可逆性检验·········- 25 - 实验五ARMA模型的建立、识别、检验·······- 34 - 实验六ARMA模型的诊断性检验··········- 37 - 实验七ARMA模型的预测·············- 38 - 实验八复习ARMA建模过程············- 40 - 实验九时间序列非平稳性检验···········- 42 -实验一EVIEWS中时间序列相关函数操作【实验目的】熟悉Eviews的操作:菜单方式,命令方式;练习并掌握与时间序列分析相关的函数操作。

时间序列分析实验1 Eviews的基本操作与平稳性检验

时间序列分析实验1 Eviews的基本操作与平稳性检验
随机产生100个标准正态分布的随机数可在matlab中进行将结果导入eviews中命名为randnum绘制时序图和检验
实验目的: 1. 熟悉 Eviews 的基本操作,重点是工作文件的创建、数据的录入(导入) 。 2. 掌握散点图、时序图以及自相关图的操作。 3. 掌握序列平稳性的检验。
, x100 ,将它们保存起来,命名为 aut,考察这个序
实验内容:
1. 随机产生 100 个标准正态分布的随机数(可在 Matlab 中进行) ,将结果导入 Eviews 中,命名为 rand_num,绘制时序图和自相关图。
2. 考察上述序列的平稳性。
3. 对于自回归过程 X t 0.5 X t 1 0.6 t ,其中 t ~ i.i.d . N (0, 1) ,从初值 X 0 1开 始,模拟生成序列 x1 , x2 , 列的平稳性。

eviews时间序列分析实验Word版

eviews时间序列分析实验Word版

实验一ARMA 模型建模一、实验目的学会检验序列平稳性、随机性。

学会分析时序图与自相关图。

学会利用最小二乘法等方法对ARMA 模型进行估计,以及掌握利用ARMA 模型进行预测的方法。

学会运用Eviews 软件进行ARMA 模型的识别、诊断、估计和预测和相关具体操作。

二、基本概念 1 平稳时间序列:定义:时间序列{zt}是平稳的。

如果{zt}有有穷的二阶中心矩,而且满足:(a )ut= Ezt =c;(b )r(t,s) = E[(zt-c)(zs-c)] = r(t-s,0) 则称{zt}是平稳的。

2 AR 模型:AR 模型也称为自回归模型。

它的预测方式是通过过去的观测值和现在的干扰值的线性组合预测。

具有如下结构的模型称为P 阶自回归模型,简记为AR(P)。

⎪⎪⎪⎪⎨⎧<∀=≠===≠+++++=---ts Ex t s E Var E x x x x t s s t t t p t p t p t t t ,0,0)(,)(,0)(0222110εεεσεεφεφφφφε3 MA 模型:MA 模型也称为滑动平均模型。

它的预测方式是通过过去的干扰值和现在的干扰值的线性组合预测。

具有如下结构的模型称为Q 阶移动平均回归模型,简记为MA(q)。

4 ARMA 模型:ARMA 模型:自回归模型和滑动平均模型的组合, 便构成了用于描述平稳随机过程的自回归滑动平均模型ARMA 。

具有如下结构的模型称为自回归移动平均回归模型,简记为ARMA(p,q)。

112220()0(),()0,t t t t q t q q t t t s x E Var E s t εμεθεθεθεθεεσεε---⎧=+----⎪≠⎨⎪===≠⎩,⎪⎪⎪⎪⎨⎧<∀=≠===≠≠---++++=----ts Ex t s E Var E x x x t s s t t t q p q t q t t p t p t t ,0,0)(,)(,0)(0,0211110εεεσεεθφεθεθεφφφε三、实验内容及要求 1 实验内容:(1)根据时序图判断序列的平稳性;(2)观察相关图,初步确定移动平均阶数q 和自回归阶数p ;2 实验要求:(1)深刻理解平稳性的要求以及ARMA 模型的建模思想;(2)如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARMA 模型;如何利用ARMA 模型进行预测;(3)熟练掌握相关Eviews 操作,读懂模型参数估计结果。

用EVIEWS处理时间序列分析

用EVIEWS处理时间序列分析

应用时间序列分析实验手册目录目录1第二章时间序列的预处理2一、平稳性检验2二、纯随机性检验9第三章平稳时间序列建模实验教程9一、模型识别9二、模型参数估计(如何判断拟合的模型以及结果写法)14三、模型的显著性检验17四、模型优化18第四章非平稳时间序列的确定性分析19一、趋势分析19二、季节效应分析34三、综合分析38第五章非平稳序列的随机分析44一、差分法提取确定性信息44二、ARIMA模型57三、季节模型61第二章时间序列的预处理一、平稳性检验时序图检验和自相关图检验(一)时序图检验根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的X围有界、无明显趋势及周期特征例2.1检验1964年——1999年中国纱年产量序列的平稳性1.在Eviews软件中打开案例数据图1:打开外来数据图2:打开数据文件夹中案例数据文件夹中数据文件中序列的名称可以在打开的时候输入,或者在打开的数据中输入图3:打开过程中给序列命名图4:打开数据2.绘制时序图可以如下图所示选择序列然后点Quick选择Scatter或者XYline;绘制好后可以双击图片对其进行修饰,如颜色、线条、点等图1:绘制散点图图2:年份和产出的散点图10020030040050060019601970198019902000YEARO U T P U T图3:年份和产出的散点图(二)自相关图检验 例2.3导入数据,方式同上;在Quick 菜单下选择自相关图,对Qiwen 原列进行分析;可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列。

图1:序列的相关分析图2:输入序列名称图2:选择相关分析的对象图3:序列的相关分析结果:1.可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列2.看Q统计量的P值:该统计量的原假设为X的1期,2期……k期的自相关系数均等于0,备择假设为自相关系数中至少有一个不等于0,因此如图知,该P值都>5%的显著性水平,所以接受原假设,即序列是纯随机序列,即白噪声序列(因为序列值之间彼此之间没有任何关联,所以说过去的行为对将来的发展没有丝毫影响,因此为纯随机序列,即白噪声序列.)有的题目平稳性描述可以模仿书本33页最后一段.(三)平稳性检验还可以用:单位根检验:ADF,PP检验等;非参数检验:游程检验图1:序列的单位根检验表示不包含截距项图2:单位根检验的方法选择图3:ADF检验的结果:如图,单位根统计量ADF=-0.016384都大于EVIEWS给出的显著性水平1%-10%的ADF临界值,所以接受原假设,该序列是非平稳的。

用EVIEWS处理时间序列分析

用EVIEWS处理时间序列分析

应用时间序列分析实验手册AHA12GAGGAGAGGAFFFFAFAF目录目录 (2)第二章时间序列的预处理 (3)一、平稳性检验 (3)二、纯随机性检验 (9)第三章平稳时间序列建模实验教程 (10)一、模型识别 (10)二、模型参数估计(如何判断拟合的模型以及结果写法) (13)三、模型的显著性检验 (17)四、模型优化 (18)第四章非平稳时间序列的确定性分析 (19)一、趋势分析 (19)二、季节效应分析 (34)三、综合分析 (38)第五章非平稳序列的随机分析 (44)一、差分法提取确定性信息 (44)AHA12GAGGAGAGGAFFFFAFAF二、ARIMA模型 (58)三、季节模型 (62)AHA12GAGGAGAGGAFFFFAFAF第二章时间序列的预处理一、平稳性检验时序图检验和自相关图检验(一)时序图检验根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界、无明显趋势及周期特征例2.1检验1964年——1999年中国纱年产量序列的平稳性1.在Eviews软件中打开案例数据图1:打开外来数据AHA12GAGGAGAGGAFFFFAFAF图2:打开数据文件夹中案例数据文件夹中数据文件中序列的名称可以在打开的时候输入,或者在打开的数据中输入图3:打开过程中给序列命名AHA12GAGGAGAGGAFFFFAFAF图4:打开数据2.绘制时序图可以如下图所示选择序列然后点Quick选择Scatter或者XYline;绘制好后可以双击图片对其进行修饰,如颜色、线条、点等AHA12GAGGAGAGGAFFFFAFAFAHA12GAGGAGAGGAFFFFAFAFAHA12GAGGAGAGGAFFFFAFAF图1:绘制散点图图2:年份和产出的散点图 010020030040050060019601970198019902000YEAR O U T P U T图3:年份和产出的散点图(二)自相关图检验例2.3导入数据,方式同上;在Quick菜单下选择自相关图,对Qiwen原列进行分析;可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列。

时间序列分析与Eviews应用

时间序列分析与Eviews应用

时间序列分析与 Eviews 应用非稳定序列转化为稳定序列数据变量的平稳性是传统的计量经济分析的基本要求之一。

只有模型中的变量满足平稳性要求时,传统的计量经济分析方法才是有效的 . 而在模型中含有非平稳时间序列时,基于传统的计量经济分析方法的估计和检验统计量将失去通常的性质,从而推断得出的结论可能是错误的。

因此,在建立模型之前有必要检验数据的平稳性。

在很长时间里,学者们在分析经济变量时都假定所分析的数据已满足平稳性的要求。

然而,近年来,尤其是纳尔逊和普洛瑟(Nelson Plosser,1982)的开创性论文发表后,随着计量经济学的发展,学者们对经济时间序列数据,尤其是宏观经济时间序列数据的看法发生了根本的变化。

许多经验分析表明,多数宏观经济变量都是非平稳的,由此引发了宏观经济分析方法尤其是周期分析方法的一场革命,即“单位根革命”。

解决的问题 1、如何判别虚假回归(伪回归)问题? 2 、怎样检验一组变量存在协整关系? 3 、一组变量若存在协整关系,怎样建立误差修正模型?如何更好的通过已有数据反映变量之间的长、短期关系。

一、序列相关二、非平稳时间序列时间序列的特征在做多元回归之前,有必要先了解每个时间序列的特性。

在很多应用研究中,人们常常对具有增长趋势的时间序列取对数后进行分析。

取对数后,这样的序列常常更接近于一条直线。

大多数宏观经济数据表现出这一特征。

取对数后的变量差分 (LnYt-LnYt-1)近似反映了两个时期之间该序列的增长率。

自相关 ( Autocorrelation)对于通常的经济数据序列,原始序列 Y 的当前值与滞后值之间的相关程度较高,但其差分序列Y的当前值与滞后值相关程度较低。

根据这一性质,我们可以利用过去已知的 Y 来推断今后的 Y ,但知道过去的 Y 则无助于推测今后的 Y 。

人们把这种情况说成是:“Y 能够记忆过去,但Y则不能”。

这是利用时间序列模型做预测的基础。

一般而言,此时的Y 是一个非平稳序列,而Y 则是一个平稳序列。

学习使用Eviews进行经济统计和时间序列分析

学习使用Eviews进行经济统计和时间序列分析

学习使用Eviews进行经济统计和时间序列分析第一章介绍EviewsEviews是经济学家和统计学家常用的一款软件,它提供了丰富的数据分析工具和计量经济模型。

在这一章节中,我们将介绍Eviews的简介和安装。

1.1 Eviews简介Eviews是美国IHS Markit公司开发的一款计量经济学软件,它具有直观的用户界面和强大的数据分析能力。

Eviews支持数据导入、数据整理、图表绘制、回归分析、时间序列分析等功能,广泛应用于经济学研究、金融分析和市场预测等领域。

1.2 Eviews安装要使用Eviews,我们需要先下载并安装软件。

Eviews提供了Windows和Mac版本的安装程序,用户可以根据自己的操作系统选择相应的版本。

安装完成后,我们可以打开Eviews并开始学习如何使用它进行经济统计和时间序列分析。

第二章数据导入和整理在使用Eviews进行经济统计和时间序列分析之前,我们首先需要将数据导入到软件中并进行整理。

本章节将介绍如何导入和整理数据。

2.1 导入数据Eviews支持多种数据格式的导入,包括Excel、CSV、文本文件等。

我们可以使用Eviews内置的导入工具,或者通过复制粘贴的方式将数据导入到软件中。

2.2 数据整理导入数据后,我们可能需要对数据进行整理,以便于后续的分析和建模。

在Eviews中,我们可以使用浏览对象窗口对数据进行编辑、删除、排序等操作。

此外,Eviews还提供了数据转换功能,例如对数据进行差分、平滑等处理。

第三章图表绘制图表是展示数据和分析结果的重要工具,在经济统计和时间序列分析中起着至关重要的作用。

本章节将介绍Eviews的图表绘制功能。

3.1 绘制时间序列图在Eviews中,我们可以轻松地绘制时间序列图来展示数据的趋势和变化。

通过选择合适的数据、设置坐标轴和图例,我们可以创建具有较好可读性和美观性的时间序列图。

3.2 绘制散点图和回归直线除了时间序列图,Eviews还支持绘制散点图和回归直线。

Eviews时间序列分析

Eviews时间序列分析
㈡输入Y、X的数据
⒈DATA命令方式
在EViews软件的命令窗口键入DATA命令,命令格式为:
DATA <序列名1> <序列名2>…<序列名n>
本例中可在命令窗口键入如下命令:
DATA Y X
⒉鼠标图形界面方式
在EViews软件主窗口或工作文件窗口点击Objects/New Object,对象类型选择Series,并给定序列名,一次只能创建一个新序列。再从工作文件目录中选取并双击所创建的新序列就可以展示该对象,选择Edit+/-,进入编辑状态,输入数据。
㈢生成log(Y)、log(X)、X^2、1/X、时间变量T等序列
在命令窗口中依次键入以下命令即可:
GENR LOGY=LOG(Y)
GENR LOGX=LOG(X)
GENR X1=X^2
GENR X2=1/X
GENR T=@TREND(84)
㈣选择若干变量构成数组,在数组中增加变量。
在工作文件窗口中单击所要选择的变量,按住Ctrl键不放,继续用鼠标选择要展示的变量,选择完以后,单击鼠标右键,在弹出的快捷菜单中点击Open/as Group,则会弹出数组窗口,其中变量从左至右按在工作文件窗口中选择变量的顺序来排列。
⒊在工作文件窗口中选取所要删除的变量,点击工作文件窗口菜单栏中的Delete按钮即可删除变量。
三、图形分析与描述统计分析
㈠利用PLOT命令绘制趋势图
在命令窗口中键入:PLOT Y
也可以利用PLOT命令将多个变量的变化趋势描绘在同一张图中,例如键入以下命令,可以观察变量Y、X的变化趋势
PLOT Y X
125
172
183
229
234
270

E-view时间序列

E-view时间序列

用Eviews进行时间序列分析一、工作文件的创建1 菜单方式File/new/workfile/在出现的对话框中对workfile structure type进行选择/Dated-regular frequency/OK2 命令方式Create 时间频率类型起始期终止期例如创建一个1990年到2004年的时间数据工作文件,则需键入命令:CREATE A 1990 2004工作文件一开始其中就包含了两个对象(Object),分别为C(系数向量)和resid (残差)。

它们当前的取值分别是0 和NA(空值)。

二、序列的建立及使用在主窗口或工作文件窗口的菜单中,进行如下操作:Object/New object/Series/输入序列名称/OK或者:Series 序列名1 序列名2 序列名3或者:genr 序列名=表达式(genr t=@trend+1)然后录入数据:双击序列x点击Edit+/-,将数据复制到序列中(一)画时序图打开序列窗口,在该窗口中做如下操作:View/Graph(二)相关性检查打开序列窗口,在该窗口中做如下操作:View/Correlogramlevel表示对原序列的自相关性计算,1st difference和2st difference分别表示1阶以及2阶差分的自相关性的计算。

一般默认项为level。

当样本量n较大时,k=[n/10],较小时取k=[n/4]。

而当数据为周期数据时,k取周期长度的整数倍,如季度数据,k可以取4,8,12等。

Ok 得到图形图包括两部分,左半部分是序列的自相关和偏自相关图,右半部分包括5列数据,第一列的自然数表示延迟阶数k,AC是自相关系数,PAC为偏自相关系数,Q-Stat表示对序列进行相关性检验的Q统计量值,Prob表示其P值,即相伴概率。

当P<0.05时,表示拒绝原假设,即序列相关,否则,当P>0.05时,序列不相关。

(三)平稳性方法1通过序列的时序图判断根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界、无明显趋势及周期特征。

Eviews时间序列分析要点

Eviews时间序列分析要点

时间序列分析实验指导42-2-450100150200250统计与应用数学学院前言随着计算机技术的飞跃发展以及应用软件的普及,对高等院校的实验教学提出了越来越高的要求。

为实现教育思想与教学理念的不断更新,在教学中必须注重对大学生动手能力的培训和创新思维的培养,注重学生知识、能力、素质的综合协调发展。

为此,我们组织统计与应用数学学院的部分教师编写了系列实验教学指导书。

这套实验教学指导书具有以下特点:①理论与实践相结合,书中的大量经济案例紧密联系我国的经济发展实际,有利于提高学生分析问题解决问题的能力。

②理论教学与应用软件相结合,我们根据不同的课程分别介绍了SPSS、SAS、MATLAB、EVIEWS等软件的使用方法,有利于提高学生建立数学模型并能正确求解的能力。

这套实验教学指导书在编写的过程中始终得到安徽财经大学教务处、实验室管理处以及统计与应用数学学院的关心、帮助和大力支持,对此我们表示衷心的感谢!限于我们的水平,欢迎各方面对教材存在的错误和不当之处予以批评指正。

统计与数学模型分析实验中心 2007年2月目录实验一 EVIEWS中时间序列相关函数操作·······- 1 - 实验二确定性时间序列建模方法···········- 9 - 实验三时间序列随机性和平稳性检验········- 18 - 实验四时间序列季节性、可逆性检验········- 21 - 实验五 ARMA模型的建立、识别、检验·······- 27 - 实验六 ARMA模型的诊断性检验··········- 30 - 实验七 ARMA模型的预测·············- 31 - 实验八复习ARMA建模过程············- 33 - 实验九时间序列非平稳性检验···········- 35 -实验一 EVIEWS中时间序列相关函数操作【实验目的】熟悉Eviews的操作:菜单方式,命令方式;练习并掌握与时间序列分析相关的函数操作。

Eviews作时间序列分析的一个实例

Eviews作时间序列分析的一个实例

Eviews作时间序列分析的⼀个实例时间序列分析是作时间序列数据预测的⼀个重要部分,由于此次实验室竞赛也⽤到了时间序列分析,就在此说⼀下平稳性分析以及⾮平稳处理的⽅法:1.判断平稳性1.1平稳性的定义(1)严平稳严平稳是⼀种条件⽐较苛刻的平稳性定义,它认为只有当序列所有的统计特性都不会随着时间的推移⽽发⽣变化时,该序列才能被认为平稳。

满⾜如下条件的序列称为严平稳序列:(2)宽平稳宽平稳是使⽤序列的特征统计量来定义的⼀种平稳性。

它认为序列的统计性质主要由它的低阶矩决定,所以只要保证序列低阶矩平稳(⼆阶),就能保证序列的主要性质近似稳定。

满⾜如下条件的序列称为宽平稳序列: 1.2平稳性检验的⽅法 (1)时序图检验: 根据平稳时间序列均值、⽅差为常数的性质,平稳序列的时序图应该显⽰出该序列始终在⼀个常数值附近随机波动,⽽且波动的范围有界、⽆明显趋势及周期特征 (2)⾃相关图检验: 平稳序列通常具有短期相关性。

该性质⽤⾃相关系数来描述就是随着延迟期数的增加,平稳序列的⾃相关系数会很快地衰减向零。

2.时序分析实例 下⾯以国际原油2011年⾄2017年每天国际原油的价格作为时间序列数据进⾏分析2.1时序图检验⾸先需要作出时序图,通过时序图作出⼀个基本的判断。

⽤Eviews作出的时序图如下: 从图中可以看出,该时间序列不是平稳的,接着再⽤⾃相关图进⼀步检验。

2.2⾃相关图检验 作出的⾃相关图如下: ⾃相关系数也并不是很快衰减到0,⽽且图中的prob数值都是⼩于0.05的,更加证实了该序列是⾮平稳的。

接下来对该序列进⾏差分运算(即后项减去前项),差分后的序列的时序图如下: 其⾃相关系数图如下: 此时,可以看出,差分后的序列是平稳的。

Eviews多元时间序列分析案例研究

Eviews多元时间序列分析案例研究

Eviews多元时间序列分析案例研究介绍本文档旨在通过一个案例研究,展示如何使用Eviews进行多元时间序列分析。

我们将使用Eviews进行数据准备、模型建立以及结果分析。

数据准备首先,我们需要准备用于分析的多元时间序列数据。

数据应包含多个相关变量,以便我们能够观察它们之间的相互影响。

在Eviews中,我们可以导入外部数据或使用内部示例数据。

通过导入外部数据,我们可以使用来自其他来源的实际数据进行分析。

此外,Eviews还提供了一些内置的示例数据集,这些数据集可用于研究和实践分析技术。

模型建立在数据准备完成后,我们可以开始建立多元时间序列的模型。

Eviews提供了各种统计方法和模型选项,可用于分析时间序列数据。

常见的多元时间序列模型包括VAR(向量自回归)模型、VARMA(向量自回归移动平均)模型以及VARX(包含外生变量的向量自回归)模型等。

我们可以根据数据特点和研究目的选择合适的模型,并进行参数估计和模型诊断。

结果分析完成模型估计后,我们可以对结果进行分析和解释。

Eviews提供了丰富的结果输出和图表展示功能,可以直观地展示模型的性质和统计显著性。

我们可以分析模型的系数、残差、拟合优度、滞后阶数选择等指标,评估模型的拟合程度和显著性。

此外,Eviews还支持进行模型对比和冲击响应分析,以更深入地理解多元时间序列数据的动态性质。

总结本文档简要介绍了如何使用Eviews进行多元时间序列分析。

我们从数据准备开始,使用Eviews进行模型建立和结果分析。

通过合理运用Eviews的功能,我们可以有效地研究和理解多元时间序列数据。

请注意,本文档仅为案例研究的简要介绍,具体的步骤和分析方法还需要根据具体情况进行调整和深入研究。

应用时间序列eviews实验报告

应用时间序列eviews实验报告

应用时间序列eviews实验报告时间序列分析是数据分析领域中一个重要的分析方法,主要用于研究某个变量随时间变化的趋势或周期性波动模式,具有非常广泛的应用领域,如经济学、金融学、社会学、医学等领域。

Eviews是一个经济学研究软件,具有强大的时间序列分析功能,可以用于时间序列的建模、预测等操作。

本文将对Eviews在时间序列分析实验中的应用进行介绍和分析。

一、实验介绍本次实验使用的数据为GDP数据,区间为1995-2019年,数据来源为国家统计局。

实验目的为使用Eviews进行时间序列分析,研究GDP的时间序列特征,建立合适的模型进行预测。

在实验中,我们将使用Eviews进行ADF检验、白噪声检验、建立ARIMA模型等操作,以充分展示Eviews在时间序列分析中的应用。

二、实验步骤1、数据导入首先打开Eviews软件,新建一个工作文件,导入GDP数据(见下图)。

2、ADF检验ADF检验是检验时间序列平稳性的常用方法,其原理是检验时间序列是否具有单位根。

在Eviews中进行ADF检验的操作如下:依次选择"View-Graph"-"Augmented Dickey-Fuller Test"菜单,弹出窗口后选择要分析的序列名称以及置信水平,单击"OK"按钮,即可看到ADF检验结果(见下图)。

由图可知,GDP序列的ADF检验结果为-3.0949,小于95%置信水平下的临界值-2.889,说明序列是平稳的。

3、白噪声检验4、建立ARIMA模型接下来我们将使用Eviews建立ARIMA模型,对GDP序列进行预测。

首先,在Eviews中进行序列差分,将序列转为平稳序列。

操作如下:差分后的GDP序列如下图所示:我们可以看到,差分后的序列已基本平稳。

接下来,我们可以通过ACF和PACF图查找ARIMA的参数,找到最佳的ARIMA模型进行预测。

操作如下:由图可知,差分后的GDP序列的ACF和PACF图中,第一个序列的ACF和PACF都很显著,因此我们可以考虑建立AR(1) 模型。

时间序列分析应用实例(使用Eviews软件实现)

时间序列分析应用实例(使用Eviews软件实现)

时间序列分析应⽤实例(使⽤Eviews软件实现)引⾔某公司的苹果来货量数据是以时间先后为顺序记录的⼀组数据,从计量经济学的⾓度来分类就是⼀组时间序列数据。

为了提⾼苹果来货量预测的准确度以及预测结果的可信度,下⾯运⽤Eviews软件包(即Econometrics Views 计量经济学软件包)并结合计量经济学的理论知识,选取2017年1⽉⾄2019年4⽉的苹果来货量⽉度数据(事前对原始数据进⾏处理,把数值单位从吨转换为万吨)为样本数据,⽤⼀个时间序列模型来拟合上述样本数据,然后利⽤建⽴好的模型预测苹果未来⼏个⽉的来货量情况,并对预测结果进⾏分析。

1 平稳性检验1.1 初步检验设来货量时间序列为Qt,⾸先观察Qt的折线图,如图1所⽰:图1 Qt的折线图从图1可知,苹果来货量的⽉度数据总体呈下降趋势,并存在季节性因素,进⽽通过序列原⽔平的⾃相关系数图进⼀步探讨序列的平稳性,结果如图2所⽰:图2 Qt的⾃相关系数图从图2可以看到,所有的⾃相关系数(Autocorrelation)均落在2倍标准差之内(垂⽴的两道虚线表⽰2倍标准差),初步判定序列Qt是平稳的。

下⾯运⽤ADF单位根检验法证明序列的平稳性。

1.2 ADF单位根检验假设序列Qt的特征⽅程存在多个特征根,那么序列平稳的条件为所有特征根λi的绝对值均⼩于1,即所有特征根都在单位圆内。

构造该ADF 检验的原假设H0:存在i,使得λi>1,备择假设H1:λ1, λ2, … , λp<1,运⽤Eviews软件对序列Qt的原⽔平进⾏带常数项(Intercept)的ADF检验,采⽤SC准则⾃动选择滞后阶数,检验结果如图3所⽰:图3 ADF检验根据图3的检验结果可知,t统计量(t-Statistic)的伴随概率p为0.00,在显著性⽔平α=0.05下,因此我们有理由拒绝原假设(p<α),说明序列Qt是平稳的。

2 模型识别从图2可知,序列Qt的⾃相关系数(Autocorrelation)和偏⾃相关系数(Partial correlation)均在阶数1处突然衰减为在零附近⼩值波动,因此我们初步选择AR(1)、ARMA(1,1)这两个模型拟合样本数据3 模型参数估计3.1 AR(1)模型的拟合与参数估计设AR(1)模型为:Qt=C + Φ*Qt-1 +εt,其中C为常数项,Φ为待估计的Qt滞后⼀阶的系数,εt为服从均值为零、⽅差为常数正态分布的正态分布(即⽩噪声序列),下⾯运⽤Eviews软件对AR(1)模型的参数采⽤最⼩⼆乘估计法(⽆偏估计)进⾏参数估计,模型估计结果如图4所⽰:图4 AR(1)模型拟合结果根据图4的参数估计结果来看,在显著性⽔平α=0.05下,常数项显著不为零,⽽参数Φ的显著性估计结果并不是太好,另外AR(1)模型的特征⽅程的根(Inverted AR Roots)为-0.16,印证了序列Qt是平稳的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 时间序列分析
第一节 随机时间序列的特性分析
❖ 一、时序特性的研究工具 ❖ 最重要的工具是自相关和偏自相关 ❖ 在主菜单选择 ❖ Quick/Series Statistics/Correlogram ❖ 或在主窗口命令行输入 ident ❖ 或用鼠标双击工作文件窗口中相应的序列名
称,然后在出现的序列对象窗口上方工具栏 中选择View/lCorrelogram
❖ 输出结果由两部分组成。左半部分是序列的
自相关和偏自相关分析图,右半部分包括五 列数据。第一列的自然数表示滞后期k, AC是 自相关系数, PAC是偏自相关系数。最后两 列是对序列进行独立性检验的Q统计量和相 伴概率。
二、时间序列平稳性检验
❖ 1、利用图形进行平稳性判断 ❖ 直观判断图是否为一条围绕其平均值上下波
动的曲线 ❖ 2、单位根检验
❖ DF检验 ❖ 原假设:有单位根,即序列非平稳。
yt yt1 t yt c yt1 t yt c t yt1 t
❖ ADF检验模型为:
p
yt yt1 j yt j t j 1 p
yt c yt1 j yt j t j 1 p
❖ 2、再通过单位根检验来证实
❖ 3、求中国人口序列的相关图和偏相关图, 识别模型形式
❖ 知中国人口序列y是非平稳序列,而dy是平 稳序列〈相关图呈指数衰减特征)。通过初 步分析,认定dy是一个1阶或2阶自回归过 程,假定先估计AR(2)模型。
二、模型的参数估计
❖ 从EViews主菜单中点击Quick键,选择 Estimate Equation功能。在随即弹出 Equation specification对话框中输入 D(Y) c AR(I) AR(2)
第四节 ARIMA的建立
❖ 例:example 8-2是我国1990年1月份至1997 年12月工业总产值的月度资料,记作IP,共 有96个观测值,对序列IP建立ARIMA模型。
❖ 实际建模时希望用高阶的AR模型替换相应的 MA或ARMA模型。
第五节 协整检验和ECM模型
❖ 协整检验的基本思想是对回归方程的残差进 行单位根检验,若残差序列是平稳序列,则 表明方程的因变量和解释变量之间存在协整 关系,否则不存在协整关系。
❖ 例:case 27中序列S和Z分别表示1992年1月 至1998年12月经居民消费价格指数调整的中 国城镇居民月人均生活费支出和可支配收入 时间序列。SA和ZA分别代表以X-11程序对 case27中城镇居民月人均生活费支出和可支 配收入时间序列进行季节调整后的序列。要 求对经自然对数变换后的序列LSA和LZA做 协整检验。

❖ Table8-6中是我国从1978年至2006年数据。建立实 际消费支出(lnACS)与实际可支配收入(LnDinc)的 回归方程,并研究二者之间是否存在协整关系。若 存在,建立如下误差修正模型:
❖ 将样本范围改为1949 ~ 2000年,留下2001 年的值用于计算预测精度。
Dyt 0.1429 ut (8.7)
ut 0.6171ut1 vt (5.4)
❖ 从输出结果的最后一行知道,特征根是 1/0.62=1.61,满足平稳性要求。
三、模型的检验
❖ 参数估计后,应该对ARMA模型的适合性进 行检验,即对模型的残差序列et进行白噪声 检验。
yt c t yt1 j yt j t j61天的深证成指(SZ)序列见case37。
❖ 初步选择①ADF检验,②对原序列sz,做单 位根检验,③检验式中不包括趋势项,但包 括截距项。
❖ 因为常数项没有显著性。从检验式中去掉截 距项,继续迸行单位根检验。
第二节 模型的识别与建立
❖ 一、模型的识别
❖ 随机序列的自相关函数是拖尾的,而其偏自相关函 数是以p阶截尾的,则此序列是自回归AR(p)序列;
❖ 若随机序列的自相关函数是以q阶截尾,而其偏自 相关函数为拖尾,则此序列是移动平均MA(q)序列。
❖ 若平稳随机序列的自相关函数和偏自相关函数都是 拖尾的,则此序列可以看成是自回归移动平均序列 ARMA(p,q),模型中的p和q的识别通常从低阶开始 逐步试探,直到定出合适的模型为止。
❖ 在弹出的单位根检验对话框中的检验式选择 (Include in test equation)区选检验式中不包 括趋势项和截距项(None)。最大滞后期 (Maximum lag)填0,
❖ 对SZ的差分序列DS上继续做单位根检验
❖ 例2 承接上例,对序列sz 做单位根PP检验
❖ 在单位根检验定义对话框中,把Test Type 下 面的选项改为PP,系统会根据序列样本量自 动在Truncation lag中给出推荐的值,其他选 项意义与ADF检验相同。
❖ 例3 下面以1949 ~2001年中国人口时间序列 数据(case42)为例介绍: (1)时间序列图; (2)求 中国人口序列的相关图和偏相关图,识别模 型形式; (3)估计时间序列模型; (4)样本外预 测。
❖ 1、画时间序列图
❖ 点击View键,选择Graph/Line功能
❖ 从人口序列y的变化特征看,这是一个非平 稳序列。
第三节 模型的预测
❖ 比如用估计的模型Dyt = 0. 0547 + 0. 6171 Dy t- 1+ vt预测2001年的中国总人口,在窗口 中点击forecast键,弹出对话窗口。在S. E. (optional)选择区填入yfse,把Forecast sample (预测样本区间)改为2001 ~2001,预 测方法(Method)选静态预测(Static)
❖ 若残差序列不是白噪声序列,意味着残差序 列还存在有用信息没被提取,需要进一步改 进模型。
❖ 常用的是残差序列的卡方检验
❖ 1.直接对系统默认对象resid操作
❖ 2.方程输出窗口菜单操作
❖ 单击View打开下拉菜单,选择 Residual Tests/Correlogram-Q-Statistics, 在弹出的对 话框中输入最大滞后期,点击OK,生成残差 序列的自相关分析图。
相关文档
最新文档