集合与常用逻辑(总结)
集合与常用逻辑用语
集合与常用逻辑用语一、集合1、特定集合的表示①自然数集:N ②正整数集:+N③整数集:Z ④有理数集:Q⑤实数集:R ⑥正实数集:+R2、集合之间的关系①子集:A⊆B⇔ x∈A⇒x∈B。
真子集:A B⇔A⊆B且A≠B。
集合相等:A=B⇔A⊆B且B⊆A。
②空集是任何集合的子集,是任意非空集合的真子集。
③n个元素的集合有n2个子集;n个元素的集合有12-n个真子集。
3、集合的运算关系①交集:A∩B⇔x∈A且x∈B。
并集:A∪B⇔x∈A或x∈B。
补集:ACU⇔x∈U且x∉A。
②基本性质:A∩∅=∅;A∪∅=A;A∩B=A⇔A⊆B;A∪B=A⇔B⊆A。
③容斥原理:Card(A)+Card(B)=Card(A∩B)+Card(A∪B);Card(A)+Card(B)+Card(C)=Card(A∪B∪C)+Card(A∩B)+Card(B∩C) +Card(C∩A)-Card(A∩B∩C)。
④德摩根定律:(ACU )∩(BCU)=)(BACU⋃;(ACU)∪(BCU)=)(BACU⋂。
⑤其它性质:若{a1,a2…a m}⊆A⊆{a1,a2…a m,a m+1…a n},则集合A的个数为m n-2。
若{a1,a2…a m}∪B={a1,a2…a m,a m+1…a n},则集合B的个数为m2。
二、常用逻辑用语1、量词①全称量词:∀。
含有全称量词的命题为全称命题:∀x ∈M ,p(x)。
②存在量词:∃。
含有存在量词的命题为存在性命题:∃x ∈M ,p(x)。
2、基本逻辑连结词①∧(且):若p 、q 全真,则p ∧q 为真;若p 、q 一真一假,则p ∧q 为假。
②∨(或):若p 、q 至少一真,则p ∧q 为真;若p 、q 全假,则p ∧q 为假。
③⌝(非):若p 真则p ⌝假;若p 假则p ⌝真。
㈠正面叙述的否定:都是→不都是;任意的→某个;任意n 个→某n 个;所有的→某些; 至多有n 个→至少有n+1个;至少有n 个→至多有n-1个;至少有一个→一个也没有。
集合与常用逻辑用语知识点
集合与常用逻辑用语一、知识总结1、集合(1)元素与集合:①集合元素的特征性: 、 、 ;②元素与集合的关系:元素与集合之间的关系有 和 两种,表示符号分别为 和 ;③常见集合的符号表示:自然数集 、正整数集 、整数集 、有理数集 、实数集(R );④集合的表示方法 、 、 。
(2)集合与集合间的关系:①如果集合A 中 元素都是集合B 的元素,则A 叫做B 的子集;空集φ,它是任何非空集合的 ;②若B A ⊆,且A B ⊆,则 。
(3)集合的运算:设A 、B 是两个集合,全集为U ,则{}B x A x x B A ∈∈=且I ,{}B x A x x B A ∈∈=或Y ,{}A x U x x A C U ∉∈=且。
若B A ⊆,则A B A =I ,B B A =Y 。
2、命题及其关系、充分条件与必要条件 (1)命题的概念:在数学中用语言、符号或式子表达的,可以 的陈述句叫做命题,其中的语句叫真命题, 的语句叫假命题。
(2)四中命题及其关系:用q p 和分别表示原命题的条件和结论,用p ⌝和q ⌝分别表示两个命题互为逆否命题,它们有相同的真假性,是等价关系。
两个命题互为逆命题或互为否命题,它们的真假性没有关系。
(3)充分条件与必要条件:①如果q p ⇒,则p 是q 的 ,q 是p 的 ;若q p ⇔,则p 是q 的 。
②若p 不能推出q ,且q 不能推出p ,则p 是q 的 . 3、逻辑连接词与量词(1)逻辑连接词:①用联结词“且”联结命题p 和命题q ,记作 ,读作“p 且q ”。
②用联结词“或”联结命题p 和命题q ,记作 读作“p 或q ”。
③对一个命题p 全盘否定记作 读作“非p ”或“p 的否定”。
(2)全称量词与存在量词:①全称量词有:所有的,任意一个,任给,用符号“ ”表示。
存在量词:存在一个,至少有一个,有些,用符号“ ”表示。
②含有全称量词的命题,叫做 ;“对M 中任意一个x ,有()x p 成立”可用符号简记为: 。
高中数学第一章集合与常用逻辑用语知识汇总大全(带答案)
高中数学第一章集合与常用逻辑用语知识汇总大全单选题1、已知集合A={(x,y)||x|+|y|≤2,x∈Z,y∈Z},则A中元素的个数为()A.9B.10C.12D.13答案:D分析:利用列举法列举出集合A中所有的元素,即可得解.由题意可知,集合A中的元素有:(−2,0)、(−1,−1)、(−1,0)、(−1,1)、(0,−2)、(0,−1)、(0,0)、(0,1)、(0,2)、(1,−1)、(1,0)、(1,1)、(2,0),共13个.故选:D.2、已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.∅B.S C.T D.Z答案:C分析:分析可得T⊆S,由此可得出结论.任取t∈T,则t=4n+1=2⋅(2n)+1,其中n∈Z,所以,t∈S,故T⊆S,因此,S∩T=T.故选:C.3、设集合A={x|−2<x<4},B={2,3,4,5},则A∩B=()A.{2}B.{2,3}C.{3,4}D.{2,3,4}答案:B分析:利用交集的定义可求A∩B.由题设有A∩B={2,3},故选:B .4、以下五个写法中:①{0}∈{0,1,2};②∅⊆{1,2};③∅∈{0};④{0,1,2}={2,0,1};⑤0∈∅;正确的个数有()A.1个B.2个C.3个D.4个答案:B分析:根据元素与集合以及集合与集合之间的关系表示方法作出判断即可.对于①:是集合与集合的关系,应该是{0}⊆{0,1,2},∴①不对;对于②:空集是任何集合的子集,∅⊆{1,2},∴②对;对于③:∅是一个集合,是集合与集合的关系,∅⊆{0},∴③不对;对于④:根据集合的无序性可知{0,1,2}={2,0,1},∴④对;对于⑤:∅是空集,表示没有任何元素,应该是0∉∅,∴⑤不对;正确的是:②④.故选:B.5、已知集合A={x|-1<x<1},B={x|0≤x≤2},则A∪B=()A.{x|0≤x<1}B.{x|-1<x≤2}C.{x|1<x≤2}D.{x|0<x<1}答案:B分析:由集合并集的定义可得选项.解:由集合并集的定义可得A∪B={x|-1<x≤2},故选:B.6、集合A={x|x<−1或x≥1},B={x|ax+2≤0},若B⊆A,则实数a的取值范围是()A.[−2,2]B.[−2,2)C.(−∞,−2)∪[2,+∞)D.[−2,0)∪(0,2)答案:B分析:分B=∅与B≠∅两种情况讨论,分别求出参数的取值范围,最后取并集即可;解:∵B⊆A,∴①当B=∅时,即ax+2≤0无解,此时a=0,满足题意.②当B≠∅时,即ax+2≤0有解,当a>0时,可得x≤−2a,要使B⊆A,则需要{a>0−2a<−1,解得0<a<2.当a<0时,可得x≥−2a ,要使B⊆A,则需要{a<0−2a≥1,解得−2≤a<0,综上,实数a的取值范围是[−2,2).故选:B.7、在下列命题中,是真命题的是()A.∃x∈R,x2+x+3=0B.∀x∈R,x2+x+2>0C.∀x∈R,x2>|x|D.已知A={a∣a=2n},B={b∣b=3m},则对于任意的n,m∈N∗,都有A∩B=∅答案:B分析:可通过分别判断选项正确和错误,来进行选择/选项A,∃x∈R,x2+x+3=0,即x2+x+3=0有实数解,所以Δ=1−12=−11<0,显然此方程无实数解,故排除;选项B,∀x∈R,x2+x+2>0,x2+x+2=(x+12)2+74≥74>0,故该选项正确;选项C,∀x∈R,x2>|x|,而当x=0时,0>0,不成立,故该选项错误,排除;选项D,A={a∣a=2n},B={b∣b=3m},当n,m∈N∗时,当a、b取得6的正整数倍时,A∩B≠∅,所以,该选项错误,排除.故选:B.8、设集合A={2,a2−a+2,1−a},若4∈A,则a的值为().A.−1,2B.−3C.−1,−3,2D.−3,2答案:D分析:由集合中元素确定性得到:a=−1,a=2或a=−3,通过检验,排除掉a=−1.由集合中元素的确定性知a2−a+2=4或1−a=4.当a2−a+2=4时,a=−1或a=2;当1−a=4时,a=−3.当a=−1时,A={2,4,2}不满足集合中元素的互异性,故a=−1舍去;当a=2时,A={2,4,−1}满足集合中元素的互异性,故a=2满足要求;当a =−3时,A ={2,14,4}满足集合中元素的互异性,故a =−3满足要求.综上,a =2或a =−3.故选:D .多选题9、已知集合A ={x ∣1<x <2},B ={x ∣2a −3<x <a −2},下列命题正确的是A .不存在实数a 使得A =B B .存在实数a 使得A ⊆BC .当a =4时,A ⊆BD .当0⩽a ⩽4时,B ⊆AE .存在实数a 使得B ⊆A答案:AE分析:利用集合相等判断A 选项错误,由A ⊆B 建立不等式组,根据是否有解判断B 选项;a =4时求出B ,判断是否A ⊆B 可得C 错误,分B 为空集,非空集两种情况讨论可判断D 选项,由D 选项判断过程可知E 选项正确.A 选项由相等集合的概念可得{2a −3=1a −2=2解得a =2且a =4,得此方程组无解, 故不存在实数a 使得集合A=B ,因此A 正确;B 选项由A ⊆B ,得{2a −3≤1a −2≥2即{a ≤2a ≥4,此不等式组无解,因此B 错误; C 选项当a =4时,得B ={x ∣5<x <2}为空集,不满足A ⊆B ,因此C 错误;D 选项当2a −3≥a −2,即a ≥1时,B =∅⊆A ,符合B ⊆A ;当a <1时,要使B ⊆A ,需满足{2a −3≥1a −2≤2解得2≤a ≤4,不满足a <1,故这样的实数a 不存在,则当0≤a ≤4时B ⊆A 不正确,因此D 错误; E 选项由D 选项分析可得存在实数a 使得B ⊆A ,因此E 正确.综上AE 选项正确.故选:AE.小提示:本题主要考查了集合相等,子集的概念,考查了推理运算能力,属于中档题.10、已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件.现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④¬p 是¬s 的必要条件而不是充分条件;则正确命题序号是 ( )A.①B.②C.③D.④答案:ABD分析:根据题设有p⇒r⇔s⇔q,但r⇏p,即知否定命题的推出关系,判断各项的正误. 由题意,p⇒r⇔s⇔q,但r⇏p,故①②正确,③错误;所以,根据等价关系知:¬s⇔¬q⇔¬r⇒¬p且¬p⇏¬r,故④正确.故选:ABD11、已知x,y,z为非零实数,代数式x|x|+y|y|+z|z|+|xyz|xyz的值所组成的集合是M,则下列判断正确的是()A.0∉M B.2∈M C.−4∈M D.4∈M答案:CD分析:讨论x,y,z的正负数分布情况判断对应代数式的值,即可确定集合M,进而确定正确的选项.当x,y,z均为负数时,x|x|+y|y|+z|z|+|xyz|xyz=−4;当x,y,z两负一正时,x|x|+y|y|+z|z|+|xyz|xyz=0;当x,y,z两正一负时,x|x|+y|y|+z|z|+|xyz|xyz=0;当x,y,z均为正数时,x|x|+y|y|+z|z|+|xyz|xyz=4;∴M={−4,0,4},A、B错误,C、D正确.故选:CD12、已知集合A={y|y=x2+1},集合B={(x,y)|y=x2+1},下列关系正确的是().A.(1,2)∈B B.A=B C.0∉A D.(0,0)∉B答案:ACD分析:根据集合的定义判断,注意集合中代表元形式.由已知集合A={y}y≥1}=[1,+∞),集合B是由抛物线y=x2+1上的点组成的集合,A正确,B错,C正确,D正确,故选:ACD.小提示:本题考查集合的概念,确定集合中的元素是解题关键.13、对任意实数a,b,c,下列命题中真命题是()A.a=b是ac=bc的充要条件B.“a+5是无理数”是“a是无理数”的充要条件C.a>b是a2>b2的充要条件D.a<5是a<3的必要条件答案:BD分析:利用充分条件和必要条件的定义进行判断解:∵“a=b”⇒“ac=bc”为真命题,但当c=0时,“ac=bc”⇒“a=b”为假命题,故“a=b”是“ac=bc”的充分不必要条件,故A为假命题;∵“a+5是无理数”⇒“a是无理数”为真命题,“a是无理数”⇒“a+5是无理数”也为真命题,故“a+5是无理数”是“a是无理数”的充要条件,故B为真命题;∵“a>b”⇒“a2>b2”为假命题,“a2>b2”⇒“a>b”也为假命题,故“a>b”是“a2>b2”的既不充分也不必要条件,故C为假命题;∵{a|a<3}{a|a<5},故“a<5”是“a<3”的必要不充分条件,故D为真命题.故选:BD.填空题14、已知A={x∈R|2a≤x≤a+3},B={x∈R|x<-1或x>4},若A⊆B,则实数a的取值范围是________.答案:a<-4或a>2分析:按集合A为空集和不是空集两种情况去讨论即可求得实数a的取值范围.①当a>3即2a>a+3时,A=∅,满足A⊆B;.②当a≤3即2a≤a+3时,若A⊆B,则有{2a≤a+3a+3〈−1或2a〉4,解得a<-4或2<a≤3综上,实数a的取值范围是a<-4或a>2.所以答案是:a<-4或a>215、命题“∃x∈R,x≥1或x>2”的否定是__________.答案:∀x∈R,x<1根据含有量词的命题的否定,即可得到命题的否定分析:特称命题的否定是全称命题,∴命题“∃x∈R,x≥1或x>2”的等价条件为:“∃x∈R,x≥1”,∴命题的否定是:∀x∈R,x<1.所以答案是:∀x∈R,x<1.16、用符号∈或∉填空:3.1___N,3.1___Z, 3.1____N∗,3.1____Q,3.1___R.答案:∉∉∉∈∈分析:由元素与集合的关系求解即可因为3.1不是自然数,也不是整数,也不是正整数,是有理数,也是实数,所以有:3.1∉N;3.1∉Z;3.1∉N∗;3.1∈Q;3.1∈R.所以答案是:∉,∉,∉,∈,∈.解答题17、已知m>0,p:(x+1)(x−5)≤0,q:1−m≤x≤1+m.(1)若m=5,p∨q为真命题,p∧q为假命题,求实数x的取值范围;(2)若p是q的充分条件,求实数m的取值范围.答案:(1){x|−4≤x<−1或5<x≤6};(2)[4,+∞).分析:(1)由“p∨q”为真命题,“p∧q”为假命题,可得p与q一真一假,然后分p真q假,p假q真,求解即可;(2)由p是q的充分条件,可得[−1,5]⊆[1−m,1+m],则有{m>01−m≤−11+m≥5,从而可求出实数m的取值范围(1)当m=5时,q:−4≤x≤6,因为“p∨q”为真命题,“p∧q”为假命题,故p与q一真一假,若p真q假,则{−1≤x≤5x<−4或x>6,该不等式组无解;若p假q真,则{x<−1或x>5−4≤x≤6,得−4≤x<−1或5<x≤6,综上所述,实数的取值范围为{x|−4≤x<−1或5<x≤6};(2)因为p是q的充分条件,故[−1,5]⊆[1−m,1+m],故{m>01−m≤−11+m≥5,得m≥4,故实数m的取值范围为[4,+∞).18、已知集合A={x|2<x<4},B={x|a<x<3a}.(1)若A∩B={x|3<x<4},求实数a的值;(2)若A∩B=∅,求实数a的取值范围.答案:(1)3(2){a|a≤23或a≥4}分析:(1)根据交集结果直接判断即可.(2)按B=∅,B≠∅讨论,简单计算即可得到结果. (1)因为A∩B={x|3<x<4},所以a=3.(2)因为A∩B=∅,所以可分两种情况讨论:B=∅,B≠∅. 当B=∅时,有a≥3a,解得a≤0;当B≠∅时,有{a>0a≥4或3a≤2,解得a≥4或0<a≤23.综上,实数a的取值范围是{a|a≤23或a≥4}.。
集合与简易逻辑知识点总结
集合与简易逻辑知识点总结集合与简易逻辑集合是由一些指定的对象组成的集合体。
集合中的每一个对象都被称为该集合的元素。
元素与集合的关系可以表示为a∈A或a∉A。
集合常用的表示方法有列举法和描述法。
集合元素的特征包括确定性、互异性和无序性。
常用的数集及其代号有非负整数集或自然数集N,正整数集N*,整数集Z,有理数集Q和实数集R。
子集是指集合A的所有元素都是集合B的元素,记为A⊆B。
真子集是指A⊆B且A≠B,记为A⊂B。
空集是任何集合的子集,但是是非空集合的真子集。
如果集合A中有n个元素,则A的子集个数为2^n个,真子集个数为2^n-1个。
补集是指由集合S中不属于集合A的所有元素组成的集合,记为S的子集A的补集,即C_s A={x|x∈S且x∉A}。
全集是指包含我们所要研究的各个集合的集合,通常记作U。
交集是指由所有属于集合A且属于B的元素构成的集合,记作A∩B。
并集是指由所有属于集合A或属于B的元素构成的集合,记作A∪B。
记住两个常见的结论:A∩B=A⇔A⊆B;A∪B=A⇔B⊆A。
命题是可以判断真假的语句。
全称命题和特称命题是两种命题形式。
全称命题使用“∀”表示,“∀x∈M,p(x)”表示“对于集合M中的任意一个元素x,p(x)成立”。
全称命题的否定使用“∃”表示,“∃x∈M,¬p(x)”表示“存在集合M中的一个元素x,使得p(x)不成立”。
特称命题和特称命题的否定使用同样的符号表示。
逻辑联结词包括“或”、“且”、“非”,不含有逻辑联结词的命题是简单命题,由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。
在“或”、“且”、“非”的真值判断中,非p与p真假相反;“p且q”:同真才真,一假即假;“p或q”:同假才假,一真即真。
命题的四种形式包括原命题、逆命题、反命题和对偶命题。
原命题“若P则Q”表示如果P成立,那么Q也成立。
逆命题是一种逻辑推理关系,表述为“若q,则p”。
否命题是另一种逻辑推理关系,表述为“若非p,则非q”。
高中数学集合与常用逻辑用语知识点总结PPT课件
【注意】 (1)从集合的观点看,全称量词命题是陈述某集合中所有元素都具有某种 性质的命题; (2)一个全称量词命题可以包含多个变量; (3)有些全称量词命题中的全称量词是省略的,理解时需要把它补出来。 如:命题“平行四边形对角线互相平行”理解为“所有平行四边形对角线 都互相平行”。
2、存在量词与存在量词命题 (1)存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫作存在 量词,并用符号“图片”表示. 【注意】常见的存在量词还有“有些”、“有一个”、“对某些”、“有 的”等; (2)存在量词命题:含有存在量词的命题,叫作存在量词命题。
2、集合运算中的常用二级结论(1)并集的性质:A∪∅=A;A∪A=A;A∪B= B∪A;A∪B=A⇔B⊆A. (2)交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B. (3)补集的性质:A∪(∁UA)=U;A∩(∁UA)=∅.∁U(∁UA)=A;∁U(A∪B)= (∁UA)∩(∁UB);∁U(A∩B)=(∁UA)∪(∁UB).
【注意】 (1)从集合的观点看,存在量词命题是陈述某集合中有一些 元素具有某种性质的命题; (2)一个存在量词命题可以包含多个变量; (3)有些命题虽然没有写出存在量词,但其意义具备“存 在”、“有一个”等特征都是存在量词命题
3、命题的否定:对命题p加以否定,得到一个新的命题,记作“图片”, 读作“非p”或p的否定.
知识点5 全称量词与存在量词 1、全称量词与全称量词命题 (1)全称量词:短语“所有的”“任意一个”在逻辑中通常 叫作全称量词,并用符号“图片”表示.
【注意】 (1)全称量词的数量可能是有限的,也可能是无限的,由有 题目而定; (2)常见的全称量词还有“一切”、“任给”等,相应的词 语是“都” (2)全称量词命题:含有全称量词的命题,称为全称量词命 题.
高中数学必修一第一章集合与常用逻辑用语知识点汇总(带答案)
高中数学必修一第一章集合与常用逻辑用语知识点汇总单选题1、设集合A={1,2},B={2,4,6},则A∪B=()A.{2}B.{1,2}C.{2,4,6}D.{1,2,4,6}答案:D分析:利用并集的定义可得正确的选项.A∪B={1,2,4,6},故选:D.2、已知集合M={x|x=2k+1,k∈Z},集合N={y|y=4k+3,k∈Z},则M∪N=()A.{x|x=6k+2,k∈Z}B.{x|x=4k+2,k∈Z}C.{x|x=2k+1,k∈Z}D.∅答案:C分析:通过对集合N的化简即可判定出集合关系,得到结果.因为集合M={x|x=2k+1,k∈Z},集合N={y|y=4k+3,k∈Z}={y|y=2(2k+1)+1,k∈Z},因为x∈N时,x∈M成立,所以M∪N={x|x=2k+1,k∈Z}.故选:C.3、已知集合S={x∈N|x≤√5},T={x∈R|x2=a2},且S∩T={1},则S∪T=()A.{1,2}B.{0,1,2}C.{-1,0,1,2}D.{-1,0,1,2,3}答案:C分析:先根据题意求出集合T,然后根据并集的概念即可求出结果.S={x∈N|x≤√5}={0,1,2},而S∩T={1},所以1∈T,则a2=1,所以T={x∈R|x2=a2}={−1,1},则S∪T={−1,0,1,2}故选:C.4、已知p:√x−1>2,q:m−x<0,若p是q的充分不必要条件,则m的取值范围是()A.m<3B.m>3C.m<5D.m>5答案:C分析:先求得命题p、q中x的范围,根据p是q的充分不必要条件,即可得答案.命题p:因为√x−1>2,所以x−1>4,解得x>5,命题q:x>m,因为p是q的充分不必要条件,所以m<5.故选:C5、已知集合A={x|-1<x<1},B={x|0≤x≤2},则A∪B=()A.{x|0≤x<1}B.{x|-1<x≤2}C.{x|1<x≤2}D.{x|0<x<1}答案:B分析:由集合并集的定义可得选项.解:由集合并集的定义可得A∪B={x|-1<x≤2},故选:B.6、已知集合P={x|x=2k−1,k∈N∗}和集合M={x|x=a⊕b,a∈P,b∈P},若M⊆P,则M中的运算“⊕”是()A.加法B.除法C.乘法D.减法答案:C分析:用特殊值,根据四则运算检验.若a=3,b=1,则a+b=4∉P,a−b=2∉P,ba =13∉P,因此排除ABD.故选:C.7、等比数列{a n}的公比为q,前n项和为S n,设甲:q>0,乙:{S n}是递增数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件答案:B分析:当q>0时,通过举反例说明甲不是乙的充分条件;当{S n}是递增数列时,必有a n>0成立即可说明q> 0成立,则甲是乙的必要条件,即可选出答案.由题,当数列为−2,−4,−8,⋯时,满足q>0,但是{S n}不是递增数列,所以甲不是乙的充分条件.若{S n}是递增数列,则必有a n>0成立,若q>0不成立,则会出现一正一负的情况,是矛盾的,则q>0成立,所以甲是乙的必要条件.故选:B.小提示:在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.8、设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()A.–4B.–2C.2D.4答案:B分析:由题意首先求得集合A,B,然后结合交集的结果得到关于a的方程,求解方程即可确定实数a的值.求解二次不等式x2−4≤0可得:A={x|−2≤x≤2},}.求解一次不等式2x+a≤0可得:B={x|x≤−a2=1,解得:a=−2.由于A∩B={x|−2≤x≤1},故:−a2故选:B.小提示:本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.多选题9、下列条件中,为“关于x的不等式mx2−mx+1>0对∀x∈R恒成立”的充分不必要条件的有()A.0≤m<4B.0<m<2C.1<m<4D.−1<m<6答案:BC分析:对m讨论:m=0;m>0,Δ<0;m<0,结合二次函数的图象,解不等式可得m的取值范围,再由充要条件的定义判断即可.因为关于x的不等式mx2−mx+1>0对∀x∈R恒成立,当m=0时,原不等式即为1>0恒成立;当m>0时,不等式mx2−mx+1>0对∀x∈R恒成立,可得Δ<0,即m2−4m<0,解得:0<m<4.当m<0时,y=mx2−mx+1的图象开口向下,原不等式不恒成立,综上:m的取值范围为:[0,4).所以“关于x的不等式mx2−mx+1>0对∀x∈R恒成立”的充分不必要条件的有0<m<2或1<m<4.故选:BC.10、某校举办运动会,高一的两个班共有120名同学,已知参加跑步、拔河、篮球比赛的人数分别为58,38,52,同时参加跑步和拔河比赛的人数为18,同时参加拔河和篮球比赛的人数为16,同时参加跑步、拔河、篮球三项比赛的人数为12,三项比赛都不参加的人数为20,则()A.同时参加跑步和篮球比赛的人数为24B.只参加跑步比赛的人数为26C.只参加拔河比赛的人数为16D.只参加篮球比赛的人数为22答案:BCD分析:设同时参加跑步和篮球比赛的人数为x,由Venn图可得集合的元素个数关系.设同时参加跑步和篮球比赛的人数为x,由Venn图可得,58+38+52−18−16−x+12=120−20,得x=26,则只参加跑步比赛的人数为58−18−26+12=26,只参加拔河比赛的人数为38−16−18+12= 16,只参加篮球比赛的人数为52−16−26+12=22.故选:BCD.11、对于集合M,N,我们把属于集合M但不属于集合N的元素组成的集合叫作集合M与N的“差集”,记作M−N,即M−N={x|x∈M,且x∉N};把集合M与N中所有不属于M∩N的元素组成的集合叫作集合M与N的“对称差集”,记作MΔN,即MΔN={x|x∈M∪N,且x∉M∩N}.下列四个选项中,正确的有()A.若M−N=M,则M∩N=∅B.若M−N=∅,则M=NC.MΔN=(M∪N)−(M∩N)D.MΔN=(M−N)∪(N−M)答案:ACD分析:根据集合的新定义得到A正确,当M⊆N时,M−N=∅,B错误,根据定义知C正确,画出集合图形知D正确,得到答案.若M−N=M,则M∩N=∅,A正确;当M⊆N时,M−N=∅,B错误;MΔN={x|x∈M∪N,且x∉M∩N}=(M∪N)−(M∩N),C正确;MΔN和(M−N)∪(N−M)均表示集合中阴影部分,D正确.故选:ACD.填空题12、已知集合A=(1,3),B=(2,+∞),则A∩B=______.答案:(2,3)分析:利用交集定义直接求解.解:∵集合A=(1,3),B=(2,+∞),∴A∩B=(2,3).所以答案是:(2,3).13、已知集合A={−1,3,0},B={3,m2},若B⊆A,则实数m的值为__________.答案:0分析:解方程m2=0即得解.解:因为B⊆A,所以m2=−1(舍去)或m2=0,所以m=0.所以答案是:014、集合A={x|(x−1)(x2+ax+4)=0,x∈R}中所有元素之和为3,则实数a=________.答案:−4分析:由(x−1)(x2+ax+4)=0得x1+x2+x3=1−a,即可求解参数.由(x−1)(x2+ax+4)=0得x−1=0或x2+ax+4=0所以x1=1∈A,x2+ax+4=0,当Δ=a2−16=0时,x=2是方程x2+ax+4=0的根,解得a=−4,当Δ>0时,若方程x2+ax+4=0的一根为1,则a=−5,方程的另一根为4,不合题意;若1不是方程x2+ax+4=0的根,则方程两根x2+x3=−a=2,此时a=−2不满足Δ>0,舍去. 所以答案是:−4.解答题15、已知M={x|2≤x≤5},N={x|a+1≤x≤2a﹣1}.(1)若M⊆N,求实数a的取值范围;(2)若M⊇N,求实数a的取值范围.答案:(1)a∈∅(2)a≤3分析:(1)利用M⊆N,建立不等关系即可求解;(2)利用M⊇N,建立不等关系即可求解,注意当N=∅时,也成立(1)∵M⊆N,∴{a+1≤22a−1≥5,∴a∈∅;(2)①若N=∅,即a+1>2a﹣1,解得a<2时,满足M⊇N.②若N≠∅,即a≥2时,要使M⊇N成立,则{a+1≥22a−1≤5,解得1≤a≤3,此时2≤a≤3.综上a≤3.。
高中数学集合与常用逻辑知识点归纳
高中数学集合与常用逻辑知识点归纳考试内容集合、子集、补集、交集、并集、逻辑联结词、四种命题、充分条件和必要条件考试要求1、理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合。
2、理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义。
集合与简易逻辑知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1、基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用。
2、集合的表示法:列举法、描述法、图形表示法。
3、集合元素的特征:确定性、互异性、无序性。
4、集合的性质:①任何一个集合是它本身的子集,记为;②空集是任何集合的子集,记为;③空集是任何非空集合的真子集;如果,同时,那么A = B。
如果,,那么。
.【注】:①Z= {整数}(√) Z ={全体整数}(×)②已知集合S中A的补集是一个有限集,则集合A也是有限集。
(×)(例:S=N; A=,则CsA= {0})③空集的补集是全集。
④若集合A=集合B,5、① {(x,y)|xy =0,x∈R,y∈R} 坐标轴上的点集。
② {(x,y)|xy<0,x∈R,y∈R} 二、四象限的点集。
③ {(x,y)|xy>0,x∈R,y∈R} 一、三象限的点集。
【注】:①对方程组解的集合应是点集。
例:解的集合{(2,1)}②点集与数集的交集是。
6、①n个元素的子集有个;②n个元素的真子集有个.;③n个元素的非空真子集有个。
7、(1)①一个命题的否命题为真,它的逆命题一定为真,否命题逆命题。
②一个命题为真,则它的逆否命题一定为真,原命题逆否命题。
(2)小范围推出大范围;大范围推不出小范围。
8、集合运算:交、并、补。
9、主要性质和运算律(1)包含关系:(2)等价关系:(3)集合的运算律:10、有限集的元素个数定义:有限集A的元素的个数叫做集合A的基数,记为card( A)规定 card()=0。
高中数学知识点总结(第一章 集合与常用逻辑用语)
第一章 集合与常用逻辑用语第一节 集 合一、基础知识1.集合的有关概念(1)集合元素的三个特性:确定性、无序性、互异性.元素互异性,即集合中不能出现相同的元素,此性质常用于求解含参数的集合问题中. (2)集合的三种表示方法:列举法、描述法、图示法. (3)元素与集合的两种关系:属于,记为∈;不属于,记为∉. (4)五个特定的集合及其关系图:N *或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.2.集合间的基本关系(1)子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ⊆B (或B ⊇A ).(2)真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作A B 或B A .A B ⇔⎩⎪⎨⎪⎧A ⊆B ,A ≠B .既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不属于A .(3)集合相等:如果A ⊆B ,并且B ⊆A ,则A =B .两集合相等:A =B ⇔⎩⎪⎨⎪⎧A ⊆B ,A ⊇B .A 中任意一个元素都符合B 中元素的特性,B 中任意一个元素也符合A 中元素的特性.(4)空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作∅.∅∈{∅},∅⊆{∅},0∉∅,0∉{∅},0∈{0},∅⊆{0}.3.集合间的基本运算(1)交集:一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B,即A∩B={x|x∈A,且x∈B}.(2)并集:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为A与B的并集,记作A∪B,即A∪B={x|x∈A,或x∈B}.(3)补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作∁U A,即∁U A={x|x∈U,且x∉A}.求集合A的补集的前提是“A是全集U的子集”,集合A其实是给定的条件.从全集U中取出集合A的全部元素,剩下的元素构成的集合即为∁U A.二、常用结论(1)子集的性质:A⊆A,∅⊆A,A∩B⊆A,A∩B⊆B.(2)交集的性质:A∩A=A,A∩∅=∅,A∩B=B∩A.(3)并集的性质:A∪B=B∪A,A∪B⊇A,A∪B⊇B,A∪A=A,A∪∅=∅∪A=A.(4)补集的性质:A∪∁U A=U,A∩∁U A=∅,∁U(∁U A)=A,∁A A=∅,∁A∅=A.(5)含有n个元素的集合共有2n个子集,其中有2n-1个真子集,2n-1个非空子集.(6)等价关系:A∩B=A⇔A⊆B;A∪B=A⇔A⊇B.第二节命题及其关系、充分条件与必要条件一、基础知识1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.一个命题要么是真命题,要么是假命题,不能模棱两可.2.四种命题及其相互关系3.充分条件、必要条件与充要条件(1)如果p⇒q,则p是q的充分条件;①A是B的充分不必要条件是指:A⇒B且B A;②A的充分不必要条件是B是指:B⇒A且A B,在解题中要弄清它们的区别,以免出现错误.(2)如果q⇒p,则p是q的必要条件;(3)如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的充要条件.充要关系与集合的子集之间的关系设A={x|p(x)},B={x|q(x)},①若A⊆B,则p是q的充分条件,q是p的必要条件.②若A B,则p是q的充分不必要条件,q是p的必要不充分条件.③若A=B,则p是q的充要条件.二、常用结论1.四种命题中的等价关系原命题等价于逆否命题,否命题等价于逆命题,所以在命题不易证明时,往往找等价命题进行证明.2.等价转化法判断充分条件、必要条件p是q的充分不必要条件,等价于非q是非p的充分不必要条件.其他情况以此类推.第三节简单的逻辑联结词、全称量词与存在量词一、基础知识1.简单的逻辑联结词(1)命题中的“且”“或”“非”❶叫做逻辑联结词.①用联结词“且”把命题p和命题q联结起来,得到复合命题“p且q”,记作p∧q;②用联结词“或”把命题p和命题q联结起来,得到复合命题“p或q”,记作p∨q;③对命题p的结论进行否定,得到复合命题“非p”,记作非p.❷❶“且”的数学含义是几个条件同时满足,“且”在集合中的解释为“交集”;“或”的数学含义是至少满足一个条件,“或”在集合中的解释为“并集”;“非”的含义是否定,“非p”只否定p的结论,“非”在集合中的解释为“补集”.❷“命题的否定”与“否命题”的区别(1)命题的否定只是否定命题的结论,而否命题既否定其条件,也否定其结论.(2)命题的否定与原命题的真假总是相对立的,即一真一假,而否命题与原命题的真假无必然联系.(2)命题真值表:命题真假的判断口诀p∨q→见真即真,p∧q→见假即假,p与非p→真假相反.2.全称量词与存在量词3.全称命题与特称命题4.全称命题与特称命题的否定二、常用结论含逻辑联结词命题真假的等价关系(1)p∨q真⇔p,q至少一个真⇔(非p)∧(非q)假.(2)p∨q假⇔p,q均假⇔(非p)∧(非q)真.(3)p∧q真⇔p,q均真⇔(非p)∨(非q)假.(4)p∧q假⇔p,q至少一个假⇔(非p)∨(非q)真.。
高中数学第一章集合与常用逻辑用语总结(重点)超详细(带答案)
高中数学第一章集合与常用逻辑用语总结(重点)超详细单选题1、已知集合M={−1,0,1,2,3,4},N={1,3,5},P=M∩N,则P的真子集共有()A.2个B.3个C.4个D.8个答案:B分析:根据交集运算得集合P,再根据集合P中的元素个数,确定其真子集个数即可.解:∵M={−1,0,1,2,3,4},N={1,3,5}∴P={1,3},P的真子集是{1},{3},∅共3个.故选:B.2、已知集合A={1,2,3},B={(x,y)|x∈A,y∈A,|x−y∣∈A}中所含元素的个数为()A.2B.4C.6D.8答案:C分析:根据题意利用列举法写出集合B,即可得出答案.解:因为A={1,2,3},所以B={(2,1),(3,1),(3,2),(1,2),(1,3),(2,3)},B中含6个元素.故选:C.3、若集合A={x∣|x|≤1,x∈Z},则A的子集个数为()A.3B.4C.7D.8答案:D分析:先求得集合A,然后根据子集的个数求解即可.解:A={x∥x∣≤1,x∈Z}={−1,0,1},则A的子集个数为23=8个,故选:D.4、已知集合M={x|1−a<x<2a},N=(1,4),且M⊆N,则实数a的取值范围是()A.(−∞,2]B.(−∞,0]C.(−∞,13]D.[13,2]答案:C分析:按集合M 是是空集和不是空集求出a 的范围,再求其并集而得解.因M ⊆N ,而ϕ⊆N ,所以M =ϕ时,即2a ≤1−a ,则a ≤13,此时 M ≠ϕ时,M ⊆N ,则{1−a <2a 1−a ≥12a ≤4⇒{a >13a ≤0a ≤2,无解,综上得a ≤13,即实数a 的取值范围是(−∞,13]. 故选:C5、已知集合P ={x|1<x <4},Q ={x|2<x <3},则P ∩Q =( )A .{x|1<x ≤2}B .{x|2<x <3}C .{x|3≤x <4}D .{x|1<x <4}答案:B分析:根据集合交集定义求解.P ∩Q =(1,4)∩(2,3)=(2,3)故选:B小提示:本题考查交集概念,考查基本分析求解能力,属基础题.6、已知集合S ={x ∈N|x ≤√5},T ={x ∈R|x 2=a 2},且S ∩T ={1},则S ∪T =( )A .{1,2}B .{0,1,2}C .{-1,0,1,2}D .{-1,0,1,2,3}答案:C分析:先 根据题意求出集合T ,然后根据并集的概念即可求出结果.S ={x ∈N|x ≤√5}={0,1,2},而S ∩T ={1},所以1∈T ,则a 2=1,所以T ={x ∈R|x 2=a 2}={−1,1},则S ∪T ={−1,0,1,2}故选:C.7、设集合A ={x |−2<x <4},B ={2,3,4,5},则A ∩B =( )A .{2}B .{2,3}C .{3,4}D .{2,3,4}答案:B分析:利用交集的定义可求A∩B.由题设有A∩B={2,3},故选:B .8、下列各式中关系符号运用正确的是()A.1⊆{0,1,2}B.∅⊄{0,1,2}C.∅⊆{2,0,1}D.{1}∈{0,1,2}答案:C分析:根据元素和集合的关系,集合与集合的关系,空集的性质判断即可.根据元素和集合的关系是属于和不属于,所以选项A错误;根据集合与集合的关系是包含或不包含,所以选项D错误;根据空集是任何集合的子集,所以选项B错误,故选项C正确.故选:C.多选题9、若集合A={x|x=m2+n2,m,n∈Z},则()A.1∈A B.2∈A C.3∈A D.4∈A答案:ABD解析:分别令m2+n2等于1,2,3,4,判断m,n是否为整数即可求解.对于选项A:m2+n2=1,存在m=0,n=1或m=1,n=0使得其成立,故选项A正确;对于选项B:m2+n2=2,存在m=1,n=1,使得其成立,故选项B正确;对于选项C:由m2+n2=3,可得m2≤3,n2≤3,若m2=0则n2=3可得n=±√3,n∉z,不成立;若m2=1则n2=2可得n=±√2,n∉z,不成立;若m2=3,可得n2=0,此时m=±√3,m∉z,不成立;同理交换m与n,也不成立,所以不存在m,n为整数使得m2+n2=3成立,故选项C不正确;对于选项D:m2+n2=4,此时存在m=0,n=2或m=2,n=0使得其成立,故选项D正确,故选:ABD.10、已知全集U =R ,集合A ={x|−2≤x ≤7},B ={x|m +1≤x ≤2m −1},则使A ⊆∁U B 成立的实数m 的取值范围可以是( )A .{m|6<m ≤10}B .{m|−2<m <2}C .{m|−2<m <−12}D .{m|5<m ≤8}答案:ABC分析:讨论B =∅和B ≠∅时,计算∁U B ,根据A ⊆∁U B 列不等式,解不等式求得m 的取值范围,再结合选项即可得正确选项.当B =∅时,m +1>2m −1,即m <2,此时∁U B =R ,符合题意,当B ≠∅时,m +1≤2m −1,即m ≥2,由B ={x|m +1≤x ≤2m −1}可得∁U B ={x|x <m +1或x >2m −1},因为A ⊆∁U B ,所以m +1>7或2m −1<−2,可得m >6或m <−12, 因为m ≥2,所以m >6,所以实数m 的取值范围为m <2或m >6,所以选项ABC 正确,选项D 不正确;故选:ABC.11、“不等式x 2−x +m >0在R 上恒成立”的一个充分不必要条件是( )A .m >14B .0<m <1C .m >2D .m >1 答案:CD解析:先计算已知条件的等价范围,再利用充分条件和必要条件的定义逐一判断即可.因为“不等式x 2−x +m >0在R 上恒成立”,所以等价于二次方程的x 2−x +m =0判别式Δ=1−4m <0,即m >14. 所以A 选项是充要条件,A 不正确;B 选项中,m >14不可推导出0<m <1,B 不正确;C 选项中,m >2可推导m >14,且m >14不可推导m >2,故m >2是m >14的充分不必要条件,故C 正确;D 选项中,m >1可推导m >14,且m >14不可推导m >1,故m >1是m >14的充分不必要条件,故D 正确. 故选:CD.小提示:名师点评本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.12、对任意两个实数a,b ,定义min{a ,b}={a,a ≤b,b,a >b,若f (x )=2−x 2,g (x )=x 2,下列关于函数F (x )=min {f (x ),g (x )}的说法正确的是( )A .函数F (x )是偶函数B .方程F (x )=0有三个解C .函数F (x )在区间[−1,1]上单调递增D .函数F (x )有4个单调区间答案:ABD分析:结合题意作出函数F (x )=min {f (x ),g (x )}的图象,进而数形结合求解即可.解:根据函数f (x )=2−x 2与g (x )=x 2,,画出函数F (x )=min {f (x ),g (x )}的图象,如图.由图象可知,函数F (x )=min {f (x ),g (x )}关于y 轴对称,所以A 项正确;函数F (x )的图象与x 轴有三个交点,所以方程F (x )=0有三个解,所以B 项正确;函数F (x )在(−∞,−1]上单调递增,在[−1,0]上单调递减,在上单调递增,在[1,+∞)上单调递减,所以C 项错误,D 项正确.故选:ABD[0,1]13、使a∈R,|a|<4成立的充分不必要条件可以是()A.a<4B.|a|<3C.−4<a<4D.0<a<3答案:BD分析:根据集合的包含关系,结合各选项一一判断即可.由|a|<4可得a的集合是(−4,4),A.由(−4,4)⊂≠(−∞,4),所以a<4是|a|<4成立的一个必要不充分条件;B.由(−3,3)⊂≠(−4,4),所以|a|<3是|a|<4成立的一个充分不必要条件;C.由(−4,4)=(−4,4),所以−4<a<4是|a|<4成立的一个充要条件;D.由(0,3)(−4,4),所以0<a<3是|a|<4成立的一个充分不必要条件;故选:BD.填空题14、已知集合M={m|m=x|x|+y|y|+z|z|+xyz|xyz|,x、y、z为非零实数},则M的子集个数______答案:8分析:按x、y、z的正负分情况计算m值,求出集合M的元素个数即可得解.因为集合M={m|m=x|x|+y|y|+z|z|+xyz|xyz|,x、y、z为非零实数},当x、y、z都是正数时,m=4,当x、y、z都是负数时,m=-4,当x、y、z中有一个是正数,另两个是负数时,m=0,当x、y、z中有两个是正数,另一个是负数时,m=0,于是得集合M中的元素有3个,所以M的子集个数是8.所以答案是:815、设P,Q为两个非空实数集合,P中含有0,2两个元素,Q中含有1,6两个元素,定义集合P+Q中的元素是a+b,其中a∈P,b∈Q,则P+Q中元素的个数是_________.答案:4分析:求得P+Q的元素,由此确定正确答案.依题意,0+1=1,0+6=6,2+1=3,2+6=8,所以P+Q共有4个元素.所以答案是:416、已知全集U=Z,定义A⊙B={x|a⋅b,a∈A,b∈B},若A={1,2,3},B={−1,0,1},则∁U(A⊙B)______.答案:{x∈Z||x|≥4}分析:利用集合运算的新定义和补集运算求解.全集U=Z,定义A⊙B={x|a⋅b,a∈A,b∈B},A={1,2,3},B={−1,0,1}所以A⊙B={−3,−2,−1,0,1,2,3},所以∁U(A⊙B)={x||x|≥4,x∈Z}.所以答案是:{x||x|≥4,x∈Z}解答题17、已知集合A={x|(x−a)(x+a+1)≤0},B={x|x≤3或x≥6}.(1)当a=4时,求A∪B;(2)当a>0时,若“x∈A”是“x∈B”的充分条件,求a的取值范围.答案:(1)A∪B={x|x≤4或x≥6};(2)(0,3].解析:(1)当a=4时,解出集合A,计算A∪B;(2)由集合法判断充要条件,转化为A⊆B,进行计算.解:(1)当a=4时,由不等式(x−4)(x+5)≤0,得−5≤x≤4,故A={x|−5≤x≤4},又B={x|x≤3或x≥6},所以A∪B={x|x≤4或x≥6}.(2)若“x∈A”是“x∈B”的充分条件,等价于A⊆B,因为a>0,由不等式(x−a)(x+a+1)≤0,得A={x|−a−1≤x≤a},又B={x|x≤3或x≥6},要使A⊆B,则a≤3或−a−1≥6,综合可得a的取值范围为(0,3].小提示:名师点评有关充要条件类问题的判断,一般可根据如下规则判断:(1)若p是q的必要不充分条件,则q对应集合是p对应集合的真子集;(2)若p是q的充分不必要条件,则p对应集合是q对应集合的真子集;(3)若p是q的充分必要条件,则p对应集合与q对应集合相等;(4)若p是q的既不充分又不必要条件,q对应集合与p对应集合互不包含.18、已知M={x|2≤x≤5},N={x|a+1≤x≤2a﹣1}.(1)若M⊆N,求实数a的取值范围;(2)若M⊇N,求实数a的取值范围.答案:(1)a∈∅(2)a≤3分析:(1)利用M⊆N,建立不等关系即可求解;(2)利用M⊇N,建立不等关系即可求解,注意当N=∅时,也成立(1)∵M⊆N,∴{a+1≤22a−1≥5,∴a∈∅;(2)①若N=∅,即a+1>2a﹣1,解得a<2时,满足M⊇N.②若N≠∅,即a≥2时,要使M⊇N成立,则{a+1≥22a−1≤5,解得1≤a≤3,此时2≤a≤3.综上a≤3.。
集合与常用逻辑用语知识点总结
集合与常用逻辑用语知识点总结集合与常用逻辑用语是逻辑学中非常重要的知识点,它们是构成逻辑语句的基础。
集合是指由若干个元素组成的一个整体,常用逻辑用语包括逗号、括号、等号、不等号、字母、符号等。
这些符号和词组可以用来构建各种逻辑语句,从而实现对事实和语法的表达。
我们来看看集合。
集合是一种抽象概念,用来表示一组对象或者元素。
在逻辑学中,集合常常用来表示某一类事物,例如所有x的集合{x|x属于集合}。
集合也可以用来表示某一特定的事物,例如{美食,{甜,辣,麻,酸,清淡}}。
无论是哪种情况,集合中的元素都是按照某种特定的顺序排列的,而集合本身则是一种抽象的、独立的概念。
接下来是常用逻辑用语中的逗号。
逗号是逻辑学中非常重要的符号,它用来分隔两个独立的陈述句。
例如,如果我们有两个陈述句A和B,它们可以写成{A},{B}的形式。
也可以将它们写成一个带有逗号的句子,例如{A,B}。
在这种情况下,逗号就是分隔这两个句子的重要符号。
括号也是常用逻辑用语之一。
括号可以用来表示一个集合中的元素,例如{x|x属于集合}可以写成{x|x属于集合}的形式。
也可以用来表示一个条件,例如{x|x大于等于10}可以写成{x|x大于等于10}的形式。
括号的作用就是将集合中的元素或条件进行限制,从而实现更加具体的描述。
等号是另一个常用的逻辑用语。
等号左边是一个变量或者一个表达式,等号右边是一个陈述句。
这个陈述句可以是真或假,从而构成一个简单的条件语句。
例如,我们可以说{x|x大于等于10}等价于{x|x 大于等于10}。
等号也可以用作赋值语句,例如{x:10}等价于{x: 10}。
不等号也是常用逻辑用语之一。
不等号用来表示两个数的大小关系,包括大于、小于、大于等于、小于等于。
例如,我们可以说{x|x大于2}等价于{x:x大于2}的形式。
字母是逻辑学中比较基础的一个符号,通常用来表示一个变量或者一个名词。
符号则是一个带有特殊含义的符号,例如{@、#、$、%}。
高考数学 集合与常用逻辑用语考点及知识点总结解析(理科)
②若B≠∅,则2mm+-11≥≥-m2+,1, 2m-1≤5.
解得2≤m≤3.由①②可得,符合题意的实数m的取值范围为 (-∞,3].
[答案] (-∞,3]
[易错提醒] 将两个集合之间的关系准确转化为参数所满足的条 件时,应注意子集与真子集的区别,此类问题多与不等 式(组)的解集相关.确定参数所满足的条件时,一定要把 端点值代入进行验证,否则易产生增解或漏解.
考点贯通 抓高考命题的“形”与“神” 集合子集个数的判定
含有n真子集的个数为2n-2(除空集 和集合本身,此时n≥1).
[例1] 已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x
<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为
()
A.1
B.2
C.3
D.4
[解析] 由x2-3x+2=0得x=1或x=2,所以A={1,2}.由
题意知B={1,2,3,4},所以满足条件的集合C为{1,2},{1,2,3},
{1,2,4},{1,2,3,4},共4个.
[答案] D
[易错提醒] (1)注意空集的特殊性:空集是任何集合的子集,是 任何非空集合的真子集. (2)任何集合的本身是该集合的子集,在列举时千万 不要忘记.
∵
2x
-
3>0
,
∴
x>
3 2
,
∴
B
=
3 xx>2
.
∴
A∩B
=
{x|1<x<3}∩xx>32 =32,3. [答案] D
第一章集合与常用逻辑用语第二章等式与不等式
以下是集合与常用逻辑用语、等式与不等式的知识点总结:
1. 集合:集合是数学中一个基本概念,主要是明确的概念的加总。
集合的常用表示方法包括列举法和描述法,子集、真子集、集合相等则是集合之间关系的三大类。
2. 常用逻辑用语:包括四种命题、充分条件和必要条件、全称命题和特称命题,以及简单的逻辑联结词“或”、“且”、“非”。
3. 等式与不等式:等式和不等式是数学中的基础概念,表示数量间的关系。
等式是表示相等的数学表达式,而不等式则是表示大小关系的数学表达式。
4. 等式的性质:等式的两边加上或减去同一个数或整式,结果仍相等;等式的两边乘同一个数,或除以同一个不为零的数,结果仍相等。
5. 不等式的性质:正数乘以不等式两边,不等号的方向会发生变化;不等式两边同时加上或减去同一个数或整式,不等号的方向不变;不等式两边同时乘同一个负数,不等号的方向会发生变化。
以上内容仅供参考,如需更多信息,可查阅相关教材或咨询数学老师。
高中数学必修一《 集合与常用逻辑用语》知识点总结
1.元素与集合的相关概念(1)元素:(2)集合:(3)集合中元素的特性:确定性、互异性和无序性.2.元素与集合的关系(1)属于:如果a是集合A的元素,就说a属于集合A,记作a∈A.(2)不属于:如果a不是集合A中的元素,就说a不属于集合A,记作a∉A.3. 常见的数集及表示符号数集非负整数集(自然数集)正整数集整数集有理数集实数集符号N N*或N+Z Q R(1)列举法:把集合的所有元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.(2)描述法:一般地,设A是一个集合,把集合A中所有具有共同特征P(x)的元素x所组成的集合表示为{x∈A|P(x)},这种表示集合的方法称为描述法.5.集合间的基本关系(1)Venn图用平面上封闭曲线的内部代表集合,这种图称为Venn图.(2)两个集合之间的关系①子集.②集合相等.③真子集.(3)子集的性质①任何一个集合是它本身的子集,即A⊆A.②对于集合A,B,C,如果A⊆B,且B⊆C,那么A⊆C.6.子集、真子集个数有关的4个结论假设集合A中含有n个元素,则有(1)A的子集的个数有2n个;(2)A的非空子集的个数有2n-1个;(3)A的真子集的个数有2n-1个;(4)A 的非空真子集的个数有2n-2个.(5)若M A N⊆⊆,其中M的元素个数为m,N的元素个数为n,则满足条件的集合A的个数为2n m-个,如果条件中变为真子集,则每个真子集减一次1.7.集合间的运算交集并集文字语言对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,记作∁U A符号语言∁U A={x|x∈U,且x∉A}图形语言8. 充分条件与必要条件命题真假“若p,则q”是真命题“若p,则q”是假命题推出关系p⇒q p q条件关系p是q的充分条件q是p的必要条件p不是q的充分条件q不是p的必要条件(1)定义法:判定p是q的充分条件要先分清什么是p,什么是q,即转化成p⇒q问题.(2)转化为子集问题——小充分大必要:除了用定义判断充分条件还可以利用集合间的关系判断,若p构成的集合为A,q构成的集合为B,A⊆B,则p是q的充分条件.必要条件的判断方法(1) 定义法:判断p是q的什么条件,主要判断若p成立时,能否推出q成立,反过来,若q成立时,能否推出p成立;若p⇒q为真,则p是q的充分条件,若q⇒p为真,则p是q的必要条件.(2) 转化为子集问题——小充分大必要:也可利用集合的关系判断,如条件甲“x∈A”,条件乙“x∈B”,若A⊇B,则甲是乙的必要条件.9. 充要条件(1)定义:如果“若p,则q”和它的逆命题“若q,则p”均是真命题,即既有p⇒q,又有q⇒p,就记作p⇔q,此时,p既是q的充分条件,也是q的必要条件,我们说p是q的充分必要条件,简称为充要条件.(2)条件与结论的等价性:如果p是q的充要条件,那么q也是p的充要条件.概括地说,如果p⇔q,那么p与q互为充要条件.10. 全称量词与全称量词命题(1)短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.(2)含有全称量词的命题,叫做全称量词命题,通常将含有变量x的语句用p(x),q(x),r(x),…表示.变量x的取值范围用M表示.那么全称量词命题“对M中任意一个x,p(x)成立”可用符号简记为∀x∈M,p(x).11. 存在量词与存在量词命题(1)短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.(2)含有存在量词的命题,叫做存在量词命题,存在量词命题“存在M中的元素x,使p(x)成立”,可用符号简记为∃x∈M,p(x).12. 判断一个语句是全称量词命题还是存在量词命题的思路13. 含有一个量词的命题的否定p p结论全称量词命题∀x∈M,p(x)∃x∈M,p(x)全称量词命题的否定是存在量词命题存在量词命题∃x∈M,p(x)∀x∈M,p(x)存在量词命题的否定是全称量词命题14. 对全称量词命题否定的两个步骤。
2023北京高中合格考数学知识点总结
第一章 2023北京高中合格考数学知识点总结集合与常用逻辑1.常用数集N :自然数集或非负整数集;N *或N +:正整数集; Z :整数集;Q :有理数集;R :实数集;C :复数集 2.集合间的运算 并集:或;交集:且;{,A B x x A =∈ }x B ∈{,A B x x A =∈ }x B ∈补集:且. {,U C A x x U =∈}x A ∉3.包含关系;A B A A B =⇔⊆ A B A B A =⇔⊆ 4.空集是任何集合的子集,是任何非空集合的真子集()∅5.集合的子集个数共有个;真子集有(–1)个; 12{,,,}n a a a 2n2n非空子集有(–1)个;非空的真子集有(–2)个. 2n2n6.充分、必要条件若,则是的充分条件,是的必要条件;p q ⇒p q q p 若,,则是的充分必要条件,简称充要条件; p q ⇒q p ⇒p q (1)若,,则是的充分不必要条件; p q ⇒q p ≠>p q (2)若,,则是的必要不充分条件; p q ≠>q p ⇒p q (3)若,,则是的充要条件;p q ⇒q p ⇒p q (4)若,,则是的既不充分又不必要条件; p q ≠>q p ≠>p q 7.含有一个量词的命题的否定全称命题p :;:;(),x M q x ∀∈p ⌝()00,x M q x ∃∈⌝特称命题p :;:.()00,x M q x ∃∈p ⌝(),x M q x ∀∈⌝第二章 一元二次函数、方程和不等式1.不等式的基本性质性质1:;性质2:;a b b a >⇔<,a b b c a c >>⇒>性质3:;性质4:; a b a c b c >⇔+>+,0;,0a b c ac bc a b c ac bc >>⇒>><⇒<性质5:;性质6:; ,a b c d a c b d >>⇒+>+0,0a b c d ac bd >>>>⇒>性质7:;性质8:.()*0n n a b a b n >>⇒>∈N )02a b n >>⇒>≥2.基本不等式:设,则 0,0a b >>(1);(2);当且仅当时,等号成立.a b +≥22a b ab +⎛⎫≤ ⎪⎝⎭a b =注:应用基本不等式的条件:一正,二定,三相等 3.二次函数的性质()20y ax bx c a =++≠(1)开口方向:a >0,开口向上;a <0,开口向下;(2)对称轴:; 2b x a=-(3)顶点坐标:;(4)单调性: 24,24b ac b a a ⎛⎫-- ⎪⎝⎭①当a >0时,在上递减,在上递增; ,2b a ⎛⎤-∞-⎥⎝⎦,2b a ⎛⎤-+∞ ⎥⎝⎦②当a >0时,在上递增,在上递减. ,2b a ⎛⎤-∞-⎥⎝⎦,2b a ⎛⎤-+∞ ⎥⎝⎦4.二次函数与一元二次方程、不等式的解的对应关系一元二次方程()的根002>=++a c bx ax 有两相异实根)(,2121x x x x <有两相等实根ab x x 221-==无实根的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R的解集)0(02><++a c bx ax{}21x x xx <<∅∅第三章 函数概念与性质1.求函数定义域函数表达式:①含分式:要求分母不为0; ()y f x =②偶次方根:要求被开方数≥0;③含对数式:要求真数>0. 2.函数的单调性()y f x =增函数:当时,;反映在图像上,从左往右图像上升; 12x x <()()12f x f x <减函数:当时,;反映在图像上,从左往右图像下降. 12x x <()()12f x f x >3.证明函数在区间D 上单调递增或单调递减,基本步骤如下: ()f x ①设值:设,且;②作差:;12,x x D ∈12x x <12()()f x f x -③变形:对变形,一般是通分,分解因式,配方等,要注意变形到底; 12()()f x f x -④判断符号,得出函数的单调性. 4.函数的奇偶性()y f x =奇函数:,图像关于原点对称; ()()f x f x -=-偶函数:,图像关于y 轴对称; ()()f x f x -=5.奇、偶函数的性质(1)奇函数在关于原点对称的两个区间上的单调性相同; 偶函数在关于原点对称的两个区间上的单调性相反;(2)若奇函数在原点有定义,则; ()y f x =()00f =(3)奇、偶函数的运算①奇函数±奇函数=奇函数;②偶函数±偶函数=偶函数; ③奇函数×奇函数=偶函数;④偶函数×偶函数=偶函数; ⑤奇函数×偶函数=奇函数. 6.幂函数(1)定义:形如的函数叫幂函数,其中x 是自变量;()y xαα=∈R (2)五个幂函数的性质x y =2x y =3x y =21x y =1-=x y 定义域 RRR [0,+)∞ (,0)(0,+)-∞⋃∞值域R[0,+)∞R[0,+)∞(,0)(0,+)-∞⋃∞奇偶性奇函数 偶函数 奇函数 非奇非偶 奇函数单调性 增函数在上递减(,0]-∞在上递增[0,+)∞增函数增函数在,(,0-∞)上递减0,+)∞(定点(1,1)第四章 指数函数与对数函数1.分数指数幂(1)2)(,且).m na =1m nm naa-=0,,a m n N *>∈1n >2.根式的性质(1).(2)当;当.n a =n a =n ,0||,0a a a a a ≥⎧==⎨-<⎩3.有理指数幂的运算性质(1);(2);(0,,)r s r sa a aa r s Q +⋅=>∈rr s s a a a-=(0,,)a r s Q >∈(3);(4). ()(0,,)r s rsa a a r s Q =>∈()(0,0,)rr rab a b a b r Q =>>∈4.指数式与对数式的互化: log b a N b a N =⇔=5.对数的换底公式 (1)(,且,,且,); log lg ln log log lg ln m a m N N NN a a a===0a >1a ≠0m >1m ≠0N >(2)(,且,,且,,); log log m n a a nb b m=0a >1a >,0m n >1m ≠1n ≠0N >(3);(4)log log 1a b b a ⋅=log a ba b =6.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则:(1);log ()log log a a a MN M N =+(2);(3). log log log aa a MM N N=-log log ()n a a M n M n R =∈7.指数函数的图像与性质()0,1xy aa a =>≠8.对数函数的图像与性质log 0,1a y x a a =>≠9.反函数 指数函数与对数函数互为反函数,它们的图像关于y =x 对称(0,1x y a a a =>≠log 0,1a y x a a =>≠10.函数零点(1)定义:把使成立的实数x 叫做函数y =f (x )的零点.()0f x =(2)函数零点与方程根的关系:方程f (x )=0有实根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点.(3)零点存在定理:如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有,()()0f a f b ⋅<那么函数y =f (x )在区间(a ,b )内有零点.第五章 三角函数1.角度制与弧度制的互化:360°=2π180°=π1rad=°≈57.30°=57°18′1°=rad≈0.0174radπ180180π2.特殊角的弧度与角度互化如下:3.弧长及扇形面积公式 弧长:,扇形面积:(是圆心角弧度数,是扇形半径)l r α=211=22S lr r α=αr 4.任意角的三角函数设是一个任意角,它的终边上一点,.α(,)P x y r =(1) 正弦sinα=,余弦,正切tanα=. r y cos xrα=x y (2) 各象限的符号:一全正,二正弦,三正切,四余弦. 5.同角三角函数的基本关系:平方关系:;商数关系:(,)1cos sin 22=+αααααtan cos sin =ππαk +≠2Z k ∈6.诱导公式(1)sin (2kπ+α)=sin α,cos (2kπ+α)=cos α,tan (2kπ+α)=tan α() Z k ∈(2)sin (π+α)=-sin α,cos (π+α)=-cos α,tan (π+α)=tan α (3)sin (-α)=-sin α,cos (-α)=cos α,tan (-α)=-tan α (4)sin (π-α)=sin α,cos (π-α)=-cos α,tan (π-α)=-tan α(5)sin (-α)=cos α,cos (-α)=sin α2π2π(6)sin (+α)=cos αcos (+α)=-sin α2π2π口诀:奇变偶不变,符号看象限 7.特殊角的三角函数值8.正弦函数、余弦函数和正切函数的图像与性质三角函数sin y α=cos y α=tan y α=图像定义域(-,+)∞∞(-,+)∞∞(kπ-,kπ+)2π2π值域[]11-,[]11-,(-,+)∞∞最大(小)值()Z k ∈当x =2k π+时,=1;当2πmax y x =2k π-时,=-12πmin y 当x =2k π时,=1;当max y x =2k π+π时,=-1min y 无奇偶性 奇函数 偶函数 奇函数 周期性T =2πT =2πT =π单调性(k ∈z )在上增 ⎥⎦⎤⎢⎣⎡+-22,22ππππk k 在上减⎥⎦⎤⎢⎣⎡++232,22ππππk k 在上增 [2π-π,2π]k k 在上减[2π,2ππ]k k +在⎪⎭⎫ ⎝⎛+-2,2ππππk k 内增对称性 (k ∈z )对称中心:)0,(πk 对称轴:2ππ+=k x 对称中心:,)0,2(ππ+k 对称轴:πk x =对称中心:)0,(πk 注:或的最小正周期为;()sin y A x ωϕ=+()cos y A x ωϕ=+2T πω=的最小正周期为. ()tan y A x ωϕ=+T πω=9.两角和与差的正弦、余弦、正切:;: )(βα+S βαβαβαsin cos cos sin )sin(+=+)(βα-S βαβαβαsin cos cos sin )sin(-=-:;:)(βα+C βαβαβsin sin cos cos )cos(-=+a )(βα-C βαβαβsin sin cos cos )cos(+=-a::)(βα+T βαβαβαtan tan 1tan tan )tan(-+=+)(βα-T βαβαβαtan tan 1tan tan )tan(+-=-10.辅助角公式:,其中: ()sin cos a x b x x ϕ+=+tan baϕ=11.二倍角公式::α2S αααcos sin 22sin =:;: α2C ααα22sin cos 2cos -=1cos 2sin 2122-=-=ααα2T ααα2tan 1tan 22tan -=12.降幂公式:, ααα2sin 21cos sin =21cos 2sin 2αα-=21cos 2cos 2αα+=13.函数的图象变换()ϕω+=x A y sin 由函数y x =sin 的图象通过变换得到y A x =+sin()ωϕ的图象,有两种途径: 法一:先平移后伸缩y x y x =−→−−−−−−−=+><sin sin()()()||向左或向右平移个单位ϕϕϕϕ001sin y x ωωϕ−−−−−−−−→=+横坐标变为原来的纵坐标不变()纵坐标变为原来的倍横坐标不变A y A x −→−−−−−−−=+sin()ωϕ法二:先伸缩后平移y x =−→−−−−−−−sin 横坐标变为原来的倍纵坐标不变1ωy x y x =−→−−−−−−−=+><sin sin()()()||ωωϕϕϕϕω向左或向右平移个单位00纵坐标变为原来的倍横坐标不变A y A x −→−−−−−−−=+sin()ωϕ14.函数的物理意义()ϕω+=x A y sin 当函数表示一个振动量时, ()[)()sin 0,0,0,y A x A x ωϕω=+>>∈+∞振幅A :表示这个量振动时离开平衡位置的最大距离;周期:往复振动一次所需要的时间;ωπ2=T 频率:单位时间内往复振动的次数; ωπ21==T f 相位:ωϕx +;初相:ϕ(即当x =0时的相位).第六章 平面向量及其应用1.平面向量的相关概念:(1)平面向量:在平面内,具有大小和方向的量称为平面向量.向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.向量的大小称为向量的模(或长度),记作. a a(2)模(或长度)为的向量称为零向量;模为的向量称为单位向量. 01(3)与向量长度相等且方向相反的向量称为的相反向量,记作. a a a -(4)方向相同且模相等的向量称为相等向量.(5)平行向量(或共线向量):方向相同或相反的两个向量,规定:零向量与任意向量平行 2.向量的加法运算:(1)三角形法则:首尾相连,连首尾,如;AB BC AC +=(2)平行四边形法则:公共起点,对角线3.向量的减法运算:三角形法则,要求共起点,指向被减向量,如AB AC CB -=4.数乘向量:实数与空间向量的乘积是一个向量,称为向量的数乘向量. λa a λ当时,与方向相同;当时,与方向相反;0λ>a λ a 0λ<a λ a当时,为零向量,记为.的长度是的长度的倍.0λ=a λ 0 a λ aλ5.实数与向量的积的运算律:设λ、μ为实数,那么(1)λ(μ)=(λμ);(2)(λ+μ)=λ+μ;(3)λ()=λ+λ. a a a a a b a+a b 6.共线向量定理:向量,,存在实数,使.a ()0b b ≠ //a b ⇔λa b λ=7.两向量的夹角:已知两个非零向量和,在平面任取一点,作,a bO a OA =,则称为向量,的夹角,记作,.b OB = ∠AOB a b ,a b 〈〉[],0,a b π〈〉∈ 8.向量垂直:对于两个非零向量和,若,则,垂直,记作.a b ,2a b π〈〉= a b a b ⊥9.数量积:已知两个非零向量和,则称为,的数量积,记作.即a b cos ,a b a b 〈〉a b a b ⋅ .规定:零向量与任何向量的数量积为.cos ,a b a b a b ⋅=〈〉010.投影向量:在上的投影向量等于cos θ(其中为与同向的单位向量) →a →b |→a |→e →e →b 11.数量积的性质:(1);(2);(3)22a a a a a =⋅=⇔= 0a b a b ⊥⇔⋅= cos ,a b a b a b⋅= 12.向量的数量积的运算律:(1)·=·(交换律);a b b a(2)()·=(·)=·=·();(3)()·=·+·; λa b λa b λa b a λb b a+c a c b c (4),.()2222+a ba ab b ±=±⋅ ()()22+a b a b a b ⋅-=- 13.平面向量基本定理:如果、是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只1e 2e有一对实数λ1、λ2,使得=λ1+λ2.a 1e 2e不共线的向量、叫做表示这一平面内所有向量的一组基底. 1e 2e14.坐标运算:(1)设,则:()()2211,,,y x b y x a ==→→,λ;()2121,y y x x b a ±±=±→→()()1111,,y x y x a λλλ==→2121y y x x b a +=⋅→→(2)设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y2),则.(终()1212,y y x x AB --=→点减起点),||AB ==(3)向量的模||:a a 2||a a a =⋅22x y a=+⇔=(4)向量的夹角,则.()()2211,,,y x b y x a ==→→θcos θ=15.向量平行与垂直的坐标表示:(1)两个向量平行:, →→→→=⇔b a b a λ//)(R ∈λ⇔→→b a //01221=-y x y x (2)两个非零向量垂直: 02121=+⇔⊥→→y y x x b a 16.向量中一些常用的结论: (1)在中,ABC ∆①若,则其重心坐标为; ()()()112233,,,,,A x y B x y C x y 123123,33x x x y y y G ++++⎛⎫ ⎪⎝⎭②为重心;1()3PG PA PB PC =++⇔G ABC ∆特别地,为的重心;0PA PB PC P ++=⇔ABC ∆③为的垂心;PA PB PB PC PC PA P ⋅=⋅=⋅⇔ABC ∆④向量所在直线过的内心(是的角平分线所在直线); ()(0)||||AC AB AB AC λλ+≠ABC ∆BAC ∠(2)A 、B 、C 共线存在实数、μ使得且+μ=1. ⇔λ→PA =→λPB +→μPC λ17.三角形的四心垂心——三角形的三边上的高相交于一点 重心——三角形三条中线的相交于一点 外心——三角形三边垂直平分线相交于一点 内心——三角形三内角的平分线相交于一点 18.三角形中的重要结论(1)在三角形中,大边对大角,小边对小角()B A B A b a sin sin >⇔>⇔>(2)三角形内角的正弦值一定大于0,锐角的余弦值大于0,直角的余弦值等于0,钝角的余弦值小于0. 19.三角形中的诱导公式()()()C B A B C A A C B sin sin sin sin sin sin =+=+=+()()()B C A C B A A C B cos cos cos cos cos cos -=+-=+-=+()()()BC A C B A A C B tan tan tan tan tan tan -=+-=+-=+20.正弦定理和余弦定理定理 正弦定理 余弦定理 内容2Ra sin A=bsin B =csin C =(R 是△ABC 外接圆半径)a 2=b 2+c 2﹣2bc cos A , b 2=a 2+c 2﹣2ac cos B , c 2=a 2+b 2﹣2ab cos C变形 形式①a =2R sin A ,b =2R sin B ,c =2R sin C ; ②sin A ,sin B ,sin C ; =a2R =b2R =c2R ③a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin A④a :b :c =sin A :sin B :sin Ccos A , =b 2+c 2―a 22bc cos B , =a 2+c 2―b 22ac cos C =a 2+b 2―c 22ab21.三角形常用面积公式S =ab sin C =ac sin B =bc sin A==(a+b+c )r (分别为△ABC 外接圆,内切圆半径) 1212124abc R 12,R r 第七章 复数1.复数的概念形如(a ,b ∈R )的数叫做复数,其中叫做虚数单位,a 叫做实部,b 叫做虚部。
2019新人教版高中数学必修第一册第1章集合与常用逻辑用语知识点总结
第1章集合与常用逻辑用语1.1集合的含义与表示1、集合的含义:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。
2、集合的中元素的三个特性:确定性、互异性、无序性 2、“属于”的概念:我们通常用大写的拉丁字母A,B,C, ……表示集合,用小写拉丁字母a,b,c, ……表示元素;元素在集合A 中,称属于A ,记为,否则称不属于A ,记作。
3、常用数集及其记法非负整数集(即自然数集)记作:N ;正整数集记作:N*或 N+ ;整数集记作:Z ;有理数集记作:Q ;实数集记作:R 4、集合的表示法(1)列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
(2)描述法:用集合所含元素的公共特征表示集合的方法称为描述法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x -3>2的解集是{x∈R| x -3>2}或{x| x -3>2} (3)图示法(Venn 图)1.2 集合间的基本关系 【知识要点】1、“包含”关系——子集:对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合B 中的元素,则A 叫做B 的子集,记为,例如。
子集的个数为2n (n 为集合中元素个数)2、“相等”关系:如果A 是B 的子集,B 也是A 的子集,则称A 与B 相等。
3、真子集(个数怎么算):如果A 是B 的子集,而且B 中存在元素不属于A ,则A 叫B 的真子集。
真子集的个数为2n -1(n 为集合中元素个数)。
4、空集:不含任何元素的集合称为空集,用来表示。
空集∅是任何集合的子集,是任何非空集合的真子集。
1.3 集合的基本运算 【知识要点】1、交集的定义:即A ∩B={x| x ∈A ,且x ∈B}.2、并集的定义:即A ∪B={x | x ∈A ,或x ∈B}.3、交集与并集的性质A ∩A = A ,A ∩φ= φ, A ∩B = B ∩A ,A ∪A = A ,A ∪φ= A , A ∪B = B ∪A 4、全集与补集(1)全集:通常用U 来表示。
高中数学必修一第一章集合与常用逻辑用语知识点归纳总结(精华版)(带答案)
高中数学必修一第一章集合与常用逻辑用语知识点归纳总结(精华版)单选题1、下列说法正确的是()A.由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}B.∅与{0}是同一个集合C.集合{x|y=x2−1}与集合{y|y=x2−1}是同一个集合D.集合{x|x2+5x+6=0}与集合{x2+5x+6=0}是同一个集合答案:A分析:根据集合的定义和性质逐项判断可得答案集合中的元素具有无序性,故A正确;∅是不含任何元素的集合,{0}是含有一个元素0的集合,故B错误;集合{x|y=x2−1}=R,集合{y|y=x2−1}={y|y≥−1},故C错误;集合{x|x2+5x+6=0}={x|(x+2)(x+3)=0}中有两个元素−2,−3,集合{x2+5x+6=0}中只有一个元素,为方程x2+5x+6=0,故D错误.故选:A.2、已知集合A={(x,y)||x|+|y|≤2,x∈Z,y∈Z},则A中元素的个数为()A.9B.10C.12D.13答案:D分析:利用列举法列举出集合A中所有的元素,即可得解.由题意可知,集合A中的元素有:(−2,0)、(−1,−1)、(−1,0)、(−1,1)、(0,−2)、(0,−1)、(0,0)、(0,1)、(0,2)、(1,−1)、(1,0)、(1,1)、(2,0),共13个.故选:D.3、设条件甲:“事件A与事件B是对立事件”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:将两个条件相互推导,根据能否推导的情况选出正确答案.①若事件A 与事件B 是对立事件,则A ∪B 为必然事件,再由概率的加法公式得P (A )+P (B )=1;②投掷一枚硬币3次,满足P (A )+P (B )=1,但A ,B 不一定是对立事件,如:事件A :“至少出现一次正面”,事件B :“出现3次正面”,则P (A )=78,P (B )=18,满足P (A )+P (B )=1,但A ,B 不是对立事件. 所以甲是乙的充分不必要条件.故选:A小提示:本小题主要考查充分、必要条件的判断,考查对立事件的理解,属于基础题.4、已知命题p:∃x ∈(−1,3),x 2−a −2≤0.若p 为假命题,则a 的取值范围为( )A .(−∞,−2)B .(−∞,−1)C .(−∞,7)D .(−∞,0)答案:A解析:由题可得命题p 的否定为真命题,即可由此求解.∵ p 为假命题,∴ ¬p:∀x ∈(−1,3),x 2−a −2>0为真命题,故a <x 2−2恒成立,∵ y =x 2−2在x ∈(−1,3)的最小值为−2,∴a <−2.故选:A.5、若命题“∃x 0∈[−1,2],−x 02+2⩾a ”是假命题,则实数a 的范围是( )A .a >2B .a ⩾2C .a >−2D .a ⩽−2答案:A解析:根据命题的否定为真命题可求.若命题“∃x 0∈[−1,2],−x 02+2⩾a ”是假命题,则命题“∀x ∈[−1,2],−x 2+2<a ”是真命题,当x =0时,(−x 2+2)max =2,所以a >2.6、若不等式|x −1|<a 成立的充分条件为0<x <4,则实数a 的取值范围是( )A .{a ∣a ≥3}B .{a ∣a ≥1}C .{a ∣a ≤3}D . {a ∣a ≤1}答案:A分析:由已知中不等式|x −1|<a 成立的充分条件是0<x <4,令不等式的解集为A ,可得{x |0<x <4 }⊆A ,可以构造关于a 的不等式组,解不等式组即可得到答案.解:∵不等式|x −1|<a 成立的充分条件是0<x <4,设不等式的解集为A ,则{x |0<x <4 }⊆A ,当a ≤0时,A =∅,不满足要求;当a >0时,A ={x ∣1−a <x <1+a},若{x |0<x <4 }⊆A ,则{1−a ⩽01+a ⩾4,解得a ≥3. 故选:A.7、下列命题是假命题的有( )A .若x ∈A ,那么x ∈A ∩B B .若x ∈A ∩B ,那么x ∈AC .若x ∈A ∩B ,那么x ∈A ∪BD .若x ∈A ,那么x ∈A ∪B答案:A分析:由集合与元素的关系和交集并集的定义逐一判断,即可求解对于A ,若x ∈A ,那么x 可能不属于B ,故A 错误;对于B ,若x ∈A ∩B ,则x 是集合A 和B 的公共元素,那么x ∈A ,故B 正确;对于C ,若x ∈A ∩B ,那么x ∈A ∪B ,故C 正确;对于D ,若x ∈A ,那么x ∈A ∪B ,故D 正确.故选:A .8、已知命题p :∃x ∃N ,e x <0(e 为自然对数的底数),则命题p 的否定是( )A .∃x ∃N ,e x <0B .∃x ∃N ,e x >0C .∃x ∃N ,e x ≥0D .∃x ∃N ,e x ≥0分析:根据命题的否定的定义判断.特称命题的否定是全称命题.命题p的否定是:∃x∃N,e x≥0.故选:D.多选题9、已知集合A={0,1,2},B={a,2},若B⊆A,则a=()A.0B.1C.2D.0或1或2答案:AB分析:由B⊆A,则B={0,2}或B={1,2},再根据集合相等求出参数的值;解:由B⊆A,可知B={0,2}或B={1,2},所以a=0或1.故选:AB.小提示:本题考查根据集合的包含关系求参数的值,属于基础题.10、若“∀x∈M,|x|>x”为真命题,“∃x∈M,x>3”为假命题,则集合M可以是()A.(−∞,−5)B.(−3,−1]C.(3,+∞)D.[0,3]答案:AB解析:根据假命题的否定为真命题可知∀x∈M,x≤3,又∀x∈M,|x|>x,求出命题成立的条件,求交集即可知M满足的条件.∵∃x∈M,x>3为假命题,∴∀x∈M,x≤3为真命题,可得M⊆(−∞,3],又∀x∈M,|x|>x为真命题,可得M⊆(−∞,0),所以M⊆(−∞,0),故选:AB小提示:本题主要考查了含量词命题的真假,集合的包含关系,属于中档题.11、下列说法中不正确的是()A.0与{0}表示同一个集合B.集合M={3, 4}与N={(3, 4)}表示同一个集合C.方程(x−1)2(x−2)=0的所有解的集合可表示为{1, 1, 2}D.集合{x|4<x<5 }不能用列举法表示答案:ABC分析:根据集合的概念,以及元素与集合的关系,以及元素的特征,逐项判定,即可求解.对于A中,0是一个元素(数),而{0}是一个集合,可得0∈{0},所以A不正确;对于B中,集合M={3, 4}表示数3,4构成的集合,集合N={(3, 4)}表示点集,所以B不正确;对于C中,方程(x−1)2(x−2)=0的所有解的集合可表示为{1,1,2},根据集合元素的互异性,可得方程(x−1)2(x−2)=0的所有解的集合可表示为{1, 2},所以C不正确;对于D中,集合{x|4<x<5}含有无穷个元素,不能用列举法表示,所以D正确.故选:ABC.填空题12、关于x的方程ax2+2x+1=0的实数根中有且只有一个负实数根(含两相等实根)的充要条件为____________.答案:a≤0或a=1分析:根据方程根的情况,讨论a=0和a≠0两种情况,结合一元二次方程根的分布情况,以及充要条件的概念,即可求解.,符合题意.若方程ax2+2x+1=0有且仅有一个负实数根,则当a=0时,x=−12当a≠0时,方程ax2+2x+1=0有实数根,则Δ=4−4a≥0,解得a≤1,当a=1时,方程有且仅有一个负实数根x=−1,当a<1且a≠0时,若方程有且仅有一个负实数根,则1<0,即a<0.a所以当a≤0或a=1时,关于x的方程ax2+2x+1=0的实数根中有且仅有一个负实数根.综上,“关于x的方程ax2+2x+1=0的实数根中有且仅有一个负实数根”的充要条件为“a≤0或a=1”.所以答案是:a≤0或a=1.13、设非空集合Q⊆M,当Q中所有元素和为偶数时(集合为单元素时和为元素本身),称Q是M的偶子集,若集合M={1,2,3,4,5,6,7},则其偶子集Q的个数为___________.答案:63分析:对集合Q中奇数和偶数的个数进行分类讨论,确定每种情况下集合Q的个数,综合可得结果.集合Q中只有2个奇数时,则集合Q的可能情况为:{1,3}、{1,5}、{1,7}、{3,5}、{3,7}、{5,7},共6种,若集合Q中只有4个奇数时,则集合Q={1,3,5,7},只有一种情况,若集合Q中只含1个偶数,共3种情况;若集合Q中只含2个偶数,则集合Q可能的情况为{2,4}、{2,6}、{4,6},共3种情况;若集合Q中只含3个偶数,则集合Q={2,4,6},只有1种情况.因为Q是M的偶子集,分以下几种情况讨论:若集合Q中的元素全为偶数,则满足条件的集合Q的个数为7;若集合Q中的元素全为奇数,则奇数的个数为偶数,共7种;若集合Q中的元素是2个奇数1个偶数,共6×3=18种;若集合Q中的元素为2个奇数2个偶数,共6×3=18种;若集合Q中的元素为2个奇数3个偶数,共6×1=6种;若集合Q中的元素为4个奇数1个偶数,共1×3=3种;若集合Q中的元素为4个奇数2个偶数,共1×3=3种;若集合Q中的元素为4个奇数3个偶数,共1种.综上所述,满足条件的集合Q的个数为7+7+18+18+6+3+3+1=63.所以答案是:63.14、写出一个使得命题“∀x∈R,ax2−2ax+3>0恒成立”是假命题的实数a的值__________.(写出一个a的值即可)答案:−1分析:根据题意,假设命题“∀x∈R,ax2−2ax+3>0恒成立”是真命题,根据不等式恒成立,分类讨论当a=0和a≠0时两种情况,从而得出实数a的取值范围,再根据补集得出命题“∀x∈R,ax2−2ax+3>0恒成立”为假命题时a的取值范围,即可得出满足题意的a的值.解:若命题“∀x∈R,ax2−2ax+3>0恒成立”是真命题,则当a=0时成立,当a≠0时有{a>0Δ=4a2−12a<0,解得:0<a<3,所以当0≤a<3时,命题“∀x∈R,ax2−2ax+3>0恒成立”是真命题,所以当a∈(−∞,0)∪[3,+∞)时,命题“∀x∈R,ax2−2ax+3>0恒成立”为假命题,所以答案是:−1.(答案不唯一,只需a∈(−∞,0)∪[3,+∞))解答题15、已知命题p:∀1≤x≤2,x2−a≥0,命题q:∃x∈R,x2+2ax+2a+a2=0.(1)若命题¬p为真命题,求实数 a 的取值范围;(2)若命题 p 和¬q均为真命题,求实数 a 的取值范围.答案:(1){a|a>1};(2){a|0<a≤1}.分析:(1)写出命题p的否定,由它为真命题求解;(2)由(1)易得命题p为真时a的范围,再由q为真命题时a的范围得出非q为真时a的范围,两者求交集可得.解:(1)根据题意,知当1≤x≤2时,1≤x2≤4.¬p:∃1≤x≤2,x2−a<0,为真命题,∴a>1.∴实数 a 的取值范围是{a|a>1}.(2)由(1)知命题 p 为真命题时,a≤1.命题 q 为真命题时,Δ=4a2−4(2a+a2)≥0,解得a≤0,∴¬q为真命题时,a>0.∴{a≤1a>0,解得0<a≤1,即实数 a 的取值范围为{a|0<a≤1}.。
第一章 集合与常用逻辑用语(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)
第一章集合与常用逻辑用语(公式、定理、结论图表)1.集合的有关概念(1)集合元素的三大特性:确定性、无序性、互异性.(2)元素与集合的两种关系:属于,记为∈;不属于,记为∉.(3)集合的三种表示方法:列举法、描述法、图示法.(4)五个特定的集合集合自然数集正整数集整数集有理数集实数集符号N N *或N +Z Q R 2.集合间的基本关系文字语言符号语言集合间的基本关系相等集合A 与集合B 中的所有元素都相同A =B 子集集合A 中任意一个元素均为集合B 中的元素A ⊆B 真子集集合A 中任意一个元素均为集合B 中的元素,且集合B 中至少有一个元素不是集合A 中的元素BA ⊂≠空集空集是任何集合的子集,是任何非空集合的真子集3.集合的基本运算集合的并集集合的交集集合的补集符号表示A ∪B A ∩B 若全集为U ,则集合A 的补集为∁U A图形表示集合表示{x |x ∈A ,或x ∈B }{x |x ∈A ,且x ∈B }{x |x ∈U ,且x ∉A }4.集合的运算性质(1)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A .(2)A ∪A =A ,A ∪∅=A ,A ∪B =B ∪A .(3)A ∩(∁U A )=∅,A ∪(∁U A )=U ,∁U (∁U A )=A .5.常用结论(1)空集性质:①空集只有一个子集,即它的本身,∅⊆∅;②空集是任何集合的子集(即∅⊆A );空集是任何非空集合的真子集(若A ≠∅,则∅ÜA ).(2)子集个数:若有限集A 中有n 个元素,则A 的子集有2n 个,真子集有2n -1个,非空真子集有22n -个.典例1:已知集合{}2,4,8A =,{}2,3,4,6B =,则A B ⋂的子集的个数为()A .3B .4C .7D .8【答案】B【详解】因为集合{}2,4,8A =,{}2,3,4,6B =,所以{}2,4A B = ,所以A B ⋂的子集的个数为224=个.故选B.典例2:已知集合{}2N 230A x x x =∈--≤∣,则集合A 的真子集的个数为()A .32B .31C .16D .15【答案】D 【详解】由题意得{}{}{}2N230N 130,1,2,3A x x x x x =∈--≤=∈-≤≤=∣∣,其真子集有42115-=个.故选D.(3)A ∩B =A ⇔A ⊆B ;A ∪B =A ⇔A ⊇B .(4)(∁U A )∩(∁U B )=∁U (A ∪B ),(∁U A )∪(∁U B )=∁U (A ∩B ).6.充分条件、必要条件与充要条件的概念若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且q⇏pp是q的必要不充分条件p⇏q且q⇒pp是q的充要条件p⇔qp是q的既不充分也不必要条件p⇏q且q⇏p7.充分、必要条件与集合的关系设p,q成立的对象构成的集合分别为A,B.(1)p是q的充分条件⇔A⊆B,p是q的充分不必要条件⇔AÜB;(2)p是q的必要条件⇔B⊆A,p是q的必要不充分条件⇔BÜA;(3)p是q的充要条件⇔A=B.8.全称量词和存在量词量词名称常见量词符号表示全称量词所有、一切、任意、全部、每一个等∀存在量词存在一个、至少有一个、有些、某些等∃9.全称命题和特称命题10.全称命题与特称命题的否定<知识记忆小口诀>集合平时很常用,数学概念有不同,理解集合并不难,三个要素是关键,元素确定和互译,还有无序要牢记,空集不论空不空,总有子集在其中,集合用图很方便,子交并补很明显.<解题方法与技巧>集合基本运算的方法技巧:(1)当集合是用列举法表示的数集时,可以通过列举集合的元素进行运算,也可借助Venn图运算;(2)当集合是用不等式表示时,可运用数轴求解.对于端点处的取舍,可以单独检验.集合常与不等式,基本函数结合,常见逻辑用语常与立体几何,三角函数,数列,线性规划等结合.充要条件的两种判断方法(1)定义法:根据p⇒q,q⇒p进行判断.(2)集合法:根据使p,q成立的对象的集合之间的包含关系进行判断.充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.(3)数学定义都是充要条件.。
高中数学知识点总结归纳
高中数学知识点总结归纳高中数学是一门重要且具有一定难度的学科,知识点繁多且相互关联。
为了帮助同学们更好地掌握高中数学,下面对其主要知识点进行总结归纳。
一、集合与常用逻辑用语1、集合集合是由一些确定的对象所组成的整体。
集合的表示方法有列举法、描述法和韦恩图法。
集合的运算包括交集、并集和补集。
2、常用逻辑用语命题是可以判断真假的陈述句。
充分条件、必要条件和充要条件是判断命题关系的重要概念。
“若 p,则q”为真命题,则 p 是 q 的充分条件,q 是 p 的必要条件;若“若 p,则q”和“若 q,则p”均为真命题,则p 是 q 的充要条件。
二、函数1、函数的概念设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数。
2、函数的性质函数的性质包括单调性、奇偶性、周期性等。
单调性是指函数在某个区间上的增减情况;奇偶性是指函数图像关于原点或 y 轴对称的性质;周期性是指函数在一定区间上重复出现的性质。
3、基本初等函数包括幂函数、指数函数、对数函数、三角函数等。
幂函数:y =x^α (α 为常数)指数函数:y = a^x (a > 0 且a ≠ 1)对数函数:y =logₐ x (a > 0 且a ≠ 1)三角函数:正弦函数 y = sin x、余弦函数 y = cos x、正切函数 y = tan x 等三、导数及其应用1、导数的概念导数是函数的瞬时变化率,它反映了函数在某一点处的变化快慢程度。
2、导数的运算包括基本函数的求导公式和导数的四则运算法则。
3、导数的应用利用导数可以研究函数的单调性、极值和最值,还可以解决曲线的切线问题。
四、三角函数1、三角函数的定义在直角三角形中,正弦、余弦、正切等函数的定义。
2、同角三角函数的基本关系sin²α +cos²α = 1,tanα =sinα /cosα 等。
集合与常用逻辑用语知识点总结与归纳
集合与常用逻辑用语知识点总结与归纳本文旨在总结和归纳集合与常用逻辑用语的知识点。
以下是相关概念和要点的简要介绍:集合定义集合是由一组特定元素构成的整体。
常用符号- ∪:表示并集,包括所有在两个或多个集合中的元素。
- ∩:表示交集,包括同时存在于两个或多个集合中的元素。
- ∈:表示元素属于某个集合。
- ∅:表示空集,即不包含任何元素的集合。
常见概念- 子集:如果一个集合的所有元素都属于另一个集合,则前者是后者的子集。
- 真子集:一个集合是另一个集合的真子集,当且仅当它是该集合的子集且不等于该集合本身。
- 并集:两个或多个集合中的所有元素构成的集合。
- 交集:两个或多个集合中共有的元素构成的集合。
逻辑用语常用逻辑符号- ∧:表示逻辑与(and),指两个命题都为真才为真。
- ∨:表示逻辑或(or),指两个命题只要有一个为真就为真。
- ¬:表示逻辑非(not),指对命题的否定。
- ⇒:表示逻辑蕴含(implies),指如果前提为真,则结论也为真。
- ⇔:表示逻辑等价(equivalence),指前提与结论互相为真或互相为假。
常见概念- 命题:陈述性句子,可以判断为真或为假。
- 否定:与命题相反的判断。
- 合取:将多个命题通过逻辑与连接起来的复合命题。
- 析取:将多个命题通过逻辑或连接起来的复合命题。
- 蕴含:由前提推导出结论的关系。
- 等价:前提与结论互相为真或互相为假的关系。
总结本文对集合与常用逻辑用语进行了概念、符号和概念的介绍,希望能够帮助读者更好地理解和应用这些知识点。
深入学习和理解集合和逻辑用语将有助于在不同领域的问题解决和决策过程中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合与常用逻辑部分一、集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.∉表示.(2)元素与集合的关系是属于或不属于关系,用符号∈或(3)集合的表示法:列举法、描述法、图示法、区间法.(4)常用数集:自然数集N;正整数集N*(或N+);整数集Z;有理数集Q;实数集R.(5)集合的分类:按集合中元素个数划分,集合可以分为有限集、无限集、空集.二、集合间的基本关系1、子集、真子集及其性质对任意的x∈A,都有x∈B,则A⊆B(或B⊇A).若A⊆B,且在B中至少有一个元素x∈B,但x∉A,则 _ (或 ).∅A;A A;A⊆B,B⊆C⇒A C.若A含有n个元素,则A的子集有个,A的非空子集有个,A的非空真子集有个.2、集合相等 若A ⊆ B,B ⊆A 则A=B三、集合的运算及其性质1、集合的并、交、补运算 并集:A ∪B ={x |x ∈A ,或x ∈B }; 交集:A ∩B = ; 补集:∁U A = .U 为全集,∁U A 表示A 相对于全集U 的补集.例1、(安徽2004年)设集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A ∩(U B )=______.例2、(安徽2005年)(1)设I 为全集,321S S S 、、是I 的三个非空子集,且IS S S =⋃⋃321,则下面论断正确的是( )(A )Φ=⋃⋂)(321S S S C I (B )123I I S C S C S ⊆⋂() (C )Φ=⋂⋂)321S C S C S C I I I(D )123I I S C S C S ⊆⋃()例3、(安徽2006年)(1)设全集{1,2,3,4,5,6,7,8}U =,集合{1,3,5}S =,{3,6}T =,则()U C S T ⋃等于( )A .∅B .{2,4,7,8}C .{1,3,5,6}D .{2,4,6,8}2、集合的运算性质 并集的性质:A ∪∅=A ;A ∪A =A ;A ∪B =B ∪A ;A ∪B =A ⇔B ⊆A .交集的性质:A ∩∅=∅;A ∩A =A ;A ∩B =B ∩A ;A ∩B =A ⇔A ⊆B .补集的性质:A ∪(∁U A )=U ;A ∩(∁U A )=∅;∁U (∁U A )=A .例4、(安徽2007年)1.若{}21A x x ==,{}2230B x x x =--=,则A B = ( ) A.{}3B.{}1C.∅ D.{}1-例5、(安徽2008年)(1).若A 为全体正实数的集合,{}2,1,1,2B =--则下列结论正确的是( ) A .}{2,1A B =-- B .()(,0)R A B =-∞ ðC .(0,)A B =+∞D .}{()2,1R A B =-- ð3、正确区分∅,{0},{∅}∅是不含任何元素的集合,即空集.{0}是含有一个元素0的集合,它不是空集,因为它有一个元素,这个元素是0.{∅}是含有一个元素∅的集合.∅⊆{0},∅⊆{∅},∅∈{∅},{0}∩{∅}=∅.题型一、集合的基本概念例6 (1)已知A ={a +2,(a +1)2,a 2+3a +3},且1∈A , 求实数2013a 的值;(2)x ,x 2-x ,x 3-3x 能表示一个有三个元素的集合吗?变式1:若集合A ={x |ax 2-3x +2=0}的子集只有两个,则实数a =_______题型二:集合的基本关系例7:设关于的不等式的解集为,不等式的解集为.(Ⅰ)当时,求集合;(Ⅱ)若,求实数的取值范围.x (1)0()x x a a --<∈R M 2230x x --≤N 1a =M M N⊆a例8、 已知集合A ={x |0<ax +1≤5},集合B =}1/22x x ⎧-<≤⎨⎩(1)若A ⊆B ,求实数a 的取值范围; (2)若B ⊆A ,求实数a 的取值范围;(3)A 、B 能否相等?若能,求出a 的值;若不能,试说明理由.例9、已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________.题型三、集合的基本运算例10、(2012山东理)已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则()U C A B U 为( ) A .{}1,2,4B .{}2,3,4C .{}0,2,4D .{}0,2,3,4例11、(2012浙江理) 设集合A ={x |1<x <4},B ={x |x 2-2x -3≤0},则A ∩(C RB )= A .(1,4)B .(3,4)C .(1,3)D .(1,2)例12、【2012韶关第一次调研理】若集合是函数的定义域,是函数的定义域,则M∩N 等于( )例13、(安徽2009年)(2)若集合A={X ∣(2x+1)(x-3)<0},{,5,B x N x =∈≤则A ∩B 是( )M lg y x =Ny =例14、(安徽2010年)(1)若A={}|10x x +>,B={}|30x x -<,则A B = _______例15、(安徽2011年)(2)集合}{,,,,,U =123456,}{,,S =145,}{,,T =234,则()U S C T I等于_______例16、安徽2012年)(2)设集合A={3123|≤-≤-x x },集合B 为函数)1lg(-=x y 的定义域,则A ⋂B= ________四、1.命题的概念在数学中把用语言、符号或式子表达的,能够 的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题. 2.四种命题及其关系 (1)四种命题例17、(2012湖南理)命题“若α=4π,则tanα=1”的逆否命题是( )A .若α≠4π,则tanα≠1B .若α=4π,则tanα≠1C .若tanα≠1,则α≠4πD .若tanα≠1,则α=4π(2)四种命题间的逆否关系(3)四种命题的真假关系①两个命题互为逆否命题,它们有 的真假性;②两个命题互为逆命题或互为否命题,它们的真假性 没有关系. 充分条件与必要条件(1)如果p ⇒q ,则p 是q 的 充分条件 ,q 是p 的必要条件; (2)如果p ⇒q ,q ⇒p ,则p 是q 的 充要条件 . 用集合的观点,看充要条件设集合A ={x |x 满足条件p },B ={x |x 满足条件q },则有: (1)若A ⊆B ,则p 是q 的充分条件,若A ___B ,则p 是q 的充分不必要条件;(2)若B ⊆A ,则p 是q 的必要条件,若B ____A ,则p 是q 的必要不充分条件;(3)若A =B ,则p 是q 的充要条件;(4)若A ⊆B ,且B ⊆A ,则p 是q 的既不充分也不必要条件.题型一四种命题的关系及其真假判断例18、 以下关于命题的说法正确的有_______ (填写所有正确 命题的序号).①“若log 2a >0,则函数f (x )=log a x (a >0,a ≠1)在其定义域内是减函数”是真命题;②命题“若a =0,则ab =0”的否命题是“若a ≠0,则ab ≠0”; ③命题“若x ,y 都是偶数,则x +y 也是偶数”的逆命题为真命题; ④命题“若a ∈M ,则b ∉M ”与命题“若b ∈M ,则a ∉M ” 等价.答案:(2)、(4) 例19:有下列四个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若q ≤1,则x 2+2x +q =0有实根”的逆否命题; ④“不等边三角形的三个内角相等”的逆命题. 其中真命题的序号为________.例20、【2012三明市普通高中高三上学期联考】下列选项叙述: ①.命题“若,则”的逆否命题是“若,则”②.若命题:,则: ③.若为真命题,则,均为真命题 ④.“”是“”的充分不必要条件 其中正确命题的序号有_______题型二:充分、必要、充要条件的概念与判断例21、(2012厦门期末)“φ=”是“函数y=sin(x +φ)为偶函数的”( )1x ≠2320x x -+≠2320x x -+=1x =p 2,10x R x x ∀∈++≠p ⌝2,10x R x x ∃∈++=p q ∨p q 2x >2320x x -+>2πA.充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件例22、(安徽2006年)(4)“3x>”是24x>“的()A.必要不充分条件 B.充分不必要条件C.充分必要条件 D.既不充分也不必要条件例23、(安徽2007年)6.设t,m,n均为直线,其中m n,在平面α内,则“lα⊥”的()⊥且l n⊥”是“l mA.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件例24、(安徽2008年)(4).0a<是方程2210++=有一个负数根的()ax xA.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件例25、(安徽2009年)(4) “a c+>b+d ”是“a>b且c>d ”的( )(A)必要不充分条件(B)充分不必要条件(C)充分必要条件(D)既不充分也不必要条件题型三:充要条件的证明简单的逻辑连接词一、定义(1)命题中的“”、“”、“”叫做逻辑联结词.二、全称量词与存在量词(1)常见的全称量词有:“任意一个”、“一切”、“每一个”、“所有的等.(2)常见的存在量词有:“存在一个”、“至少有一个”、“有些”、“有一个”、“某个”、“有的”等.(3)全称量词用符号“”表示;存在量词用符号“”表示.(4)全称命题与存在性命题①含有全称量词的命题叫全称命题.②的命题叫存在性命题.三、命题的否定(1)全称命题的否定是存在性命题;存在性命题的否定是全称命题.(2)“p或q”的否定为:“非p且非q”;“p且q”的否定为:“非p 或非q”.命题的否定与否命题“否命题”是对原命题“若p,则q”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p”,只是否定命题p的结论.命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真,而原命题与否命题的真假无必然联系.题型一:含有逻辑联结词命题的真假判断题型二:含有一个量词的命题的否定例26写出下列命题的否定,并判断其真假.≥0;(1)p:∀x∈R,x2-x+14(2)q:所有的正方形都是矩形;(3)r:∃x0∈R,2x+2x0+2≤0;x+1=0.(4)s:至少有一个实数x0,使3全称命题与存在性命题的否定与命题的否定有一定的区别,否定全称命题和存在性命题时,一是要改写量词,全称量词改写为存在量词,存在量词改写为全称量词;二是要否定结论.而一般命题的否定只需直接否定结论即可.例27(安徽2010年)(11)命题“存在x∈R,使得x2+2x+5=0”的否定是例28(安徽2012年)(4)命题“存在实数x,使x> 1”的否定是( )(A)对任意实数x, 都有x> 1 (B)不存在实数x,使x≤ 1 (C)对任意实数x, 都有x≤ 1 (D)存在实数x,使x≤ 1例29、写出下列命题的否定,并判断真假.(1)p:∀x>0,都有x2-x≤0;(2)q:∃x∈R,2x+x2≤1.。