光学知识点

合集下载

光学常考知识点总结

光学常考知识点总结

光学常考知识点总结下面将对光学常考知识点进行总结,包括光的直线传播、光的反射和折射、透镜和光的波动性等内容。

一、光的直线传播1. 光的直线传播是指在均匀介质中,光线遇到不透明物体时,会沿着直线传播。

这是光的基本特性之一,也是光学的基本原理之一。

2. 在光的直线传播中,光线可以沿着直线传播,但也可以被透明介质中的粗糙表面所散射。

同时,如果光线通过介质的边界,如从空气射入玻璃,会发生折射现象。

3. 光的直线传播不仅适用于自然环境中,也可以用来分析光学仪器的工作原理,如显微镜、望远镜等。

二、光的反射和折射1. 光的反射是指光线遇到光滑表面时,会以与表面垂直的角度反射回去。

这是光学中一个重要的现象,也是人们能够看到物体的原因之一。

2. 光的折射是指光线穿过介质的边界时,由于介质折射率的不同,光线的传播方向会发生变化。

这一现象在实际生活中也是很常见的,如水中看到的物体会比在空气中看到的位置更高。

3. 光的反射和折射是光学中的两个重要概念,在教学中需要重点强调和讲解。

三、透镜1. 透镜是一种能够将光线聚焦或发散的光学器件,是光学中的重要组成部分。

在现代工业和科技中,透镜被广泛应用于许多领域,如光学仪器、相机、激光器等。

2. 透镜分为凸透镜和凹透镜两种类型,分别用于光线的聚焦和发散。

3. 透镜的工作原理是通过对光线的折射来实现的,凸透镜和凹透镜分别使光线在一个点聚焦和发散。

四、光的波动性1. 光的波动性是光学中一个非常重要的概念,它能够很好地解释光的折射、干涉和衍射现象。

2. 光的波动性是指光在传播过程中会表现出波动的特性,如干涉和衍射。

这一特性是光学的一个基本原理,也是光学实验中常见的现象。

3. 光的波动性在光学中有着广泛的应用,如激光技术、光纤通信等都涉及到了光的波动性。

以上就是光学常考知识点的总结,光学是一门非常重要的学科,对于中学生来说,掌握这些基本知识对学业以及未来的发展都有着非常重要的意义。

希望学生们能够认真学习光学知识,提高自己的光学素养,为将来的学习和工作打下坚实的基础。

光学必看知识点

光学必看知识点

光学必看知识点光学是研究光的传播、干涉、衍射、偏振、折射和吸收等现象的科学。

它在我们日常生活中有着广泛的应用,如光学仪器、光纤通信、激光技术等。

为了更好地理解光学的基本原理和应用,本文将从光的本质、光的传播和折射、光的衍射和干涉以及光的偏振等方面介绍光学的必看知识点。

一、光的本质光是一种电磁波,它由电场和磁场相互作用而产生。

光的频率决定了它所属的光谱区域,如可见光、红外线和紫外线等。

光速是一个常数,约为3×10^8米/秒。

光的波粒二象性理论认为,光既可以看作是波动的电磁波,也可以看作是由光子组成的粒子。

二、光的传播和折射光在真空中传播的速度是最快的,当光从真空射入介质中时,会发生折射现象。

折射现象是由于光在不同介质中传播速度的差异导致的。

根据斯涅尔定律,入射角和折射角之间的正弦比等于两种介质的折射率之比。

这一定律解释了为什么光在从空气射入水中时会发生折射,造成光线弯曲的现象。

三、光的衍射和干涉衍射是光通过一个小孔或者绕过一个障碍物后的扩散现象。

当光通过小孔时,产生的衍射现象可以解释为光波在小孔边缘弯曲并扩散出来。

干涉是指光波的叠加现象,当两个或者多个光波相遇时,会产生一系列干涉条纹。

干涉现象常见于光的波长相近的情况下,例如劈尖干涉和杨氏干涉。

四、光的偏振光的偏振是指光波在传播过程中只在一个方向上振动。

自然光是无偏振的,它的振动方向在各个方向上都有。

偏振片是一种可以选择光波振动方向的光学元件,它可以将自然光转变为偏振光。

偏振光在许多应用中起到重要作用,如液晶显示器和偏振镜等。

总结光学是一门研究光的传播和相互作用的科学,它在日常生活中有着广泛的应用。

本文从光的本质、光的传播和折射、光的衍射和干涉以及光的偏振等方面介绍了光学的必看知识点。

通过了解这些知识点,我们可以更好地理解光学的基本原理,并应用于实际生活和工作中。

光学知识点

光学知识点

光现象知识点一、光的直线传播1、光源能够发光的物体叫光源。

它可分自然光源,如 太阳、萤火虫;,人造光源,如 篝火、蜡烛、油灯、电灯。

月亮本身不会发光,它不是光源。

2、光在均匀介质中沿直线传播光在同一种介质中沿直线传播是有条件的,就是介质要均匀,才是沿直线传播的,如果介质不均匀光线也会发生弯曲,例如早晨太阳刚刚升起,太阳光到人的眼睛中就不是沿直线传播,因为光传播的介质不是均匀,大气不均匀。

3、光沿直线传播形成的现象有小孔成像、影子、月食、日食、激光准直、三点一线等。

小孔成像,是倒立的实像,与物体一样。

例如夏天树荫下的“光斑”是 形,他实质的太阳的像 4、光线由于光是沿直线传播的,我们就可以沿光的传播路线画一条直线,并在直线上画上箭头表示光的传播方向。

这种表示光的传播方向的直线叫做光线。

光线是由一小束光抽象而建立的理想物理模型,建立理想物理模型是研究物理的常用方法之一。

5、光速光在真空中的传播速度最快,近似等于3×108m/s 。

光在空气中接近光在真空中的速度,也近似认为3×108m/s 。

光在水中的速度是真空中光速的3/4,光在玻璃中的传播速度是是真空中光速的2/3,光在不同介质中的传播速度不同,因此不能说光的速度是3×108m/s 。

二、光的反射1、光的反射光射到物体表面上时,有一部分光会被物体表面反射回来,这种现象叫做光的反射。

光射到任何物体的表面都会被反射。

(在两种介质的分界面处发生) “一点”、“三线”、“二角”“一点” 入射点O :光线射到镜面上的点。

入射光线AO 法线:NO(法线为通过入射点,并垂直..于反射面的虚线..。

) 反射光线OB入射角α:入射光线与法线的夹角 反射角β:反射光线与法线的夹角2、光的反射定律在探究平面镜成像特点时,发现光射到物体表面都要发生反射。

思考:(1).反射光线和入射光线有什么位置关系呢?(2).反射角和入射角间大小关系有什么特“三线”“二角”点呢?如图所示(1).用激光手电筒贴着纸板沿某一角度射到O 点,经过平面镜反射后,沿着另一个方向射出,在纸板上画出入射光线和反射光线的径迹。

光学体系知识点梳理总结

光学体系知识点梳理总结

光学体系知识点梳理总结一、光学基础知识1. 光的本质光是电磁波的一种,是一种由电场和磁场交替而成的波动现象。

光是由光源发出,经过介质传播,最终影响我们的视觉系统。

2. 光的特性(1)波动特性:光具有波动性,可以表现为干涉、衍射、偏振等现象。

(2)微粒特性:光也具有微粒性,可以用光子模型解释光电效应、康普顿效应等现象。

3. 光的传播(1)直线传播:在均匀介质中,光沿着直线传播,遵循光的直线传播定律。

(2)折射现象:当光线从一种介质进入另一种介质时,会发生折射现象,遵循折射定律。

(3)反射现象:当光线从介质表面反射时,遵循反射定律。

4. 光的颜色白光是由所有可见光波长组成的,当光通过色散介质时,不同波长的光会按不同程度发生偏折,从而产生色散现象。

5. 光学仪器(1)凸透镜:透镜是一种光学元件,可以将平行入射的光线聚焦或发散。

(2)凹透镜:凹透镜同样可以将平行入射的光线聚焦或发散,与凸透镜形成对称。

(3)棱镜:通过对光的折射和衍射,可以实现光的分光和复合。

二、光学成像1. 成像原理成像是光学系统中非常重要的一部分,成像原理是指当物体放在一定位置时,通过透镜、镜面等光学元件可以在另一位置产生与实物相似的像。

2. 透镜成像透镜成像是指通过透镜实现对物体的成像,分为凸透镜和凹透镜成像。

3. 成像公式成像公式是描述透镜成像的数学关系式,可以根据物距、像距、焦距等参数计算成像的位置和大小。

4. 像的性质像的性质包括实像与虚像、正像与负像、放大与缩小等,是成像过程中需要了解的重要内容。

5. 透镜组成像透镜组成像是指通过不同透镜的组合实现对物体的成像,常见的透镜组包括双凸透镜组、凹凸透镜组等。

6. 成像畸变(1)球差:由于透镜的非理想性,会出现球差现象,导致成像的模糊和色差。

(2)色差:不同波长的光经过透镜时折射角度不同,会导致色差现象,影响成像的清晰度。

三、光学仪器1. 望远镜望远镜是一种基于透镜或镜面的光学仪器,可以放大远处物体的像,包括折射望远镜和反射望远镜。

光学知识点总结

光学知识点总结

光学知识点总结光学是物理学的一个重要分支,它研究光的性质、传播以及与物质的相互作用。

下面我们来详细总结一下光学的主要知识点。

一、光的直线传播光在同种均匀介质中沿直线传播。

这是光的一个基本传播规律。

生活中,小孔成像、日食月食等现象都可以用光的直线传播来解释。

小孔成像中,所成的像是倒立的实像,像的大小与孔到光屏的距离以及物体到孔的距离有关。

日食是月球挡住了太阳射向地球的光,月食则是地球挡住了太阳射向月球的光。

二、光的反射当光射到物体表面时,有一部分光会被反射回来,这种现象叫做光的反射。

反射定律指出:反射光线、入射光线和法线在同一平面内,反射光线和入射光线分居法线两侧,反射角等于入射角。

平面镜成像就是光的反射的一个典型应用。

平面镜所成的像是虚像,像与物体大小相等、像与物体到平面镜的距离相等、像与物体的连线与平面镜垂直。

我们照镜子时看到的像就是平面镜所成的像。

三、光的折射光从一种介质斜射入另一种介质时,传播方向发生偏折,这种现象叫光的折射。

折射定律表明:折射光线、入射光线和法线在同一平面内,折射光线和入射光线分居法线两侧;入射角的正弦与折射角的正弦成正比。

在生活中,我们常见的折射现象有插入水中的筷子看起来“折断”了、从岸上看水中的鱼位置变浅了等。

四、透镜透镜分为凸透镜和凹透镜。

凸透镜对光有会聚作用,凹透镜对光有发散作用。

凸透镜成像规律是光学中的一个重点内容。

当物距大于二倍焦距时,成倒立、缩小的实像,像距在一倍焦距和二倍焦距之间,应用如照相机;当物距在一倍焦距和二倍焦距之间时,成倒立、放大的实像,像距大于二倍焦距,应用如投影仪;当物距小于焦距时,成正立、放大的虚像,应用如放大镜。

五、光的色散太阳光通过三棱镜后,被分解成红、橙、黄、绿、蓝、靛、紫七种颜色的光,这种现象叫光的色散。

这表明白光是由各种色光混合而成的。

彩虹就是自然界中的光的色散现象。

六、眼睛和眼镜人的眼睛好像一架照相机,晶状体和角膜的共同作用相当于一个凸透镜,视网膜相当于光屏。

光学的知识点总结

光学的知识点总结

光学的知识点总结一、光的波动性和粒子性1. 光的波动性:光是一种电磁波,具有波动性。

光的波长、频率和速度是其波动特性的重要参数。

根据光的波长,可以将光分为可见光、紫外光、红外光等不同波长范围的光谱。

2. 光的粒子性:光也具有粒子性,即光子。

光子是光的传播媒介,通过光子理论可以解释光的干涉、衍射等现象。

二、光的反射和折射1. 光的反射:当光线遇到一个光滑的表面时,会发生反射。

根据反射定律,入射角等于反射角。

2. 光的折射:当光线从一种介质进入另一种介质时,会发生折射。

根据折射定律,入射角、折射角和介质的折射率之间存在一定的关系。

三、透镜和成像1. 透镜的类型:透镜可以分为凸透镜和凹透镜。

凸透镜将光线汇聚到一个焦点,而凹透镜是分散光线。

2. 成像规律:透镜成像遵循一些规律,例如物距、像距、物高、像高之间的关系可以通过透镜成像公式进行计算。

四、干涉和衍射1. 干涉:当两束光波相遇时,它们会发生干涉现象。

根据干涉现象可以制作干涉仪,用于测量光的波长、薄膜厚度等参数。

2. 衍射:当光波通过一个小孔或物体边缘时,会发生衍射现象。

衍射可以用来解释光的弯曲现象,并且是激光技术中的重要原理。

五、光的偏振1. 偏振现象:光在传播过程中会发生偏振现象,即光振动方向的归一化。

根据偏振现象可以制作偏振片,用于光学仪器中的光控制和分析。

2. 偏振方向:偏振片能够将非偏振光或自然光转化为具有特定偏振方向的偏振光。

六、光的吸收和发射1. 光的吸收:物质对光的吸收能力与物质的性质有关,一些物质对特定波长的光具有很强的吸收能力。

2. 光的发射:当物质受到激发时,会发射出特定波长的光,这被称为发射现象。

发射光谱可以用来分析物质的组成和结构。

七、光学系统和光学仪器1. 光学系统:由一系列光学元件(例如透镜、棱镜、偏振片、镜面等)构成的光学装置称为光学系统。

光学系统广泛应用于望远镜、显微镜、光学显微镜、激光器等光学仪器中。

2. 光学仪器:使用光学系统进行光学成像、测量、分析等目的的装置称为光学仪器。

光学教程知识点总结

光学教程知识点总结

光学教程知识点总结光学是物理学的一个分支,研究光的产生、传播、探测和应用。

光学的研究对象包括光的发射和吸收、光的传播、光与物质的相互作用等。

光学在现代科学技术领域中具有非常重要的地位,并且在日常生活中也有着广泛的应用。

下面将对光学的一些基本知识点进行总结。

一、光的波动特性1. 光的波动模型光是一种电磁波,具有波动特性。

光的电场与磁场互相垂直并在空间中传播,这两个相互垂直的场构成了横波。

光的波动模型可以用来解释光的干涉、衍射等现象。

2. 光的波长和频率光的波长是指在空间中波峰到波峰(或波谷到波谷)之间的距离,通常用λ表示。

光的频率是指单位时间内波峰通过的次数,通常用ν表示。

光的波长和频率之间有着确定的关系,即λν=c,其中c是光速。

3. 光的干涉和衍射当光通过两个或多个狭缝时会产生干涉现象,即光的波峰和波谷相遇,会相互叠加和抵消。

光的衍射是指光在通过狭缝或物体边缘时发生偏离直线传播的现象。

4. 光的相位和相速光的波动模型中,相位是指光波在空间中的位置,可以用来描述光波的相对位移;相速是指光波传播的速度,是光波正弦波前进速度的大小。

二、光的粒子特性1. 光的光子理论20世纪初,爱因斯坦提出了光子的概念,认为光呈现出波粒二象性,既可以看作是波动,也可以看作是微粒。

光子是光的能量的量子,具有一定的能量和动量。

2. 光的光电效应光的光电效应是指当光照射到金属表面时,会引起电子的逸出现象。

如果光的波长小于一定值,金属才会发生光电效应。

光电效应的现象可以用光子理论来解释。

3. 光的康普顿散射康普顿散射是指X射线或γ射线与物质发生散射的现象。

康普顿发现,X射线与物质发生散射时,散射光子的波长发生变化,这一现象可以用光子理论来解释。

三、光学成像1. 光学成像理论光学成像是指利用光的传播特性,通过光学系统将物体的信息传递到感光介质上,形成物体的像。

根据成像原理,可以分为点成像和像差的理论。

根据成像方向,又可以分为远成像和近成像。

光学必备知识点总结图解

光学必备知识点总结图解

光学必备知识点总结图解光学是研究光的传播、反射、折射以及与物质相互作用的一门学科。

在现代科技中,光学应用广泛,包括光纤通信、激光技术、光学显微镜、望远镜、光学测量等方面。

因此,了解光学的基本知识对于我们理解现代科技、发展科学技术至关重要。

在本文中,将对光学的基本知识点进行总结,包括光的性质、光的传播、折射、反射、色散、光学仪器等方面的知识点,希望对读者有所帮助。

一、光的性质1. 光的波动性光具有波动性质,即光是以波的形式传播的。

光波的传播方式可以用波长、频率、波速来描述。

光的波长决定了光的颜色,不同波长的光对应不同的颜色。

波长和频率之间有着一定的关系,即速度等于波长乘以频率。

在真空中,光的波速是一个恒定值,即光速等于约299,792,458米/秒,记作c。

2. 光的粒子性光也具有粒子性质,即光是由一些微小的粒子组成的。

这些粒子被称为光子,是光的一个基本单位。

光的粒子性质可以用来解释一些光学现象,如光电效应、康普顿散射等。

3. 光的干涉和衍射干涉是指两束相干光叠加在一起时会产生明暗条纹的现象。

衍射是指光通过狭缝或物体边缘时会发生偏折的现象。

这两个现象是光的波动性质的重要体现。

二、光的传播1. 光的直线传播在均匀介质中,光沿着一条直线传播。

这是光学的一个基本原理,也是光学成像的基础。

2. 光的折射当光线从一种介质射入到另一种介质中时,光线会发生折射。

折射定律表明了入射角、折射角和介质折射率之间的关系。

这个定律对于理解光在介质中的传播有着重要的意义。

3. 光的反射当光线与界面垂直入射时,光线会发生反射。

反射定律规定了入射角和反射角之间的关系。

反射还可以产生镜面反射和漫反射两种形式。

三、光的折射1. 透镜透镜是一种光学器件,主要分为凸透镜和凹透镜两种。

透镜可以将平行光线汇聚成一个点,也可以将一点光源产生的光线汇聚成一个点。

透镜的焦距决定了透镜的成像性能。

2. 成像原理成像原理是指由透镜成像的规律。

通过透镜,可以将物体成像到焦平面上,形成实物像或虚物像。

光学知识点经典归纳总结

光学知识点经典归纳总结

光学知识点经典归纳总结光学是研究光的行为和性质的物理学门。

它涉及到光的产生、传播和作用等方面的研究。

光学在科学研究、工程技术、医学影像、天文观测等领域都有着广泛的应用。

本文将对光学的相关知识点进行经典归纳总结,包括光的传播、折射、色散、透镜、干涉和衍射等方面的内容。

一、光的传播1. 光的概念光是一种以波动形式传播的电磁波。

它不需要介质来传播,可以在真空中传播。

光的波长范围为380nm到780nm,主要分为可见光和不可见光两种。

2. 光的速度光速是一切物质和能量传播的极速,为3.00×10^8m/s。

光速在不同介质中会发生变化,一般情况下光速在空气中速度最快。

3. 光的直线传播光在各向同性均匀介质中呈直线传播。

光线是指用箭头表示,表示光线传递的方向,光线每一点的方向与该点的波矢相同。

4. 光的散射光在传播过程中会与各种物质发生相互作用,产生反射、折射、散射等现象。

其中散射是指光在特定物质表面上发生分散现象,通常颗粒发生尺度要比光波长大。

5. 光的损失在光的传播过程中,会存在一定程度的损失。

根据不同的物质特性和光的传播距离,会导致光的损失。

常见的损失方式有散射、吸收和热效应等。

二、光的折射1. 折射定律当光线从一个均匀介质进入另一个均匀介质时,光线的入射角和折射角之比是一个恒定值,这个恒定值被称为介质的折射率。

光的折射定律可以用来解释光在介质之间传播时的折射规律。

2. 折射率介质对光的折射能力大小可以用折射率来表示。

不同介质的折射率不同,一般情况下折射率大于1。

折射率可以通过折射定律和斯涅尔定律来计算。

3. 全反射当光从折射率较大的介质射入折射率较小的介质时,入射角大于临界角时发生全反射。

全反射可以用来解释光在光纤中传播时的反射规律。

4. 折射率与波长光的波长与介质的折射率有关,根据折射率公式可以计算出不同波长光的折射率。

5. 折射率与光的速度光在不同介质中的传播速度不同,而折射率与速度成反比关系。

光学知识点总结

光学知识点总结

光学知识点总结光学知识点总结一、光的传播1、光源:_________________________。

(1)自然光源如:太阳,萤火虫(2)人造光源如:蜡烛,电灯2、光的传播:(1)光在____________介质中是沿直线传播的(2)直线传播现象影子的形成:日食、月食(你能解释吗,尝试一下)小孔成像:成___________的像(你会画图吗,)3、光的传播速度":(1)光在真空中的传播速度是____________。

(2)光在水中的传播速度比在真空中的______。

对比:声音在真空中的传播速度是_____,在空气中的传播速度是____________。

二、光的反*1、反*现象:光*到物体的表面被反*出去的现象2、概念:(1)一点:入*点(2)二角:入*角:__________________________。

反*角:__________________________。

(3)三线:入*光线、反*光线、法线3、反*定律:(1)________________________________(三线共面)(2)_________________________________(两线异侧)(3_)________________________________(两角相等)尝试:画图解释光的反*定律4、反*分类:(1)镜面反*:________________________(画图说明)(2)漫反*:__________________________(画图说明)有人说镜面反*遵守光的反*定律而漫反*不遵守光的反*定律你认为呢,5、平面镜成像:特点:____________________________________。

成像作图举例三、光的折*1、折*现象:光由一种介质*入另一种介质时,在介面上将发生光路改变的现象。

常见现象:筷子变"弯"、池水变浅、海市蜃楼。

2、光的折*规律:_________________________________________________________________________。

光学详细知识点

光学详细知识点

光学知识点大汇总一、光的直线传播、1、光现象:包括光的直线传播、光的反射和光的折射。

2、光源:能够发光的物体叫做光源。

光源按形成原因分,可以分为自然光源和人造光源。

例如,自然光源有太阳、萤火虫等,人造光源有如蜡烛、霓虹灯、白炽灯等。

月亮不是光源,月亮本身不发光,只是反射太阳的光。

3、光的直线传播:光在真空中或同一种均匀介质中是沿直线传播的,光的传播不需要介质。

大气层是不均匀的,当光从大气层外射到地面时,光线发了了弯折(海市蜃楼、早晨看到太阳时,太阳还在地平线以下、星星的闪烁等)光沿直线传播的现象:小孔成像、井底之蛙、影子、日食、月食、一叶障目。

光沿直线传播的应用:①激光准直. 排直队要向前看齐. 打靶瞄准②影的形成:光在传播过程中,遇到不透明的物体,由于光是沿直线传播的,所以在不透光的物体后面,光照射不到,形成了黑暗的部分就是影。

③日食月食的形成日食的成因:当月球运行到太阳和地球中间时,并且三球在一条直线上,太阳光沿直线传播过程中,被不透明的月球挡住,月球的黑影落在地球上,就形成了日食.月食的成因:当地球运行到太阳和月球中间时,太阳光被不透明的地球挡住,地球的影落在月球上,就形成了月食.如图:在月球后1的位置可看到日全食,在2的位置看到日偏食,在3的位置看到日环食。

④小孔成像:小孔成像实验早在《墨经》中就有记载小孔成像成倒立的实像,其像的形状与孔的形状无关。

像可能放大,也可能缩小。

用一个带有小孔的板遮挡在屏幕与物之间,屏幕上就会形成物的倒像,我们把这样的现象叫小孔成像。

前后移动中间的板,像的大小也会随之发生变化。

这种现象反映了光沿直线传播的性质。

小孔成像原理:光在同一均匀介质中,不受引力作用干扰的情况下沿直线传播根据光的直线传播规律证明:像长和物长之比等于像和物分别距小孔屏的距离之比。

1234、光线:用一条带有箭头的直线表示光的径迹和方向的直线。

(光线是假想的,实际并不存在)光线是由一小束光抽象而建立的理想物理模型,建立理想物理模型是研究物理的常用方法之一。

光学方面的知识点总结

光学方面的知识点总结

光学方面的知识点总结一、光的性质1.1 光的波动性光是一种电磁波,具有波动性。

光的波动性表现在光的干涉、衍射和偏振等现象上。

1.2 光的颗粒性光也具有颗粒性,即光子。

光子是一种能量量子,能够传递能量和动量,解释了光的一些特殊现象,如光电效应和康普顿散射等。

二、光的传播2.1 光的传播速度在真空中,光的传播速度为光速c,约为3×10^8m/s。

在介质中,光的速度会减慢,其速度与介质的折射率有关。

2.2 光的传播方向光以直线传播,光的传播方向可以用光线来描述。

光线是法照面的矢量表示,也可以用波阵面来描述。

三、光的反射和折射3.1 光的反射定律光线射到光滑表面上时,经过反射后与入射光线和法线之间的角度关系由反射定律来描述,即入射角等于反射角。

3.2 光的折射定律光线射到两种介质的分界面上时,经过折射后与入射光线和法线之间的角度关系由折射定律来描述,即入射角的正弦与折射角的正弦之比等于两介质的折射率之比。

四、光的成像4.1 光的成像方式光的成像包括几何光学成像和物理光学成像。

几何光学成像是利用光线的传播规律描述物体成像的方法,物理光学成像则是利用光的波动性和干涉、衍射等现象来描述物体成像的方法。

4.2 光的成像规律在几何光学中,成像规律可以用成像公式和透镜公式来描述。

成像公式描述物像距离、物像高度和焦距之间的关系,透镜公式描述物像距离、成像距离和透镜焦距之间的关系。

五、光的检测5.1 光的检测器光的检测器是一种利用光的能量来转换成电能的装置,常见的检测器有光电二极管、光敏电阻和光电倍增管等。

5.2 光的检测原理光的检测原理是利用光的作用力来使光子在检测器中产生电子和空穴对,从而产生电流。

检测器的输出信号与入射光的能量和波长等有关。

光学是一门博大精深的学科,上述知识点只是光学的冰山一角。

随着科学技术的进步以及实践经验的积累,光学领域的新知识和新技术会不断涌现。

希望本文对读者对光学有所帮助,激发大家对光学的兴趣,促进光学技术在各个领域的应用和发展。

光学的相关知识点总结

光学的相关知识点总结

光学的相关知识点总结1.光的本质和传播光是一种电磁波,是一种由电场和磁场交替变化而传播的波动。

根据光的波动性质,光可以表现出折射、反射、衍射和干涉等现象。

光的传播可以根据介质的不同分为真空中传播和介质中传播。

在真空中传播时,光速为299,792,458米/秒,而在介质中传播时,光速会根据介质的折射率而发生变化。

2.光的成像光的成像是光学的一个重要研究内容,其主要通过几何光学原理来解释。

成像的基本原理包括反射成像和折射成像两种情况。

在反射成像中,主要研究平面镜和曲面镜的成像规律,例如平面镜的成像是虚像,曲面镜则根据其形状的不同有凸镜和凹镜两种情况。

在折射成像中,主要研究透镜的成像规律,透镜包括凸透镜和凹透镜两种,其成像规律也有所不同。

3.光的衍射光的衍射是光的波动性质的一个重要体现。

衍射是指当光通过一个小的孔或者物体的边缘时,光波会发生弯曲和扩散,从而形成衍射图样。

光的衍射可以分为菲涅尔衍射和费米衍射两种,其中菲涅尔衍射是指当光波通过一个障碍物或者孔洞时,形成的衍射图样,而费米衍射则是指当光波通过一个光栅或者周期性结构时,形成的衍射图样。

4.光的干涉光的干涉也是光的波动性质的一个重要体现。

干涉是指当两束光波相遇时,由于它们的波峰和波谷之间会相互叠加干涉,从而形成干涉图样。

干涉分为双缝干涉和自由空间干涉两种情况,其中双缝干涉是指当两束来自同一光源的光波通过两条缝隙后相互叠加产生干涉,而自由空间干涉是指当两束来自不同光源的光波相遇后形成干涉图样。

5.光的偏振光的偏振是光的振动方向的一种特性。

偏振光是指在某一方向上振动的光波,而非偏振光则是指光波在各个方向上均匀振动的光波。

在光的传播和成像过程中,偏振现象是非常重要的,例如在液晶显示器或者3D眼镜中,偏振光可以帮助我们获得更加清晰和立体的图像。

6.光与物质的相互作用光与物质的相互作用是光学研究的一个重要问题,它主要包括吸收、散射和发射三种情况。

光在和物质发生相互作用时,会引起物质内部的原子和分子发生跃迁和变化,从而产生吸收、散射和发射等现象。

光学全部知识点总结

光学全部知识点总结

光学全部知识点总结一、光的特性1.1 光的波动性光显示出波动性的实验证据有双缝干涉、杨氏双缝实验等。

根据实验现象,可以推断出光是一种波动。

1.2 光的粒子性光显示出粒子性的实验证据有光电效应、康普顿散射等。

根据实验现象,可以推断出光具有粒子性。

1.3 光的波粒二象性根据实验现象,可以得出光具有波动性和粒子性的波粒二象性。

1.4 光速度光速在真空中的数值为299,792,458m/s。

在其他介质中,光速相对于真空中略有减小。

1.5 光的偏振光的偏振是指光波的振动方向在空间中的偏移。

光分为线偏振光、圆偏振光和椭圆偏振光。

1.6 光的频散光波在传播过程中会发生频率较高的色散现象。

光的频散可以是相位色散、群速度色散。

二、光的传播2.1 光的直线传播光沿着直线传播的定律是光的直线传播定律。

光的直线传播是光学成像的基础。

2.2 光的折射光从一种介质传播到另一种介质时,会发生折射现象。

光的折射定律是光在折射介质中的传播规律。

2.3 光的反射光在与介质表面相交时,会发生反射现象。

光的反射定律是光在反射介质中的传播规律。

2.4 光的漫反射漫反射是指光在粗糙表面反射的现象。

漫反射是光学成像的基础。

2.5 光的衍射光通过狭缝或障碍物时,会发生衍射现象。

光的衍射可以解释物体的逐渐模糊。

2.6 光的干涉两束光波在同一点相遇时会产生干涉现象。

光的干涉是光学成像的基础。

2.7 光的绕射绕射是指光波传播过程中环绕障碍物或界面时的现象。

2.8 光的色散光波由于频率不同而呈现出不同的色彩现象。

色散是光学成像的重要现象。

三、光的成像3.1 几何光学成像几何光学是光学的基础理论,利用射线光学理论可以解释光的成像。

3.2 调焦成像调焦成像是通过调整光学系统的焦距,实现图像的清晰成像。

3.3 成像畸变成像畸变分为球差、像散和畸变等,是光学系统中重要的误差之一。

3.4 特殊成像包括全息成像、立体成像等,是现代光学研究的热点。

四、光的折射4.1 折射定律光从一种介质传播到另一种介质时,会改变速度和方向。

光学必学知识点总结

光学必学知识点总结

光学必学知识点总结导言光学是研究光的传播、反射、折射、干涉、衍射和色散等规律的科学。

它是物理学的一个重要分支,也是一门应用广泛的学科,涉及到光学仪器、光学应用、光学材料等多个领域。

光学的发展对人类的生产生活以及科学研究起到了至关重要的作用。

本文将重点总结光学的一些必学知识点,包括光的性质、光的传播、光的反射和折射、光的干涉与衍射、光学仪器以及光学应用等内容。

一、光的性质1. 光的波动性和粒子性光既具有波动性,又具有粒子性。

根据光线和波动理论,光的波动性可以解释光的干涉、衍射等现象;而根据光子理论,光的粒子性可以解释光的能量传播和光的光电效应现象。

2. 光的频率和波长光是一种电磁波,其波长和频率是其两个最基本的特征。

波长决定了光的颜色,频率决定了光的能量。

不同波长的光对应了不同的可见光谱,而不同频率的光对应了不同的光子能量。

3. 光的速度光在真空中的速度为299792458米/秒,通常简写为c。

光在介质中的速度会随着介质的折射率而变化。

根据折射定律,光在不同介质中传播时会发生折射。

二、光的传播1. 光的直线传播在一定范围内,光线可以近似地看作直线传播。

这是光学成像的基础,也是光的反射和折射规律的基础。

2. 光的散射光在遇到粒子或不均匀介质时会发生散射。

散射是导致天空呈现蓝色的主要原因之一,也是光学成像中的一种干扰。

3. 光的色散色散是指光在通过不同介质或经过光学仪器时,由于介质折射率与频率的不同,导致不同波长的光被分散开来,形成光谱。

4. 光的吸收与透射介质对于光的能量有吸收和透射两种行为。

光在经过物质时,一部分能量会被物质吸收,一部分会被物质透射,这是理解光与物质相互作用的重要基础。

三、光的反射和折射1. 光的反射规律光线在与平面镜、曲面镜等物体接触时,会发生反射。

根据反射定律,入射角等于反射角。

这是镜子成像的基础。

2. 光的折射规律光在穿过介质表面时,会发生折射。

入射光线与法线的夹角和折射光线与法线的夹角之比等于介质的折射率。

光学知识点总结

光学知识点总结

光学知识点总结光学是研究光的传播、反射、折射、干涉和衍射等现象的科学。

它是物理学的一个重要分支,也是应用广泛的一门学科。

下面将从光的传播、反射、折射、干涉和衍射等方面,对光学知识进行总结。

一、光的传播光是一种电磁波,它的传播速度在真空中是恒定的,约为每秒3×10^8米。

光的传播是沿直线路径进行的,这是光的直线传播特性。

当光遇到介质边界时,会发生反射和折射现象。

二、光的反射光在与介质界面相遇时,根据入射角和介质的折射率,会发生反射。

根据反射定律,入射角等于反射角,光线的入射角和反射角分别与法线的夹角相等。

光的反射现象在我们日常生活中很常见,如镜子的反射和光的漫反射等。

三、光的折射光在从一种介质进入另一种介质时,由于介质的折射率不同,会发生折射现象。

根据斯涅尔定律,折射定律可以表达为n1sinθ1=n2sinθ2,其中n1和n2分别是两种介质的折射率,θ1和θ2分别是入射角和折射角。

光的折射现象在透明介质中非常常见,如光在水中的折射。

四、光的干涉光的干涉是指两束或多束光波相互叠加产生的干涉现象。

根据干涉的相干性,干涉可以分为相干干涉和非相干干涉。

相干干涉是指两束或多束光波在相位相同或相差恒定的情况下叠加产生干涉现象,如杨氏双缝干涉。

非相干干涉是指两束或多束光波在相位相差不恒定的情况下叠加产生干涉现象,如牛顿环干涉。

五、光的衍射光的衍射是指光通过一个缝隙或物体的边缘时,产生的波的弯曲现象。

根据衍射的程度,衍射可以分为强衍射和弱衍射。

强衍射是指波的弯曲程度较大,如单缝衍射和双缝衍射。

弱衍射是指波的弯曲程度较小,如物体的边缘衍射。

光学作为一门重要的科学,广泛应用于光学仪器、光通信、光计算、光储存等领域。

通过研究光的传播、反射、折射、干涉和衍射等现象,我们可以更好地理解光的性质和行为,从而推动光学的发展和应用。

同时,光学的研究也为我们揭示了光与物质相互作用的机制,帮助我们更好地认识和探索自然界的奥秘。

光学的有关知识点总结

光学的有关知识点总结

光学的有关知识点总结一、光的基本特性光的本质是电磁波,它具有一系列独特的特性:1. 光速恒定:光在真空中的速度是光速,等于30万公里/秒,但在介质中的速度会有所改变。

2. 光的波粒二象性:光既有波动性,也有粒子性,表现为波粒二象性。

3. 光的波长和频率:波长和频率是光的两个基本参数,波长越短,频率越高,能量越大。

4. 光的直线传播:在均匀介质中,光沿直线传播。

5. 光的反射和折射:光与介质交界面产生反射和折射现象。

6. 光的干涉和衍射:光具有干涉和衍射现象,这是光波动性的表现。

二、光学基本原理1. 光的传播:光在真空中是直线传播,但在介质中会产生折射和散射现象。

2. 光的反射和折射:当光射入介质时,会发生反射和折射。

反射是光线与物体表面相交后发生的现象,而折射是光线从一种介质到另一种介质时产生的弯曲现象。

3. 光的焦点和成像:透镜和凸面镜具有成像功能,能够将光线聚焦到一个点上,这个点称为焦点。

通过透镜和凸面镜,可以实现光学成像。

4. 光的干涉和衍射:当两束光线交叠在一起时,会产生干涉现象;当光波通过障碍物后发生偏折时,会产生衍射现象。

三、光学器件1. 透镜:透镜是一种具有成像功能的光学器件,它可以将光线聚焦或发散。

透镜有凸透镜和凹透镜之分,可以用来成像、矫正视力等。

2. 凸面镜:凸面镜也是一种具有成像功能的光学器件,它可以将光线聚焦到一点上,通常用于放大物体、制作望远镜等。

3. 光栅:光栅是一种具有干涉功能的光学器件,它通过光的干涉现象来分离光谱,常用于光谱分析、激光器、光通信等领域。

4. 红外和紫外光学器件:红外和紫外光学器件广泛应用于红外和紫外光学系统中,包括红外夜视仪、红外热像仪、紫外消毒灯等。

5. 其他光学器件:还有偏振片、棱镜等光学器件,它们在光学领域有着重要的应用。

四、光学仪器1. 显微镜:显微镜是一种用来观察微小物体的仪器,它可以放大物体的微小结构,并通过眼镜或相机进行观察和研究。

光学常识知识点总结

光学常识知识点总结

光学常识知识点总结光学是研究光的传播、反射、折射、干涉、衍射、偏振等规律的一门学科。

在我们日常生活和工作中,光学知识有着重要的应用价值。

本文将对光学的常识知识点进行总结,希望能够帮助大家更好地了解光学知识。

一、光的传播光是一种电磁波,其传播速度在真空中为299,792,458米/秒,通常用c来表示。

光在介质中的传播速度会受到介质折射率的影响,一般来说,介质的折射率越大,光在其中的传播速度就越慢。

光的传播遵循直线传播的规律,光在传播过程中会遇到反射、折射、干涉、衍射等现象。

在真空中光的传播为直线传播,而在介质中由于光的速度发生了变化,光线会出现折射现象。

二、反射和折射反射是指光线遇到界面时,根据折射定律,角度相等但方向相反的现象。

折射定律可以用来计算光线在不同介质中传播时的角度,根据折射定律可以得出光线的折射角与入射角的关系为n1sinθ1=n2sinθ2,其中n1和n2分别为两个介质的折射率,θ1和θ2分别为入射角和折射角。

光的反射和折射现象在光学器件的设计和制造中有着重要的应用,例如反光镜、透镜等光学元件的设计都需要考虑光的反射和折射规律。

三、透镜和光学成像透镜是一种能够改变光线传播方向和焦距的光学元件,通过透镜可以实现对光线的聚焦或发散。

透镜一般分为凸透镜和凹透镜,分别用来实现对光线的聚焦和发散。

透镜在光学成像中有着重要的作用,它可以将入射光线聚焦成像,实现对物体的放大或缩小。

透镜的成像原理可以用光线追迹法来描述,通常可以通过透镜的主焦距和物距来计算成像的位置和大小。

四、干涉和衍射干涉是指两组或多组相干光波相互叠加形成的明暗条纹现象。

干涉现象是由于光的波动性质,当两组相干光波叠加时会出现明暗条纹的现象。

干涉现象在干涉仪、薄膜、厚膜等光学器件的设计和制造中有着重要的应用。

衍射是指光波通过小孔或经过边缘时出现的偏离和扩散现象。

衍射现象是由于光的波动性质,当光波通过小孔或经过边缘时会发生衍射现象。

光学知识点

光学知识点

λ R R= =πk δλ 1 R
Dθ =
δiK k = δλ 2 nh sin i K
9.干涉问题的求解内容
(1) 求某波前上的光强分布两种方法 复振幅法和矢量图解法。 (2)求干涉条纹特征(形状、取向、间距、条纹数、位置、 反衬度、空间周期、空间频率及条纹移动情况)由极值方程确 定。
I ( P ) = I Max , 或
因此,对双光束干涉来说,求解δ(P)或ΔL(P)是关键。
(2)多光束干涉 a 光强求法:二种 复数求和法与矢量图解法
% = A eii Ui i
b 求干涉条纹特征方法:
% % U = ∑U i
i =1
N
% % I = U *U
先求出I=I(p),再取I(p)= I
Maxor
Imin
dI ( p) =0 或 dp
几何光学
一、几何光学三定律: 几何光学三定律: (1)光的直线传播(均匀媒质) )光的直线传播(均匀媒质)
(2)光的反射定律( i = i ' ) )光的反射定律( (3)光的折射定律( n1 sin i1 = n 2 sin i2) )光的折射定律( a. 全反射、临界角 ( 光密媒质 n1→ 光疏媒质 2 ) 全反射、 光疏媒质n
dI = 0 dP
(1)双光束干涉:
在傍轴条件下,光强的分布满足:
I = I 1 + I 2 + 2 I 1 I 2 cos δ
2 = I 0 (1 + γ cos δ ) 其中 I 0 = A12 + A2 r r r δ = 2 1 = k2 r2 k1 r1 +02 01 = k0 L +0
8. 多光束干涉
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4、惠更斯--菲涅耳原理及菲涅耳衍射积分公式 5、菲涅耳—基尔霍夫积分公式 6、巴俾涅原理:
7、衍射的分类:
菲涅耳衍射:光源和接收屏幕(或两者之一)距离衍射屏有限远 夫琅和费衍射:光源和接收屏都距离衍射屏无穷远
8、衍射与干涉的区别:
干涉——当仪器将某光波分割为有限几束或彼此离散的无限多束, 而其中每束又可近似地按几何光学的规律来描述的相干
m ) 2 ) sin(
2
c. 光的可逆性原理
二、费马原理:
a. 内容:
L
L n l,

P
b.光程:(物理意义)
Q ( L)
n dl
或L
n dl
c. 应用费马原理的解题步骤: (1)求任意光线光程的表达式(或求出某两条光线光程的表达 式) (2)求任意光线对某一变量的微分=0 (或写出某两条光线光 程 相等的等式) (3)近似处理 (4)得出结果
干涉条纹形状方程,即可讨论其特征
光的衍射

•1、衍射定义:当波遇到障碍物时偏离直线传播的现象。
•2、光孔的线度与衍射效应的关系:
~ 103 以上, 衍射效应不明显, 3 ~ 10 10, 衍射效应明显, ~ , 向散射过渡。
•3、衍射的特点:
(1) 光束在衍射屏上什么方位受到限制,接收屏上的 衍射花样就沿该方向扩展。 ( 2) 光孔线度越小,对光束的限制越厉害,衍射图样 越加扩展,即衍射效应越强。
'
y' ns ' V ' y ns
n' n p r
y' s' V y s
3. 符号法则:设入射光从左向右,顶点为A,我们规定
(I) s (II) s’ (III) r (IV) u, u’ (V) y, y’
4. 判断物、像的性质:
s>0 实物, s<0 虚物 s’>0 实像,s’<0 虚像 |V|>1 , 放大的;|V|<1 缩小的 V>0 ,正立的; V<0 倒立的
迭加。计算时,干涉矢量图解是折线。
衍射——它是连续次波源的次波相干迭加,这些次波并不服从几 何光学的定律。计算时,其矢量图解是光滑曲线。
9、衍射问题的求解内容及求解方法 ㈠ 求解内容: (1)光强分布。
(2)衍射条纹的特征(形状、取向、间隔、极值位置及条纹移动情况等)
㈡ 求光强分布有四种方法: (1)复数积分法: (2)振幅矢量图解法 (3)半波带法:适用于能整分成若干的完整半波带情形,一般只求衍射 场轴线上任意点的光强: A( P ) A1 A2 A3 A4 ...... ( 1) n 1 An 其中,A1、A2、 ......、An递减,且n 时,An 0; n较小时,A1 A2 ~ A3 (4)巴俾涅原理:U U U a b 0
(1)双光束干涉:
在傍轴条件下,光强的分布满足:
I I1 I 2 2 I1 I 2 cos
A1 A2 2 A1 A2 cos
I 0 (1 cos )
2 其中 I 0 A12 Ak1 r1 02 01 k0 L 0
光学复习
一、几何光学三定律:
(1)光的直线传播(均匀媒质)
(2)光的反射定律( i i ' ) (3)光的折射定律( n1 sin i1 n2 sin i2) a. 全反射、临界角 ( 光密媒质 n1 光疏媒质n2 )
ic sin 1 (n2 n1 )
b. 三棱镜(色散)
n sin(
D
13、两种衍射研究的主要内容: ㈠ 菲涅耳衍射:主要研究衍射场中心点的强弱。 如:菲涅耳圆孔、圆屏、直边衍射、波带片 (1)圆孔衍射:
D
i K k 2nh sin i K
9.干涉问题的求解内容
(1) 求某波前上的光强分布两种方法 复振幅法和矢量图解法。 (2)求干涉条纹特征(形状、取向、间距、条纹数、位置、 反衬度、空间周期、空间频率及条纹移动情况)由极值方程确 定。
I ( P) I Max , 或
dI 0 dP
因此,对双光束干涉来说,求解δ (P)或Δ L(P)是关键。
(2)多光束干涉 a 光强求法:二种 复数求和法与矢量图解法
Ui Ae i
ii
U U i
i 1
N
I U U
*
b 求干涉条纹特征方法:
先求出I=I(p),再取I(p)= I
Maxor
Imin
dI ( p ) 0 或 dp
确定
6. 等倾条纹特点
1) 光源是扩展光源发出的漫散射光 2) 干涉条纹会聚于无穷远或透镜焦平面上 3) 产生等倾条纹的薄膜厚度均匀 4) ΔL=2hcosi(±λ/2)=kλ,干涉条纹为同心圆环,且 中心干涉级次k高,边缘低 5) 圆形条纹半径: rk f tan ik 6) 间距: r k
10、波带片与透镜的区别: 波带片有如透镜作用,可以对轴上物点成像,但它不是透镜,与 透镜相比有很多区别。 (1)波带片有多个实虚焦点,故具有多个正负透镜作用。 (2)f 1/λ ,成像色差很大。 (3) 物像点各光线不是等光程的。 优点:面积大,重量轻,可折叠等优点,可用于非可见光成像。 11、瑞利判据 12、望远镜的最小分辨角: 1.22
i j
非相干: I
I
i
i
4. 典型分波前干涉装置 1)杨氏双缝干涉 2)菲涅耳双面镜和菲涅耳双棱镜 3)洛埃镜
在杨氏干涉装置中条纹的位移量δx与点源的位移量 δ s的关系:
D x s R
在杨氏实验中光源在X方向上的宽度b对于干涉条纹反衬度的影响 若是两个点光源,则有: 若是线光源,则有:
8. 多光束干涉
(1)多光束干涉主要特征
(2)干涉条纹的半值宽度
(3)第k级亮纹的半角宽度

2(1 R ) R
i K

2nh sin i
1 R R
(4)纵模定义、间隔及线宽
c 2nh
(5)干涉仪的色分辨本领和色散本领

1 R k R
R R k 1 R
b R
2d
b R
d
5. 等厚条纹的特点
1) 单色点光源照明,入射光处处与薄膜表面垂直 2) 条纹定域在薄膜表面附近(只研究薄膜表面上 的条纹) 3) 产生等厚条纹的薄膜厚度不等 4) 干涉条纹沿等厚线分布 ΔL=2nh(±λ/2)=mλ,
相邻条纹厚度差 Δh=λ/2n
楔形薄膜等厚条纹
四、 1.物像距公式,焦距公式,横向放大率公式
xx ' ff ' f f 1 s s 1 1 1 s s' f
f f 1 nL 1 1 ( 1)( ) n0 r1 r2
牛顿形式
(s x f , s ' x ' f ') (n n ') ( f f ')
5. 视场光阑对其后方光具组成像即为出射窗,由出射光瞳中
心向出射窗边缘引直线,与主光轴夹角即为出射视场角。
波动光学
定态光波:
表达式: U ( P, t ) A( P ) cos[t ( P )] 复数表达式 U ( P ) A( P )e i [t ( P )] i ( P ) 复振幅表示 U ( P ) A ( P ) e
高斯形式
, (n n' n0 ) ,
y' ns fs f x V y ns f s x f
2. 符号法则 (s, s’,f,f’,y,y’,u,u’,x,x’)
3.密接薄透镜组及其焦距,光焦度( n n' )
1 1 1 1 ... f f1 f 2 fn PP 1 P 2 ... P n (P 1 ) f
L n(r2 r1 ) 其中,
条纹情况( 0 0 ):
当 2m , 或L m ,(m 0, 1, 2,
)
时, I I max ,亮条纹;
当 (2m 1) , 或L (m 1 ) , (m 0, 1, 2, ) 时, I I min ,暗条纹。 2 干涉条纹形状方程为: I ( ) I (常数) ,或 2m , 或 L m 时,P点的轨迹。从而,确定干涉条纹的其它特征。
1) 条纹形状:平行于交棱的等间距直线条纹
2) 条纹间距:ΔX=λ /2α 3) 条纹移动情况: α 角的变化或h的变化引 起条纹的变化 4) 判断交棱位置的方法:
轻压一端,通过条纹疏密的变化判断。
牛顿圈:
1) 形状:同心圆环
2) 圆形暗纹半径rk与曲率半径 R关系 :
rk kR
r 2 r 2 R m

2h sin ik
条纹中部疏,边缘密
7) 薄膜变厚时,中心吐条纹,条纹向外扩展,条纹间隔变小, 反之,中心吞条纹,条纹向内收缩, 条纹间隔变大。薄膜厚度 每改变半个波长时,中心吞(或吐)一个条纹。
7. 空间相干性和时间相干性的区别
空间相干性
(1) 定义 给定宽度为b的面光源,在它照明空间中在波前上多大
六、确定孔径光阑和视场光阑的方法
1.将所有光阑逐个地对其前方光具组成像.
2.由轴上物点向每个像边缘引直线,与主光轴夹角最小的那 个像为入射光瞳,其夹角为入射孔径角,与之对应的实际光阑即为
孔径光阑。
3 .将孔径光阑对其后方光具组成像,即为出射光瞳,由像点 向出射光瞳边缘引直线,与主光轴夹角即为出射孔径角. 4. 从入射光瞳中心向所有光阑在前方光具组的像的边缘连线, 与光轴夹角最小者称为入射窗,其夹角为入射视场角,与之对应的 实际光阑即为视场光阑。
相关文档
最新文档