北京四中高中数学高考综合复习专题二十六立体几何平行与垂直

北京四中高中数学高考综合复习专题二十六立体几何平行与垂直
北京四中高中数学高考综合复习专题二十六立体几何平行与垂直

高中数学高考综合复习专题二十六立体几何——平行与垂直

二、高考考点

1、空间直线,空间直线与平面,空间两个平面的平行与垂直的判定或性质.其中,线面垂直是历年高考试题涉及的内容.

2、上述平行与垂直的理论在以多面体为载体的几何问题中的应用;求角;求距离等.其中,三垂线定理及其逆定理的应用尤为重要.

3、解答题循着先证明后计算的原则,融推理于计算之中,主要考察学生综合运用知识的能力,其中,突出考察模型法等数学方法,注重考察转化与化归思想;立体问题平面化;几何问题代数化.

三、知识要点

(一)空间直线

1、空间两条直线的位置关系

(1)相交直线——有且仅有一个公共点;

(2)平行直线——在同一个平面内,没有公共点;

(3)异面直线——不同在任何一个平面内,没有公共点.

2、平行直线

(1)公理4(平行直线的传递性):平行于同一条直线的两条直线互相平行.

符号表示:设a,b,c为直线,

(2)空间等角定理

如果一个角的两边和另一个角的两边分别平行且方向相同,那么这两个角相等.

推论:如果两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等.

3、异面直线

(1)定义:不同在任何一个平面内的两条直线叫做异面直线.

(2)有关概念:

(ⅰ)设直线a,b为异面直线,经过空间任意一点O作直线a',b',并使a'//a,b'//b,则把a'和b'所成的锐角(或直角)叫做异面直线a和b所成的角.

特例:如果两条异面直线所成角是直角,则说这两条异面直线互相垂直.

认知:设为异面直线a,b所成的角,则.

(ⅱ)和两条异面直线都垂直相交的直线(存在且唯一),叫做两条异面直线的公垂线.

(ⅲ)两条异面直线的公垂线在这两条异面直线间的线段(公垂线段)的长度,叫做两条异面直线的距离.

(二)空间直线与平面

直线与平面的位置关系:

(1)直线在平面内——直线与平面有无数个公共点;

(2)直线和平面相交——直线与平面有且仅有一个公共点;

(3)直线和平面平行——直线与平面没有公共点.

其中,直线和平面相交或直线和平面平行统称为直线在平面外.

1、直线与平面平行

(1)定义:如果一条直线和一个平面没有公共点,则说这条直线和这个平面平行,此为证明直线与平面平行的原始依据.

(2)判定

判定定理:如果平面外的一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.

认知:应用此定理证题的三个环节:指出.

(3)性质

性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.

2、直线与平面垂直

(1)定义:如果直线l和平面内的任何一条直线都垂直,则说直线l和平面互相垂直,记作l⊥.

(2)判定:

判定定理1:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.

判定定理2:如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面.

符号表示:.

(3)性质

性质定理:如果两条直线垂直于同一个平面,那么这两条直线平行.

符号表示:

(4)概念

(ⅰ)点到平面的距离:从平面外一点引这个平面的垂线,则这个点和垂足间的距离叫做这个点到这个平面的距离.

(ⅱ)直线和平面的距离:当一条直线和一个平面平行时,这条直线上任意一点到这个平面的距离,叫做这条直线和这个平面的距离.

(三)空间两个平面

1、两个平面的位置关系

(1)定义:如果两个平面没有公共点,则说这两个平面互相平行.

(2)两个平面的位置关系

(ⅰ)两个平面平行——没有公共点;

(ⅱ)两个平面相交——有一条公共直线.

2、两个平面平行

(1)判定

判定定理1:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.

判定定理2:(线面垂直性质定理):垂直于同一条直线的两个平面平行.

(2)性质

性质定理1:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.

性质定理2(定义的推论):如果两个平面平行,那么其中一个平面内的所有直线都平行于另一个平面.

3、有关概念

(1)和两个平行平面同时垂直的直线,叫做两个平行平面的公垂线,它夹在这两个平行平面间的部分,叫做这两个平行平面的公垂线段.

(2)两个平行平面的公垂线段都相等.

(3)公垂线段的长度叫做两个平行平面间的距离.

4、认知:

两平面平行的判定定理的特征:线面平行面面平行,或线线平行面面平行;

两平面平行的性质定理的特征:面面平行线面平行,或面面平行线线平行.

它们恰是平行范畴中同一事物的相互依存和相互贯通的正反两个方面.

四、经典例题

例1、在正方体中,E、F、G、H分别为棱BC、、、的中点,求证:

(1);

(2)

分析:直面线面平行或面面平行的证明,一般是运用相应的判定定理.为此,需要在有关平面内寻找相关直线的平行线.寻找平行线的平面几何方法主要有:

(ⅰ)构造平行四边形;

(ⅱ)构造三角形中位线或三角形中的成比例线段;

(ⅲ)构造梯形

注意到已知某些棱的中点,想到找取相关线段的中点,配合原来线段的中点构造上述平面图形.

对于(1)适合条件的三角形难以构造,故首选构造平行四边形;

对于(2),则由不同图形的构造引出不同的证法.

证明:

(1)连接,并设,则分别为两底面的中心. 取OB中点为M,

则由EM为△BOC的中位线得①

注意到为正方形

∴四边形为矩形

∴③

∴由①②③得

∴四边形为平行四边形

(2)证明(构造平行四边形):取中点为N,连接,

则由为平行四边形,

∴④

又连结知

四边形为平行四边形

∴⑤

∴由④⑤得

注意到

∴⑥

同理可得⑦

于是由⑥⑦得。

例2、已知平面

分析:已知直线与平面平行,必然要利用线面平行的性质或定义,一般是利用线面平行性质定理.为此,已知直线,需要经过直线n作平面,进而推出n//a.本题证明由此展开.

证明:

在平面

(线面平行性质定理)①

∴(线面平行判定定理)

又平面

(线面平行性质定理)③

于是由①③得n//m(公理4)

点评:立体几何的作图,必须是出手有理有据,已知直线,除极个别情形外,一般要利用线面平行性质定理,因此,需要经过直线a作平面进而推出a//b,切不可直接在内作b//a,为大家提供“零分证法”的反例.

例3、在正三棱柱中,E是AC中点,

(1)求证:;

(2)求证:;

(3)若.

分析:注意到正三棱柱的特性

(1)利用上述特性构造三角形,构造平行四边形或构造面面平行,不同的构造产生出不同的证法;

(2)注意到正三棱柱的侧面与底面垂直,又这里BE⊥AC,问题易证.

(3)注意到,的垂线易作,故考虑运用三垂线定理构造二面角的平面角.

解:

(1)证法一(构造三角形中位线):

连结B1C,设的对角线交点.

又连结EM,则EM为的中位线,

.

证法二(构造平行四边形):

在平面内延长并与的延长线交于点G,连结BG,则GA=

∴四边形GAB1B为平行四边形

∴AB1//GB

证法三(构造平行平面)取A1C1中点为E1,连结B1E1,,AE1.

∵四边形为矩形

∴为平行四边形

∴EC1//AE1

∴①

∵△ABC为正三角形,E为AC中点,

又正三棱柱底面ABC⊥侧面

∴BE⊥平面

同理要证,

∴②

于是由①②得,③

注意到

(2)从略.

(3)在平面内作

∴FN是CN在上的射影,

∴(三垂线定理)

点评:对于(1),三种证法各有千秋.证法一中连结CB1,设出后,△ACB1的中位线便呼之欲出

的联系;证法三则审时度势,主动“升格”,先证相关的两平面平行,而后利用面面平行定义的推论推出.这里的三种证法为证明线面平行的主要策略.

例4、已知矩形ABCD,过A作SA⊥平面AC,再过A作AE⊥SB交SB于E,过E作EF⊥SC交SC于F.

(1)求证:AF⊥SC;

(2)若平面AEF交SD于G,求证:AG⊥SD.

分析:

(1)注意到AF与SC在同一个平面内,证明AF⊥SC首选三垂线定理逆定理.为此,从已知的线面垂直切入,从寻找它们所在平面SAC的垂线突破.

(2)仿(1),从寻找平面SAD的垂线切入或突破.

证明:

(1)

∵四边形ABCD为矩形

∴BC⊥AB

∵SA⊥平面ABCD,AB为SB在平面AC上的射影

∴BC⊥SB

∴BC⊥平面SAB

∴BC⊥AE

即AE⊥BC

又AE⊥SB

∴AE⊥平面SBC

∴EF是AF在平面SBC上的射影

∴由SC⊥EF得SC⊥AF,即AF⊥SC

(2)由(1)知SC⊥平面AEF,又AG平面AEF

∴SC⊥AG,即AG⊥SC①

由题设得CD⊥AD,CD⊥SA

∴CD⊥平面SAD

∴CD⊥AG,即AG⊥CD②

于是由①②得AG⊥平面SCD

∴AG⊥SD

点评:立体几何中垂直问题的证明,通常是从线线垂直切入,向线面垂直或面面垂直延伸.

(1)的证明两用三垂线定理或其逆定理,

(2)的证明则运用了线面垂直的定义与判定定理,它们共同展示了证明垂直问题的基本策略.

例5、已知P是△ABC所在平面外一点,且PA⊥平面ABC,若O、Q分别是△ABC和△PBC的垂心,求证:OQ⊥平面PBC.

分析:循着证明线面垂直问题的基本思路,从已知的线面垂直切入,去构造有关直线的垂面.

∵O为△ABC的垂心

∴BC⊥AD

∵PA⊥平面ABC

∴PA⊥BC

又∵AD∩PA=A

∴BC⊥平面PAD

∴BC⊥PD

又∵Q为△PBC的垂心,

∴Q∈PD,又O∈AD

∴OQ平面PAD

∴OQ⊥BC①

再连结BO并延长交AC于H,连结BQ并延长交PC于R,

则AC⊥BH,PC⊥BR.连结HR.

∵PA⊥平面ABC

∴平面PAC⊥平面ABC

且平面PAC∩平面ABC=AC

∴由BH⊥AC得BH⊥平面PAC

∴BH⊥PC即PC⊥BH

注意到PC⊥BR

∴PC⊥平面BHR

而OQ平面BHR

∴PC⊥OQ②

于是由①②得OQ⊥平面PBC

点评:证明过程的前部,以BC的垂直关系为关系,以推出BC⊥OQ为第一目标;证明过程的中部,以BH的垂直关系为主线,推出BH⊥PC后利用垂直关系的相互性转移;证明过程的后部,则以PC的垂直关系为主线,以推出PC⊥OQ宣告结束.证明线面之间的垂直关系或平行关系,要注意在各个阶段以某一直线为主线进行推理,以使推理过程清晰、明朗.

例6、在立体图形P-ABC中,已知PA=PB,CB⊥平面PAB,M为PC的中点,N在棱AB上,试问,当点N在棱AB的什么位置上时有MN⊥AB?

分析:对于在限定的垂直关系下确定点或直线的位置问题,一般思路是“先构造后定位”为此,首先需要立足于已知垂面,从已知的线线垂直或线面垂直入手,去寻找有关平面的新的垂线.

解:作PB中点H,连接HM

∵M为PC的中点

∴HM∥BC

∵CB⊥平面PAB

∴MH⊥平面PAB,

在平面PAB内,过点H作HN⊥AB于N,连接MN

则AB⊥MN(三垂线定理)

又取AB中点D,连结PD

∵PA=PB,

∴PD⊥AB

∴HN//PD

点评:欲确定垂直于棱AB的线段MN,首先从已知条件入手,导出经过点M的平面PAB(或ABC)的垂线,于是这一平面内垂直于AB的直线易作,解题的局面由此打开.寻找有关平面的垂线,也成为证明或求解垂直问题的突破口.

五、高考真题

(一)选择题

1、(2005浙江卷)设为两个不同的平面,l,m为两条不同的直线,且,有如下的两个命题:

①若;②若

那么()

A、①是真命题,②是假命题;

B、①是假命题,②是真命题;

C、①②都是真命题;

D、①②都是假命题.

分析:这里.

对于①,若,则l,m可能平行,也可能异面;

对于②,若则可能垂直,也可能不垂直.

故应选D.

2、(2005辽宁卷)已知m,n是两条不重合的直线,是三个两两不重合的平面,给出下列四个命题:

④若m,n是异面直线,

其中真命题是()

A、①和②

B、①和③

C、③和④

D、①和④

分析:

由面面平行判定定理知①为真命题;

注意到垂直于同一个平面的两个平面不一定平行,②为假命题;

③显然为假命题;

④由于m,n为异面直线,故可在内确立两条相交直线与平行,因而为真命题.

故应选D.

3、(2005天津卷)设为平面,m,n,l为直线,则m⊥的一个充分条件是()

分析:

对于选项A,由于这里的直线m不一定在内,故不一定有m⊥;

对于选项B,它与m⊥构成的命题是:若两个平面都和第三个平面垂直,则其中一个平面与第三个平面的交线垂直于另一个平面,此命题为假;

对于选项C,它与m⊥构成的命题是:若两个平面都和第三个平面垂直,且直线m垂直于其中一个平面,则m 也垂直于另一个平面,此命题亦为假命题;

排除法可知应选D.选项D与m⊥构成的命题是:若直线m与两个平行平面中的一个平面垂直,那么它和另一个平面也垂直,这显然为真命题.

4、(2005重庆卷)对于不重合的两个平面,给定下列条件:

①存在平面,使得都垂直于;

②存在平面,使得都平行于;

③内有不共线三点到的距离相等;

④存在异面直线l,m,使得;

其中可以判定平行的条件有()

A、1个

B、2个

C、3个

D、4个

分析:

对于①,垂直于同一平面的两个平面可能相交;

对于②,由面面平行的传递性可以判定;

对于③,当相交时,内仍可存在不共线三点到的距离等等;

对于④,在m上取定点P,经过点P在l与点P确定的平面内作l'//l,则l'与m可确定平面.由于

于是可知,本题应选B.

(二)填空题

1、(2005山东卷)已知m,n是不同的直线,是不重合的平面,给出下列命题:

①若

③若

④m,n是两条异面直线,若

上面的命题中,真命题的序号是(写出所有真命题的序号)

分析:

①显然为假命题;

对于②,内的直线m,n不一定相交,故②亦为假命题;

对于③,由题设知∴③为真命题;

对于④,由前面选择题第4题知此为真命题.

因此,答案为③、④.

2、(2005全国卷)在正方体中,过对角线的一个平面交于E,交于F,则

①四边形一定是平行四边形;

②四边形有可能是正方形;

③四边形在底面ABCD的投影一定是正方形;

④平面有可能垂直于平面

以上结论正确的为(写出所有正确结论的编号)

分析:注意到正方体的特性,由面面平行性质定理和,故四边形为平行四边形,①正确;在这里,当时,平行四边形即为矩形,且不可能为正方形,②不正确;③正确;而当平面与底面ABCD(或)重合时有平面,故④正确.于是可知答案为①,③,④.

(三)解答题

1、(2005湖南卷)如图1,已知ABCD是上下底面边长分别为2和6,高为的等腰梯形,将它沿对称轴折成直二面角,如图2.

(1)证明:;

(2)求二面角的大小.

分析:循着解决平面图形折叠问题的基本思路:

(1)认知平面图形中有关线段的长度与联系;

(2)了解折叠前后有关线段的长度或联系的"变"与"不变";

(3)利用"不变"的量与"不变"的关系解题.

在这里,由图1知,.至此(1)易证;

对于(2),由(1)知,,故,于是可利用三垂线定理构造所求二面角的平面角.

解:

(1)证明:由题设知

∴∠AOB是所成的直二面角的平面角,即,

∴OC是AC在平面上的射影①

又由题设得

从而②

∴根据三垂线定理由①②得,.

(2)解:由(1)知,,

设,在平面AOC内过点E作EF⊥AC于F,

连结(三垂线定理)

由题设知,

即所求二面角的大小为.

点评:利用原来平面图形折叠后“不变的量”与线段间不变的垂直或平行关系,推出立体图形中,是证明(1)以及解答(2)的基础与关键.由此可见,这类问题中认知平面图形的重要.

2、(2005广东卷)在四面体P-ABC中,已知PA=BC=6,PC=AB=10,

AC=8,PB=.F是线段PB上一点,,点E在线段

AB上,且EF⊥PB.

(1)证明:PB⊥平面CEF;

(2)求:二面角B-CE-F的大小.

分析:

(1)要证PB⊥平面CEF,只要证PB垂直于CE或CF.这一设想的实现与否,要看对有关三角形的特性的认知与把握.在这里,,故易得BC⊥平面PAC,BC⊥AC等.注意到,,便得PB⊥CF,于是问题获证.

(2)由(1)知CE⊥PB,从而CE⊥平面PAB,CE⊥AB,CE⊥EF,故∠

BEF为所求二面角的平面角.至此,解题的难点得以突破.

解:(1)证明:

∵PA2+AC2=36+64=100=PC2

△PCB是以∠PCB为直角的直角三角形。

故PA⊥平面ABC

故CF⊥PB,又已知EF⊥PB

∴PB⊥平面CEF

(II)由(I)知PB⊥CE,PA⊥平面ABC

∴AB是PB在平面ABC上的射影,

故AB⊥CE

在平面PAB内,过F作FF1垂直AB交AB于F1,则FF1⊥平面ABC,

EF1是EF在平面ABC上的射影,

∴EF⊥EC

故∠FEB是二面角B—CE—F的平面角。

tan∠FEB=cot∠PBA=

二面角B—CE—F的大小为arctan

点评:条件求值或证明中的已知数据经常具有双重作用,一是明确给出可用于计算或推理的量值,二是从中隐含有关各量之间的特殊联系.对于本题,揭露并认知有关线段的垂直关系,乃是解题取胜的关键环节.

3、(2005福建卷)如图,直二面角D-AB-E中,四边形ABCD是边长为2的正方形,

AE=EB,F为CE上的点,且BF⊥平面ACE.

(1)求证:AE⊥平面BCE;

(2)求二面角B-AC-E的大小;

(3)求点D到平面ACE的距离.

分析:

(1)注意到BF⊥平面ACE,故AE⊥BF.又AE⊥CB明显,问题易证.

(2)注意到四边形ABCD为正方形,故想到连结BD交AC于G,若取AC中点为G,连结BG,则AC⊥BG.再连结GF,只要证GF⊥AC,便得出∠BGF为所求二面角的平面角.

(3)注意到平面ACE经过线段BD的中点,故B、D两点到平面ACE的距离相等.据此,在直接画出并求解这一距离有困难时,可转而去求点B到平面ACE的距离,或运用体积法求这一距离.

解法一:

(1)

∵二面角D—AB—E为直二面角,且,平面ABE,

(2)连结BD交AC于G,连结FG,

∵正方形ABCD边长为2,

∴BG⊥AC,BG=,

平面ACE,

由三垂线定理的逆定理得FG⊥AC.

是二面角B—AC—E的平面角.

由(Ⅰ)AE⊥平面BCE,

∴AE⊥EB,

又,

∴在等腰直角三角形AEB中,BE=.

又直角

∴二面角B—AC—E等于

(3)

方法一:

过点E作交AB于点O.,OE=1.

∵二面角D—AB—E为直二面角,

∴EO⊥平面ABCD

设D到平面ACE的距离为h,

∴点D到平面ACE的距离为

方法二:

∵G为BD中点,

∴D到平面ACE的距离等于B到平面ACE的距离.

∵BF⊥平面ACE

∴BF即为点B到平面ACE的距离.

又由(2)知,

∴所求点D到平面ACE的距离为.

解法二:

(1)同解法一.

(2)以线段AB的中点为原点O,OE所在直线为x轴,AB所在直线为y轴,过O点平行于AD的直线为z轴,建立空间直角坐标系O—xyz,如图.

面BCE,BE面BCE,

在的中点,

设平面AEC的一个法向量为,

则即

解得

令得是平面AEC的一个法向量.

又平面BAC的一个法向量为,

∴cos<,>=

∴二面角B—AC—E的大小为

(3)∵AD//z轴,AD=2,

∴,

∴点D到平面ACE的距离

点评:直面点到平面的距离,当垂线段难以作出或者难以求出时,要注意适时转化或变通。这里(3)的解法,便给出了变通与转化的范例.

4、(2005江西卷)如图,在长方体中,,

AB=2,点E在棱AB上移动.

(1)证明:;

(2)当E为AB中点时,求点E到平面的距离;

(3)AE等于何值时,二面角的大小为.

分析:

(1)注意到这里的不管在什么位置,它在侧面的射影总是,要证,只要证,问题易证.

(2)注意到面积易求,想到运用“体积法”.

(3)注意到,故考虑运用三垂线定理构造二面角的平面角.

解法一:

(1)证明:

∵在长方体中,,

∴四边形为正方形

∵,

为在侧面上的射影.

∴(三垂线定理)

即.

(2)设点E到平面的距离为h

由题设知在中,

又∵

由此得

∴所求点E到平面的距离为.

(3)

∴在平面AED内过点D作DH⊥CE于H,连结,DE,则∴为二面角的平面角

2021高考数学立体几何专题

专题09立体几何与空间向量选择填空题历年考题细目表 题型年份考点试题位置 单选题2019 表面积与体积2019年新课标1理科12 单选题2018 几何体的结构特征2018年新课标1理科07 单选题2018 表面积与体积2018年新课标1理科12 单选题2017 三视图与直观图2017年新课标1理科07 单选题2016 三视图与直观图2016年新课标1理科06 单选题2016 空间向量在立体几何中的应 用2016年新课标1理科11 单选题2015 表面积与体积2015年新课标1理科06 单选题2015 三视图与直观图2015年新课标1理科11 单选题2014 三视图与直观图2014年新课标1理科12 单选题2013 表面积与体积2013年新课标1理科06 单选题2013 三视图与直观图2013年新课标1理科08 单选题2012 三视图与直观图2012年新课标1理科07 单选题2012 表面积与体积2012年新课标1理科11 单选题2011 三视图与直观图2011年新课标1理科06 单选题2010 表面积与体积2010年新课标1理科10 填空题2017 表面积与体积2017年新课标1理科16 填空题2011 表面积与体积2011年新课标1理科15 填空题2010 三视图与直观图2010年新课标1理科14 历年高考真题汇编 1.【2019年新课标1理科12】已知三棱锥P﹣ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为() A.8πB.4πC.2πD.π 2.【2018年新课标1理科07】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()

高中数学历年集合高考题汇编(专题)

集合与常用逻辑用语 一、选择题 1.(2010浙江理)(1)设P={x ︱x <4},Q={x ︱2 x <4},则 (A ) p Q ? (B )Q P ? (C )R p Q C ? (D )R Q P C ? 2.(2010陕西文)1.集合A ={x -1≤x ≤2},B ={x x <1},则A ∩B =( ) (A){x x <1} (B ){x -1≤x ≤2} (C) {x -1≤x ≤1} (D) {x -1≤x <1} 3.(2010辽宁文)(1)已知集合{}1,3,5,7,9U =,{}1,5,7A =,则U C A = (A ) {}1,3 (B ) {}3,7,9 (C ) {}3,5,9 (D ) {}3,9 4.(2010辽宁理)1.已知A ,B 均为集合U={1,3,5,7,9}的子集,且A ∩B={3},u eB ∩A={9},则A= (A ){1,3} (B){3,7,9} (C){3,5,9} (D){3,9} 6.(2010江西理)2.若集合 {} A=|1x x x R ≤∈,, {}2B=|y y x x R =∈,,则A B ?=( ) A. {}|11x x -≤≤ B. {}|0x x ≥ C. {}|01x x ≤≤ D. ? 8.(2010浙江文)设2{|1},{|4},P x x Q x x =<=<则P Q =I (A){|12}x x -<< (B){|31}x x -<<- (C){|14}x x < <- (D){|21}x x -< < 9.(2010山东文)已知全集U R =,集合{}240 M x x =-≤,则U C M = A. {}22x x -<< B. {}22x x -≤≤ C . {}22x x x <->或 D. {}22x x x ≤-≥或 11.集合2{03},{9}P x Z x M x Z x =∈≤<=∈≤,则P M I = (A) {1,2} (B) {0,1,2} (C){x|0≤x<3} (D) {x|0≤x ≤3} 12.(7)设集合{}{}A x||x-a|<1,x R ,|15,.A B B x x x R = ∈=<<∈?=?若, 则实数a 的取值范

2020高考数学专题复习----立体几何专题

空间图形的计算与证明 一、近几年高考试卷部分立几试题 1、(全国 8)正六棱柱 ABCDEF -A 1B 1C 1D 1E 1F 1 底面边长为 1, 侧棱长为 2 ,则这个棱柱的侧面对角线 E 1D 与 BC 1 所成的角是 ( ) A 、90° B 、60° C 、45° D 、30° [评注]主要考查正六棱柱的性质,以及异面直线所成角的求法。 2、(全国 18)如图,正方形ABCD 、ABEF 的边长都是 1,而且 平面 ABCD 、ABEF 互相垂直,点 M 在 AC 上移动,点 N 在 BF C 上移动,若 CM=NB=a(0

的底面是边长为a的正方形,PB⊥面ABCD。 (1)若面PAD与面ABCD所成的二面角为60°, 求这个四棱锥的体积; (2)证明无论四棱锥的高怎样变化,面PAD与面 PCD所成的二面角恒大于90°。 [评注]考查线面关系和二面角概念,以及空间想象力和逻辑推理能力。 4、(02全国文22)(一)给出两块面积相同的正三角形纸片,要求用其中一块剪拼成一个正三棱锥模型,使它们的全面积都与原三角形面积相等,请设计一种剪拼法,分别用虚线标示在图(1)(2)中,并作简要说明。 (3) (1)(2) (二)试比较你剪拼的正三棱锥与正三棱柱的体积的大小。(三)如果给出的是一块任意三角形的纸片,如图(3)要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形面积相等,请设计一种剪拼方法,用虚线标出在图3中,并作简要说明。

立体几何(小题)专题 历年高考真题模拟题汇总(解析版)

立体几何 一、年考试大纲 二、新课标全国卷命题分析 三、典型高考试题讲评 2011—年新课标全国(1卷、2卷、3卷)理科数学分类汇编——11.立体几何 一、考试大纲 1.空间几何体 (1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. (2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图. (3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式. (4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). (5)了解球、棱柱、棱锥、台的表面积和体积的计算公式. 2.点、直线、平面之间的位置关系 (1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理. 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内. 公理2:过不在同一条直线上的三点,有且只有一个平面. 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4:平行于同一条直线的两条直线互相平行. 定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补. (2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理. 理解以下判定定理. 如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行. 如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行. 如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直. 如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直. 理解以下性质定理,并能够证明. 如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行. 如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行. 垂直于同一个平面的两条直线平行. 如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直. 3.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题. 4.空间直角坐标系 (1)了解空间直角坐标系,会用空间直角坐标表示点的位置. (2)会推导空间两点间的距离公式. 二、新课标全国卷命题分析 立体几何小题常考的题型包括:(1)球体;(2)多面体的三视图、体积、表面积或角度,包括线线角、

北京四中高考数学总复习 对数与对数函数知识梳理教案

【考纲要求】 1.掌握对数的概念、常用对数、对数式与指数式互化,对数的运算性质、换底公式与自然对数; 2.掌握对数函数的概念、图象和性质. 3.正确使用对数的运算性质;底数a 对图象的影响及对数函数性质的作用. 4.通过对指数函数的概念、图象、性质的学习,培养观察、分析归纳的能力,进一步体会数形结合的思想方法; 【知识网络】 【考点梳理】 考点一、对数概念及其运算 我们在学习过程遇到2x =4的问题时,可凭经验得到x=2的解,而一旦出现2x =3时,我们就 无法用已学过的知识来解决,从而引入出一种新的运算——对数运算. (一)对数概念: 1.如果()01b a N a a =>≠,且,那么数 b 叫做以a 为底N 的对数, 记作:log a N=b.其中a 叫做对数的底数,N 叫做真数. 2.对数恒等式:log log a b N a a N a N N b ?=?=?=? 3.对数()log 0a N a >≠,且a 1具有下列性质: (1)0和负数没有对数,即0N >; (2)1的对数为0,即log 10a =; (3)底的对数等于1,即log 1a a =. (二)常用对数与自然对数 通常将以10为底的对数叫做常用对数,N N lg log 10简记作. 对数与对数函数 图象与性质 对数运算性 质 对数函数的图 像 与 对 数 的 概 念 指对互化 运 算

以e 为底的对数叫做自然对数, log ln e N N 简记作. (三)对数式与指数式的关系 由定义可知:对数就是指数变换而来的,因此对数式与指数式联系密切,且可以互相转化. 它们的关系可由下图表示. 由此可见a ,b ,N 三个字母在不同的式子中名称可能发生变化. (四)积、商、幂的对数 已知()log log 010a a M N a a M N >≠>,且,、 (1)()log log log a a a MN M N =+; 推广:()()12 1212log log log log 0a k a a a k k N N N N N N N N N =+++>、、、 (2)log log log a a a M M N N =-; (3)log log a a M M αα=. (五)换底公式 同底对数才能运算,底数不同时可考虑进行换底,在a>0, a ≠1, M>0的前提下有: (1) )(log log R n M M n a a n ∈= 令 log a M=b , 则有a b =M , (a b )n =M n ,即n b n M a =)(, 即n a M b n log =,即:n a a M M n log log =. (2) )1,0(log log log ≠>= c c a M M c c a ,令log a M=b , 则有a b =M , 则有 )1,0(log log ≠>=c c M a c b c 即M a b c c log log =?, 即a M b c c log log =, 即)1,0(log log log ≠>=c c a M M c c a

数学专题 高考数学压轴题18

新青蓝教育高考数学压轴100题1二次函数 2复合函数 3创新性函数 4抽象函数 5导函数(极值,单调区间)--不等式 6函数在实际中的应用 7函数与数列综合 8数列的概念和性质 9 Sn与an的关系 10创新型数列 11数列与不等式 12数列与解析几何 13椭圆 14双曲线 15抛物线 16解析几何中的参数范围问题 17解析几何中的最值问题 18解析几何中的定值问题 19解析几何与向量 20探究性问题

y x l O F P 3 P 2 P 1 A Q y x l O F P 3 P 2 P 1 18 解析几何中的定值问题 1如右图,中心在原点O 的椭圆的右焦点为)0,3(F ,右准线l 的方程为:12=x . (Ⅰ)求椭圆的方程; (Ⅱ)在椭圆上任取三个不同点321、P 、P P ,使133221FP P FP P FP P ∠=∠=∠,证明: ||1 ||1||132 1FP FP FP ++为定值,并求此定值. 分析:本题主要考查椭圆的定义、方程及几何性质、余弦三角函数等基础知识、基本方法和分析问题、灵活解决问题的能力。 数形结合思想方法 解:(Ⅰ)设椭圆方程为122 2 2=+b y a x . 因焦点为)0,3(F ,故半焦距3=c .又右 准线l 的方程为 c a x 2 = ,从而由已知 36,1222 ==a c a , 因此 3327,62 2==-==c a b a . 故所求椭圆方程为1 27362 2=+y x . (Ⅱ)记椭圆的右顶点为A ,并设)3,2,1(==∠i AFP i i α,不失一般性,假设 3201πα< ≤,且34,321312π ααπαα+ =+=. 又设i P 在l 上的射影为i Q ,因椭圆的离心率 21 = = a c e ,

高三立体几何专题复习

高三立体几何专题复习 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高考立体几何专题复习 一.考试要求: (1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图,能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。 (2)了解空两条直线的位置关系,掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念(对于异面直线的距离,只要求会计算已给出公垂线时的距离)。 (3)了解空间直线和平面的位置关系,掌握直线和平面平行的判定定理和性质定理,理解直线和平面垂直的判定定理和性质定理,掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念,了解三垂线定理及其逆定理。 (4)了解平面与平面的位置关系,掌握两个平面平行的判定定理和性质定理。掌握二面角、二面角的平面角、两个平面间的距离的概念,掌握两个平面垂直的判定定理和性质定理。 (5)会用反证法证明简单的问题。 (6)了解多面体的概念,了解凸多面体的概念。 (7)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。 (8)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。 (9)了解正多面体的概念,了解多面体的欧拉公式。 (10)了解球的概念,掌握球的性质,掌握球的表面积、体积公式。 二.复习目标: 1.在掌握直线与平面的位置关系(包括直线与直线、直线与平面、平面与平面间的位置关系)的基础上,研究有关平行和垂直的的判定依据(定义、公理和定理)、判定方法及有关性质的应用;在有关问题的解决过程中,进一步了解和掌握相关公理、定理的内容和功能,并探索立体几何中论证问题的规律;在有关问题的分析与解决的过程中提高逻辑思维能力、空间想象能力及化归和转化的数学思想的应用. 2.在掌握空间角(两条异面直线所成的角,平面的斜线与平面所成的角及二面角)概念的基础上,掌握它们的求法(其基本方法是分别作出这些角,并将它们置于某个三角形内通过计算求出它们的大小);在解决有关空间角的问题的过程中,进一步巩固关于直线和平面的平行垂直的性质与判定的应用,掌握作平行线(面)和垂直线(面)的技能;通过有关空间角的问题的解决,进一步提高学生的空间想象能力、逻辑推理能力及运算能力. 3.通过复习,使学生更好地掌握多面体与旋转体的有关概念、性质,并能够灵活运用到解题过程中.通过教学使学生掌握基本的立体几何解题方法和常用解题技巧,发掘不同问题之间的内在联系,提高解题能力. 4.在学生解答问题的过程中,注意培养他们的语言表述能力和“说话要有根据”的逻辑思维的习惯、提高思维品质.使学生掌握化归思想,特别是将立体几何问题转化为平面几何问题的思想意识和方法,并提高空间想象能力、推理能力和计算能力. 5.使学生更好地理解多面体与旋转体的体积及其计算方法,能够熟练地使用分割与补形求体积,提高空间想象能力、推理能力和计算能力. 三.教学过程: (Ⅰ)基础知识详析 重庆高考立体几何试题一般共有4道(选择、填空题1--2道, 解答题1道), 共计总分20分左右,考查的知识点在20个以内. 选择填空题考核立几中的计算型问题, 而解答题着重考查立

北京四中高考数学总复习 三角函数的图象和性质(基础)知识梳理教案

【考纲要求】 1、会用“五点法”画出正弦函数、余弦函数的简图;熟悉基本三角函数的图象、定义域、值域、奇偶性、单调性及其最值;理解周期函数和最小正周期的意义. 2、理解正弦函数、余弦函数在区间[0,2]π的性质(如单调性、最大和最小值、与x 轴交点等),理解正切函数在区间(,)22 ππ -的单调性. 【知识网络】 【考点梳理】 考点一、“五点法”作图 在确定正弦函数sin y x =在[0,2]π上的图象形状时,最其关键作用的五个点是(0,0), (,1)2π,(,0)π,3(,-1)2 π ,(2,0)π 考点二、三角函数的图象和性质 名称 sin y x = cos y x = tan y x = 定义域 x R ∈ x R ∈ {|,} 2 x x k k Z π π≠+ ∈ 值 域 [1,1]- [1,1]- (,)-∞+∞ 图象 奇偶 奇函数 偶函数 奇函数 应用 三角函数的图象与性质 正弦函数的图象与性质 余弦函数的 图象与性质 正切函数的 图象与性质

要点诠释: ①三角函数性质包括定义域、值域、奇偶性、单调性、周期性、最大值和最小值、对称性等,要结合图象记忆性质,反过来,再利用性质巩固图象.三角函数的性质的讨论仍要遵循定义域优先的原则,研究函数的奇偶性、单调性及周期性都要考虑函数的定义域. ②研究三角函数的图象和性质,应重视从数和形两个角度认识,注意用数形结合的思想方法去分析问题、解决问题. 考点三、周期 一般地,对于函数()f x ,如果存在一个不为0的常数T ,使得当x 取定义域内的每一个值时,都有(+)=()f x T f x ,那么函数()f x 就叫做周期函数,非零常数T 叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期).

高中数学《立体几何》高考专题复习

高三数学专题立体几何复习教案 一、教学目标 1、掌握以三视图为命题载体,熟悉一些典型的几何体模型,如长(正)方体、三棱柱、三棱锥等几何体的三视图,与学生共同研究空间几何体的结构特征(数量关系、位置关系). 2、外接球问题关键是找到球与多面体的联系元素,如球心与截面圆心的关系即“心心相映法”,线面垂直的多面体可补成直棱柱再找外接球球心即“补体法”,进而构建球半径R 、截面圆半径r 、球心到截面距离d 三者之间的勾股定理。 3、在三视图与直观图的互换过程中,培养学生养成构建长方体为“母体”的解题意识,通过寻找外接球球心问题,引导学生更好地理解球与多面体的关系,培养学生的分割与补形的解题意识,特别是将立体几何问题转化为平面几何问题的思想意识和方法,并提高空间想象能力、推理能力、计算能力和动手操作能力,体现化归与转化的基本思想.. 二、学情分析 立体几何是培养学生空间想象力的数学分支,根据学生实际学情,依据考纲依靠课本,在立体几何的复习过程中要想办法让学生建立起完整的知识网络,要突出这门学科的主干,让学生多一点思考,少一点计算。高考立体几何试题一般是两小题一大题, 其中三视图与直观图、多面体与球相关的外接与内切问题是高考命题的热点,要注意重视空间想象,会识图会画图会想图,提高识图、理解图、应用图的能力,解题时应多画、多看、多想,这样才能提高空间想象能力和解决问题的能力,突出转化、化归的基本思想. 三、重点: 三视图与直观图的数量、位置的转化;多面体与球相关的外接与内切问题; 难点:化归思想,特别是将立体几何问题转化为平面几何问题的思想意识和方法; 四、教学方法: 问题引导式 五、教学过程 专题:立体几何 问题1:三视图 1.一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是( ) 2.某几何体的三视图如图所示,则该几何体的体积是 3.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )

2010年高考立体几何专题复习-6

2010年高考立体几何专题复习 岱山中学 孙珊瑚 鲁纪伟 高考立体几何试题一般有选择、填空题, 解答题,考查的知识点在20个以内. 选择填空题考核立几中的计算型问题, 而解答题着重考查立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展.从历年的考题变化看, 以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题. 一、知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力. 2.判定两个平面平行的方法: (1)根据定义——证明两平面没有公共点; (2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。 ⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那 么它们的交线平行”。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 ⑹经过平面外一点只有一个平面和已知平面平行。 以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为“性质定理”,但在解题过程中均可直接作为性质定理引用。 4.空间的角和距离是空间图形中最基本的数量关系,空间的角主要研究射影以及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解决. 空间的角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系进行定量分析的一个重要概 念,由它们的定义,可得其取值范围,如两异面直线所成的角θ∈(0,2π],直线与平面所成的角θ∈0,2π?? ???? , 二面角的大小,可用它们的平面角来度量,其平面角θ∈[0,π]. 对于空间角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的,因此求这些角的过程也是直线、平面的平行与垂直的重要应用.通过空间角的计算和应用进一步培养运算能力、逻辑推理能力及空间想象能力. 如求异面直线所成的角常用平移法(转化为相交直线)与向量法;求直线与平面所成的角常利用射影转化为相交直线所成的角;而求二面角-l -的平面角(记作)通常有以下几种方法: (1) 根据定义; (2) 过棱l 上任一点O 作棱l 的垂面,设∩=OA ,∩=OB ,则∠AOB = ; (3) 利用三垂线定理或逆定理,过一个半平面内一点A ,分别作另一个平面的垂线AB (垂足为B ),或棱l 的垂线AC (垂足为C ),连结AC ,则∠ACB = 或∠ACB =-; (4) 设A 为平面外任一点,AB ⊥,垂足为B ,AC ⊥,垂足为C ,则∠BAC =或∠BAC =-; (5) 利用面积射影定理,设平面内的平面图形F 的面积为S ,F 在平面内的射影图形的面积为S ,则cos =S S ' . 5.空间的距离问题,主要是求空间两点之间、点到直线、点到平面、两条异面直线之间(限于给出公垂线

北京四中数学高考总复习:数列的应用之知识讲解、经典例题及答案

北京四中数学高考总复习:数列的应用之知识讲解、经典例题及答案

北京四中数学高考总复习:数列的应用之知识讲解、经典例题及答案 知识网络: 目标认知 考试大纲要求: 1.等差数列、等比数列公式、性质的综合及实际应用; 2.掌握常见的求数列通项的一般方法; 3.能综合应用等差、等比数列的公式和性质,并能解决简单的实际问题. 4.用数列知识分析解决带有实际意义的或生活、工作中遇到的数学问题. 重点: 1.掌握常见的求数列通项的一般方法; 3.用数列知识解决带有实际意义的或生活、工作中遇到的数学问题 难点:

用数列知识解决带有实际意义的或生活、工作中遇到的数学问题. 知识要点梳理 知识点一:通项与前n项和的关系 任意数列的前n项和; 注意:由前n项和求数列通项时,要分三步进行: (1)求, (2)求出当n≥2时的, (3)如果令n≥2时得出的中的n=1时有 成立,则最后的通项公式可以统一写成一个形式,否则就只能写成分段的形式. 知识点二:常见的由递推关系求数列通项的方法1.迭加累加法: , 则,,…, 2.迭乘累乘法:

, 则,,…, 知识点三:数列应用问题 1.数列应用问题的教学已成为中学数学教学与研究的一个重要内容,解答数学应用问题的核心是建立数学模型,有关平均增长率、利率(复利)以及等值增减等实际问题,需利用数列知识建立数学模型. 2.建立数学模型的一般方法步骤. ①认真审题,准确理解题意,达到如下要求: ⑴明确问题属于哪类应用问题; ⑵弄清题目中的主要已知事项; ⑶明确所求的结论是什么. ②抓住数量关系,联想数学知识和数学方法,恰当引入参数变量或适当建立坐标系,将文字语言翻译成数学语言,将数量关系用数学式子表达. ③将实际问题抽象为数学问题,将已知与所求联系起来,据题意列出满足题意的数学关系式(如

高中数学--历年高考真题精选一(附答案)

高中数学--历年高考真题精选 题号 一 二 三 总分 得分 一 、选择题(本大题共10小题,每小题4分,共40分) 1.若A 为不等式组002x y y x ≤?? ≥??-≤? 表示的平面区域,则当a 从2-变化到1时,动直线x y a +=扫过A 中的那部 分区域的面积为; A . 34 B .1 C .7 4 D .2 2.(2012年高考(天津理))设m ,n R ∈,若直线(1)+(1)2=0m x n y ++-与圆2 2 (1)+(y 1)=1x --相切,则 +m n 的取值范围是( ) A .[13,1+3]- B .(,13][1+3,+)-∞-∞ C .[222,2+22]- D .(,222][2+22,+)-∞-∞ 3.如图,在三棱柱ABC-A 1B 1C 1中,∠ACB=900 ,∠ACC 1=600 ,∠ BCC 1=450 ,侧棱 CC 1的长为1,则该三棱柱的高等于 A.21 B.2 2 C. 2 3 D. 3 3 4.某交高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女 生中任意抽取20人进行调查.这种抽样方法是 (A)简单随机抽样法(B)抽签法 (C)随机数表法 (D)分层抽样法 5.如图,已知六棱锥ABCDEF P -的底面是正六边形, AB PA ABC PA 2,=⊥平面则下列结论正确的是 A. AD PB ⊥ B. PAB 平面PBC 平面⊥ C. 直线BC ∥PAE 平面 D. 直线ABC PD 与平面所成的角为45° 6.5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有( ) (A )150种 (B)180种 (C)200种 (D)280种 7.对于函数f(x),若存在常数0≠a ,使得x 取定义域内的每一个值,都有a-x)f(f(x)2=,则称f(x)为准偶 函数。下列函数中是准偶函数的是 (A )x x f =)((B )2)(x x f =(C )x x f tan )(=(D ))1cos()(+=x x f 8.设a 是实数,且 112 a i i ++ +是实数,则a = A . 12 B .1 C .3 2 D .2 9.设12F F ,分别是椭圆22 221x y a b +=(0a b >>)的左、右焦点,P 是其右准线上纵坐标为3c (c 为半焦 距)的点,且122||||F F F P =,则椭圆的离心率是( ) A . 312- B .1 2 C .512- D .22 10.生产过程有4道工序,每道工序需要安排一人照看,现从甲乙丙等6名工人中安排4人分别照看一道工序, 第一道工序只能从甲乙两工人中安排1人,第四道工序只能从甲丙两工人中安排1人,则不同的安排方案有( ) A.24种 B.36种 C.48种 D.72种 二 、填空题(本大题共8小题,每小题3分,共24分) 11.已知1F 、2F 分别为双曲线C : 22 1927 x y -=的左、右焦点,点A C ∈,点M 的坐标为(2,0),AM 为12F AF ∠的平分线.则2||AF = . 12.计算:∞→n lim 1 6) 1(32++n n n = . 13.设函数()113,1,,1, x e x f x x x -?

高中数学“立体几何初步”教学研究

专题讲座 高中数学“立体几何初步”教学研究 袁京生北京市朝阳区教育研究中心 一、“立体几何初步”教学内容的整体把握 (一)“立体几何初步”内容的背景分析 1.从立体几何发展的历程看立体几何课程 (1)不同学段几何学习的特点 一个学生从小学的数学课中就接触到了空间图形,由于知识和年龄的限制,他们对空间图形的认识方法主要是大量的观察、操作,对空间图形形成一定的感性认识. 在初中,课程安排了简单几何体的概念及体积公式,三视图的基本知识,正方体的截面、展开问题,建立了长方体模型概念,已初步具有平面几何基础知识及推理论证能力, 总体上看,初中学生对空间图形的认识主要是直观感知,操作确认,但平面几何的学习又呈现出思辨论证等理性的特征. 总之,高中以前的学生对空间图形的认识主要是对图形的整体形象的直观感知,操作确认,这种基于直观和操作的认知的优点是简便、直观,不需要更多的知识作基础,但不足也是很明显的,即不能对空间图形及其内部的元素关系进行深入的分析,不能产生对空间图形本质的认识. 当学生进入高中以后,教材对空间图形的有了专门的介绍:立体几何.从历次的立体几何教材看,无论教材怎样变化,高中立体几何的最终目标都是要从学生可接受的理论高度来认识空间图形.除了传统的综合几何外,近几年的高中《大纲》或《课程标准》还引入了空间向量,空间向量进入几何,使几何有了更多代数的味道,因此现行的高中几何不完全是欧式几何. 当我们回顾大学的几何学习时,容易发现,大学的几何学习正是沿着几何代数化的方向展开,无论《空间解析几何》、《高等几何》、《微分几何》等无不是通过代数的手段对几何进行研究,通过代数的形式呈现几何结论. (2)几何研究方法的发展

高考立体几何大题及答案理

1.如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面 ABCD ,2AD =,2DC SD ==,点M 在侧棱SC 上, ∠ABM=60 。 (I )证明:M 是侧棱SC 的中点; ()II 求二面角S AM B --的大小。 2.如图,直三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,D 、E 分别为AA 1、B 1C 的中点,DE ⊥平面BCC 1(Ⅰ)证明:AB =AC (Ⅱ)设二面角A -BD -C 为60°,求B 1C 与平面BCD 所成的角的大小 3.如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠=,,P Q 分别为,AE AB 的中点.(I )证明://PQ 平面ACD ; (II )求 AD 与平面ABE 所成角的正弦值. 4.如图,四棱锥P ABCD -的底面是正方形, PD ABCD ⊥底面,点E 在棱PB 上.(Ⅰ)求证:平面AEC PDB ⊥平面;(Ⅱ)当2PD AB =且E 为PB 的中 点 时,求AE 与平面PDB 所成的角的大小. 5.如图,在四棱锥P ABCD -中,底面ABCD 是矩形, PA ⊥平面ABCD ,4PA AD ==,2AB =.以BD 的中点O 为球心、BD 为直径的球面交PD 于点M . B C D E O A P B M

(1)求证:平面ABM ⊥平面PCD ; (2)求直线PC 与平面ABM 所成的角; (3)求点O 到平面ABM 的距离. 6.如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?==∠=(I )求证:EF BCE ⊥平面; (II )设线段CD 、AE 的中点分别为P 、M ,求证: PM ∥BCE 平面 (III )求二面角F BD A --的大小。 7.如图,四棱锥S -ABCD 的底面是正方形,SD ⊥平面ABCD ,SD =AD =a ,点E 是SD 上的点,且DE =λa (0<λ≦1). (Ⅰ)求证:对任意的λ∈(0、1), 都有AC ⊥BE : (Ⅱ)若二面角C -AE -D 的大小为600C ,求λ的值。 8.如图3,在正三棱柱111ABC A B C -中,AB =4, 17AA =,点D 是BC 的中点,点E 在AC 上,且DE ⊥1A E .(Ⅰ)证明:平面1A DE ⊥平面 11ACC A ;(Ⅱ)求直线AD 和平面1A DE 所成角的正弦值。 9.如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?==∠= (I )求证:EF BCE ⊥平面;

北京四中高考数学总复习 函数的基本性质(提高)知识梳理教案

【考纲要求】 1. 了解函数的定义域、值域,并能简单求解. 2. 理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解函数奇偶性的含义. 3. 会运用函数图象理解和研究函数的性质. 【知识网络】 【考点梳理】 1.单调性 (1)一般地,设函数()f x 的定义域为I 如果对于定义域I 内某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,若都有12()()f x f x <,那么就说函数在区间D 上单调递增,若都有12()()f x f x >,那么就说函数在区间D 上单调递减。 (2)如果函数()y f x =在区间D 上是增函数或减函数,那么就说函数()y f x =在这一区间具有严格的单调性,区间D 叫做()y f x =的单调区间。 (3)判断证明函数单调性的一般方法:单调四法,导数定义复合图像 定义法: 用定义法证明函数的单调性的一般步骤是①设D x x ∈21,,且12x x <;②作差 )()(21x f x f -;③变形(合并同类项、通分、分解因式、配方等)④判断)()(21x f x f -的 正负符号;⑤根据定义下结论。 复合函数分析法 设()y f u =,()u g x =[,]x a b ∈,[,]u m n ∈都是单调函数,则[()]y f g x =在[,]a b 上也是单调函数,其单调性由“同增异减”来确定,即“里外”函数增减性相同,复合函数为增函数,“里外”函数的增减性相反,复合函数为减函数。如下表: 函数的基本性质 奇 偶 性 单 调 性 周 期 性

()u g x = ()y f u = [()]y f g x = 增 增 增 增 减 减 减 增 减 减 减 增 导数证明法: 设()f x 在某个区间(,)a b 内有导数'()f x ,若()f x 在区间(,)a b 内,总有'()0('()0)f x f x ><,则()f x 在区间(,)a b 上为增函数(减函数);反之,若()f x 在区间(,)a b 内为增函数(减函数) ,则'()0('()0)f x f x ≥≤。 图像法: 一般通过已知条件作出函数图像的草图,从而得到函数的单调性。 2、奇偶性 (1)定义: 如果对于函数f(x)的定义域内的任意一个x,都有f(-x)=-f(x),则称f(x)为这一定义域内的奇函数;如果对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),则称f(x)为这一定义域内的偶函数. 理解: (Ⅰ)上述定义要求一对实数x,-x 必须同时都在f(x)的定义域内,注意到实数x,-x 在x 轴上的对应点关于原点对称(或与原点重合),故知f(x)的定义域关于原点对称是f(x)具有奇偶性的必要条件. (Ⅱ)判断函数奇偶性的步骤: ①考察函数定义域; ②考察f(-x)与f(x)的关系; ③根据定义作出判断. (Ⅲ)定义中条件的等价转化 ①f(-x)=-f(x)?f(x)+f(-x)=0;或f(-x)=-f(x) ? ) () (x f x f -=-1 (f(x)≠0) ②f(-x)= f(x) ?f(x)-f(-x)=0;或f(-x)=f(x) ? ) () (x f x f -=1 (f(x)≠0)

职业高中数学高考试题[1]

2011年四川省职教师资班对口 招生数学试题 (满分150分时间120分钟) 一、选择题(每小题4分,共60分.每小题选项中只有一个答案是正确的,请将正确答案的序号填在题后括号内) 1.设集合M={x|x∈R,x>–1},N={x|x∈R,x<3},则M∩N为() A.{x|x∈R,x>–1} B.{x|x∈R,x<3} C.{x|x∈R,–1

D. 5.已知3a =2,3b =5,则3a+b等于() A.10 B.7 C.25 D.32 6.设为任意实数,则sin(+5)等于() A.sin B.cos C.–sin D.–cos 7.设正方形ABCD的边长为2,AP⊥平面AB–CD,且AP=1,则线段PC的长是() A. B.3 C. D.5 8.在平面直角坐标系中,抛物线y2 =4x的焦点坐标是() A.(1,0) B.(2,0) C.(0,1) D.(0,2) 9. 反函数 是 () A. B.

C. D. 10..函数f(x)= 在区间(-2,+∞)上单调递增,则实数a的取值范围是()A.(0, ) B.( ,+∞) C.(-2,+∞) D.(-∞,-1)∪(1,+∞) 12.在(1+ )11 的展开式中,

高三立体几何专题复习解读

高考立体几何专题复习 一.考试要求: (1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图,能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。 (2)了解空两条直线的位置关系,掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念(对于异面直线的距离,只要求会计算已给出公垂线时的距离)。 (3)了解空间直线和平面的位置关系,掌握直线和平面平行的判定定理和性质定理,理解直线和平面垂直的判定定理和性质定理,掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念,了解三垂线定理及其逆定理。 (4)了解平面与平面的位置关系,掌握两个平面平行的判定定理和性质定理。掌握二面角、二面角的平面角、两个平面间的距离的概念,掌握两个平面垂直的判定定理和性质定理。 (5)会用反证法证明简单的问题。 (6)了解多面体的概念,了解凸多面体的概念。 (7)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。 (8)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。 (9)了解正多面体的概念,了解多面体的欧拉公式。 (10)了解球的概念,掌握球的性质,掌握球的表面积、体积公式。 二.复习目标: 1.在掌握直线与平面的位置关系(包括直线与直线、直线与平面、平面与平面间的位置关系)的基础上,研究有关平行和垂直的的判定依据(定义、公理和定理)、判定方法及有关性质的应用;在有关问题的解决过程中,进一步了解和掌握相关公理、定理的内容和功能,并探索立体几何中论证问题的规律;在有关问题的分析与解决的过程中提高逻辑思维能力、空间想象能力及化归和转化的数学思想的应用.2.在掌握空间角(两条异面直线所成的角,平面的斜线与平面所成的角及二面角)概念的基础上,掌握它们的求法(其基本方法是分别作出这些角,并将它们置于某个三角形内通过计算求出它们的大小);在解决有关空间角的问题的过程中,进一步巩固关于直线和平面的平行垂直的性质与判定的应用,掌握作平行线(面)和垂直线(面)的技能;通过有关空间角的问题的解决,进一步提高学生的空间想象能力、逻辑推理能力及运算能力. 3.通过复习,使学生更好地掌握多面体与旋转体的有关概念、性质,并能够灵活运用到解题过程中.通过教学使学生掌握基本的立体几何解题方法和常用解题技巧,发掘不同问题之间的内在联系,提高解题能力. 4.在学生解答问题的过程中,注意培养他们的语言表述能力和“说话要有根据”的逻辑思维的习惯、提高思维品质.使学生掌握化归思想,特别是将立体几何问题转化为平面几何问题的思想意识和方法,并提高空间想象能力、推理能力和计算能力. 5.使学生更好地理解多面体与旋转体的体积及其计算方法,能够熟练地使用分割与补形求体积,提高空间想象能力、推理能力和计算能力. 三.教学过程: (Ⅰ)基础知识详析 重庆高考立体几何试题一般共有4道(选择、填空题1--2道, 解答题1道), 共计总分20分左右,考查的知识点在20个以内. 选择填空题考核立几中的计算型问题, 而解答题着重考查立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展.从历年的考题变化看, 以多面体和旋转体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题. 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力.

相关文档
最新文档