2020届高考数学(理)二轮重点突击专题卷(11)选做题

合集下载

2020届高三数学(理人教版)二轮复习高考大题专攻练:10Word版含解析.doc

2020届高三数学(理人教版)二轮复习高考大题专攻练:10Word版含解析.doc

温馨提示:此套题为 Word 版,请按住Ctr l, 滑动鼠标滚轴,调理合适的观看比率,答案分析附后。

封闭Word 文档返回原板块。

高考大题专攻练10.分析几何 (B 组 )大题集训练,练就慧眼和规范,占据高考取胜点!1. 已知椭圆E:+=1(a>b>0) 的离心率为,其右焦点为F(1 ,0).(1) 求椭圆 E 的方程 .(2) 若 P,Q,M,N四点都在椭圆 E 上,已知与共线,与.共线,且·=0,求四边形PMQN的面积的最小值和最大值【分析】 (1) 由椭圆的离心率公式可知: e= = ,由 c=1,则 a= , b2=a2-c 2=1,故椭圆方程为+y2=1.(2)由条件知 MN和 PQ是椭圆的两条弦,订交于焦点 F(1,0) ,且 PQ⊥MN,设直线 PQ的斜率为 k(k ≠0) ,P(x 1,y1) ,Q(x2,y2) ,则 PQ的方程为 y=k(x-1) ,联立整理得: (1+2k2)x 2-4k 2x+2k2 -2=0 ,x1+x2=,x1x2=,则|PQ|=·,于是 |PQ|=,同理: |MN|==.则 S= |PQ||MN|=,令t=k2+,t≥2,S= |PQ||MN|==2,当 k=±1 时, t=2 ,S=,且S是以t为自变量的增函数,当 k=±1 时,四边形 PMQN的面积取最小值.当直线 PQ的斜率为 0 或不存在时,四边形PMQN的面积为 2.综上:四边形 PMQN的面积的最小值和最大值分别为和 2.2. 如图,在平面直角坐标系xOy 中,椭圆Ω: +=1(a>b>0) 的离心率为,直线 l:y=2 上的点和椭圆Ω上的点的距离的最小值为 1. 世纪金榜导学号 92494446(1)求椭圆Ω的方程 .(2)已知椭圆Ω的上极点为A,点B,C是Ω上的不一样于A的两点,且点 B,C对于原点对称,直线 AB,AC分别交直线 l 于点 E,F. 记直线AC与 AB的斜率分别为 k1,k2.①求证: k1·k2为定值;②求△ CEF的面积的最小值 .【解题导引】 (1) 由题知 b=1,由=,b=1联立求解即可得出.(2)①方法一:直线AC的方程为y=k1x+1,与椭圆方程联立可得坐标,即可得出 .方法二:设B(x 0,y0)(y 0>0) ,则+ =1,因为点 B,C 对于原点对称,则 C(-x 0,-y 0) ,利用斜率计算公式即可得出.②直线 AC的方程为 y=k1x+1,直线 AB的方程为 y=k2x+1,不如设 k1>0,则 k2<0,令y=2,得E,F,可得△ CEF的面积S△CEF=|EF|(2-y c).【分析】 (1) 由题意知 b=1,由=,因此 a2 =2,b2=1.故椭圆的方程为+y2 =1.(2)①方法一:直线 AC的方程为 y=k1x+1,由21得(1+2 )x+4k x=0,解得 x C=-,同理x B=-,因为 B,O,C 三点共线,则由x C+x B=--=0,整理得 (k 1+k2)(2k 1k2+1)=0 ,因此 k1k2=- .方法二:设B(x 0,y0)(y 0>0) ,则+ =1,因为点 B,C 对于原点对称,则 C(-x 0,-y 0) ,因此k1k2=·===- .②直线 AC的方程为 y=k1x+1,直线 AB的方程为 y=k2x+1,不如设 k1>0,则 k2<0,令 y=2,得 E,F,而 y C=k1x C+1=-+1=,因此,△ CEF的面积 S△CEF= |EF|(2-y c)==··.由 k1k2=-,得k2=-,则 S△CEF=·=3k1+≥,当且仅当k1=时获得等号,因此△ CEF的面积的最小值为.【加固训练】 (2017 ·广元一模 ) 已知点 P 是椭圆 C 上任一点,点 P 到直线 l1:x=-2 的距离为 d1,到点 F(-1 ,0) 的距离为 d2,且= . 直线 l 与椭圆 C 交于不一样两点A,B(A,B 都在 x 轴上方 ) ,且∠ OFA+∠OFB=180°.(1)求椭圆 C的方程 .(2) 当 A 为椭圆与 y 轴正半轴的交点时,求直线l 方程 .(3)对于动直线 l,能否存在一个定点,不论∠ OFA怎样变化,直线 l 总经过此定点?若存在,求出该定点的坐标;若不存在,请说明原因 .【解题导引】 (1) 设 P(x,y) ,得==,由此能求出椭圆 C的方程 .(2) 由已知条件得k BF=-1 ,BF:y=-(x+1)=-x-1,代入+y2=1,得:3x2+4x=0,由此能求出直线l 方程 .(3)B 对于 x 轴的对称点 B1在直线 AF上. 设直线 AF的方程为 y=k(x+1) ,代入+y2=1,得:x2+2k2x+k2-1=0 ,由此能证明直线l 总经过定点 M(-1 ,0).【分析】 (1) 设 P(x ,y) ,则 d1=|x+2| ,d2=,==,化简得+y2=1,因此椭圆 C的方程为+y2 =1.(2) 因为 A(0,1) ,F(-1 ,0) ,因此 k AF= =1,∠ OFA+∠OFB=180°,因此 k BF=-1 ,直线 BF的方程为 y=-(x+1)=-x-1 ,代入+y2=1,得: 3x2+4x=0,因此 x=0 或 x=-,代入y=-x-1得,(舍)或因此B.k AB== ,因此 AB的方程为 y= x+1.(3)因为∠ OFA+∠OFB=180°,因此 B 对于 x 轴的对称点 B1在直线 AF 上.设 A(x1,y1) ,B(x2,y2) ,B1(x 2,-y 2).设直线 AF的方程为 y=k(x+1) ,代入+y2=1,得:x2+2k2x+k2-1=0 ,x1+x2=-,x1x2=,k AB=,因此AB的方程为y-y1=(x-x 1) ,=,令 y=0,得: x=x1-y 1y1=k(x 1 +1),y2=k(x 2+1) ,x=====-1.因此直线 l 总经过定点 M(-1,0).封闭 Word 文档返回原板块。

2020高考数学理二轮课标通用综合能力训练:含解析

2020高考数学理二轮课标通用综合能力训练:含解析
∴( +1)(R1+R2)= ,R1+R2= ,
球O1和O2的表面积之和为4π( )≥4π·2 =2π(R1+R2)2=3(2- )π.故选A.
12.已知f(x)=2x3-ax2+1(a∈R)在区间(0,+∞)内有且只有一个零点,则f(x)在区间[-1,1]上的值域为()
A.[-4,0]B.[-4,1]
答案:C
解析:∵f(x)是R上的奇函数,
∴g(x)=xf(x)是R上的偶函数.
∴g(-log25.1)=g(log25.1).
∵奇函数f(x)在R上是增函数,
∴当x>0时,f(x)>0,f'(x)>0.
∴当x>0时,g'(x)=f(x)+xf'(x)>0恒成立,
∴g(x)在区间(0,+∞)上是增函数.
故 的夹角为锐角”是“| |>| |”的充要条件,故选C.
9.已知双曲线 =1(a>0,b>0)被斜率为1的直线截得的弦的中点为(4,1),则该双曲线离心率的值是()
A B
C D.2
答案:A
解析:设直线l与双曲线交于点A(x1,y1),B(x2,y2),
则 =0,

由弦的中点为(4,1),直线的斜率为1可知,x1+x2=8,y1+y2=2, =1,
∴c=4.
由题意得,|MF1|=|F1F2|=2c=8.
∵|MF1|+|MF2|=2a=12,
∴|MF2|=4.
设点M的坐标为(x0,y0)(x0>0,y0>0),
则 |F1F2|×y0=4y0.
又 4 =4 ,
∴4y0=4 ,解得y0=

2020高考数学(理)必刷试题(解析版)(11)

2020高考数学(理)必刷试题(解析版)(11)

2020高考数学(理)必刷试题(解析版)(11)2020高考数学模拟考试(理科)一、选择题(本大题共12小题,共60.0分)1.i2020=()A. 1B. -1C. iD. -i2.已知集合A={x|0<log2x<2},B={y|y=3x+2,x∈R},则A∩B=()A. (1,4)B. (2,4)C. (1,2)D. (1,+∞)3.若a=ln2,,的大小关系为()A. b<c<aB. b<a<cC. a<b<cD. c<b<a4.当0<x<1时,则下列大小关系正确的是()A. x3<3x<log3xB. 3x<x3<log3xC. log3x<x3<3xD. log3x<3x<x35.已知cos(-α)=2cos(π+α),且tan(α+β)=,则tanβ的值为()A. -7B. 7C. 1D. -16.将函数f(x)=sin(2x+φ)(0<φ<π)的图象向右平移个单位长度后得到函数的图象,则函数f(x)的一个单调减区间为()A. B. C. D.7.设向量=(1,-2),=(a,-1),=(-b,0),其中O为坐标原点,a>0,b>0,若A,B,C三点共线,则+的最小值为()A. 4B. 6C. 8D. 98.若数列{a n}满足-=d(n∈N*,d为常数),则称数列{a n}为调和数列.已知数列{}为调和数列,且x1+x2+…+x20=200,则x5+x16=()A. 10B. 20C. 30D. 409.设函数f(x)=x2+2cos x,x∈[-1,1],则不等式f(x-1)>f (2x)的解集为()A. (-1,)B. [0,)C. (]D. [0,]10.设椭圆的左焦点为F,在x轴上F的右侧有一点A,以FA为直径的圆与椭圆在x轴上方部分交于M、N两点,则的值为()A. B. C. D.11.已知向量、、满足,,,E、F分别是线段BC、CD的中点.若,则向量与向量的夹角为()A. B. C. D.12.已知变量x1,x2∈(0,m)(m>0),且x1<x2,若x1<x2恒成立,则m的最大值为()A. eB.C.D. 1二、填空题(本大题共4小题,共20.0分)13.已知数列{a n}满足a1=1,前n项和未s n,且s n=2a n(n≥2,n∈N*),则{a n}的通项公式a n=______.14.已知边长为3的正△ABC三个顶点都在球O的表面上,且OA 与平面ABC所成的角为30°,则球O的表面积为______.15.公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现0.618就是黄金分割,这是一个伟大的发现,这一数值也表示为a=2sin18°,若a2+b=4,则=______.16.如图,已知双曲线C:-=1(a>0,b>0)的右顶点为A,O 为坐标原点,以A为圆心的圆与双曲线C的某渐近线交于两点P,Q,若∠PAQ=60°,且=3,则双曲线的离心率为______.三、解答题(本大题共7小题,共82.0分)17.已知△ABC的内角A,B,C的对边分别为a,b,c满足.(1)求A.(2)若△ABC的面积,求△ABC的周长.18.棋盘上标有第0,1,2,…,100站,棋子开始时位于第0站,棋手抛掷均匀硬币走跳棋游戏.若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到跳到第99站或第100站时,游戏结束.设棋子跳到第n站的概率为P n.(1)当游戏开始时若抛掷均匀硬币3次后求棋手所走站数之和X 的分布列与数学期望;(2)证明:;(3)求P99,P100的值.19.如图,已知平面BCC1B1是圆柱的轴截面(经过圆柱的轴截面)BC是圆柱底面的直径,O为底面圆心,E为母线CC1的中点,已知AB=AC=AA1=4(1)求证:B1O⊥平面AEO(2)求二面角B1-AE-O的余弦值.20.椭圆C焦点在y轴上,离心率为,上焦点到上顶点距离为2-.(Ⅰ)求椭圆C的标准方程;(Ⅱ)直线l与椭圆C交与P,Q两点,O为坐标原点,△OPQ的面积S△OPQ=1,则||2+||2是否为定值,若是求出定值;若不是,说明理由.21.已知函数f(x)=e x cos x-x sinx,g(x)=sin x-e x,其中e为自然对数的底数.(1)?x1∈[-,0],?x2∈[0,],使得不等式f(x1)≤m+g(x2)成立,试求实数m的取值范围;(2)若x>-1,求证:f(x)-g(x)>0.22.在平面直角坐标系中,已知直线l的参数方程为(t为参数),以原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程ρ=4cosθ.(1)求直线l的普通方程与曲线C的直角坐标方程;(2)直线l与曲线C交于A、B两点,点P(1,2),求|PA|+|PB|的值.23.已知函数f(x)=|2x+1|+|x-4|.(1)解不等式f(x)≤6;(2)若不等式f(x)+|x-4|<a2-8a有解,求实数a的取值范围.答案和解析1.【答案】A【解析】解:i2020=i4×505=(i4)505=1.故选:A.直接利用虚数单位i的运算性质求解.本题考查虚数单位i的运算性质,是基础的计算题.2.【答案】B【解析】解:由A中不等式变形得:log21=0<log2x<2=log24,即1<x<4,∴A=(1,4),由B中y=3x+2>2,得到B=(2,+∞),则A∩B=(2,4),故选:B.求出A中不等式的解集确定出A,求出B中y的范围确定出B,找出两集合的交集即可.此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.【答案】A【解析】解:a=ln2>ln=,=<,==∴a>c>b,故选:A.利用指数、对数函数的性质,判断a>,b<,利用定积分的性质求得c=,即可判断a、b和c的大小.本题考查求定积的值及指数函数的性质,属于基础题.4.【答案】C【解析】解:∵0<x<1,∴log3x<0<x3<1<3x,∴log3x<x3<3x,故选:C.利用指数函数与对数函数、幂函数的单调性即可得出.本题考查了指数函数与对数函数、幂函数的单调性,考查了推理能力与计算能力,属于基础题.5.【答案】B【解析】解:∵已知cos(-α)=2cos(π+α),即sin α=-2cosα,即tan α=-2.又∵tan(α+β)===,则tanβ=7,故选:B.由题意利用诱导公式求得tanα的值,再利用两角和的正切公式,求得tanβ的值.本题主要考查诱导公式、两角和的正切公式的应用,属于基础题.6.【答案】A【解析】【分析】本题考查的知识要点:三角函数关系式的变换,正弦型函数的性质的应用,考察学生的运算能力和转换能力,属于基础题.利用三角函数的平移变换的应用和正弦型函数的整体思想的应用求出结果.【解答】解:函数f(x)=sin(2x+φ)(0<φ<π)的图象向右平移个单位长度后得到函数的图象,即:把函数的图象,向左平移个单位,即得到f(x)的图象,故:=sin(2x+),∴令:(k∈),解得:(k∈),当k=0时,,故选A.7.【答案】C【解析】解:=(a-1,1),=(-b-1,2),∵A,B,C三点共线,∴2(a-1)-(-b-1)=0,化为:2a+b=1.又a>0,b>0,则+=(2a+b)=4++≥4+2=8,当且仅当b=2a=时取等号.利用向量共线定理可得:2a+b=1.再利用“乘1法”与基本不等式的性质即可得出.本题考查了向量共线定理、“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.8.【答案】B【解析】解:由题意知:∵数列{}为调和数列∴-=x n+1-x n=d∴{x n}是等差数列又∵x1+x2+…+x20=200=∴x1+x20=20又∵x1+x20=x5+x16∴x5+x16=20故选:B.由题意知道,本题是构造新等差数列的问题,经过推导可知{x n}是等差数列,运用等差数列的性质可求解答案.本题主要考查新数列定义,及等差数列的重要性质,属中档题型.9.【答案】B【解析】解:函数f(-x)=(-x)2+2cos(-x)=x2+2cos x=f (x),则函数f(x)是偶函数,函数的导数f′(x)=2x-2sin x=2(x-sin x),[f′(x)]′=2-2cos x≥0,即f′(x)在[-1,1]是为增函数,则当0≤x≤1时,f′(x)≥f′(0)=0,即f(x)在[0,1]上为增函数,则不等式f(x-1)>f(2x)等价为f(|x-1|)>f(|2x|),得得,得得,得0≤x<,又即不等式的解集为[0,),根据条件判断函数的奇偶性和单调性,利用函数奇偶性和单调性进行转化求解即可.本题主要考查不等式的求解,结合条件判断函数的奇偶性和单调性,利用进行和单调性进行转化是解决本题的关键.10.【答案】A【解析】解:若以FA为直径的圆与椭圆大x轴上方的部分交于短轴端点,则M、N重合(设为M),此时A为椭圆的右焦点,则==.故选:A.若以FA为直径的圆与椭圆大x轴上方的部分交于短轴端点,则M、N重合(设为M),此时A为椭圆的右焦点,由此可知=,从而能够得到结果.本题考查圆锥曲线的性质和应用,解题时要注意合理地选取特殊点.11.【答案】A【解析】解:如图,=.由,,可得∴cos=,则,从而向量与向量的夹角为.故选:A.由题意画出图形,结合求得,从而向量与向量的夹角为.本题考查平面向量的数量积运算,考查了向量的加法、减法法则,是中档题.12.【答案】A【解析】解:对不等式两边同时取对数得ln x1<ln x2,即x2ln x1<x1ln x2,即<恒成立,设f(x)=,x∈(0,m),∵x1<x2,f(x1)<f(x2),则函数f(x)在(0,m)上为增函数,函数的导数f′(x)==,由f′(x)>0得1-ln x>0得ln x<1,得0<x<e,即函数f(x)的最大增区间为(0,e),则m的最大值为e故选:A.在不等式两边同时取对数,然后构造函数f(x)=,求函数的导数,研究函数的单调性即可得到结论.本题主要考查函数单调性与导数之间的应用,根据条件利用取对数法以及构造函数,利用导数研究函数的单调性是解决本题的关键.13.【答案】【解析】解:当n≥2时,s n=2a n,……①令n=2,则s2=a1+a2=1+a2=2a2,故a2=1,令n≥3,则s n-1=2a n-1,……②①-②得:a n=2a n-2a n-1,即a n=2a n-1,即从第二项开始,数列{a n}成以1为首项以2为公比的等比数列,故a n=,故答案为:.由已知可得数列{a n}满足a1=1,从第二项开始,数列{a n}成以1为首项以2为公比的等比数列,进而得到答案.本题考查的知识点是数列的递推式,本题要注意数列并非等比,而是从第二项开始才是等比数列.14.【答案】16π【解析】解:边长为3的正△ABC的外接圆的半径为=,∵OA与平面ABC所成的角为30°,∴球O的半径为=2,∴球O的表面积为4πR2=16π.故答案为:16π.求出边长为3的正△AB C的外接圆的半径,利用OA与平面ABC 所成的角为30°,求出球O的半径,即可求出球O的表面积.本题考查球O的表面积,考查学生的计算能力,求出球O的半径是关键.15.【答案】【解析】解:∵a=2sin18°,若a2+b=4,∴b=4-a2=4-4sin218°=4(1-sin218°)=4cos218°,∴===,故答案为:.由已知利用同角三角函数基本关系式可求b=4cos218°,然后利用降幂公式,诱导公式,二倍角的正弦函数公式化简得答案.本题主要考查了同角三角函数基本关系式,降幂公式,诱导公式,二倍角的正弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.16.【答案】【解析】解:因为∠PAQ=60°且=3,所以△QAP为等边三角形,设AQ=2R,则OP=R,渐近线方程为y=x,A(a,0),取PQ的中点M,则AM=由勾股定理可得(2R)2-R2=()2,所以(ab)2=3R2(a2+b2)①在△OQA中,=,所以7R2=a2②①②结合c2=a2+b2,可得e==.故答案为:确定△QAP为等边三角形,设AQ=2R,则OP=R,利用勾股定理,结合余弦定理,即可得出结论本题考查双曲线的性质,考查余弦定理、勾股定理,考查学生的计算能力,属于中档题.17.【答案】解:(1),由正弦定理可得:,∴,∴,且A∈(0,π),∴,(2),∴bc=12,又a2=b2+c2-2b cos A,∴9=(b+c)2-3bc,∴,即△ABC的周长为.【解析】(1)结合已知及正弦定理进行化简可求cos A,进而可求A,(2)结合三角形的面积公式可求bc,然后结合余弦定理可求b+c,进而可求.本题主要考查了正弦定理,余弦定理在求解三角形中的应用,属于基础试题.18.【答案】解:(1)解:由题意得X的可能取值为3,4,5,6,P(X=3)=()3=,P(X=4)==,P(X=5)==,P(X=6)=()3=.X3456P∴.(2)证明:棋子先跳到第n-2站,再掷出反面,其概率为,棋子先跳到第n-1站,再掷出正面,其概率为,∴,即,∴..(3)解:由(2)知数列{P n-P n-1}(n≥1)是首项为{P n-P n-1}(n≥1),,公比为的等比数列.∴,由此得到,由于若跳到第99站时,自动停止游戏,故.【解析】本题考查离散型随机变量的分布列、数学期望的求法,等比数列的性质,考查运算求解能力,考查化归与转化思想,属于较难题.(1)由题意得X的可能取值为3,4,5,6,分别求出相应的概率,由此能求出X的分布列和数学期望.(2)棋子先跳到第n-2站,再掷出反面,其概率为,棋子先跳到第n-1站,再掷出正面,其概率为,从而,由此能证明.(3)数列{P n-P n-1}(n≥1)是首项为{P n-P n-1}(n≥1),,公比为的等比数列,从而,由此能求出P99,P100的值.19.【答案】证明:(1)依题意可知,AA1⊥平面ABC,∠BAC=90°,如图建立空间直角坐标系A-xyz,因为AB=AC=AA1=4,则A(0,0,0),B(4,0,0),E(0,4,2),B1(4,0,4),C(0,4,0),O(2,2,0),(2分)=(-2,2,-4),=(2,-2,-2),=(2,2,0),(3分)=(-2)×2+2×(-2)+(-4)×(-2)=0,∴⊥,∴B1O⊥EO,=(-2)×2+2×2+(-4)×0=0,∴⊥,∴B1O⊥AO,(5分)∵AO∩EO=O,AO,EO?平面AEO,∴B1O⊥平面AEO.(6分)(2)由(1)知,平面AEO的法向量为=(-2,2,-4),(7分)设平面B1AE的法向量为=(x,y,z),,则,令x=2,则=(2,2,-2),(10分)∴cos<>===,∴二面角B1-AE-F的余弦值为.(12分)【解析】(1)依题意可知,AA1⊥平面ABC,∠BAC=90°,建立空间直角坐标系A-xyz,利用向量法能证明B1O⊥平面AEO.(2)求出平面AEO的法向量和平面B1AE的法向量,利用向量法能求出二面角B1-AE-F的余弦值.本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.20.【答案】解:(Ⅰ)由题意可得,解得,可得b2=a2-c2=1,即有椭圆C的标准方程为:;(Ⅱ)设P(x1,y1),Q(x2,y2)(1)当l斜率不存在时,P,Q两点关于x轴对称,S△OPQ=|x1|?|y1|=1,又,解得,||2+||2=2(x12+y12)=2×(+2)=5;(2)当直线l的斜率存在时,设直线l的方程为y=kx+m,由题意知m≠0,将其代入,得(k2+4)x2+2kmx+m2-4=0,即有,则,O到PQ距离,则,解得k2+4=2m2,满足△>0,则,即有||2+||2=(x12+y12)(x22+y22)===-3+8=5,综上可得||2+||2为定值5.【解析】(Ⅰ)运用椭圆的离心率公式和两点的距离公式,及a,b,c的关系,解得a,b,进而得到椭圆方程;(Ⅱ)设P(x1,y1),Q(x2,y2),讨论直线l的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和判别式大于0,结合三角形的面积公式,点到直线的距离公式和弦长公式,化简整理,即可得到所求和为定值5.本题考查椭圆方程的求法,注意运用离心率公式,考查直线和椭圆联立,运用韦达定理和弦长公式,注意讨论直线的斜率不存在,考查化简整理的运算能力,属于中档题.21.【答案】解:(1)f′(x)=e x cos x-e x sin x-sin x-x cosx;∵;∴cos x≥0,sin x≤0,e x>0;∴e x cos x-e x sin x-sin x-x cosx>0;即f′(x)>0;∴f(x)在上单调递增;∴f(x)的最大值为f(0)=1;,设h(x)=g′(x),则:;∵;∴;∴h′(x)<0;∴h(x)在[0,]上单调递减;∴h(x)的最大值为h(0)=;∴h(x)<0,即g′(x)<0;∴g(x)在[0,]上单调递减;∴g(x)的最大值为g(0)=;根据题意知,f(x)max≤m+g(x)max;∴;∴;∴实数m的取值范围为;(2);设F(x)=e x-(x+1),则F′(x)=e x-1;∴x∈(-1,0)时,F′(x)<0,x∈(0,+∞)时,F′(x)>0;∴F(x)在(-1,+∞)上的最小值为F(0)=0;∴F(x)≥0;∴e x≥x+1在x∈(-1,+∞)上恒成立;;∴①,x=0时取“=”;∴;==;;∴,该不等式和不等式①等号不能同时取到;∴;∴f(x)-g(x)>0.【解析】(1)根据题意便知,f(x)max≤m+g(x)max,这样可根据导数求f(x),g(x)的最大值:求导数f′(x),容易说明f′(x)>0,从而可以得出f(x)在上单调递增,从而可求出最大值为1;同样的办法,求,可设h(x)=g′(x),再求导便可得出h(x)<0在上恒成立,从而得出g(x)单调递减,从而可以得出最大值为g(0)=,从而便可得到1,这样便可得出实数m的取值范围;(2)先求出f(x)-g(x)=,根据导数可以证明e x≥x+1,而显然恒成立,从而有,而根据两角和的余弦公式即可说明(x+1)(cos x+)-sin x(x+1)≥0,并且可以看出这个等号和前面不等式的等号不同时取到,从而便证出f(x)-g(x)>0.考查根据导数符号判断函数单调性的方法,根据函数单调性求函数最大值的方法,在判断导数符号时可以两次求导,以及两角和的余弦公式,不等式的性质.22.【答案】解:(1)∵直线l的参数方程为(t为参数),由得,∴l的普通方程为:,∵C的极坐标方程是ρ=4cosθ,∴ρ2=4ρcosθ,∴x2+y2=4x,∴C的直角坐标方程为:x2+y2-4x=0.(2)将l的参数方程代入C的直角坐标方程,得:,∴,∴,∴t1,t2同号,∴.【解析】(1)由直线l的参数方程,能求出l的普通方程;由曲线C的极坐标方程,能求出曲线C的直角坐标方程.(2)将l的参数方程代入C的直角坐标方程,得,由此能求出|PA|+|PB|的值.本小题考查直线和曲的直角坐标方程、极坐标方程、参数方程等基础知识,考查运算求解能力,考查化归与转化思想等.23.【答案】解:(1)由已知得当时,不等式f(x)≤6化为-3x+3≤6,解得x≥-1,所以取;当时,不等式f(x)≤6化为x+5≤6,解得x≤1,所以取;当x>4时,不等式f(x)≤6化为3x-3≤6,解得x≤3,不合题意,舍去;综上知,不等式f(x)≤6的解集为[-1,1].(2)由题意知,f(x)+|x-4|=|2x+1|+|2x-8|≥|(2x+1)-(2x-8)|=9,当且仅当-≤x≤4时取等号;由不等式f(x)+|x-4|<a2-8a有解,则a2-8a>9,即(a-9)(a+1)>0,解得a<-1或a>9;所以a的取值范围是(-∞,-1)∪(9,+∞).【解析】(1)利用分段讨论法去掉绝对值,求出不等式f(x)≤6的解集;(2)利用绝对值不等式求出f(x)+|x-4|的最小值,问题化为关于a的不等式,求解集即可.本题考查了绝对值不等式的解法与应用问题,也考查了不等式有解的问题,是中档题.。

2020届高考二轮数学选做题题型专练 Word版含答案

2020届高考二轮数学选做题题型专练 Word版含答案

2020届高考数学查漏补缺之选做题题型专练1、在直角坐标系xOy 中,直线1l 的参数方程为2+x t y kt==⎧⎨⎩ (t 为参数),直线2l 的参数方程为2x m m y k =-+=⎧⎪⎨⎪⎩(m 为参数),设1l 与2l 的交点为P ,当k 变化时, P 的轨迹为曲线 C . (1)写出 C 的普通方程;(2)以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,设()3:cos sin 0l ρθθ+=,M 为3l 与C 的交点,求M 的极径.2、设函数()()11f x ax x x =++-∈R .(1)当1a =时,求不等式()2f x >的解集;(2)对任意实数[]2,3x ∈,都有()23f x x ≥-成立,求实数a 的取值范围.3、在直线坐标系xOy 中,圆C 的方程为22(6)25x y ++=1.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;2.直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于,A B 两点, ||AB =,求l 的斜率。

4、已知函数12f x x x =+--().(1)求不等式1f x ≥()的解集;(2)若不等式2–f x x x m ≥+()的解集非空,求m 的取值范围5、在直角坐标系xOy 中,曲线1C 的参数方程为cos 1sin x a t y a t =⎧⎨=+⎩(t 为参数,0a >).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2:4cos C ρθ=.1.说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;2.直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求a.6、已知函数11()22f x x x =++-,不等式()2f x <的解集为M . 1.求M;2.当,a b M ∈时,证明: 1a b ab +<+.7、在平面直角坐标系中,已知曲线:2sin x C y αα⎧=⎪⎨=⎪⎩(a 为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,直线():2cos sin 6l ρθθ-=.(1)写出直线l 的直角坐标方程和曲线C 的普通方程;(2)在曲线C 上求一点P ,使点P 到直线l 的距离最大,求最大距离及此时P 点的坐标。

2020届高考数学(理)二轮考点专训卷(14)选修部分+Word版含答案

2020届高考数学(理)二轮考点专训卷(14)选修部分+Word版含答案

考点专训卷(14)选修部分1、在直角坐标系xOy 中,曲线1C 的普通方程为2220x y x +-=,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22312sin ρθ=+.(1)求曲线1C 的参数方程与曲线2C 的直角坐标方程; (2)射线()π03θρ=≥与曲线1C 交于异于极点的点A ,与曲线C 的交点为点B ,求AB . 2、在直角坐标系xOy 中,直线l 的参数方程为2cos ,sin x t y t αα=-+⎧⎨=⎩(t 为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ,ρθ=直线l 与曲线C 分別交于,A B 两个不同的点. (1)求曲线C 的直角坐标方程; (2)若点P 为直线l 与x 轴的交点,求2211PAPB+的取值范围.3、在直角坐标系xoy 中,曲线1C的参数方程为2sin x y ϕϕ⎧=⎪⎨=⎪⎩(ϕ为参数).在以坐标原点为极点,x 轴的非负半轴为极轴的极坐标系中,曲线22:2cos 2sin 10C p p p θθ-++=. (1)写出曲线1C ,2C 的普通方程; (2)过点(2,0)F 作倾斜角为α的直线l ,该直线与曲线2C相交于不同的两点,M N ,求11FM FN+的取值范围. 4、在直角坐标系xOy 中,曲线C 的参数方程为2221161t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2cos sin 110ρθρθ++=. (1)求C 和l 的直角坐标方程; (2) 求C 上的点到l 距离的最小值。

5、在平面直角坐标系xOy 中,曲线C 的参数方程为cos (0,sin x a a b y b ϕϕϕ=⎧>>⎨=⎩为参数),且曲线C上的点M 对应的参数π3ϕ=,以O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 的普通方程;(2)若12π(,)(,)2A B ρθρθ+,是曲线C 上的两点,求221211ρρ+的值. 6、在直角坐标系xOy 中,曲线C 的参数方程为3cos sin x y θθθ=⎧⎨=⎩(为参数),直线l 的参数方程为41x a tt y t =+⎧⎨=-⎩(为参数). (1)若1a =-,求l 的普通方程;(2)若0,a >且C 上的点到la. 7、已知函数()|3|||f x x m x =--.(1)若2m =-,求不等式()5f x <的解集;(2)若关于x 的不等式()1f x ≥在R 上恒成立,求实数m 的取值范围. 8、已知函数()|21||1|f x x a x =-+- (1).当1a =时,解关于x 的不等式()4f x ≥(2).若()|2|f x x ≥-的解集包含1[,2]2,求实数a 的取值范围9、已知函数(1,)2R f x x x =-∈. (1).解不等式()21f x x ≥-+;(2).若对于,R,x y ∈有113x y --≤,1216y +≤,求证:()1f x <.10、已知0,0,0a b c >>>函数()f x x a x b c =++-+. (1).当1a b c ===时,求不等式()5f x >的解集; (2).若()f x 的最小值为3,求a b c ++的值,并求111a b c++的最小值. 11、已知()|||2|().f x x a x x x a =-+-- (1).当1a =时,求不等式()0f x <的解集; (2).若(,1)x ∈-∞时,()0f x <,求的取值范围. 12、已知函数()212f x x x =-++. (1).求不等式()4f x ≥的解集;(2).设函数()f x的最小值为M,若不等式22++≤有解,求实数m的取值范围.x x m M答案以及解析1答案及解析:答案:(1)由2220x y x +-=可得()2211x y -+=.所以曲线1C 是以(1)0,为圆心,1为半径的圆, 所以曲线1C 的参数方程为1cos sin x y αα=+⎧⎨=⎩,(α为参数).由22312sin ρθ=+得2222sin 3ρρθ+=, 所以22223x y y ++=,则曲线2C 的直角坐标方程为2213x y +=.(2)由(1)易得曲线1C 的极坐标方程为2cos ρθ=. 则射线()π03θρ=≥与曲线1C 的交点的极径1π2cos 13ρ==, 射线()π03θρ=≥与曲线2C 的交点的极径2ρ满足222π12sin 33ρ⎛⎫ ⎪⎝⎭+=,解得2ρ=121AB ρρ=--. 解析:2答案及解析:答案:解:(1)22cos ,2cos .ρθρρθ=∴=Q 又222,cos ,x y x ρρθ=+=Q曲线C 的直角坐标方程为2220.x y x +-= (2)将2cos ,sin x t y t αα=-+⎧⎨=⎩代入曲线C 的直角坐标方程,可得226cos 80,36cos 320,t t αα-⋅+=∆=->则28cos .9α>又2cos 1,α…28cos ,1.9α⎛⎤∴∈ ⎥⎝⎦设该方程的两个实数根分别为12,,t t 则12126cos ,8,t t t t α+=⋅=1t ∴与2t 同号,由参数t 的几何意义可得12126cos ,PA PB t t t t α+=+=+=128,PA PB t t ⋅=⋅=2222()211PA PB PA PBPAPBPA PB+-⋅∴+==⋅221212212()29cos 4.()16t t t t t t α+-⋅-=⋅28cos ,1,9α⎛⎤∈ ⎥⎝⎦Q29cos 415,,16416α-⎛⎤∴∈ ⎥⎝⎦2211PAPB∴+的取值范围为15,416⎛⎤⎥⎝⎦. 解析:3答案及解析:答案:(1)22184x x +=,22(1)(2)1x x -++=(2)(试题解析:解:(1)由于曲线1C的参数方程为2sin x y αα⎧=⎪⎨=⎪⎩(α为参数),则曲线1C 的普通方程为:22184x x +=, ∵222p x y =+,cos ,cos x p y p θθ==,∴曲线22:cos 2sin 10C p p θθ-++=,可化为:222210x y x y +-++=,即曲线2C 的普通方程为:;(2)因为曲线1C 的右焦点F 的坐标为(2,0)22(1)(1)1x y -++=, 所以直线l 的参数方程为:2cos sin x t y t αα=+⎧⎨=⎩(t 为参数).将直线l 的参数方程代入22(1)(1)1x y -++=, 得22(sin cos )10t t αα+++=, 则12121211112(sin cos )t t FM FN t t t t αα⎛⎫++=-+=-=+ ⎪⎝⎭π4α⎛⎫=+ ⎪⎝⎭Q直线l 与曲线2C 相交于不同的两点,M N ,π02a ∴<<,πsin 14α⎛⎫<+≤ ⎪⎝⎭,π24α⎛⎫∴<+≤ ⎪⎝⎭ 因此,11FM FN +的取值范围为(. 解析:4答案及解析:答案:(1)因为221111t t --<<+,且222222214131(1)y t t x t t ⎛⎫-⎛⎫+=+= ⎪ ⎪++⎝⎭⎝⎭所以C 的直角坐标系方程为221(1)9y x x +=≠-l的直角坐标系方程为2110x y ++=(2)由(1)知可设C 的参数方程cos 3sin x y αα=⎧⎨=⎩(α为参数,ππα-<<)C 上的点到lπ4cos 11α⎛⎫-+ ⎪=当2π3α=-时,π4cos()113α-+取得最小值7故C 上的点到l4=解析:5答案及解析:答案:(1)将M 及对应的参数3πϕ=代入cos ,(0,sin x a a b y b ϕϕϕ=⎧>>⎨=⎩为参数),得2cos 3sin3a b ππ⎧=⎪⎪=,所以42a b =⎧⎨=⎩,所以曲线1C 的普通方程为221164x y +=. (2)曲线1C 的极坐标方程为2222cos sin 1164ρθρθ+=,将12(,),(,)2A B πρθρθ+代入得222211cos sin 1164ρθρθ+=,222222sin cos 1164ρθρθ+=,所以221211516ρρ+=. 解析:6答案及解析:答案:(1)直线l 的参数方程为41x a tt y t =+⎧⎨=-⎩(为参数)直线l 的普通方程为11144y x a =-++当1a =-时,直线l 的普通方程为1343044y x x y =-++-=,即(2)依题意可得:点3cos sin x y θθ=⎧⎨=⎩到直线440x y a +--=的距离3cos 4sin 45sin()43,tan 41717a a d θθθϕϕ+--+--===其中 0,a >Q 又且C 上的点到l 的距离的最大值为17 541717a ---∴=解得:8a =解析:7答案及解析:答案:(1) 2m =-时,函数()32f x x x =-+, 不等式()5f x <化为325x x -+<, 当0x <时,不等式化为325x x --<,解得23x >-,即203x -<<; 当03x ≤≤时,不等式化为325x x -+<,解得2x <,即02x ≤<; 当3x >时,不等式化为325x x -+<,解得83x <,此时无解; 综上,所求不等式的解集为223{}xx -<<∣; (2)不等式()1f x ≥即为31x m x --≥, 所以31x m x -≥+(*),显然0m ≥时(*)式在R 上不恒成立;当0m <时,在同一直角坐标系中分别作出3y x =-和1y m x =+的图象,如图所示;由图象知,当310m +≤,即13m ≤-时(*)式恒成立,所以实数m 的取值范围是13m ≤-.解析:8答案及解析:答案:(1).2(,][2,)3-∞-⋃+∞(2).133a x x ∴-≥-对1[,2]2x ∈恒成立112x ≤<时,(1)33a x x -≥- 3a ∴≥ 12x ≤≤时,(1)33a x x -≥- 3a ∴≥-综上:3a ≥ 解析:9答案及解析:答案:(1).不等式化为1212x x ++-≥,①当12x ≥时,不等式为32x ≥,解得23x ≥,故23x ≥; ②当112x -≤<时,不等式为22x -≥,解得0x ≤,故10x -≤≤;③当1x <-时,不等式为32x -≥,解得23x ≤-,故1x <-,综上,原不等式的解集为{|0x x ≤或2}3x ≥;(2).证明:115()|21|2(1)(21)|2|1||212136||6f x x x y y x y y =-=--++≤--++≤⨯+=<.解析:10答案及解析:答案:(1).当1a b c ===时,不等式()5f x >即1115x x ++-+>,化为114x x ++->. 当1x ≥时,化为:114x x ++->,解得2x >;当11x -<<时,化为:()114x x +-->,化为:24>,解得x ∈∅; 当1x ≤-时,化为:()()114x x -+-->,解得2x <-.综上可得:不等式()5f x >的解集为:()(),22,-∞-+∞U ; (2).由绝对值三角不等式得()()()3f x x a x b c x a x b c a b c =++-+≥+--+=++=,由柯西不等式得()211111139a b c a b c a b c ⎛⎫⎛⎫++=++++≥= ⎪ ⎪⎝⎭⎝⎭ 1113a b c ∴++≥,当且仅当1a b c ===时,等号成立,因此,111a b c++的最小值为3 解析:11答案及解析:答案:(1).当1a =时,()=|1| +|2|(1)f x x x x x ---. 当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥. 所以,不等式()0f x <的解集为(,1)-∞. (2).因为()=0f a ,所以1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x ----- 所以,a 的取值范围是[1,)+∞. 解析:12答案及解析:答案:(1).()212f x x x =-++,①当1x ≥时,()2(1)(2)3f x x x x =-++=,由()4f x ≥,解得43x ≥;②当21x -<<时,()2(1)(2)4f x x x x =--++=-+,由()4f x ≥,解得20x -<≤; ③当2x ≤-时,()2(1)(2)3f x x x x =---+=-,由()4f x ≥,解得2x ≤-. 综上0x ≤或43x ≥. 所以不等式()4f x ≥的解集是{|0x x ≤或4}3x ≥.(2).由(1)可知3,1()4,213,2x x f x x x x x ≥⎧⎪=-+-<<⎨⎪-≤-⎩,所以函数()f x 在区间(],1-∞单调递减,在区间[)1,+∞上单调递增, 所以函数()f x 的最小值(1)3f =. 由题意得223x x m ++≤有解, 所以223m x x ≤--+有解.设22()23(1)4g x x x x =--+=-++, 则max ()4g x =.所以4m ≤.故实数m 的取值范围是(],4-∞. 解析:。

2020—2021年新高考总复习数学(理)二轮复习模拟试题及答案解析二.docx

2020—2021年新高考总复习数学(理)二轮复习模拟试题及答案解析二.docx

高考数学二模试卷(理科)一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,有一项是符合题目要求的.1.复数z=(i为虚数单位),则|z|()A.25 B.C.5 D.2.设函数,则其导函数f′(x)是()A.最小正周期为2π的奇函数B.最小正周期为2π的偶函数C.最小正周期为π的偶函数D.最小正周期为π的奇函数3.已知圆C:(x﹣a)2+y2=1,直线l:x=1;则:“”是“C 上恰有不同四点到l的距离为”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.如果等差数列{a n}中,a1=﹣11,,则S11=()A.﹣11 B.10 C.11 D.﹣105.若变量x,y满足约束条件,则z=2x+y的最大值是()A.4 B.3 C.2 D.16.执行如图的程序框图,则输出的λ是()A.﹣4 B.﹣2 C.0 D.﹣2或07.若x>0,y>0,x+2y+2xy=8,则x+2y的最小值是()A.B.3 C.D.48.函数f(x)=cos3x+sin2x﹣cosx的最大值是()A.B.1 C.D.29.已知M=+++…++,则M=()A.B.C.D.10.已知平面向量满足:,若,则的取值范围是()A.B.C.D.二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答题卡对应题号位置上.答错位置,书写不清,模棱两可均不得分.11.设随机变量X服从正态分布N(3,1),且P(2≤X≤4)=0.68,则P(X>4)= .12.一个几何体的三视图如图,则这个几何体的表面积为.13.在正方体的8个顶点,12条棱的中点,6个面的中心及正方体的中心共27个点中,共线的三点组的个数是.14.已知曲线Γ:ρ=,θ∈R与曲线C:,t∈R相交于A,B两点,又原点O(0,0),则|OA|•|OB|= .15.在△ABC中,内角A,B,C的所对边分别是a,b,c,有如下下列命题:①若A>B>C,则sinA>sinB>sinC;②若,则△ABC为等边三角形;③若sin2A=sin2B,则△ABC为等腰三角形;④若(1+tanA)(1+tanB)=2,则△ABC为钝角三角形;⑤存在A,B,C,使得tanAtanBtanC<tanA+tanB+tanC成立.其中正确的命题为(写出所有正确命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.已知函数f(x)=sin2x+2sinxcosx﹣cos2x,x∈R.求:(Ⅰ)函数f(x)的单调增区间;(Ⅱ)若,求函数f(x)的值域.17.某校一个研究性学习团队从网上查得,某种植物种子在一定条件下的发芽成功的概率为,于是该学习团队分两个小组进行验证性实验.(Ⅰ)第一小组做了5次这种植物种子的发芽实验(每次均种下一粒种子),求他们的实验至少有3次成功的概率;(Ⅱ)第二小组做了若干次发芽实验(每次均种下一粒种子),如果在一次实验中种子发芽成功就停止实验,否则就继续进行下次实验.直到种子发芽成功为止,但实验的次数不超过5次.求这一小组所做的种子发芽实验次数ξ的分布列和期望.18.如图,在四棱锥P﹣ABCD中,底面ABCD是直角梯形,∠BAD=∠CDA=90°,PA⊥平面ABCD,PA=AD=AB=2,CD=1,M,N分别是PD、PB的中点.(1)证明:直线NC∥平面PAD;(2)求平面MNC与地面ABCD所成的锐二面角的余弦值.(3)求三菱锥P﹣MNC的体积V.19.已知函数,(x≥0),又数列{a n}中,a n>0,a1=2,该数列的前n项和记为S n,对所有大于1的自然数n都有S n=f(S n﹣1).(Ⅰ)求{a n}的通项公式;(Ⅱ)记b n=,{b n}其前n项和为T n,证明:T n<n+1.20.已知F1、F2分别是椭圆的左、右焦点,P 是此椭圆上的一动点,并且的取值范围是.(Ⅰ)求此椭圆的方程;(Ⅱ)点A是椭圆的右顶点,直线y=x与椭圆交于B、C两点(C 在第一象限内),又P、Q是椭圆上两点,并且满足,求证:向量共线.21.设函数f(x)=xlnx.(Ⅰ)求f(x)的极值;(Ⅱ)设g(x)=f(x+1),若对任意的x≥0,都有g(x)≥mx 成立,求实数m的取值范围;(Ⅲ)若0<a<b,证明:0<f(a)+f(b)﹣2f()<(b ﹣a)ln2.参考答案与试题解析一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,有一项是符合题目要求的.1.复数z=(i为虚数单位),则|z|()A.25 B.C.5 D.考点:复数代数形式的乘除运算;复数求模.专题:数系的扩充和复数.分析:化简复数z,然后求出复数的模即可.解答:解:因为复数z==,所以|z|==.故选C.点评:本题考查复数的代数形式的混合运算,复数的模的求法,考查计算能力.2.设函数,则其导函数f′(x)是()A.最小正周期为2π的奇函数B.最小正周期为2π的偶函数C.最小正周期为π的偶函数D.最小正周期为π的奇函数考点:导数的运算.专题:导数的概念及应用.分析:函数=﹣cos2x,利用导数的运算法则、函数的奇偶性周期性即可得出.解答:解:∵函数=﹣cos2x,则其导函数f′(x)=2sin2x,∴T==π,f′(﹣x)=﹣2sin2x=﹣f′(x),∴其导函数f′(x)是最小正周期为π的奇函数.故选:D.点评:本题考查了导数的运算法则、函数的奇偶性周期性、诱导公式,考查了推理能力与计算能力,属于基础题.3.已知圆C:(x﹣a)2+y2=1,直线l:x=1;则:“”是“C 上恰有不同四点到l的距离为”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:如图所示,⊙C与直线l.若C上恰有不同四点到l的距离为,可得,即可判断出.解答:解:如图所示,⊙C与直线l.若C上恰有不同四点到l的距离为,则,∴“”是“C上恰有不同四点到l的距离为”的必要不充分条件.故选:B.点评:本题考查了充要条件的判定方法、直线与圆的位置关系,考查了数形结合的思想方法,属于基础题.4.如果等差数列{a n}中,a1=﹣11,,则S11=()A.﹣11 B.10 C.11 D.﹣10考点:等差数列的性质.专题:等差数列与等比数列.分析:根据等差数列的前n项和S n,可知,结合求得公差,然后再由求得答案.解答:解:由,得,由,得=2,∵a1=﹣11,解得d=2,∴=﹣11+5×2=﹣1,∴S11=﹣11,故选:A.点评:本题主要考查等差数列的求和公式.属基础题.5.若变量x,y满足约束条件,则z=2x+y的最大值是()A.4 B.3 C.2 D.1考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.解答:解:作出不等式组对应的平面区域如图:(阴影部分).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点B时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即B(1,1),代入目标函数z=2x+y得z=2×1+1=3.即目标函数z=2x+y的最大值为3.故选:B.点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.6.执行如图的程序框图,则输出的λ是()A.﹣4 B.﹣2 C.0 D.﹣2或0考点:程序框图.专题:计算题;图表型.分析:根据框图给出的向量和向量的坐标及λ的值,运用向量的数乘及坐标的加法运算求出的坐标,再求数量积,数量积为0,则两向量垂直,算法结束,输出λ的值,否则,执行λ=λ+1,再判断执行,直至数量积为0结束.解答:解:由,当λ=﹣4时,,此时4×0+(﹣2)×10=﹣20≠0,所以与不垂直,故执行λ=﹣4+1=﹣3,,此时4×1+(﹣2)×7=﹣10≠0,所以与不垂直,故执行λ=﹣3+1=﹣2,,此时4×2+(﹣2)×4=0,与垂直,算法结束,输出λ的值为﹣2.故选B.点评:本题考查了程序框图中的当型循环,考查了运用向量数量积判断两向量是否垂直,若非零向量,则⇔x1x2+y2y2=0,此题是中低档题.7.若x>0,y>0,x+2y+2xy=8,则x+2y的最小值是()A.B.3 C.D.4考点:基本不等式.专题:不等式.分析:首先分析题目由已知x>0,y>0,x+2y+2xy=8,求x+2y 的最小值,猜想到基本不等式的用法,利用a+b≥2代入已知条件,化简为函数求最值解答:解:考察基本不等式x+2y=8﹣x•(2y)≥8﹣()2(当且仅当x=2y时取等号)整理得(x+2y)2+4(x+2y)﹣32≥0即(x+2y﹣4)(x+2y+8)≥0,又x+2y>0,所以x+2y≥4(当且仅当x=2y时取等号),则x+2y的最小值是4,故选:D.点评:本题主要考查基本不等式的用法,对于不等式a+b≥2在求最大值最小值的问题中应用非常广泛,需要同学们多加注意,属于基础题.8.函数f(x)=cos3x+sin2x﹣cosx的最大值是()A.B.1 C.D.2考点:三角函数的最值.专题:三角函数的求值.分析:化简已知函数换元可得y=t3﹣t2﹣t+1,t∈[﹣1,1],由导数法判单调性可得当t=时,y取最大值,代值计算可得.解答:解:化简可得f(x)=cos3x+sin2x﹣cosx=cos3x+1﹣cos2x﹣cosx令cosx=t,则t∈[﹣1,1],换元可得y=t3﹣t2﹣t+1,t∈[﹣1,1],求导数可得y′=3t2﹣2t﹣1=(3t+1)(t﹣1),令y′=(3t+1)(t﹣1)<0可解得﹣<t<1,令y′=(3t+1)(t﹣1)>0可解得t<﹣或t>1,∴函数y=t3﹣t2﹣t+1在(﹣1,﹣)上单调递增,在(,1)上单调递减,∴当t=时,y取最大值故选:C点评:本题考查三角函数的最值,换元后由导数法判单调性是解决问题的关键,属中档题.9.已知M=+++…++,则M=()A.B.C.D.考点:数列的求和.专题:计算题;导数的综合应用.分析:由二项式定理得到,两边求定积分得答案.解答:解:由,得:=,∴,即=+++…++,∴M=+++…++=,故选:A.点评:本题考查了数列的求和,考查了数学转化思想方法,关键是二项式定理和定积分的应用,是中档题.10.已知平面向量满足:,若,则的取值范围是()A.B.C.D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据已知条件以线段AB所在直线为x轴,线段AB的中垂线为y轴建立平面直角坐标系,P点和M点关于原点对称,点Q在y轴上,从而设出P,M,A,B,Q的坐标:P(x,y),M (﹣x,﹣y),A(a,0),B(﹣a,0),Q(0,﹣),从而根据|PO|=|a|,便得到,根据两点间距离公式从而求出的范围,从而得出||范围.解答:解:如图,以线段AB所在直线为x轴,线段AB的中垂线为y轴,建立平面直角坐标系;=2,∴Q点在y轴上;设P(x,y),M(﹣x,﹣y),A(a,0),Q(0,);△PAB为Rt△;∴|PO|=|a|,又0≤;∴;∴;=;∴;∴;∴的取值范围为.故选:C.点评:考查通过建立平面直角坐标系解决向量问题、几何问题的方法,中垂线上的点到线段两端的距离相等,关于原点对称的点的坐标的关系,以及两点间距离公式.二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答题卡对应题号位置上.答错位置,书写不清,模棱两可均不得分.11.设随机变量X服从正态分布N(3,1),且P(2≤X≤4)=0.68,则P(X>4)= 0.16 .考点:正态分布曲线的特点及曲线所表示的意义.专题:计算题;概率与统计.分析:根据题目中:“正态分布N(3,1)”,画出其正态密度曲线图:根据对称性,由(2≤X≤4)的概率可求出P(X>4).解答:解:P(3≤X≤4)=P(2≤X≤4)=0.34,观察图得,∴P(X>4)=0.5﹣P(3≤X≤4)=0.5﹣0.34=0.16.故答案为:0.16.点评:本题主要考查正态分布曲线的特点及曲线所表示的意义,注意根据正态曲线的对称性解决问题.12.一个几何体的三视图如图,则这个几何体的表面积为(8+2)cm .考点:由三视图求面积、体积.专题:立体几何.分析:首先根据三视图把几何体的立体图复原出来进一步利用表面积公式求出结果.解答:解:根据三视图得知:该几何体为底面是直角边长为2cm和1cm的直角三角形,高为2cm的直三棱柱则:S表=S侧+2S底=8+2故答案为:(8+2)cm点评:本题考查的知识要点:三视图和几何体的关系,几何体的表面积公式的应用.主要考查学生的应用能力和空间想象能力.13.在正方体的8个顶点,12条棱的中点,6个面的中心及正方体的中心共27个点中,共线的三点组的个数是49 .考点:计数原理的应用;棱柱的结构特征.专题:计算题;概率与统计.分析:根据题意,结合正方体的结构特征,分3种情况讨论:①、三点都在正方体的棱上,②、以6个面的中心为中点,③、以正方体的中心为中点,分别求出每种情况下三点共线的情况数目,由分类计数原理计算可得答案.解答:解:根据题意,在所给的正方体的27个点中,三点共线的情况有3种:①、三点都在正方体的棱上,正方体有12条棱,即有12种情况;②、以6个面的中心为中点,正方体有6个面,每个面有4种情况,共有4×6=24种情况,③、以正方体的中心为中点,共有26÷2=13种情况,则共有12+24+13=49种,即共线的三点组的个数是49;故答案为:49.点评:本题考查分类计数原理的应用,解题的关键在于掌握正方体的结构特点并判断三点共线的情况.14.已知曲线Γ:ρ=,θ∈R与曲线C:,t∈R相交于A,B两点,又原点O(0,0),则|OA|•|OB|= .考点:参数方程化成普通方程.专题:坐标系和参数方程.分析:首先把曲线的极坐标方程转换为直角坐标方程,进一步把参数方程转化为直角坐标方程,建立方程组求出交点的坐标,最后利用两点间的距离公式求出结果.解答:解:曲线Γ:ρ=,θ∈R转化成:,转化成直角坐标方程为:,整理得:3x2+4y2﹣6x﹣9=0,曲线C:,t∈R转化为直角坐标方程为:y=,所以:,解得:或所以:|OA|=2,则:|OA||OB|=.故答案为:.点评:本题考查的知识要点:极坐标方程的互化,参数方程与直角坐标方程的互化,解方程组问题的应用,两点间的距离公式的应用,主要考查学生的应用能力.15.在△ABC中,内角A,B,C的所对边分别是a,b,c,有如下下列命题:①若A>B>C,则sinA>sinB>sinC;②若,则△ABC为等边三角形;③若sin2A=sin2B,则△ABC为等腰三角形;④若(1+tanA)(1+tanB)=2,则△ABC为钝角三角形;⑤存在A,B,C,使得tanAtanBtanC<tanA+tanB+tanC成立.其中正确的命题为①②④(写出所有正确命题的序号)考点:同角三角函数基本关系的运用.专题:三角函数的求值.分析:①已知不等式利用正弦定理化简,整理得到结果,即可做出判断;②已知等式利用正弦定理化简,整理得到结果,即可做出判断;③已知等式利用正弦函数的性质化简,整理得到结果,即可做出判断;④已知等式整理后,利用两角和与差的正切函数公式化简,求出C的度数,即可做出判断;⑤由A,B,C为三角形内角,得到tan(A+B)=tan(π﹣C)=﹣tanC,利用两角和与差的正切函数公式化简,整理得到tanA+tanB+tanC=tanAtanBtanC,故本选项错误.解答:解:①∵A>B>C,∴a>b>c,又===2R,∴sinA=,sinB=,sinC=,2R为定值,∴sinA>sinB>sinC,此选项正确;②∵==,由正弦定理得:a=2R•sinA,b=2R•sinB,c=2R•sinC代入,得==,∴==,即tanA=tanB=tanC,∴A=B=C,则△ABC是等边三角形,本选项正确;③∵sin2A=sin2B,∴2A=2B或2A+2B=π,即A=B或A+B=,则△ABC为等腰三角形或直角三角形,本选项错误;④∵(1+tanA)(1+tanB)=2,即1+tanA+tanB+tanAtanB=2,∴tanA+tanB+tanAtanB=1,即tanA+tanB=1﹣tanAtanB,∴=1,即tan(A+B)=1,∴A+B=,即C=,则△ABC为钝角三角形,本选项正确;⑤若A、B、C有一个为直角时不成立,若A、B、C都不为直角,∵A+B=π﹣C,∴tan(A+B)=tan(π﹣C),即=﹣tanC,则tanA+tanB=﹣tanC+tanAtanBtanC,∴tanA+tanB+tanC=tanAtanBtanC,即⑤错误,故答案为:①②④点评:此题考查了同角三角函数间的基本关系,正弦定理,两角和与差的正切函数公式,熟练掌握基本关系是解本题的关键.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.已知函数f(x)=sin2x+2sinxcosx﹣cos2x,x∈R.求:(Ⅰ)函数f(x)的单调增区间;(Ⅱ)若,求函数f(x)的值域.考点:三角函数中的恒等变换应用;正弦函数的图象.专题:三角函数的求值;三角函数的图像与性质.分析:(Ⅰ)首先通过三角函数的关系式的恒等变换,把函数的关系式变性成正弦型函数,进一步利用整体思想求出函数的单调递增区间.(Ⅱ)进一步利用三角函数的定义域求出正弦型函数的值域.解答:解:(I)函数f(x)=sin2x+2sinxcosx﹣cos2x=,x∈R令解得:,所以:f(x)的单调增区间为:(k∈Z)(II)由,所以:从而有:,故:因此:函数f(x)的值域:点评:本题考查的知识要点:三角函数关系式的恒等变换,利用整体思想求正弦型函数的单调递增区间,利用三角函数的定义域求正弦型函数的值域.主要考查学生的应用能力.17.某校一个研究性学习团队从网上查得,某种植物种子在一定条件下的发芽成功的概率为,于是该学习团队分两个小组进行验证性实验.(Ⅰ)第一小组做了5次这种植物种子的发芽实验(每次均种下一粒种子),求他们的实验至少有3次成功的概率;(Ⅱ)第二小组做了若干次发芽实验(每次均种下一粒种子),如果在一次实验中种子发芽成功就停止实验,否则就继续进行下次实验.直到种子发芽成功为止,但实验的次数不超过5次.求这一小组所做的种子发芽实验次数ξ的分布列和期望.考点:离散型随机变量的期望与方差;相互独立事件.专题:计算题.分析:(I)本题是一个独立重复的实验,利用n次对立重复实验恰好发生k次的概率公式与互斥事件的概率求出他们的实验至少有3次成功的概率;(II)依题意判断出随机变量ξ可取的值及取每一个值的概率值,列出分布列,根据期望的公式求出这一小组所做的种子发芽实验次数ξ的分布列和期望.解答:解:(Ⅰ)至少有3次成功包括3次、4次和5次成功,即:(4分)(Ⅱ)依题意有:ξ1 2 3 4 5P(4分)点评:本题考查等可能事件的概率,考查离散型随机变量的分布列和期望,求离散型随机变量的分布列和期望是近年来理科高考必出的一个问题,题目做起来不难,运算量也不大,只要注意解题格式就问题不大.18.如图,在四棱锥P﹣ABCD中,底面ABCD是直角梯形,∠BAD=∠CDA=90°,PA⊥平面ABCD,PA=AD=AB=2,CD=1,M,N分别是PD、PB的中点.(1)证明:直线NC∥平面PAD;(2)求平面MNC与地面ABCD所成的锐二面角的余弦值.(3)求三菱锥P﹣MNC的体积V.考点:棱柱、棱锥、棱台的体积;直线与平面平行的判定;二面角的平面角及求法.专题:空间位置关系与距离.分析:(1)由已知想到取PA中点Q,连接NQ,DQ,然后利用三角形的中位线定理证明NC∥DQ,再由线面平行的判断得答案;(2)找出平面MNC与底面ABCD的交线,然后利用三垂线定理得到平面MNC与底面ABCD所成的锐二面角,再通过解直角三角形得答案;(3)利用等积法求出A到平面PMN的距离,得到C到平面PMN 的距离,再求出平面PMN的面积,得到三棱锥C﹣PMN的体积,即三菱锥P﹣MNC的体积V.解答:(1)证明:如图,取PA中点Q,连接NQ,DQ,∵N、Q分别为PB、PA的中点,∴NQ∥AB,NQ=,又DC∥AB,DC=,∴NQ∥DC,NQ=DC,则四边形DCNQ为平行四边形,∴NC∥DQ,DQ⊂面PAD,NC⊄面PAD,∴直线NC∥平面PAD;(2)解:连接BD,∵M、N分别为PD、PB中点,∴MN∥BD,过C作l∥BD,则MN∥l,∴平面MNC∩平面ABCD=l,取AD中点S,连接CS,∴CS⊥l,连接MC,则∠MCS为平面MNC与底面ABCD所成的锐二面角,∵PA=AD=AB=2,CD=1,∴MS=1,SC=,则MC=,∴cos;(3)解:设SC∩BD=R,由题意可得:SR=CR,∴C与S到平面PMN的距离相等,又S为AD的中点,∴S到平面PMN的距离等于A到平面PMN距离的一半,设A到平面PMN距离为h,由PA⊥AB⊥AD,PA=AD=AB=2,则由等积法得:h,解得h=,∴C到平面PMN的距离为,又三角形PMN为边长是的正三角形,∴,∴.点评:本小题主要考查空间线面关系、二面角的度量、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力,是中档题.19.已知函数,(x≥0),又数列{a n}中,a n>0,a1=2,该数列的前n项和记为S n,对所有大于1的自然数n都有S n=f(S n﹣1).(Ⅰ)求{a n}的通项公式;(Ⅱ)记b n=,{b n}其前n项和为T n,证明:T n<n+1.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(Ⅰ)由,S n=f(S n﹣1)知:,可得,利用等差数列的通项公式可得,再利用递推式即可得出a n.(Ⅱ)b n==,利用“裂项求和”即可得出.解答:(Ⅰ)解:由,S n=f(S n﹣1)知:,又a n>0,a1=2,S n>0,∴,即:是以为首项,为公差的等差数列,∴,,∴当n≥2时,a n=S n﹣S n﹣1=4n﹣2,当n=1时也成立,∴a n=4n﹣2.(Ⅱ)证明:=,T n=<n+1.点评:本题考查了等差数列的通项公式、递推式的应用、“裂项求和”方法、不等式的性质、“放缩法”,考查了推理能力与计算能力,属于中档题.20.已知F1、F2分别是椭圆的左、右焦点,P 是此椭圆上的一动点,并且的取值范围是.(Ⅰ)求此椭圆的方程;(Ⅱ)点A是椭圆的右顶点,直线y=x与椭圆交于B、C两点(C 在第一象限内),又P、Q是椭圆上两点,并且满足,求证:向量共线.考点:直线与圆锥曲线的综合问题;平行向量与共线向量;椭圆的标准方程.专题:综合题.分析:(I)由题意设P(x0,y0),F1(﹣c,0),F2(c,0)利用的取值范围所以∠PCQ的平分线垂直于x轴.是,得到a,b的方程,求解即可;(II)有的平分线平行,所以∠PCQ的平分线垂直于x轴,进而建立方程,解出C点,再设出PC方程进而得到QC的方程,把它与椭圆方程联立得到直线PQ的斜率,与直线AB比较即可求证.解答:解:(Ⅰ)设P(x0,y0),F1(﹣c,0),F2(c,0),其中,.从而.由于,即.又已知,所以从而椭圆的方程是.(Ⅱ)因为的平分线平行,所以∠PCQ的平分线垂直于x轴.由解得.不妨设PC的斜率为k,则QC的斜率为﹣k,因此PC和QC的方程分别为y=k(x﹣1)+1,y=﹣k(x﹣1),其中消去y并整理得(1+3k2)x2﹣6k(k﹣1)x+3k2﹣6k﹣1=0(*).∵C(1,1)在椭圆上,∴x=1是方程(*)的一个根.从而,同理,从而直线PQ的斜率为.又知A(2,0),B(﹣1,﹣1),所以,∴向量与共线.点评:(I)此问考查了设处点的坐标,把已知的向量关系的等式建立成坐标之间的关系式,还考查了椭圆的基本性质及求解时运用的方程的思想;(II)此问考查了设出直线把椭圆方程与直线方程进行联立,利用根与系数的关系求出P与Q的坐标,还考查了直线的斜率公式.21.设函数f(x)=xlnx.(Ⅰ)求f(x)的极值;(Ⅱ)设g(x)=f(x+1),若对任意的x≥0,都有g(x)≥mx 成立,求实数m的取值范围;(Ⅲ)若0<a<b,证明:0<f(a)+f(b)﹣2f()<(b ﹣a)ln2.考点:利用导数研究函数的极值;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:导数的概念及应用;导数的综合应用.分析:(Ⅰ)对函数求导,然后令导数为零,再判断导数为零的点左右两侧的导数符号,确定极大值或极小值;(Ⅱ)这是一个不等式恒成立问题,所以可将问题转化为函数的最值问题求解;(Ⅲ)证明此类不等式问题,可以根据要证的式子特点构造函数,然后利用函数的单调性、最值解决问题.解答:解:(Ⅰ)f'(x)=1+lnx,(x>0).令f'(x)=0,解得:,且当时,f'(x)<0,时,f'(x)>0,因此:f(x)的极小值为;(Ⅱ)g(x)=f(x+1)=(x+1)ln(x+1),令h(x)=(x+1)ln(x+1)﹣mx,则h'(x)=ln(x+1)+1﹣m,注意到:h(0)=0,若要h(x)≥0,必须要求h'(0)≥0,即1﹣m≥0,亦即m≤1;另一方面:当m≤1时,h'(x)=ln(x+1)+1﹣m≥0恒成立;故实数m的取值范围为:m≤1;(Ⅲ)构造函数,x>a,又∵x>a,∴0<a+x<2x,F'(x)>0,F(x)在(a,+∞)上是单调递增的;故F(b)>F(a)=0,即:.另一方面,构造函数,G(x)在(a,+∞)上是单调递减的,故G(b)<G(a)=0即:,综上,.点评:本题考查了导数在研究函数的单调性、极值、最值问题中的应用,要注意恒成立问题转化为函数最值问题来解的典范思路,注意体会和总结.。

2020年高考全国卷Ⅱ数学(理)试卷(含解析)

2020年高考全国卷Ⅱ数学(理)试卷(含解析)

2020年高考全国卷Ⅱ数学(理)试卷一、选择题1.已知集合U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则∁U(A∪B)=()A.{−2,3}B.{−2,2,3}C.{−2,−1,0,3}D.{−2,−1,0,2,3}2.若α为第四象限角,则()A.cos2α>0B.cos2α<0C.sin2α>0D.sin2α<03.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天新订单是1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x−y−3=0的距离为()A.√55B.2√55C.3√55D.4√556.数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+⋯+a k+10=215−25,则k=()A.2B.3C.4D.57.如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()A.EB.FC.GD.H8.设O为坐标原点,直线x=a与双曲线C:x 2a −y2b=1(a>0,b>0)的两条渐近线分别交于D,E两点.若△ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.329.设函数f(x)=ln|2x+1|−ln|2x−1|,则f(x)()A.是偶函数,且(12,+∞)在单调递增B.是奇函数,且(−12,12)在单调递减C.是偶函数,且(−∞,−12)在单调递增D.是奇函数,且(−∞,−12)在单调递减10.已知△ABC是面积为9√34的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A.√3B.32C.1 D.√3211.若2x−2y<3−x−3−y,则()A.ln(y−x+1)>0B.ln(y−x+1)<0C.ln|x−y|>0D.ln|x−y|<012.0−1周期序列在通信技术中有着重要应用.若序列a1a2⋯a n⋯满足a i∈{0,1}(i=1,2,⋯),且存在正整数m,使得a i+m=a i(i=1, 2, ⋯)成立,则称其为0−1周期序列,并称满足a i+m=a i(i=1, 2, ⋯)的最小正整数m为这个序列的周期.对于周期为m的0−1序列a1a2⋯a n⋯,C(k)=1m ∑a i m i=1a 1+k (k =1, 2, ⋯, m −1)是描述其性质的重要指标.下列周期为5的0−1序列中,满足C (k )≤15(k =1,2,3,4)的序列是( )A.11010⋯B.11011⋯C.10001⋯D.11001⋯二、填空题13.已知单位向量a →,b →的夹角为45∘,ka →−b →与a →垂直,则k =________.14.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名学生,则不同的安排方法有________种.15.设复数z 1,z 2满足|z 1|=|z 2|=2,z 1+z 2=√3+i ,则|z 1−z 2|=________.16.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下列命题中所有真命题的序号是________.①p 1∧p 4;②p 1∧p 2;③¬p 2∨p 3;④¬p 3∨¬p 4.三、解答题17.△ABC 中,sin 2A −sin 2B −sin 2C =sinBsinC .(1)求A ;(2)若BC =3,求△ABC 周长的最大值.18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,⋯,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑x i20i=1=60,∑y i 20i=1=1200,∑(x i −x ¯)220i=1=80,∑(y i −y ¯)220i=1=9000,∑(x i −x ¯)20i=1(y i −y ¯)=800.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,⋯,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物短盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数:r =∑(x −x ¯)n (y −y ¯)√∑(x i −x )2n i=1∑(y i −y )2n i=1,√2≈1.414.19已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的右焦点F 与抛物线C 2的焦点重合.C 1的中心与C 2的顶点重合,过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点.且|CD|=43|AB|.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点.若|MF|=5,求C 1与C 2的标准方程.20.如图已知三棱柱ABC −A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1//MN,且平面A1AMN⊥面EB1C1F.(2)设O为△A1B1C1的中心,若AO//面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.21.已知函数f(x)=sin2xsin2x.(1)讨论f(x)在(0,π)上的单调性;(2)证明:|f(x)|≤3√38;(3)证明:sin2xsin22xsin24x⋯sin22n x≤3n4n.22.已知曲线C1,C2的参数方程分别为C1:{x=4cos2θ,y=4sin2θ(B为参数),{x=t+1t,y=t−1t(t为参数).(1)(2)以坐标原点为极点,α轴正半轴为极轴建立极坐标系.设C1,C2的交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.(1)将C1,C2的参数方程化为普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系.设C1,C2的交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.23.已知函数f(x)=|x−a2|+|x−2a+1|.(1)当a=2时,求不等式f(x)≥4的解集;(2)若f(x)≥4,求a的取值范围.2020年高考全国卷Ⅱ数学(理)试卷一、选择1.已知集合U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则∁U(A∪B)=()A.{−2,3}B.{−2,2,3}C.{−2,−1,0,3}D.{−2,−1,0,2,3}【解答】解:由题意可知(A∪B)={−1,0,1,2},故∁U(A∪B)={−2,3}.故选A.2.若α为第四象限角,则()A.cos2α>0B.cos2α<0C.sin2α>0D.sin2α<0【解答】解:∵α为第四象限角,+2kπ<α<2kπ,∴−π2∴−π+4kπ<2α<4kπ,∴2α是第三或第四象限角,∴当2α在第三象限时,cos2α<0,当2α在第四象限时,cos2α>0,故A,B错误;无论2α在第三还是在第四象限,都有sin2α<0.故选D.3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天新订单是1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名【解答】解:因为公司可以完成配货1200份订单,则至少需要志愿者为:1600+500−1200=18名.50故选B.4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块【解答】解:设每一层有n环,由题可知从内到外每环之间构成等差数列,公差d=9,a1=9.由等差数列性质知S n,S2n−S n,S3n−S2n成等差数列,且(S3n−S2n)−(S2n−S n)=n2d,则9n2=729,解得n=9,则三层共有扇形面石板为S3n=S27=27a1+27×262×9=3402块.故选C.5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x−y−3=0的距离为()A.√55B.2√55C.3√55D.4√55【解答】解:设圆心为(a,a),则半径为a,圆过点(2,1),则(a−2)2+(a−1)2=a2,解得a=1或a=5,所以圆心坐标为(1,1)或(5,5),圆心到直线的距离都是d=√5=2√55.故选B.6.数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+⋯+a k+10=215−25,则k=()A.2B.3C.4D.5【解答】解:a m+n=a m a n,取m=1,则a1+n=a1a n.又a1=2,所以a n+1a n=2,所以{a n}是首项,公比均为2等比数列,则a n=2n,所以a k+1+a k+2+⋯+a k+10=2k+1(1−210)1−2=2k+1⋅210−2k+1=215−25,解得k=4.故选C7.如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()A.EB.FC.GD.H【解答】解:该几何体是两个长方体拼接而成,如图所示,显然所求点对应的为E点.故选A.8.设O为坐标原点,直线x=a与双曲线C:x 2a −y2b=1(a>0,b>0)的两条渐近线分别交于D,E两点.若△ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.32【解答】解:双曲线C:x 2a2−y2b2=1(a>0,b>0)的两条渐近线分别为y=±bax,则容易得到|DE|=2b,则S△ODE=ab=8.又因为c2=a2+b2≥2ab=16,即c≥4,焦距2c≥8.故选B.9.设函数f(x)=ln|2x+1|−ln|2x−1|,则f(x)()A.是偶函数,且(12,+∞)在单调递增B.是奇函数,且(−12,12)在单调递减C.是偶函数,且(−∞,−12)在单调递增D.是奇函数,且(−∞,−12)在单调递减【解答】解:函数f(−x)=ln|−2x+1|−ln|−2x−1|=ln|1−2x|−ln|2x+1|=−f(x),∴f(x)为奇函数.当x∈(12,∞,)时,f(x)=ln(2x+1)−ln(2x−1)=ln2x+12x−1=ln(1+22x−1),单调递减;当x∈(−12,12)时,f(x)=ln(2x+1)−ln(1−2x),单调递增;当x∈(−∞,−12)时,f(x)=ln(−2x−1)−ln(1−2x)=ln2x+12x−1=ln(1+22x−1),单调递减.故选D.10.已知△ABC是面积为9√34的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A.√3B.32C.1 D.√32【解答】解:设ABC的外接圆圆心为O1,记OO1=d,圆O1的半径为r,球O半径为R,等边三角形△ABC的边长为a,则S△ABC=√34a2=9√34,可得a=3,所以r=√3=√3.由题知球O的表面积为16π,则R=2,由R2=r2+d2,易得d=1,即O到平面ABC的距离为1.故选C.11.若2x−2y<3−x−3−y,则()A.ln(y−x+1)>0B.ln(y−x+1)<0C.ln|x−y|>0D.ln|x−y|<0【解答】解:2x−3−x<2y−3−y,设f(x)=2x−3−x,则f′(x)=2x ln2+3−x ln3>0,∴函数f(x)在R上单调递增,∵f(x)<f(y),所以x<y,则y−x+1>1,∴ln(y−x+1)>0.故选A.12.0−1周期序列在通信技术中有着重要应用.若序列a1a2⋯a n⋯满足a i∈{0,1}(i=1,2,⋯),且存在正整数m,使得a i+m=a i(i=1, 2, ⋯)成立,则称其为0−1周期序列,并称满足a i+m=a i(i=1, 2, ⋯)的最小正整数m为这个序列的周期.对于周期为m的0−1序列a1a2⋯a n⋯,C(k)=1 m ∑a imi=1a1+k(k=1, 2, ⋯, m−1)是描述其性质的重要指标.下列周期为5的0−1序列中,满足C(k)≤15(k=1,2,3,4)的序列是()A.11010⋯B.11011⋯C.10001⋯D.11001⋯【解答】解:对于A选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+0+0)=15,C(2)=15∑a i5i=1a i+2=15(0+1+0+1+0)−25>15,不满足,排除;对于B 选项,C (1)=15∑a i 5i=1a i+1=15(1+0+0+1+1)=35>15,不满足,排除;对于C 选项,C (1)=15∑a i 5i=1a i+1=15(0+0+0+0+1)=15,C (2)=15∑a i 5i=1a i+2=15(0+0+0+0+0)=0,C (3)=15∑a i 5i=1a i+3=15(0+0+0+0+0)=0,C (4)=15∑a i 5i=1a i+4=15(1+0+0+0+0)=15,满足;对于D 选项,C (1)=15∑a i 5i=1a i+1=15(1+0+0+0+1)=25>0,不满足,排除.故选C .二、填空题已知单位向量a →,b →的夹角为45∘,ka →−b →与a →垂直,则k =________.【解答】解:∵单位向量a →、b →的夹角为45∘,a →−b →与a →垂直,∴(ka →−b →)⋅a →=k −√22=0, ∴k =√22. 故答案为:√22.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名学生,则不同的安排方法有________种.【解答】解:由题意可得,不同的安排方法有C 42A 33=36种.故答案为:36.设复数z 1,z 2满足|z 1|=|z 2|=2,z 1+z 2=√3+i ,则|z 1−z 2|=________.【解答】解:由题设z 1=a +bi ,则z 2=(√3−a)+(1−b )i ,故|z 1|2=a 2+b 2=4,|z2|2=(√3−a)2+(1−b)2=a2+b2−2√3a−2b+4=4,则|z1−z2|2=(2a−√3)2+(2b−1)2=4a2+4b2−4√3a+4b+4=2(a2+b2)+2(a2+b2−2√3a−2b)+4=2×4+4=12,故|z1−z2|=2√3.故答案为:2√3.设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.p2:过空间中任意三点有且仅有一个平面.p3:若空间两条直线不相交,则这两条直线平行.p4:若直线l⊂平面α,直线m⊥平面α,则m⊥l.则下列命题中所有真命题的序号是________.①p1∧p4;②p1∧p2;③¬p2∨p3;④¬p3∨¬p4.【解答】解:对于p1:可设l1与l2相交,所得平面为α.若l3与l1相交,则交点A必在α内,同理,与l2交点B在α内,故直线AB在α内,即l3在α内,故p1为真命题.对于p2:过空间中任意三点,若三点共线,可形成无数多平面,故p2为假命题.对于p3:空间中两条直线的位置关系有相交、平行、异面,故p3为假命题.对于p4:若m⊥α,则m垂直于平面α内的所有直线,故m⊥l,故p4为真命题.综上可知:p1∧p4为真命题,¬p2∨p3为真命题,¬p3∨¬p4为真命题.故答案为:①③④.三、解答题△ABC中,sin2A−sin2B−sin2C=sinBsinC.(1)求A;(2)若BC=3,求△ABC周长的最大值.【解答】解:(1)在△ABC 中,设内角A,B,C 的对边分别为a,b,c ,∵sin 2A −sin 2B −sin 2C =sinBsinC ,由正弦定理得,a 2−b 2−c 2=bc ,即b 2+c 2−a 2=−bc ,由余弦定理得,cosA =b 2+c 2−a 22bc =−12.∵0<A <π,∴A =2π3. (2)由(1)知A =2π3,因为BC =3,即a =3,由余弦定理得,a 2=b 2+c 2−2bccosA ,∴9=b 2+c 2+bc =(b +c )2−bc ,由基本不等式√bc ≤b+c 2知bc ≤(b+c )24, 结合上式得9=(b +c )2−bc ≥34(b +c )2,(b +c )2≤12,∴b +c ≤2√3,当且仅当b =c =√3时取等号,∴△ABC 周长的最大值为3+2√3.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,⋯,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑x i20i=1=60,∑y i 20i=1=1200,∑(x i −x ¯)220i=1=80,∑(y i −y ¯)220i=1=9000,∑(x i −x ¯)20i=1(y i −y ¯)=800.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,⋯,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物短盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数:r=∑(x−x¯)n(y−y¯)√∑(xi−x)2ni=1∑(y i−y)2ni=1,√2≈1.414.【解答】解:(1)由题意可知,1个样区这种野生动物数量的平均数=120020=60,故这种野生动物数量的估计值=60×200=12000;(2)由参考公式得,r=∑(x i−x¯)ni=1(y i−y¯)√∑(xi−x)2ni=1∑(y i−y)2ni=1=√80×9000=6√2≈0.94;(3)由题意可知,各地块间植物短盖面积差异很大,因此在调查时,先确定该地区各地块间植物短盖面积大小并且由小到大排序,每十个分为一组,采用系统抽样的方法抽取20个地块作为样区进行样本统计.已知椭圆C1:x2a2+y2b2=1(a>b>0)的右焦点F与抛物线C2的焦点重合.C1的中心与C2的顶点重合,过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点.且|CD|=43|AB|.(1)求C1的离心率;(2)设M是C1与C2的公共点.若|MF|=5,求C1与C2的标准方程.【解答】解:(1)F为C1的焦点且AB⊥x轴,∴F(c,0),|AB|=2b2a,设C2的标准方程为y2=2px(p>0),∵F为C2的焦点且AB⊥x轴,∴F(p2,0).由抛物线的定义可得,|CD|=2p.∵|CD|=43|AB|.C1与C2焦点重合,∴{c=p2,2p=43×2b2a,消去p得:4c=8b 23a,∴3ac=2b2,∴3ac=2a2−2c2,设C1的离心率为e,则2e2+3e−2=0,∴e=12或e=−2(舍),故C1的离心率为12.(2)由(1)知a=2c,b=√3c,p=2c.∴C1:x24c2+y23c2=1,C2:y2=4cx,联立两曲线方程,消去y得3x2+16cx−12c2=0,∴(3x−2c)(x+6c)=0,∴x=23c或x=−6c(舍),从而|MF|=x+p2=23c+c=53c=5,∴c=3,∴C1与C2的标准方程分别为x 2+y2=1,y2=12x.如图已知三棱柱ABC−A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1//MN,且平面A1AMN⊥面EB1C1F.(2)设O为△A1B1C1的中心,若AO//面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.【解答】(1)证明:∵M,N分别为BC,B1C1的中点,底面为正三角形,∴B1N=BM,四边形BB1NM为矩形,A1N⊥B1C1,∴BB1//MN,而AA1//BB1,MN⊥B1C1∴AA1//MN,又∵MN∩A1N=N,∴面A1AMN⊥面EB1C1F.(2)∵三棱柱上下底面平行,平面EB1C1F与上下底面分别交于B1C1,∴EF//B1C1//BC.∵AO//面EB1C1F,AO⊂面AMNA1,面AMNA1∩面EB1C1F=PN,∴AO//PN,四边形APNO为平行四边形,而O为正三角形的中心,AO=AB,∴A1N=3ON,AM=3AP,PN=BC=B1C1=3EF.由(1)知直线B1E在平面A1AMN内的投影为PN直线B1E与平面A1AMN所成角即为等腰梯形EFC1B1中B1E与PN所成角在等腰梯形EFC1B1中,令EF=1,过E作EH⊥B1C1于H,则PN=B1C1=EH=3,B1H=1,B1E=√10,sin∠B1EH=B1HB1E =√1010.已知函数f(x)=sin2xsin2x.(1)讨论f(x)在(0,π)上的单调性;(2)证明:|f(x)|≤3√38;(3)证明:sin2xsin22xsin24x⋯sin22n x≤3n4n.【解答】(1)解:∵f (x )=2sin 3xcosx ,∴f ′(x )=2sin 2x (3cos 2x −sin 2x )=−8sin 2xsin (x +π3)sin (x −π3).当x ∈(0,π3)时,f ′(x )>0, f (x )单调递增;当x ∈(π3,2π3)时,f ′(x )<0, f (x )单调递减; 当x ∈(2π3,π)时,f ′(x )>0, f (x )单调递增;(2)证明:由f (x )=2sin 3xcosx 得,f (x )为R 上的奇函数. f 2(x )=4sin 6xcos 2x=4(1−cos 2x )3cos 2x=4(1−cos 2x )3×3cos 2x ≤43×((3−3cos 2x+3cos 2x)4)4=(34)3.当1−cos 2x =3cos 2x ,即cosx =±12时等号成立,故|f (x )|≤3√38. (3)证明:由(2)知:sin 2xsin2x ≤3√38=(34)32; sin 22xsin4x ≤3√38=(34)32; sin 222xsin23x ≤3√38=(34)32;⋯; sin 22n−1xsin2n x ≤3√38=(34)32, ∴sin 2xsin 32xsin 34x ⋯sin 32n−1xsin 22n x ≤(34)3n 2,∴sin 3xsin 32xsin 34x ⋯sin 32n−1xsin 32n x =sinx(sin 2xsin 32xsin 34x ⋯sin 32n−1xsin 22n x)sin2n x ≤(34)3n 2, ∴sin 2xsin 22xsin 24x ⋯sin 22n x ≤3n 4n .已知曲线C 1,C 2的参数方程分别为C 1:{x =4cos 2θ,y =4sin 2θ(B 为参数),{x =t +1t ,y =t −1t (t 为参数).(1)(2)以坐标原点为极点,α轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【解答】11已知函数f (x )=|x −a 2|+|x −2a +1|.(1)当a =2时,求不等式f (x )≥4的解集;(2)若f (x )≥4,求a 的取值范围.【解答】解:(1)当a =2时,f (x )={7−2x ,x ≤3,1,3<x ≤4,2x −7,x >4.因此,不等式f (x )≥4的解集为{x|x ≤32或x ≥112}.(2)因为f (x )=|x −a 2|+|x −2a +1|≥|a 2−2a +1|=(a −1)2, 故当(a −1)2≥4,即|a −1|≥2时,f (x )≥4,所以当a ≥3或a ≤−1时,f (x )≥4;当−1<a <3时,f (a 2)=|a 2−2a +1|=(a −1)2<4. 所以a 的取值范围是(−∞,−1]∪[3,+∞).。

2020年高考数学(理)真题与模拟题分类训练 专题11 不等式、推理与证明、算法初步、复数(教师版含

2020年高考数学(理)真题与模拟题分类训练 专题11 不等式、推理与证明、算法初步、复数(教师版含

专题11 不等式、推理与证明、算法初步、复数1.【2020年高考全国Ⅰ卷理数】若z =1+i ,则|z 2–2z |= A .0 B .1CD .2【答案】D【解析】由题意可得:2i (2i)(12i)5ii 12i (12i)(12i)5----===-++-,则()222212z z i i -=-+=-. 故2222z z -=-=. 故选:D .【点睛】本题主要考查复数的运算法则和复数的模的求解等知识,属于基础题. 2.【2020年高考全国III 卷理数】复数113i-的虚部是 A .310- B .110-C .110D .310【答案】D 【解析】因为i i i i 1131313(13)(i 13)1010z +===+--+, 所以复数113i z =-的虚部为310. 故选:D .【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题. 3.【2020年新高考全国Ⅰ】2i12i-=+ A .1 B .−1 C .i D .−i【答案】D【解析】2(2)(12)512(12)(i i i ii i 12)i i 5----===-++- 故选:D【点睛】本题考查复数除法,考查基本分析求解能力,属基础题.4.【2020年高考北京】在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅= A .1i 2+ B .2i -+C .12i -D .2i --【答案】B【解析】由题意得12i z =+,i i 2z ∴=-.故选:B .【点睛】本题考查复数几何意义以及复数乘法法则,考查基本分析求解能力,属基础题. 5.【2020年新高考全国Ⅰ】已知a >0,b >0,且a +b =1,则 A .2212a b +≥B .122a b ->C .22log log 2a b +≥-D 【答案】ABD【解析】对于A ,()222221221a b a a a a +=+-=-+21211222a ⎛⎫⎪⎭+ ⎝≥-=,当且仅当12a b ==时,等号成立,故A 正确; 对于B ,211a b a -=->-,所以11222a b-->=,故B 正确;对于C ,2222221log log log log log 224a b a b ab +⎛⎫+=≤==- ⎪⎝⎭, 当且仅当12a b ==时,等号成立,故C 不正确;对于D ,因为2112a b =+≤++=,≤,当且仅当12a b ==时,等号成立,故D 正确; 故选:ABD.【点睛】本题主要考查不等式的性质,综合了基本不等式,指数函数及对数函数的单调性,侧重考查数学运算的核心素养.6.【2020年高考浙江】若实数x ,y 满足约束条件31030x y x y -+≤⎧⎨+-≥⎩,则2z x y =+的取值范围是A .(,4]-∞B .[4,)+∞C .[5,)+∞D .(,)-∞+∞【答案】B【解析】绘制不等式组表示的平面区域如图所示,目标函数即:1122y x z =-+, 其中z 取得最大值时,其几何意义表示直线系在y 轴上的截距最大, z 取得最小值时,其几何意义表示直线系在y 轴上的截距最小, 据此结合目标函数的几何意义可知目标函数在点A 处取得最小值,联立直线方程:31030x y x y -+=⎧⎨+-=⎩,可得点A 的坐标为:()2,1A ,据此可知目标函数的最小值为:min 2214z =+⨯= 且目标函数没有最大值.故目标函数的取值范围是[)4,+∞. 故选:B【点睛】求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.7.【2020年高考全国Ⅰ卷理数】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A .14 B .12C .14D .12【答案】C【解析】如图,设,CD a PE b ==,则PO ==由题意212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得b a =负值舍去). 故选:C .【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题. 8.【2020年高考浙江】设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有2个元素,且S ,T 满足:①对于任意的x ,y ∈S ,若x ≠y ,则xy ∈T ;②对于任意的x ,y ∈T ,若x <y ,则yx∈S .下列命题正确的是 A .若S 有4个元素,则S ∪T 有7个元素 B .若S 有4个元素,则S ∪T 有6个元素 C .若S 有3个元素,则S ∪T 有5个元素 D .若S 有3个元素,则S ∪T 有4个元素 【答案】A【解析】首先利用排除法:若取{}1,2,4S =,则{}2,4,8T =,此时{}1,2,4,8S T =,包含4个元素,排除选项D ; 若取{}2,4,8S =,则{}8,16,32T =,此时{}2,4,8,16,32ST =,包含5个元素,排除选项C ;若取{}2,4,8,16S =,则{}8,16,32,64,128T =,此时{}2,4,8,16,32,64,128S T =,包含7个元素,排除选项B ;下面来说明选项A 的正确性:设集合{}1234,,,S p p p p =,且1234p p p p <<<,*1234,,,p p p p N ∈,则1224p p p p <,且1224,p p p p T ∈,则41p S p ∈, 同理42p S p ∈,43p S p ∈,32p S p ∈,31p S p ∈,21p S p ∈, 若11p =,则22p ≥,则332p p p <,故322p p p =即232p p =, 又444231p p p p p >>>,故442232p p p p p ==,所以342p p =, 故{}232221,,,S p p p =,此时522,p T p T ∈∈,故42p S ∈,矛盾,舍.若12p ≥,则32311p p p p p <<,故322111,p p p p p p ==即323121,p p p p ==, 又44441231p p p p p p p >>>>,故441331p p p p p ==,所以441p p =, 故{}2341111,,,S p p p p =,此时{}3456711111,,,,p p p p p T ⊆.若q T ∈, 则31q S p ∈,故131,1,2,3,4i qp i p ==,故31,1,2,3,4i q p i +==, 即{}3456711111,,,,q p p p p p ∈,故{}3456711111,,,,p p p p p T =, 此时{}234456711111111,,,,,,,S T p p p p p p p p ⋃=即S T 中有7个元素.故A 正确. 故选:A .【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.9.【2020年高考全国II 卷理数】0-1周期序列在通信技术中有着重要应用.若序列12na a a 满足{0,1}(1,2,)i a i ∈=,且存在正整数m ,使得(1,2,)i m i a a i +==成立,则称其为0-1周期序列,并称满足(1,2,)i m i a a i +==的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12na a a ,11()(1,2,,1)mi i k i C k a a k m m +===-∑是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是A .11010B .11011C .10001D .11001【答案】C【解析】由i m i a a +=知,序列i a 的周期为m ,由已知,5m =,511(),1,2,3,45i i k i C k a a k +===∑对于选项A ,511223344556111111(1)()(10000)55555i i i C a a a a a a a a a a a a +===++++=++++=≤∑52132435465711112(2)()(01010)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;对于选项B ,51122334455611113(1)()(10011)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;对于选项D ,51122334455611112(1)()(10001)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;故选:C【点晴】本题考查数列的新定义问题,涉及到周期数列,考查学生对新定义的理解能力以及数学运算能力,是一道中档题.10.【2020年高考全国Ⅰ卷理数】若x ,y 满足约束条件220,10,10,x y x y y +-≤⎧⎪--≥⎨⎪+≥⎩则z =x +7y 的最大值为 . 【答案】1【解析】绘制不等式组表示的平面区域如图所示,目标函数7z x y =+即:1177y x z =-+, 其中z 取得最大值时,其几何意义表示直线系在y 轴上的截距最大, 据此结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程:22010x y x y +-=⎧⎨--=⎩,可得点A 的坐标为:1,0A ,据此可知目标函数的最大值为:max 1701z =+⨯=. 故答案为:1.【点睛】求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.11.【2020年高考全国III 卷理数】若x ,y 满足约束条件0201x y x y x +≥⎧⎪-≥⎨⎪≤⎩,,,则32z x y =+的最大值为__________.【答案】7【解析】不等式组所表示的可行域如图因为32z x y =+,所以322x zy =-+,易知截距2z 越大,则z 越大, 平移直线32x y =-,当322x zy =-+经过A 点时截距最大,此时z 最大, 由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩,(1,2)A , 所以max 31227z =⨯+⨯=. 故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.12.【2020年高考全国II 卷理数】设复数1z ,2z 满足12||=||=2z z,12i z z +=+,则12||z z -=__________.【答案】【解析】方法一:设1,(,)z a bi a R b R =+∈∈,2,(,)z c di c R d R =+∈∈,12()z z a c b d i i ∴+=+++=,1a cb d ⎧+=⎪∴⎨+=⎪⎩12||=||=2z z ,所以224a b +=,224cd +=, 222222()()2()4a c b d a c b d ac bd ∴+++=+++++= 2ac bd ∴+=-12()()z z a c b d i ∴-=-+-====故答案为:方法二:如图所示,设复数12z ,z 所对应的点为12Z ,Z ,12OP OZ OZ =+, 由已知1232OZ OZ OP =+===,∴平行四边形12OZ PZ 为菱形,且12,OPZ OPZ 都是正三角形,∴12Z 120OZ ∠=︒,222221212121||||||2||||cos12022222()122Z Z OZ OZ OZ OZ =+-︒=+-⋅⋅⋅-=∴1212z z Z Z -==【点睛】方法一:本题考查复数模长的求解,涉及到复数相等的应用;考查学生的数学运算求解能力,是一道中档题.方法二:关键是利用复数及其运算的几何意义,转化为几何问题求解.13.【2020年高考江苏】已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是 ▲ .【答案】3【解析】∵复数()()i 12i z =+- ∴2i i i 2i 23z =-+-=+ ∴复数的实部为3. 故答案为:3.【点睛】本题考查复数的基本概念,是基础题.14.【2020年高考江苏】已知22451(,)x y y x y +=∈R ,则22x y +的最小值是 ▲ .【答案】45【解析】∵22451x y y +=∴0y ≠且42215y x y -=∴42222221144+5555y y x y y y y -+=+=≥=,当且仅当221455y y =,即2231,102x y ==时取等号. ∴22xy+的最小值为45. 故答案为:45. 【点睛】本题考查了基本不等式在求最值中的应用.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).15.【2020年高考江苏】如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是_____.【答案】3-【解析】由于20x >,所以12y x =+=-,解得3x =-. 故答案为:3-【点睛】本小题主要考查根据程序框图输出结果求输入值,考查指数函数的性质,属于基础题.16.【2020年高考天津】i 是虚数单位,复数8i2i-=+_________. 【答案】3i 2-【解析】()()()()828151032222i i i ii i i i 5----===-++-. 故答案为:3i 2-.【点睛】本题考查复数的四则运算,属于基础题. 17.【2020年高考天津】已知0,0a b >>,且1ab =,则11822a b a b+++的最小值为_________. 【答案】4 【解析】0,0,0a b a b >>∴+>,1ab =,11882222ab ab a b a b a b a b∴++=++++842a b a b +=+≥=+,当且仅当a b +=4时取等号, 结合1ab =,解得22a b ==+,或22a b =+=. 故答案为:4【点睛】本题考查应用基本不等式求最值,“1”合理变换是解题的关键,属于基础题.1.【重庆市江津中学、实验中学等七校2020届高三下学期6月联考】设z =,则在复平面内z 对应的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限【答案】A【解析】1i 21z ===++, ∴在复平面内z对应的点的坐标为12⎫⎪⎪⎝⎭,位于第一象限. 故选:A .【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,属于基础题. 2.【辽宁省锦州市黑山县黑山中学2020届高三6月模拟考试数学】复数()311i iz =--(i 是虚数单位),则z的共轭复数为 A .2i -+ B .2i --C .23i -+D .2i +【答案】A【解析】∵()()()()32211i 1i 1ii 21i 2i i i iiz =--=---=--+=--, ∴2i z =-+. 故选:A .【点睛】本题考查复数代数形式的四则运算和共轭复数,考查运算求解能力,是基础题.3.【山东省日照五莲县丶潍坊安丘市、潍坊诸城市、临沂兰山区2020届高三6月模拟数学试题】若复数1z ,2z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数12z z = A .1- B .1C .3455i -+ D .3455-i 【答案】C【解析】依题意可得22i z =--,所以122i (2i)(2i)34i 2i 555z z ---+===-+--, 故选:C .【点睛】本题考查了复数的几何意义和复数的乘除法运算,属于基础题.4.【河北省正定中学2019-2020学年高三下学期第四次阶段质量检测数学】在复平面内,若复数342i 2iz =++所对应的点位于 A .第一象限 B .第二象限C .第四象限D .虚轴【答案】C【解析】因为3422=4i i iz =++-,所以在复平面上,复数z 表示的点是()41-,,在第四象限, 故选C .【点睛】本题考查复数的运算和复数的几何意义,属于基础题.5.【广东省深圳市高级中学2020届高三下学期5月适应性考试数学】设i 为虚数单位,复数2(i 1)8i 1z -+=+的实部为 A .5 B .5-C .3-D .3【答案】D【解析】()2i 12i -=-,()()()()82i i 182i 610i35i i 1i 1i 12z ----====-++-,实部为3, 故选:D .【点睛】本题考查复数的概念和复数的运算,属于基础题.6.【河北省衡水中学2020届高三下学期(5月)第三次联合考试数学】已知复数2i (2)z =+,则z 的虚部为A .3B .3iC .4D .4i【答案】C【解析】2(2i)34i z =+=+,所以z 的虚部为4. 故选:C .【点睛】本题考查复数代数形式的乘法,复数的相关概念,属于基础题.7.【广西南宁市第三中学2020届高三适应性月考卷】设i 是虚数单位,若复数z 满足()i i 11z -=+,则其共轭复数z = A .i B .i -C .1i -+D .1i --【答案】A【解析】()()()21i 1i2i i i 1i 1i 21z ++===--+=--,所以i z =, 故选:A .【点睛】该题考查的是有关复数的问题,涉及到的知识点有复数的除法运算,复数的共轭复数,属于基础题目.8.【河北省衡水中学2020届高三下学期第九次调研数学】已知复数2(1i)i(1i)z +=-,则下列结论正确的是A .z 的虚部为iB .2z =C .z 的共轭复数1i z =-+D .2z 为纯虚数【答案】D【解析】()()()222i 1i (1i)12i i 2i 22i====1i i(1i)i+11i 1i 1i 2z -++++==+-++-,z 的虚部为1,z =1i z =-,()22i 12i =z +=.故选:D .【点睛】本题考查复数的乘除运算,考查复数的概念,难度容易.9.【广西来宾市2019-2020学年高三5月教学质量诊断性联合考试数学】已知复数1023i iz =-+(i 是虚数单位),则z 的共轭复数是 A .33i -- B .33i +C .1513i 44-- D .1513i 44+ 【答案】B 【解析】1010(3i)10(3i)2i 2i 2i 3i 2i 33i 3i (3i)(3i)10z --=-=-=-=--=-++-, 33i z ∴=+.故选:B【点睛】本题考查复数的除法运算,还考查了求共轭复数,属于基础题.10.【2020届清华大学中学生标准学术能力诊断性测试高三5月测试数学】已知复数z 满足i 4zi=-(其中i 为虚数单位),则z 的虚部为 A .4i B .4C .1D .1-【答案】B 【解析】由i 4iz=-,得2i(4i)4i i 14i z =-=-=+. ∴复数z 的虚部是4.故选:B .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题. 11.【2020届四川省成都市石室中学高三下学期5月月考数学】复数23i32iz -=+,则z z ⋅= A .i B .i -C .1D .1-【答案】C【解析】(23i)(32i)13ii (32i)(32i)13z ---===-+-,i z ∴=,∴1z z ⋅=.故选:C .【点睛】本题考查复数代数形式的乘除运算,考查共轭复数的基本概念,是基础题. 12.【河南省名校联盟2020届高三5月质量检测数学】已知复数z 2ia=+-1(i 为虚数单位,a ∈R )为纯虚数,则实数a = A .52B .52-C .0D .2【答案】B【解析】∵z ()()()2i 2511i 2i 2i 2i 55a a a a ++=+=+=+--+为纯虚数,∴250505a a +⎧=⎪⎪⎨⎪≠⎪⎩,解得a 52=-. 故选B .【点睛】本题考查了根据复数的类型求参数,意在考查学生的计算能力和转化能力.13.【广东省深圳外国语学校2020届高三下学期4月综合能力测试数学】已知集合{}2230A x x x =--≥,202x B x x ⎧⎫+=∈≤⎨⎬-⎩⎭Z ,则A B =A .[]2,1--B .[)1,2-C .{}2,1--D .{}1,2-【答案】C 【解析】{}{22301A x x x x x =--≥=≤-或}3x ≥,{}{}20222,1,0,12x B x Z x Z x x ⎧⎫+=∈≤=∈-≤<=--⎨⎬-⎩⎭,因此,{}2,1A B =--.故选:C .【点睛】本题考查交集的计算,同时也考查了一元二次不等式与分式不等式的求解,考查计算能力,属于基础题.14.【安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学】若1,01a c b ><<<,则下列不等式不正确的是A .20192019log log a b >B .log log c b a a >C .()()cbc b a c b a ->-D .()()cba c a a c a ->-【答案】D【解析】因为1,01a c b ><<<,所以0a c ->,考查指数函数(1)xy a a =>,所以()()c b c ba a a c a a c a ⇔<-<-,所以D 不正确.【点睛】本题考查不等式的基本性质及指数函数的单调性,求解时注意利用分析法判断不等式的正确性.15.【辽宁省葫芦岛市2020届高三5月联合考试数学】某校甲、乙、丙、丁四位同学参加了第34届全国青少年科技创新大赛,老师告知只有一位同学获奖,四人据此做出猜测:甲说:“丙获奖”;乙说:“我没获奖”;丙说:“我没获奖”;丁说:“我获奖了”,若四人中只有一人判断正确,则判断正确的是 A .甲 B .乙C .丙D .丁【答案】C【解析】由题意知,甲和丙的说法矛盾,因此两人中有一人判断正确,故乙和丁都判断错误,乙获奖,丙判断正确. 故选C .【点睛】本题考查了逻辑推理,意在考查学生的逻辑推理能力.16.【2020届河南省商丘周口市部分学校联考高三5月质量检测数学】宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:“松长六尺,竹长两尺,松日自半,竹日自倍,何日竹逾松长?”如图是解决此问题的一个程序框图,其中a 为松长、b 为竹长,则矩形框与菱形框处应依次填A .2a a a =+;a b <B .2aa a =+;a b < C .2a a a =+;a b ≥ D .2aa a =+;a b > 【答案】B【解析】松日自半,则表示松每日增加原来长度的一半,即矩形框应填2aa a =+;何日竹逾松长,则表示竹长超过松长,即松长小于竹长,即菱形框应填ab <. 故选:B【点睛】本小题主要考查补全程序框图,属于基础题.17.【河北省正定中学2019-2020学年高三下学期第四次阶段质量检测数学】圆224610x y x y ++-+=关于直线()800,0ax by a b -+=>>对称,则32a b+的最小值是A .B .3C .154D【答案】B【解析】根据圆的方程可知,圆心坐标为()2,3C -,而直线经过圆心,所以2380a b --+=, 得238a b +=,因为0,0a b >>,所以()3213214312312+388289b a a b a b a b a b ⎛⎫⎛⎫+=⨯+⨯+=⨯+≥+⨯= ⎪ ⎪⎝⎭⎝⎭, 故选:B .【点睛】本题考查圆的对称性,基本不等式的应用,关键在于巧妙地运用“1”,构造基本不等式,属于中档题.18.【重庆市江津中学、实验中学等七校2020届高三下学期6月联考(三诊)数学】2019年10月1日上午,庆祝中华人民共和国成立70周年阅兵仪式在天安门广场隆重举行,这次阅兵不仅展示了我国的科技军事力量,更是让世界感受到了中国的日新月异,去年的阅兵方阵有一个很抢眼,他们就是院校科研方阵,他们是由军事科学院,国防大学,国防科技大学联合组建,若已知甲,乙,丙三人来自上述三所学校,学位分别有学士、硕士、博士学位,现知道:①甲不是军事科学院的,②来自军事科学院的均不是博士,③乙不是军事科学院的,④乙不是博士学位,⑤来自国防科技大学的是硕士,则甲是来自哪个院校的,学位是什么A.国防大学,博士B.国防科技大学,硕士C.国防大学,学士D.军事科学院,学士【答案】A【解析】由①③可知,丙是军事科学院的.进而由②④可知,乙丙不是博士,故甲是博士.进而由⑤可知甲不是来自国防科技大学,所以甲来自国防大学.所以甲来自国防大学,学位是博士.故选A.【点睛】本小题主要考查合情推理,属于基础题.19.【广西南宁市第三中学2020届高三适应性月考卷】运行如图所示的程序算法,则输出的结果为A.2B.12C.13D.132【答案】A【解析】当2a =时, 1k =;当132a =时,3k =; 当132132a ==时,5k =;…;当132a =时,99k =,当2a =时,101k =,跳出循环; 故选:A .【点睛】本题主要考查了循环结构的程序框图,根据框图的流程模拟运行程序发现a 值出现的周期性的变化是解题的关键,属于基础题.20.【广西来宾市2019-2020学年高三5月教学质量诊断性联合考试数学】设实数,x y 满足不等式组4,2,4,x y y x x +≥⎧⎪-≤⎨⎪⎩则11y z x +=+的最小值为 A .13B .15C .13-D .12-【答案】B【解析】作出不等式组所表示的平面区域如下图阴影部分所示, 目标函数11y z x +=+表示平面区域内的点(,)x y 与(1,1)D --连线的斜率, 则11y z x +=+的最小值为()()011415CDk --==--.故选:B 【点睛】本题考查线性规划问题中分式型目标函数求最值问题,属于简单题.21.【河北省衡水中学2020届高三下学期第二次调研数学】执行如图所示的程序框图,输出的结果是A .5B .6C .7D .8【答案】B【解析】1i =,12n =, 第一次循环: 8n =,2i =, 第二次循环:31n =,3i =, 第三次循环:123n =,4i =, 第四次循环:119n =,5i =,第五次循环:475n =,6i =,停止循环, 输出6i =. 故选B .【点睛】本题考查了循环结构流程图和条件结构流程图,属于基础题.22.【广东省深圳市2020届高三下学期第二次调研数学】执行如图的程序框图,如果输入的k =0.4,则输出的n =A .5B .4C .3D .2【答案】C【解析】模拟程序的运行,可得k =0.4,S =0,n =1, S 11133==⨯, 不满足条件S >0.4,执行循环体,n =2,S 11113352=+=⨯⨯(1111335-+-)25=, 不满足条件S >0.4,执行循环体,n =3,S 11111335572=++=⨯⨯⨯(11111133557-+-+-)37=, 此时,满足条件S >0.4,退出循环,输出n 的值为3. 故选:C .【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.23.【2020届清华大学中学生标准学术能力诊断性测试高三5月测试数学】下列程序框图的算法思想源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入16a =,10b =,则程序中需要做减法的次数为A .6B .5C .4D .3【答案】C【解析】由16a =,10b =,满足a b ,满足a b >,则16106a =-=;满足a b ,不满足a b >,则1064b =-=; 满足a b ,满足a b >,则642a =-=; 满足a b ,不满足a b >,则422b =-=; 不满足ab ,则输出2a =;则程序中需要做减法的次数为4, 故选:C .【点睛】本题主要考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.24.【甘肃省西北师大附中2020届高三5月模拟试卷】“辗转相除法”是欧几里得《原本》中记录的一个算法,是由欧几里得在公元前300年左右首先提出的,因而又叫欧几里得算法.如图所示是一个当型循环结构的“辗转相除法”程序框图.当输入2020m =,303n =时,则输出的m 是A .2B .6C .101D .202【答案】C【解析】输入2020m =,303n =,又1r =. ①10r =>,202r =,303m =,202n =; ②2020r =>,3032021101÷=,101r =,202m =,101n ;③1010r =>,0r =,101m =,0n =;④0r =,则0r >否,输出101m =. 故选:C .【点睛】本题主要考查程序框图和计算程序框图的输出值,意在考查学生对这些知识的理解掌握水平. 25.【重庆市第一中学2019-2020学年高三下学期期中数学】冰雹猜想也称奇偶归一猜想:对给定的正整数进行一系列变换,则正整数会被螺旋式吸入黑洞(4,2,1),最终都会归入“4-2-1”的模式.该结论至今既没被证明,也没被证伪. 下边程序框图示意了冰雹猜想的变换规则,则输出的i =A .4B .5C .6D .7【答案】B【解析】由题意,第一次循环,12S Z ∉,35116S =⨯+=,011i =+=,1S ≠; 第二次循环,12S Z ∈,11682S =⨯=,112i =+=,1S ≠; 第三次循环,12S Z ∈,1842S =⨯=,213i =+=,1S ≠;第四次循环,12S Z ∈,1422S =⨯=,314i =+=,1S ≠;第五次循环,12S Z ∈,1212S =⨯=,415i =+=,1S =;此时输出5i =. 故选:B【点睛】本题考查循环结构程序框架图的应用,属于基础题.26.【重庆市南开中学2019-2020学年高三下学期线上期中数学】若某程序框图如图所示,则输出的S 的值是A .31B .63C .127D .255【答案】C【解析】第一次运行,1i =,0S =,8i <成立,则2011S =⨯+=,112i =+=; 第二次运行,2i =,1S =,8i <成立,则2113S =⨯+=,213i =+=; 第三次运行,3i =,3S =,8i <成立,则2317S =⨯+=,314i =+=; 第四次运行,4i =,7=S ,8i <成立,则27115S =⨯+=,415i =+=; 第五次运行,5i =,15S =,8i <成立,则215131S =⨯+=,516i =+=; 第六次运行,6i =,31S =,8i <成立,则231163S =⨯+=,617i =+=; 第七次运行,7i =,63S =,8i <成立,则2631127S =⨯+=,718i =+=; 第八次运行,8i =,127S =,8i <不成立, 所以输出S 的值为127. 故选:C .【点睛】本题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时,一定要注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时,一定要正确控制循环次数;(5)要注意各个框的顺序;(6)在给出程序框图求解输出结果的试题中,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.27.【重庆市南开中学2019-2020学年高三下学期第六次教学质量检测数学】数独起源于18世纪初瑞士数学家欧拉等人研究的一种拉丁方阵,是一种运用纸、笔进行演算的数学逻辑游戏.如图就是一个迷你数独,玩家需要根据66⨯盘面上的已知数字,推理出所有剩余空格的数字,并满足每一行、每一列、每一个粗线宫(32⨯)内的数字均含16-,每一行,每一列以及每一个粗线宫都没有重复的数字出现,则图中的a b c d +++=A .11B .13C .15D .17【答案】D【解析】由题意,如图,从第二列出发,由于每行每列都有1—6,所以第4行第2列为2,第4行第6列为5,所以4610b d +=+=,第2行第3列为6,第5行第3列为4,第5行第5列为6,第3行第5列为4,第3行第1列为5,所以167a c +=+=, 所以a b c d +++=17. 故选:D【点睛】本题考查推理与证明中的合情推理,考查学生分析,观察,判断等能力,是一道容易题.28.【河北省衡水中学2020届高三下学期(5月)第三次联合考试数学】要使得满足约束条件42y xy x x y ⎧⎪-⎨⎪+⎩,的变量,x y 表示的平面区域为正方形,则可增加的一个约束条件为 A .4x y +≤ B .4x y +C .6x y +D .6x y +【答案】C【解析】根据正方形的性质可设新增加的约束条件为x y c +,两组对边的距离相等,故d ===,所以6c =或2c =-(舍去). 如图所示故选:C .【点睛】本题考查二元不等式组表示的平面区域,两平行线间的距离公式的应用,属于基础题. 29.【2020届华大新高考联盟高三4月教学质量测评数学】执行如图所示的程序框图,设输出数据构成集合A ,从集合A 中任取一个元素m ,则事件“函数()2f x x mx =+在[)0,+∞上是增函数”的概率为A .14B .12C .34D .35【答案】C【解析】当20x y =-⇒=; 当2111x y =-+=-⇒=-; 当1100x y =-+=⇒=; 当0113x y =+=⇒=; 当1128x y =+=⇒=; 当213x =+=,退出循环. 所以{}0,1,3,8A =-,又函数()2f x x mx =+在[)0,+∞上是增函数,所以002mm -≤⇒≥. 函数()2f x x mx =+在[)0,+∞上是增函数的概率为34. 故选:C .【点睛】本题主要考查了当型循环结构,以及与集合和古典概型相结合等问题,属于基础题. 30.【江西省景德镇市2019-2020学年高三第三次质检数学】科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到:任画…条线段,然后把它分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了由4条小线段构成的折线,称为“一次构造”;用同样的方法把每一条小线段重复上述步骤,得到由16条更小的线段构成的折线,称为“二次构造”;…;如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度大于初始线段的100倍,则至少需要构造的次数是( )(取lg30.4771≈,lg 20.3010≈)A .16B .17C .24D .25【答案】B【解析】设初始长度为a ,各次构造后的折线长度构成一个数列{}n a , 由题知143a a =,143n n a a +=,则{}n a 为等比数列,4()3n n a a ∴=⋅,假设构造n 次后,折线的长度大于初始线段的100倍,即4()1003n n a a => , 43lg100log 100lg 4lg 3n ∴>=-,lg100216lg 4lg 320.30100.4771=≈-⨯-17n ∴≥【点睛】本题考查了图形的归纳推理,等比数列的实际应用,指数不等式的求解,考查了数形结合的思想.其中对图形进行归纳推理,构造等比数列是关键.属于中档题.。

2020届高考数学(理)二轮重点突击专题卷(2)数列

2020届高考数学(理)二轮重点突击专题卷(2)数列

重点突击专题卷(2)数列1、已知等比数列{}n a 的各项均为正数,前n 项和为n S ,若26442,6a S S a =-=,则5a =( )A .4B .10C .16D .322、已知{}n a 是等比数列,2512,4a a ==,则12231...n n a a a a a a ++++=( ) A.16(14)n -- B.16(12)n -- C.32(14)3n -- D.32(12)3n --3、已知数列{}n a 的通项公式πsin 3n n a =,则124578a a a a a a +++++1011132829...a a a a a ++++++=( )A.0C.4、在数列{}n a 中,12a =-,111nn na a a ++=-,则2013a 等于( ) A.2-B.13-C.12D.35、已知数列{}n a 中,32a =,71a =.若1n a ⎧⎫⎨⎬⎩⎭为等差数列,则9a =( )A.12B.54C.45D.45-6、设等差数列{}n a 的前n 项和为n S ,若3652335a a S +==,,则数列{}n a 的公差为( ) A.2B.3C.6D.97、在等比数列{}n a 中,48,a a 是关于x 的方程21040x x ++=的两个实根,则2610a a a =( ) A.8B.8-C.4D.8或8-8、已知等比数列{}n a 的前n 项和*N ()21n n S a n =⋅+∈,其中a 是常数,则a =( ) A.2-B.1-C.1D.29、已知等比数列|{}n a 中,有31174a a a =,数列{}n b 是等差数列,其前n 项和为n S ,且77b a =,则13S =( )A.26B.52C.78D.10410、设{}n a 为等差数列122,n a S =为其前n 项和,若1013S S =,则公差d =( ) A.-2B.-1C.1D.211、已知等差数列{}n a 的前n 项和为n S ,若1351,,2019m a S a a ===,则m =_______.12、已知数列{}n a 的前项和为n S ,且21n n S a =-,则数列1n a ⎧⎫⎨⎬⎩⎭的前6项和为__________.13、已知数列{}n a 中,*1112,1()n na a n N a +==-∈,则10a = .14、已知数列{}n a 满足 ,1133,2n n a a a n +=-=,那么na n的最小值为 .15、已知数列{}n a ,若1222n a a na n ++⋯+=,则数列{}1n n a a +的前n 项和为___。

2020届高三数学(理人教版)二轮复习高考大题专攻练:11Word版含解析.doc

2020届高三数学(理人教版)二轮复习高考大题专攻练:11Word版含解析.doc

温馨提示:此套题为 Word 版,请按住 Ctrl,滑动鼠标滚轴,调理合适的观看比率,答案分析附后。

封闭Word 文档返回原板块。

高考大题专攻练11.函数与导数 (A 组)大题集训练,练就慧眼和规范,占据高考取胜点!1. 已知函数 f(x)=x ·e x-1 -a(x+lnx),a∈R.世纪金榜导学号92494447(1)若曲线 y=f(x) 在点 (1 ,f(1)) 处的切线为 x 轴,求 a 的值 .(2)在(1) 的条件下,求 f(x) 的单一区间 .(3)若随意 x>0,f(x) ≥ f(m) 恒建立,且 f(m) ≥ 0,求证: f(m) ≥2(m2-m3 ).【分析】 (1)f(x)的定义域是(0,+∞),f ′(x)=e x-1 +x·e x-1 -a,故 f(1)=1-a ,f ′(1)=2-2a ,故切线方程是 y-(1-a)=(2-2a)(x-1),即 y=(2-2a)x+a-1 ;由 2-2a=0,且 a-1=0 ,解得 a=1.(2) 由(1) 得 a=1,f ′(x)=(x+1),令 g(x)=e x-1 -,x∈(0,+∞),因此 g′(x)=e x-1 + >0,故 g(x) 在(0 ,+∞) 上递加,又 g(1)=0 ,x∈(0 ,1) 时, g(x)<g(1)=0 ,此时 f ′(x)<0 ,f(x) 递减,x∈(1 ,+∞) 时, g(x)>g(1)=0 ,此时 f ′(x)>0 ,f(x) 递加,故 f(x) 在(0 ,1) 递减,在 (1 ,+∞ ) 递加 .(3)f ′ (x)=(x+1),令 h(x)=e x-1 -,x∈(0,+∞),h′(x)=e x-1+,①a≤0 时, h(x)>0 ,此时 f ′(x)>0 ,f(x) 递加,无最小值,故 a≤0不切合题意;②a>0 时, h′(x)>0 ,h(x) 在(0 ,+∞) 递加,取实数 b,知足 0<b<min,则 e b-1 <=,-<-2 ,故 h(b)=e b-1 - <-2<0 ,又 h(a+1)=e a->1-=>0,因此存在独一的 x∈(b ,a+1),使得 h(x)=0,即 a=x,000x∈(0 ,x0) 时, h(x)<h(x 0)=0,此时 f ′(x)<0 ,f(x) 递减,x∈(x ,+∞) 时, h(x)>h(x0)=0,此时 f ′(x)>0 ,f(x)递加,故 x=x0时, f(x)取最小值,由题设, x0=m,故 a=m·e m-1,lna=lnm+m-1,f(m)=me m-1(1-m-lnm) ,由 f(m) ≥0,得 1-m-lnm≥0,令ω (m)=1-m-lnm ,明显ω (m) 在(0 ,+∞) 递减 .由于ω (1)=0 ,因此 1-m-lnm≥0,故 0<m≤1,下边证明 e m-1≥m,令 n(m)=e m-1-m,则 n′(m)=e m-1-1 ,m∈(0 ,1) 时, n′(m)<0,n(m)在(0 ,1) 递减,故 m∈(0 ,1] 时, n(m)≥n(1)=0 ,即 e m-1≥m,两边取对数,得 lne m-1≥lnm,即 m-1≥ lnm,-lnm ≥1-m,故 1-m-lnm≥2(1-m) ≥0,m-1m-1223由于 e≥m>0,因此 f(m)=m·e (1-m-lnm) ≥m·2(1-m)=2(m-m ) ,综上, f(m) ≥ 2(m2-m3).2.已知 f(x)=bx-b ,g(x)=(bx-1)e x,b∈R.(1) 若 b≥0,议论 g(x) 的单一性 .(2) 若不等式 f(x)>g(x) 有且仅有两个整数解,求 b 的取值范围 .【分析】(1)g ′(x)=e x (bx+b-1) ,当 b=0 时,g′(x)<0 在 R上恒建立,即 g(x) 在(- ∞, +∞) 上单一递减,当 b>0 时,g′(x)>0 的解集为,即g(x)在上单一递加,在上单一递减 .(2)由不等式 f(x)>g(x) 有且仅有两个整数解得,b(xe x-x+1)<e x有两个整数解 .当 x>0 时, e x-1>0 ,x(e x-1)+1>0 ;当 x<0 时, e x-1<0 ,x(e x-1)+1>0 ,因此, b<有两个整数解,设φ(x)=,则φ′(x)=,令h(x)=2-x-e x,则h ′ (x)=-1-e x<0,又h(0)=1>0 ,h(1)=1-e<0 ,因此存在 x0∈(0 ,1) ,使得 h(x 0)=0 ,因此φ(x) 在(- ∞,x0) 为增函数,在(x 0,+∞ ) 为减函数,因此 b<有两个整数解的充要条件是,解得≤b<1.封闭 Word 文档返回原板块。

2020届全国高考数学(理)刷题11(2019模拟题)模拟重组卷(二)(解析版)(2021年整理)

2020届全国高考数学(理)刷题11(2019模拟题)模拟重组卷(二)(解析版)(2021年整理)

2020届全国高考数学(理)刷题11(2019模拟题)模拟重组卷(二)(解析版)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2020届全国高考数学(理)刷题11(2019模拟题)模拟重组卷(二)(解析版)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2020届全国高考数学(理)刷题11(2019模拟题)模拟重组卷(二)(解析版)(word版可编辑修改)的全部内容。

2020届全国高考数学(理)刷题1+1(2019模拟题)模拟重组卷(二)(解析版)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2019·合肥一中模拟)设z=错误!,错误!是z的共轭复数,则z·错误!=( ) A.-1 B.i C.1 D.4答案C解析z=错误!=错误!=i,则错误!=-i,故z·错误!=i·(-i)=1,故选C.2.(2019·德州二模)已知全集U=Z,A={1,2,3,4},B={x|(x+1)(x -3)〉0,x∈Z},则集合A∩(∁U B)的子集的个数为()A.2 B.4 C.8 D.16答案C解析由题意可得,∁U B={x|(x+1)(x-3)≤0,x∈Z}={x|-1≤x≤3,x ∈Z}={-1,0,1,2,3},则集合A∩(∁U B)={1,2,3},故其子集的个数为23=8,故选C.3.(2019·浙江高考)渐近线方程为x±y=0的双曲线的离心率是()A。

2020—2021年新高考总复习数学(理)二轮复习模拟试题十一及答案解析.docx

2020—2021年新高考总复习数学(理)二轮复习模拟试题十一及答案解析.docx

高考数学二模试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x|>﹣1},集合B={x|1<3x<9},则(∁R A)∩B=()A.(0,1] B.[1,2)C.(1,2)D.(0,1)2.实数(a为实数)的共轭复数为()A.1 B.﹣5 C.﹣1 D.﹣i3.等比数列{a n}中,a2=9,a5=243,则a1与a7的等比中项为()A.±81 B.81 C.﹣81 D.274.以下四个命题中①为了了解800名学生的成绩,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为40;②线性回归直线=x+恒过样本点的中心(,);③随机变量ξ服从正态分布N(2,σ2)(σ>0),若在(﹣∞,1)内取值的概率为0.1,则在(2,3)内的概率为0.4;④概率值为零的事件是不可能事件.其中真命题个数是()A.0 B.1 C.2 D.35.已知平面上不共线的四点O,A,B,C,若﹣4+3=0,则=()A.3 B.4 C.5 D.66.由曲线y=x2﹣2x与直线x+y=0所围成的封闭图形的面积为()A.B.C.D.7.执行如图所示的程序框图,输出的n的值为()A.10 B.11 C.12 D.138.设等差数列{a n}的前n项和为S n,若S6>S7>S5,则满足S n<0的正整数n的最小值为()A.12 B.13 C.14 D.159.某四面体的三视图如图所示,则该四面体的体积是()A.2 B.8 C.D.10.设当x=θ时,函数f(x)=2cosx﹣3sinx取得最小值,则tan θ等于()A.B.﹣C.﹣D.11.已知双曲线﹣=1的左、右焦点分别为F1、F2,过F1作圆x2+y2=a2的切线分别交双曲线的左、右两支于点B、C,且|BC|=|CF2|,则双曲线的渐近线方程为()A.y=±3x B.y=±2x C.y=±(+1)x D.y=±(﹣1)x 12.定义在(﹣1,+∞)上的单调函数f(x),对于任意的x∈(﹣1,+∞),f[f(x)﹣xe x]=0恒成立,则方程f(x)﹣f′(x)=x的解所在的区间是()A.(﹣1,﹣)B.(0,)C.(﹣,0)D.()二、填空题:本大题共4小题,每小题5分.13.若函数f(x)=奇函数,则a的值为______.14.若x,y满足约束条件,则的最小值为______.15.4个半径为1的球两两相切,该几何体的外切正四面体的高是______.16.已知数列{a n}的通项公式a n=n22n,则数列{a n}的前n项和S n=______.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.设△ABC的内角A,B,C的对边分别为a,b,c,且满足sinA+sinB=(cosA+cosB)sinC.(Ⅰ)求证:△ABC为直角三角形;(Ⅱ)若a+b+c=1+,求△ABC面积的最大值.18.如图,PA⊥平面ADE,B,C分别是AE,DE的中点,AE⊥AD,AD=AE=AP=2.(Ⅰ)求二面角A﹣PE﹣D的余弦值;(Ⅱ)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.19.某农庄抓鸡比赛,笼中有16只公鸡和8只母鸡,每只鸡被抓到的机会相等,抓到鸡然后放回,若累计3次抓到母鸡则停止,否则继续抓鸡直到第5次后结束.(Ⅰ)求抓鸡3次就停止的事件发生的概率;(Ⅱ)记抓到母鸡的次数为ξ,求随机变量ξ的分布列及其均值.20.如图,F1,F2是椭圆C:的左、右两个焦点,|F1F2|=4,长轴长为6,又A,B分别是椭圆C上位于x轴上方的两点,且满足=2.(Ⅰ)求椭圆C的方程;(Ⅱ)求直线AF1的方程;(Ⅲ)求平行四边形AA1B1B的面积.21.已知函数f(x)=1﹣x+lnx(Ⅰ)求f(x)的最大值;(Ⅱ)对任意的x1,x2∈(0,+∞)且x2<x1是否存在实数m,使得﹣﹣x1lnx1+x2lnx2>0恒成立;若存在,求出m的取值范围;若不存在,说明理由:(Ⅲ)若正数数列{a n}满足=,且a1=,数列{a n}的前n项和为S n,试比较2与2n+1的大小并加以证明.[选修4-1:几何证明选讲]22.如图,已知AB是⊙O的弦,P是AB上一点.(Ⅰ)若AB=6,PA=4,OP=3,求⊙O的半径;(Ⅱ)若C是圆O上一点,且CA=CB,线段CE交AB于D.求证:△CAD~△CEA.[选修4-4:坐标系与参数方程选讲]23.在直角坐标系xOy中,曲线C的参数方程为(θ为参数),以原点O为起点,x轴的正半轴为极轴,建立极坐标系,已知点P的极坐标为(2,﹣),直线l的极坐标方程为ρcos(+θ)=6.(Ⅰ)求点P到直线l的距离;(Ⅱ)设点Q在曲线C上,求点Q到直线l的距离的最大值.[选修4-5:不等式选讲]24.设函数f(x)=|x+a|﹣|x+1|.(Ⅰ)当a=﹣时,解不等式:f(x)≤2a;(Ⅱ)若对任意实数x,f(x)≤2a都成立,求实数a的最小值.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x|>﹣1},集合B={x|1<3x<9},则(∁R A)∩B=()A.(0,1] B.[1,2)C.(1,2)D.(0,1)【考点】指、对数不等式的解法;交、并、补集的混合运算.【分析】分别求解对数不等式和指数不等式化简集合A,B,求出∁R A,然后利用交集运算得答案.【解答】解:由>﹣1=,得0<x+1<2,∴﹣1<x<1,则A={x|>﹣1}=(﹣1,1),∴∁R A=(﹣∞,﹣1]∪[1,+∞),又B={x|1<3x<9}=(0,2),∴(∁R A)∩B=[1,2).故选:B.2.实数(a为实数)的共轭复数为()A.1 B.﹣5 C.﹣1 D.﹣i【考点】复数的基本概念.【分析】利用复数的运算法则、复数为实数的充要条件即可得出.【解答】解:==为实数,∴=0,解得a=﹣2.∴实数=﹣1的共轭复数为﹣1.故选:C.3.等比数列{a n}中,a2=9,a5=243,则a1与a7的等比中项为()A.±81 B.81 C.﹣81 D.27【考点】等比数列的性质.【分析】利用等比数列的通项公式可得q.再利用等比中项的定义及其性质即可得出.【解答】解:设等比数列{a n}的公比q,∵a2=9,a5=243,∴243=9×q3,解得q=3.又a1•a7=,∴a1与a7的等比中项为±a4=±=±9×32=±81.故选:A.4.以下四个命题中①为了了解800名学生的成绩,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为40;②线性回归直线=x+恒过样本点的中心(,);③随机变量ξ服从正态分布N(2,σ2)(σ>0),若在(﹣∞,1)内取值的概率为0.1,则在(2,3)内的概率为0.4;④概率值为零的事件是不可能事件.其中真命题个数是()A.0 B.1 C.2 D.3【考点】命题的真假判断与应用.【分析】①根据系统抽样的定义进行判断,②根据回归直线的性质进行判断,③根据正态分布的概率关系进行判断,④根据概率和不可能事件的关系进行判断.【解答】解:①为了了解800名学生的成绩,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为800÷40=20;故①错误,②线性回归直线=x+恒过样本点的中心(,);正确,故②正确,③随机变量ξ服从正态分布N(2,σ2)(σ>0),若在(﹣∞,1)内取值的概率为0.1,则在(1,2)内取值的概率为0.5﹣0.1=0.4,则在(2,3)内的概率为在(1,2)内取值的概率为0.4;故③正确,④不可能事件的概率为0,但概率值为零的事件是不可能事件不一定正确.比如在几何概型中,往圆形区域内随机扔石子扔到圆心的概率=圆心的面积除以圆的面积圆心面积为零,因此扔到圆心的概率P=0,但是扔到圆心也是可能发生的,不是不可能事件,故④错误,故故选:C5.已知平面上不共线的四点O,A,B,C,若﹣4+3=0,则=()A.3 B.4 C.5 D.6【考点】平面向量的基本定理及其意义.【分析】根据向量的减法运算,及共线向量基本定理可得到:,所以便可得到,=3.【解答】解:==;∴,∴,∴.故选A.6.由曲线y=x2﹣2x与直线x+y=0所围成的封闭图形的面积为()A.B.C.D.【考点】定积分在求面积中的应用.【分析】先确定交点坐标,得到积分区间,确定被积函数,求出原函数,即可求得结论.【解答】解:由题意,曲线y=x2﹣2x与直线x+y=0的交点坐标为(0,0),(1,﹣1)∴曲线y=x2﹣2x与直线x+y=0所围成的封闭图形的面积为=()=故选D.7.执行如图所示的程序框图,输出的n的值为()A.10 B.11 C.12 D.13【考点】循环结构.【分析】算法的功能是求S=++…+,利用等比数列的前n 项和公式即可求得满足条件S的最小的n值.【解答】解:由程序框图知:算法的功能是求S=++…+的值,∵S=++…+==1﹣≥⇒n≥11,∴跳出循环体的n值为11+1=12,∴输出n=12.故选:C.8.设等差数列{a n}的前n项和为S n,若S6>S7>S5,则满足S n<0的正整数n的最小值为()A.12 B.13 C.14 D.15【考点】等差数列的前n项和.【分析】设等差数列{a n}的公差为d,由于S6>S7>S5,可得:a7<0,a6+a7>0,判断S12,S13的符号即可得出.【解答】解:设等差数列{a n}的公差为d,∵S6>S7>S5,∴a7<0,a6+a7>0,∴S12==6(a6+a7)>0,S13==13a7<0,∴则满足S n<0的正整数n的最小值为13.故选:B.9.某四面体的三视图如图所示,则该四面体的体积是()A.2 B.8 C.D.【考点】由三视图求面积、体积.【分析】如图所示,该几何体为三棱锥A﹣CB1D1.利用正方体与三棱锥的体积计算公式即可得出.【解答】解:如图所示,该几何体为三棱锥A﹣CB1D1.∴该四面体的体积V=23﹣=.故选:C.10.设当x=θ时,函数f(x)=2cosx﹣3sinx取得最小值,则tan θ等于()A.B.﹣C.﹣D.【考点】三角函数的最值.【分析】利用辅助角公式化简函数的解析式为f(x)=﹣cos (x﹣θ)(其中,cosθ=﹣,sinθ=),根据当x=θ时,函数f(x)取最小值,可得tanθ的值.【解答】解:∵当x=θ时,函数f(x)=2cosx﹣3sinx=(cosx ﹣sinx)=﹣(﹣cosx+sinx)=﹣cos(x﹣θ)(其中,cosθ=﹣,sinθ=)取得最小值,则tanθ==﹣,故选:C.11.已知双曲线﹣=1的左、右焦点分别为F1、F2,过F1作圆x2+y2=a2的切线分别交双曲线的左、右两支于点B、C,且|BC|=|CF2|,则双曲线的渐近线方程为()A.y=±3x B.y=±2x C.y=±(+1)x D.y=±(﹣1)x 【考点】双曲线的简单性质.【分析】过F1作圆x2+y2=a2的切线分别交双曲线的左、右两支于点B、C,且|BC|=|CF2|,可得|BF1|=2a,求出B的坐标,代入双曲线方程,即可求出双曲线的渐近线方程.【解答】解:∵过F1作圆x2+y2=a2的切线分别交双曲线的左、右两支于点B、C,且|BC|=|CF2|,∴|BF1|=2a,设切点为T,B(x,y),则利用三角形的相似可得∴x=,y=∴B(,)代入双曲线方程,整理可得b=(+1)a,∴双曲线的渐近线方程为y=±(+1)x,故选:C.12.定义在(﹣1,+∞)上的单调函数f(x),对于任意的x∈(﹣1,+∞),f[f(x)﹣xe x]=0恒成立,则方程f(x)﹣f′(x)=x的解所在的区间是()A.(﹣1,﹣)B.(0,)C.(﹣,0)D.()【考点】利用导数研究函数的单调性;函数恒成立问题.【分析】由题意,可知f(x)﹣xe X是定值,令t=f(x)﹣xe X,得出f(x)=xe X+t,再由f(t)=te t+t=0求出t的值,即可得出f (x)的表达式,求出函数的导数,即可求出f(x)﹣f′(x)=x 的解所在的区间,即得正确选项.【解答】解:由题意,可知f(x)﹣xe X是定值,不妨令t=f(x)﹣xe X,则f(x)=xe X+t,又f(t)=te t+t=0,解得t=0,所以有f(x)=xe X,所以f′(x)=(x+1)e X,令F(x)=f(x)﹣f′(x)﹣x=xe x﹣(x+1)e x﹣x=﹣e x﹣x,可得F(﹣1)=1﹣>0,F(﹣)=﹣<0即F(x)的零点在区间(﹣1,﹣)内∴方程f(x)﹣f′(x)=x的解所在的区间是(﹣1,﹣),故选:A.二、填空题:本大题共4小题,每小题5分.13.若函数f(x)=奇函数,则a的值为﹣2 .【考点】函数奇偶性的性质.【分析】可解1﹣x2>0得到﹣1<x<1,从而有|x﹣2|=2﹣x,这便得到,而由f(x)为奇函数便有f(﹣x)=﹣f (x),这样即可得到2+x+a=﹣(2﹣x+a),从而可求出a的值.【解答】解:解1﹣x2>0得,﹣1<x<1;∴|x﹣2|=2﹣x;∴;∵f(x)为奇函数;∴f(﹣x)=﹣f(x);即;∴2+x+a=﹣(2﹣x+a);∴2+a=﹣2﹣a;∴a=﹣2.故答案为:﹣2.14.若x,y满足约束条件,则的最小值为.【考点】简单线性规划.【分析】做出不等式表示的平面区域,将化成1+,即求过点(1,﹣1)的直线斜率的最小值问题.【解答】解:=1+,做出平面区域如图:有图可知当过点(1,﹣1)的直线经过点C(4,0)时,斜率最小为,∴的最小值为1+=.故答案为.15.4个半径为1的球两两相切,该几何体的外切正四面体的高是4+.【考点】球的体积和表面积.【分析】把球的球心连接,则又可得到一个棱长为2的小正四面体,正四面体的中心到底面的距离是高的,且小正四面体的中心和正四面体容器的中心应该是重合的,先求出小正四面体的中心到底面的距离,再求出正四面体的中心到底面的距离,把此距离乘以4可得正四棱锥的高.【解答】解:由题意知,底面放三个球,上再落一个球.于是把球的球心连接,则又可得到一个棱长为2的小正四面体,则不难求出这个小正四面体的高为,且由正四面体的性质可知:正四面体的中心到底面的距离是高的,且小正四面体的中心和正四面体容器的中心应该是重合的,∴小正四面体的中心到底面的距离是×=,正四面体的中心到底面的距离是+1,所以可知正四面体的高的最小值为(+1)×4=4+,故答案为:4+.16.已知数列{a n}的通项公式a n=n22n,则数列{a n}的前n项和S n= (n2﹣2n+3)•2n+1﹣6 .【考点】数列的求和.【分析】两次利用“错位相减法”与等比数列的前n项和公式即可得出.【解答】解:∵a n=n22n,则数列{a n}的前n项和S n=2+22×22+32×23+…+n2•2n,∴2S n=22+22×23+…+(n﹣1)2•2n+n2•2n+1,∴﹣S n=2+3×22+5×23+…+(2n﹣1)•2n﹣n2•2n+1,设数列{(2n﹣1)•2n}的前n项和为T n,则T n=2+3×22+5×23+…+(2n﹣1)×2n,2T n=22+3×23+…+(2n﹣3)×2n+(2n﹣1)×2n+1,∴﹣T n=2+2×(22+23+…+2n)﹣(2n﹣1)×2n+1=﹣2﹣(2n﹣1)×2n+1=(3﹣2n)•2n+1﹣6,∴T n=(2n﹣3)•2n+1+6,∴﹣S n=(2n﹣3)•2n+1+6﹣n2•2n+1=(2n﹣3﹣n2)•2n+1+6,∴S n=(n2﹣2n+3)•2n+1﹣6.故答案为:(n2﹣2n+3)•2n+1﹣6.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.设△ABC的内角A,B,C的对边分别为a,b,c,且满足sinA+sinB=(cosA+cosB)sinC.(Ⅰ)求证:△ABC为直角三角形;(Ⅱ)若a+b+c=1+,求△ABC面积的最大值.【考点】解三角形.【分析】(Ⅰ)由sinA+sinB=(cosA+cosB)sinC,利用正、余弦定理,得a+b=c,化简整理,即可证明:△ABC为直角三角形;(Ⅱ)利用a+b+c=1+,a2+b2=c2,根据基本不等式可得1+=a+b+≥2+=(2+)•,即可求出△ABC 面积的最大值.【解答】(Ⅰ)证明:在△ABC中,因为sinA+sinB=(cosA+cosB)sinC,所以由正、余弦定理,得a+b= c …化简整理得(a+b)(a2+b2)=(a+b)c2因为a+b>0,所以a2+b2=c2…故△ABC为直角三角形,且∠C=90°…(Ⅱ)解:因为a+b+c=1+,a2+b2=c2,所以1+=a+b+≥2+=(2+)•当且仅当a=b时,上式等号成立,所以≤.…故S△ABC=ab≤×…即△ABC面积的最大值为…18.如图,PA⊥平面ADE,B,C分别是AE,DE的中点,AE⊥AD,AD=AE=AP=2.(Ⅰ)求二面角A﹣PE﹣D的余弦值;(Ⅱ)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.【考点】用空间向量求平面间的夹角;二面角的平面角及求法.【分析】以{,,}为正交基底建立空间直角坐标系Axyz,由题意可得B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2)(Ⅰ)易得=(0,2,0)是平面PAB的一个法向量,待定系数可求平面PED的法向量为坐标,由向量的夹角公式可得;(Ⅱ)设=λ=(﹣λ,0,2λ)(0≤λ≤1),由夹角公式和二次函数的值域以及余弦函数的单调性可得.【解答】解:以{,,}为正交基底建立空间直角坐标系Axyz,则各点的坐标为B(1,0,0),C(1,1,0),D(0,2,0),P (0,0,2)(Ⅰ)∵AD⊥平面PAB,∴是平面PAB的一个法向量,=(0,2,0).∵=(1,1,﹣2),=(0,2,﹣2).设平面PED的法向量为=(x,y,z),则•=0,•=0,即,令y=1,解得z=1,x=1.∴=(1,1,1)是平面PCD的一个法向量,计算可得cos<,>==,∴二面角A﹣PE﹣D的余弦值为;(Ⅱ)∵=(﹣1,0,2),设=λ=(﹣λ,0,2λ)(0≤λ≤1),又=(0,﹣1,0),则=+=(﹣λ,﹣1,2λ),又=(0,﹣2,2),∴cos<,>==,设1+2λ=t,t∈[1,3],则cos2<,>==≤,当且仅当t=,即λ=时,|cos<,>|的最大值为.因为y=cosx在(0,)上是减函数,此时直线CQ与DP所成角取得最小值,又∵BP==,∴BQ=BP=19.某农庄抓鸡比赛,笼中有16只公鸡和8只母鸡,每只鸡被抓到的机会相等,抓到鸡然后放回,若累计3次抓到母鸡则停止,否则继续抓鸡直到第5次后结束.(Ⅰ)求抓鸡3次就停止的事件发生的概率;(Ⅱ)记抓到母鸡的次数为ξ,求随机变量ξ的分布列及其均值.【考点】离散型随机变量的期望与方差.【分析】(Ⅰ)由题意,抓到母鸡的概率为,抓鸡3次就停止,说明前三次都抓到了母鸡,由此能求出抓鸡3次就停止的事件发生的概率.(Ⅱ)依题意,随机变量ξ的所有可能取值为0,1,2,3,分别求出相应的概率,由此能求出随机变量ξ的分布列及其均值.【解答】解:(Ⅰ)由题意,抓到母鸡的概率为,抓鸡3次就停止,说明前三次都抓到了母鸡,则抓鸡3次就停止的事件发生的概率为P==…(Ⅱ)依题意,随机变量ξ的所有可能取值为0,1,2,3,P(ξ=0)•=,P(ξ=1)=••=,P(ξ=2)=••=,P(ξ=3)=•+•••+•••=…随机变量ξ的分布列为ξ0 1 2 3P….随机变量ξ的均值为E(ξ)=×0+×1+×2+×3=…20.如图,F1,F2是椭圆C:的左、右两个焦点,|F1F2|=4,长轴长为6,又A,B分别是椭圆C上位于x轴上方的两点,且满足=2.(Ⅰ)求椭圆C的方程;(Ⅱ)求直线AF1的方程;(Ⅲ)求平行四边形AA1B1B的面积.【考点】直线与圆锥曲线的综合问题.【分析】(Ⅰ)由F1,F2是椭圆C:的左、右两个焦点,|F1F2|=4,长轴长为6,列出方程组求出a,b,由此能求出椭圆方程.(Ⅱ)设直线AF1的方程为y=k(x+2),由,得,由此利用根的判别式、韦达定理、向量知识,结合已知条件能求出直线AF1的方程.(Ⅲ)由,利用弦长公式能求出四边形AA1B1B的面积.【解答】解:(Ⅰ)∵F1,F2是椭圆C:的左、右两个焦点,|F1F2|=4,长轴长为6,∴由题意知2a=6,2c=4,∴a=3,c=2,∵,∴b2=5…∴椭圆方程为…(Ⅱ)设直线AF1的方程为y=k(x+2),且交椭圆于A(x1,y1),A1(x2,y2)两点.由题意知,即,△>0,,①,,②…∵,∴y1=﹣2y2③联立①②③消去y 1y2,得.∴直线AF1的方程为…(Ⅲ)∵AA1B1B是平行四边形,∴…=∴四边形AA1B1B的面积为.…21.已知函数f(x)=1﹣x+lnx(Ⅰ)求f(x)的最大值;(Ⅱ)对任意的x1,x2∈(0,+∞)且x2<x1是否存在实数m,使得﹣﹣x1lnx1+x2lnx2>0恒成立;若存在,求出m的取值范围;若不存在,说明理由:(Ⅲ)若正数数列{a n}满足=,且a1=,数列{a n}的前n项和为S n,试比较2与2n+1的大小并加以证明.【考点】数列与函数的综合.【分析】(Ⅰ)求得f(x)的导数,单调区间,可得f(x)的最大值为f(1);(Ⅱ)由题意可得恒成立,设φ(x)=mx2+xlnx,又0<x2<x1,则只需ϕ(x)在(0,+∞)上单调递减,求得导数,令导数小于等于0恒成立,运用参数分离和构造函数法,求出导数和单调区间,可得最值,即可得到所求m 的范围;(Ⅲ)结论:>2n+1.运用构造数列法和等比数列的通项公式,可得a n=.运用对数的运算性质和放缩法,结合裂项相消求和,即可得证.【解答】解:(Ⅰ)由题意得:.当x∈(0,1)时,f'(x)>0,当x∈(1,+∞)时,f'(x)<0,因此,f(x)在(0,1)上单调递增,在(1,+∝)上单调递减.所以f(x)max=f(1)=0,即函数f(x)的最大值为0;(Ⅱ)若恒成立,则恒成立,设φ(x)=mx2+xlnx,又0<x2<x1,则只需ϕ(x)在(0,+∞)上单调递减,故ϕ′(x)=2mx+1+lnx≤0在(0,+∞)上成立,得:2m≤,记t(x)=,则,于是可知t(x)在(0,1)上单调递减,在(1,+∞)上单调递增,故[t(x)]min=t(1)=﹣1,因此存在m≤,使恒成立;(Ⅲ)由==•+得:=,又,知,=,即有a n=.结论:>2n+1.证明如下:因为a n∈(0,1),由(1)知x>0时x﹣1>lnx,则x>﹣1时x >ln(x+1).所以a n>ln(a n+1)==ln(2n+1)﹣ln(2n﹣1+1)故S n=a1+a2+…+a n>[ln(21+1)﹣ln(20+1)]+[ln(22+1)﹣ln(21+1)]…[ln(2n+1)﹣ln(2n﹣1+1)]=ln(2n+1)﹣ln(20+1)=,即>2n+1.[选修4-1:几何证明选讲]22.如图,已知AB是⊙O的弦,P是AB上一点.(Ⅰ)若AB=6,PA=4,OP=3,求⊙O的半径;(Ⅱ)若C是圆O上一点,且CA=CB,线段CE交AB于D.求证:△CAD~△CEA.【考点】与圆有关的比例线段.【分析】(Ⅰ)连接OA,设OA=r,取AB中点F,连接OF,则OF⊥AB,利用勾股定理求出⊙O的半径;(Ⅱ)利用CA=CB,得出∠CAD=∠B,利用三角形相似的判定定理证明:△CAD~△CEA.【解答】解:(Ⅰ)连接OA,设OA=r取AB中点F,连接OF,则OF⊥AB,∵,∴,∴.…又OP=3,Rt△OFP中,OF2=OP2﹣FP2=9﹣2=7,…Rt△OAF中,,…∴r=5证明:(Ⅱ)∵CA=CB,∴∠CAD=∠B又∵∠B=∠E,∴∠CAD=∠E…∵∠ACE为公共角,∴△CAD∽△CEA…[选修4-4:坐标系与参数方程选讲]23.在直角坐标系xOy中,曲线C的参数方程为(θ为参数),以原点O为起点,x轴的正半轴为极轴,建立极坐标系,已知点P的极坐标为(2,﹣),直线l的极坐标方程为ρcos(+θ)=6.(Ⅰ)求点P到直线l的距离;(Ⅱ)设点Q在曲线C上,求点Q到直线l的距离的最大值.【考点】简单曲线的极坐标方程.【分析】(Ⅰ)把点P与直线l的极坐标方程化为直角坐标方程,再利用点到直线的距离公式即可得出.(Ⅱ)可以判断,直线l与曲线C无公共点,设,利用点到直线的距离公式及其三角函数的和差公式及其单调性即可得出.【解答】解:(Ⅰ)点的直角坐标为,即.由直线l,得.则l的直角坐标方程为:,点P到l的距离.(Ⅱ)可以判断,直线l与曲线C无公共点,设,则点Q到直线的距离为,∴当时,d max=9.[选修4-5:不等式选讲]24.设函数f(x)=|x+a|﹣|x+1|.(Ⅰ)当a=﹣时,解不等式:f(x)≤2a;(Ⅱ)若对任意实数x,f(x)≤2a都成立,求实数a的最小值.【考点】带绝对值的函数.【分析】(Ⅰ)对x讨论,分x≤﹣1,当时,当时去掉绝对值,解不等式,求并集即可得到所求解集;(Ⅱ)运用绝对值表达式的性质,可得f(x)的最大值,即有|a ﹣1|≤2a,解出a的范围,可得a的最小值.【解答】解:(Ⅰ)当a=时,不等式化为:,当x≤﹣1时,,得,所以x∈Φ.…当时,,得,所以成立.…当时,,得≤0,所以成立.综上,原不等式的解集为…(Ⅱ)∵|x+a|﹣|x+1|≤|(x+a)﹣(x+1)|=|a﹣1|,∴f(x)=|x+a|﹣|x+1|的最大值为|a﹣1|…由题意知:|a﹣1|≤2a,即﹣2a≤a﹣1≤2a,解得:a≥,所以实数a的最小值为…2016年10月4日。

2020届高考数学(理)二轮重点突击专题卷(11)选做题

2020届高考数学(理)二轮重点突击专题卷(11)选做题

重点突击专题卷(11)选做题1、已知关于x 的不等式()110ax ax a a -+-≥>(1)当1a =时,求此不等式的解集; (2)若此不等式的解集为R,求实数a 的取值范围 2、已知函数()31f x x m x m =----. (1)若1m =,求不等式()1f x <的解集;(2)对任意的R x ∈,有()(2)f x f ≤,求实数m 的取值范围. 3、已知函数()212f x x x a =-+-. (1)当1a =时,求()3f x ≤的解集;(2)当[]1,2x ∈时,()3f x ≤恒成立,求实数a 的取值范围. 4、设函数()|1|,()|24|f x x g x x =-=-. (1)求不等式()()f x g x >的解集;(2)若存在R x ∈,使得不等式2(1)()1f x g x ax ++<+成立,求实数的取值范围. 5、设函数()214?f x x x =+--. 1.解不等式()2f x >; 2.求函数()y f x =的最小值.6、选修4-5 不等式选讲 已知函数()311f x x x =-++1.解不等式()5f x ≥2.若函数()f x 的最小值为m ,且42log (23)log (3)a b m +=,(0,0)a b >>,求ab 的最大值.7、在极坐标系中,直线:cos 3l ρθ=,P 为直线l 上一点,且点P 在极轴上方,以OP 为一边作正三角形OPQ (逆时针方向),且OPQ △(1)求点Q 的极坐标;(2)求OPQ △外接圆的极坐标方程,并判断直线l 与OPQ △的外接圆的位置关系.8、在平面直角坐标系中,以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系, 已知直线l 上两点N M ,的极坐标分别为)0,2(、π)2, 圆C 的参数方程⎩⎨⎧+-=+=θθsin 23cos 22y x (θ为参数)(1)设为P 线段MN 的中点,求直线OP 的平面直角坐标方程; (2)判断直线l 与圆C 的位置关系. 9、[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,直线l的参数方程为312x y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点O 为极点,以x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为4cos ρθ=. 1.求直线l 的普通方程及曲线C 的直角坐标方程;2.若直线l 与曲线C 交于,A B 两点,求线段AB 的中点P 到坐标原点O 的距离.10、在直角坐标系 xOy 中,曲线1C 的参数方程为2cos 2sin (x y ααα=+=+⎧⎨⎩为参数),直线2C的方程为y =,以 O 为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线1C 和直线2C 的极坐标方程;(2)若直线2C 与曲线1C 交于,A B 两点,求11OAOB+11、已知圆C 的极坐标方程为2cos ρθ=,直线l的参数方程为121122(x y t t =+=+⎧⎪⎪⎨⎪⎪⎩为参数),点A的极坐标为2π4⎛⎫⎪⎝⎭,设直线l 与圆C 交于点,P Q . 1.写出圆C 的直角坐标方程; 2.求AP AQ ⋅的值.1.因为圆C 的极坐标方程为2cos ρθ=, 所以22cos ρρθ=,将其转化成直角坐标方程为222x y x +=, 即()2211x y -+=.2.由点A的极坐标2π4⎛⎫⎪⎝⎭得直角坐标为11,22A ⎛⎫⎪⎝⎭. 将直线l的参数方程121122(x y t t =+=+⎧⎪⎪⎨⎪⎪⎩为参数)代入圆C 的直角坐标方程()2211x y -+=,得211022t t --=. 设12,t t为方程211022t t --=的两个根, 则1212t t =-, 所以1212AP AQ t t ⋅==-. 12、在极坐标系中,圆C 是以点11π2,6C ⎛⎫ ⎪⎝⎭为圆心, 2为半径的圆.1.求圆 C 的极坐标方程;2.求圆 C 被直线()7π:R 12l θρ=∈所截得的弦长答案以及解析1答案及解析:答案:(1)当1a =时,可得211,x -≥即112x -≥, 解得32x ≥或12x ≤,∴ 不等式的解集为13,,22⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭(2)∵ 不等式11ax ax a -+-≥解集为R ,等价于11a -≥.解得2,a ≥或0a ≤. 又∵0,2a a >∴≥.∴ 实数a 的取值范围为[)2,+∞ 解析:2答案及解析:答案:(,3)-∞;1123m -≤≤解析:(1)()141f x x x =---<,所以11(4)1x x x <⎧⎨---<⎩或141(4)1x x x ≤≤⎧⎨---<⎩或4141x x x >⎧⎨--+<⎩.解之得不等式()1f x <的解集为(,3)-∞.(2)当31m m +>,12m >-时,由题得2必须在31m +的右边或者31m +重合, 所以231m ≥+;∴12m ≤,所以1123m -<≤; 当1310,2m m +==-时,不等式恒成立;当131,2m m m +<<-时,由题得2必须在31m +的左边或者与31m +重合,由题得1231,3m m ≤+≥,所以m 没有解. 综上,1123m -≤≤.3答案及解析:答案:(1)[]0,2 (2)1a = 解析:4答案及解析:答案:(1)由|1||24|x x ->-得:222141616x x x x -+>-+ 2314150x x ∴-+<即(35)(3)0x x --<不等式()()f x g x >的解集为5(,3)3(2).当0x <时,441x ax -+<+即34a x<-在(,0)-∞上有解,故4a <-当0x =时,41<不成立当02x <≤时,41ax <+即3a x >在(0,2]上有解,故32a > 当2x >时,441x ax -<+即54a x >-在(2,,)+∞上有解,故32a >综上:32a >或4a <-解析:5答案及解析:答案:1. 法一:令210x +=,40x -=分别得12x =-,4x =. 原不等式可化为: 1{252x x <--->或14{2332x x -≤<->或4{52x x ≥+>, ∴原不等式的解集为.法二: ()()1521214{334254x x f x x x x x x x ⎛⎫--<- ⎪⎝⎭⎛⎫=+--=--≤< ⎪⎝⎭+≥, 画出()f x 的图象,求2y =与()f x 图象的交点为()7,2?-,5,23⎛⎫⎪⎝⎭.由图象知()2f x >的解集为.2.由1的法二知: ()min 92f x =-. 解析:6答案及解析:答案:1.解析:当1x ≤-时, ()()()31145f x x x x =---+=-≥,54x ≤-可知54x ≤-满足题意;当113x -<<时,可知()()()3311225,2f x x x x x =--++=-+≥≤-,无解; 当时13x ≥,()53115,4f x x x x =-++≥≥,可知54x ≥满足题意,可知不等式的解集为54x x ⎧≥⎨⎩或5}4x ≤- 2.函数4,11()22,1314,3x x f x x x x x ⎧⎪-≤-⎪⎪=-+-<<⎨⎪⎪≥⎪⎩,可知min 14()()33f x f ==.43m =,42log (23)log (3)a b m +=可变形424log (23)log (4)log 16a b +==2316a b +=,2112332(23)()6623a b ab a b +=⋅≤=,当且仅当23a b =,即当84,3a b ==时取等号.解析:7答案及解析:答案:(1)设P θ⎫⎪⎪⎝⎭,π3π0,,2π22θ⎡⎫⎛⎫∈⋃⎪ ⎪⎢⎣⎭⎝⎭,OPQ Q △2=⎝⎭23cos 4θ=.cos θ∴=, Q点P 在极轴上方,π6θ∴=. OPQ Q △为正三角形,OQ ∴的极角为π2,且2OP OQ ==. 点Q 的极坐标为π2,2⎛⎫⎪⎝⎭.(2)由OPQ △为正三角形可得其外接圆直径OR =其中,点R 为OPQ △外接圆的一条以O 为一端点的直径的另一端点.设00(,)M ρθ为OPQ △外接圆上异于点O R ,的一点, 在Rt OMR △中00πcos 3OR ρθ⎛⎫-= ⎪⎝⎭.00(,)M ρθ∴满足00π3θρ⎛⎫- ⎪⎝⎭=.① 经验证点O R ,的坐标均满足①,故OPQ △外接圆的极坐标方程为π3ρθ⎛⎫=- ⎪⎝⎭.Q直线:l x =OPQ △外接圆的直角坐标方程为2220x y x y +-=,即()22413x y ⎛+-= ⎝⎭.圆心到直线l 的距离d =,即为半径, 故直线l 与OPQ △的外接圆相切. 解析:8答案及解析:答案:(1),M N 的直角坐标分别为()2,0M 、N ⎛ ⎝⎭,则线段的中点P ⎛ ⎝⎭直线的平面直角坐标方程为:y x =(2)圆的普通方程是()(2224x y -+=,圆心(2,c ,,圆心到直线y =的距离52d r ===,直线与圆相离. 解析:9答案及解析:答案:1.将2t y =代入3x =+,整理得30x --=,所以直线l的普通方程为30x -=.由4cos ρθ=得24cos ρρθ=,将222,cos x y x ρρθ=+=代入24cos ρρθ=, 得2240x y x +-=,即曲线C 的直角坐标方程为22(2)4x y -+=. 2.设,A B 的参数分别为12,t t .将直线l 的参数方程代入曲线C的直角坐标方程得221(32)()42t -+=,化简得230t -=,由韦达定理得12t t +=于是122p t t t +==.设00(,)P x y,则0093(41(2x y ⎧=+=⎪⎪⎨⎪=⨯=⎪⎩则9(,4P .所以点P 到原点O2.解析:10答案及解析:答案:(1)曲线1C 的普通方程为()()22221x y -+-=, 则1C 的极坐标方程为24cos 4sin 70ρρθρθ--+=, 由于直线2C 过原点,且倾斜角为π3, 故其极坐标为()R 3πθρ=∈ (或tan θ=) (2)由24cos 4sin 70π3ρρθρθθ⎧--+==⎪⎨⎪⎩,得()2270ρρ-+=,故12122,7ρρρρ+==121211OA OB OA OB OA OB ρρρρ++∴+===⋅ 解析:11答案及解析: 答案: 解析:12答案及解析:答案:1.圆 C 的极坐标方程是π4cos()6p θ=+ 2.弦长为解析:1.圆C 是将圆4cos p θ=绕极点按顺时针方向旋转π6而得到的圆,所以圆 C 的极坐标方程是π4cos()6p θ=+2.将5π12θ=-代入圆C 的极坐标方程π4cos()6p θ=+得p =所以,圆C 被直线7π:12l θ=所截得的弦长,可将5π12θ=-代入极坐标方程求得为p =即弦长为。

2020高三二轮数学模拟卷理答案.doc

2020高三二轮数学模拟卷理答案.doc

高考仿真模拟卷·数学(理)·参考答案与解析高考仿真模拟卷(一)1.解析:选B.由已知得A ={x |(x +1)(x -2)≤0}={x |-1≤x ≤2}, 所以A ∩B ={-1,0,1,2},故选B.2.解析:选A.因为i -1i +1=(i -1)(1-i )(i +1)(1-i )=i ,所以该复数在复平面上对应的点的坐标为(0,1).故选A.3.解析:选B.由于随机变量X 服从正态分布N (3,σ2),又P (X ≤4)=0.84,所以P (X ≥4)=P (X ≤2)=0.16,P (2<X <4)=1-0.32=0.68.4.解析:选B.由题意得,BA →·BC →=0,BA →·CA →=|BA →|2=36,所以BA →·BD →=BA →·(BC →+CD →)=BA →·⎝⎛⎭⎫BC →+23CA →=0+23×36=24,故选B. 5.解析:选B.程序运行过程如下: 首先初始化数据,S =0,i =1,第一次循环,执行S =S +ln ⎝⎛⎭⎫1+1i =0+ln 2=ln 2,i =i +1=2,此时不应跳出循环; 第二次循环,执行S =S +ln ⎝⎛⎭⎫1+1i =ln 2+ln 32=ln 3,i =i +1=3,此时不应跳出循环; 第三次循环,执行S =S +ln ⎝⎛⎭⎫1+1i =ln 3+ln 43=ln 4,i =i +1=4,此时不应跳出循环; 第四次循环,执行S =S +ln ⎝⎛⎭⎫1+1i =ln 4+ln 54=ln 5,i =i +1=5,此时应跳出循环; i =4时,程序需要继续执行,i =5时,程序结束, 故在判断框内应填i ≤4?.故选B.6.解析:选B.由题意,可得⎩⎪⎨⎪⎧2a 1+7d =23,5a 1+5×42d =35, 解得d =3,故选B.7.解析:选C.依题意,注意到f (-x )=1-2-x 1+2-x ·cos(-x )=2x (1-2-x )2x (1+2-x )cos x =2x -12x +1cos x =-f (x ),因此函数f (x )是奇函数,其图象关于原点对称,结合各选项知,选项A ,B 均不正确;当0<x <1时,1-2x1+2x<0,cos x >0,f (x )<0,结合选项知,C 正确,选C.8.解析:选D.由三视图可知,该手工制品是由两部分构成,每一部分都是相同圆锥的四分之一,且圆锥的底面半径为3,高为4,故母线长为5,故每部分的表面积为2×12×4×3+14×12×6π×5+14×9π=12+6π,故两部分表面积为24+12π.9.解析:选D.由题可得sin ⎝⎛⎭⎫2×3π8+φ=0,又0<φ<π2,所以φ=π4,所以f (x )=sin ⎝⎛⎭⎫2x +π4,由π2+2k π≤2x +π4≤3π2+2k π(k ∈Z ),得f (x )的单调递减区间是⎣⎡⎦⎤k π+π8,k π+5π8(k ∈Z ). 10.解析:选C.三辆车的出车顺序可能为:123、132、213、231、312、321, 方案一坐3号车的可能:132、213、231,所以P 1=36;方案二坐3号车的可能:312、321,所以P 1=26;所以P 1+P 2=56.故选C.11.解析:选D.设双曲线的左焦点为F 1,由双曲线的对称性可知四边形MF 2PF 1为平行四边形.所以|MF 1|=|PF 2|,MF 1∥PN . 设|PF 2|=m ,则|MF 2|=3m , 所以2a =|MF 2|-|MF 1|=2m , 即|MF 1|=a ,|MF 2|=3a .因为∠MF 2N =60°,所以∠F 1MF 2=60°, 又|F 1F 2|=2c ,在△MF 1F 2中,由余弦定理可得4c 2=a 2+9a 2-2·a ·3a ·cos 60°, 即4c 2=7a 2,所以c 2a 2=74,所以双曲线的离心率e =c a =72.故选D. 12.解析:选D.由已知可得y =2e x 与y =ln x -ln 2=ln x2互为反函数,即y =2e x 与y =lnx -ln 2的图象关于直线x -y =0对称,|PQ |的最小值为点Q 到直线x -y =0的最小距离的2倍,令Q (t ,ln t -ln 2),过点Q 的切线与直线x -y =0平行,函数y =ln x -ln 2的导数为y ′=1x ,其斜率为k =1t =1,所以t =1,故Q (1,-ln 2),点Q 到直线x -y =0的距离为d =|1-(-ln 2)|12+(-1)2=1+ln 22,所以|PQ |min =2d =2(1+ln 2).13.解析:消费支出超过150元的人数为(50×0.004+50×0.002)×100=30. 答案:3014.解析:作出不等式组所表示的平面区域如图中阴影部分所示,设z =a·OP →=x -y ,则y =x -z ,易知当y =x -z 经过⎩⎪⎨⎪⎧x +y -5=0,x -2y +1=0的交点(3,2)时,z =x -y 取得最大值,且z max =1. 答案:115.解析:采用补体法,由空间点坐标可知,该四面体的四个顶点在一个长方体上,该长方体的长宽高分别为3,1,5,长方体的外接球即为该四面体的外接球,外接球的直径即为长方体的体对角线3+1+5=3,所以球半径为32,体积为43πr 3=9π2.答案:9π216.解析:因为f (x )是奇函数,f (-x )=-f (x ),所以a n +1-⎝⎛⎭⎫a n +cos n π2=0,a n +1=a n+cosn π2.a 1=1,a 2=a 1+cos π2=1,a 3=a 2+cos 2π2=0,a 4=a 3+cos 3π2=0,如此继续,得a n +4=a n .S 2 019=504(a 1+a 2+a 3+a 4)+a 1+a 2+a 3=504×2+1+1+0=1 010.答案:1 010 17.解:因为3(b 2+c 2)=3a 2+2bc ,所以b 2+c 2-a 22bc =13,由余弦定理得cos A =13,所以sin A =223.(1)因为sin B =2cos C ,所以sin(A +C )=2cos C , 所以223cos C +13sin C =2cos C ,所以23cos C =13sin C ,所以tan C = 2. (2)因为S =22,所以12bc sin A =22,所以bc =32.① 由余弦定理a 2=b 2+c 2-2bc cos A , 可得4=b 2+c 2-2bc ×13,所以b 2+c 2=5.②因为b >c >0,所以联立①②可得b =322,c =22.18.解:(1)由已知,得P (A )=C 22C 23+C 23C 23C 48=635.所以事件A 的概率为635. (2)随机变量X 的所有可能取值为1,2,3,4.由已知得P (X =k )=C k 5C 4-k3C 48(k =1,2,3,4).所以随机变量X 的分布列为:随机变量X 的数学期望E (X )=1×114+2×37+3×37+4×114=52.19.解:(1)证明:因为AB ⊥侧面BB 1C 1C ,BC 1⊂侧面BB 1C 1C ,故AB ⊥BC 1,在△BCC 1中,BC =1,CC 1=BB 1=2,∠BCC 1=π3,BC 21=BC 2+CC 21-2BC ·CC 1·cos ∠BCC 1=12+22-2×1×2×cos π3=3,所以BC 1=3,故BC 2+BC 21=CC 21,所以BC ⊥BC 1,而BC ∩AB =B ,所以C 1B ⊥平面ABC .(2)由(1)可知,AB ,BC ,BC 1两两垂直.以B 为原点,BC ,BA ,BC 1所在直线分别为x ,y ,z 轴建立空间直角坐标系.则B (0,0,0),A (0,1,0),B 1(-1,0,3),C (1,0,0),C 1(0,0,3). 所以CC 1→=(-1,0,3),所以CE →=(-λ,0,3λ),E (1-λ,0,3λ), 则AE →=(1-λ,-1,3λ),AB 1→=(-1,-1,3). 设平面AB 1E 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ⊥AE →n ⊥AB 1→,即⎩⎨⎧(1-λ)x -y +3λz =0-x -y +3z =0,令z =3,则x =3-3λ2-λ,y =32-λ,故n =⎝ ⎛⎭⎪⎫3-3λ2-λ,32-λ,3是平面AB 1E 的一个法向量.因为AB ⊥平面BB 1C 1C ,BA →=(0,1,0)是平面BB 1E 的一个法向量, 所以|cos 〈n ,BA →〉|=⎪⎪⎪⎪⎪⎪n ·BA →|n ||BA →|=⎪⎪⎪⎪⎪⎪32-λ1×⎝ ⎛⎭⎪⎫3-3λ2-λ2+⎝⎛⎭⎫32-λ2+(3)2=32. 两边平方并化简得2λ2-5λ+3=0,所以λ=1或λ=32(舍去).20.解:(1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,-2). 所以直线BM 的方程为y =12x +1或y =-12x -1.(2)证明:当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为y =k (x -2)(k ≠0),M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由⎩⎪⎨⎪⎧y =k (x -2),y 2=2x ,得ky 2-2y -4k =0,可知y 1+y 2=2k ,y 1y 2=-4.直线BM ,BN 的斜率之和为k BM +k BN =y 1x 1+2+y 2x 2+2=x 2y 1+x 1y 2+2(y 1+y 2)(x 1+2)(x 2+2).①将x 1=y 1k +2,x 2=y 2k +2及y 1+y 2,y 1y 2的表达式代入①式分子,可得x 2y 1+x 1y 2+2(y 1+y 2)=2y 1y 2+4k (y 1+y 2)k =-8+8k =0.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM =∠ABN .综上,∠ABM =∠ABN .21.解:(1)易知函数f (x )的定义域为(0,+∞), h (x )=f (x )x =ln x -k (x -1)x (x >0),则h ′(x )=1x -k x 2=x -kx2,当k ≤0时,h ′(x )>0对任意的x >0恒成立,所以h (x )是(0,+∞)上的增函数,此时h (x )不存在极值.当k >0时,若0<x <k ,则h ′(x )<0;若x >k ,则h ′(x )>0.所以h (x )是(0,k )上的减函数,是(k ,+∞)上的增函数,故h (x )的极小值为h (k )=ln k -k +1,不存在极大值. 综上所述,当k ≤0时,h (x )不存在极值; 当k >0时,h (x )极小值=ln k -k +1,不存在极大值.(2)由(1)知当k ≤0或k =1时,f (x )=0,即h (x )=0仅有唯一解x =1,不符合题意. 当0<k <1时,h (x )是(k ,+∞)上的增函数,当x >1时,有h (x )>h (1)=0, 所以f (x )=0没有大于1的根,不符合题意.当k >1时,由f ′(x )=0,即f ′(x )=1+ln x -k =0,解得x 0=e k -1, 若x 1=kx 0=k e k -1,又x 1ln x 1=k (x 1-1),所以k e k -1ln(k e k -1)=k (k e k -1-1),即ln k -1+e 1-k =0.令v (x )=ln x -1+e 1-x ,则v ′(x )=1x-e 1-x =e x -e x x ex ,令s (x )=e x -e x ,s ′(x )=e x-e ,当x >1时,总有s ′(x )>0,所以s (x )是(1,+∞)上的增函数,即s (x )=e x -e x >s (1)=0,故当x >1时,v ′(x )>0,v (x )是(1,+∞)上的增函数,所以v (x )>v (1)=0, 即ln k -1+e 1-k =0在(1,+∞)上无解. 综上可知,不存在满足条件的实数k .22.解:(1)由⎩⎨⎧x =1+2ty =2t,得x -y =1,所以直线l 的极坐标方程为ρcos α-ρsin α=1, 即2ρ(cos αcos π4-sin αsin π4)=1,即2ρcos ⎝⎛⎭⎫α+π4=1.由ρ=sin θ1-sin 2θ,所以ρ=sin θcos 2θ,所以ρcos 2θ=sin θ,所以(ρcos θ)2=ρsin θ, 即曲线C 的直角坐标方程为y =x 2. (2)设P (x 0,y 0),则y 0=x 20,所以P 到直线l 的距离d =|x 0-y 0-1|2=|x 0-x 20-1|2=⎪⎪⎪⎪-⎝⎛⎭⎫x 0-122-342,所以当x 0=12时,d min =328,此时P ⎝⎛⎭⎫12,14, 所以当P 点为⎝⎛⎭⎫12,14时,P 到直线l 的距离最小,最小值为328. 23.解:(1)由已知可得 f (x )=⎩⎪⎨⎪⎧4,x ≥22x ,-2<x <2,-4,x ≤-2所以,f (x )≥2的解集为{x |x ≥1}. (2)证明:由(1)知,|x +2|-|x -2|≤4,1y +11-y =⎝⎛⎭⎫1y +11-y [y +(1-y )]=2+1-y y +y 1-y ≥4(当且仅当y =12时取等号),所以|x +2|-|x -2|≤1y +11-y.高考仿真模拟卷(二)1.解析:选A.A ={x |x <-1或x >2},B ={x |1<x <4},所以A ∩B =(2,4).故选A. 2.解析:选B.由z (1+i)=i 得z =i1+i ,所以|z |=|i||i +1|=12=22,故答案为B. 3.解析:选B.因为向量a =(x ,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,所以2x -4=0,2y =-4,解得x =2,y =-2,所以a =(2,1),b =(1,-2),所以a +b =(3,-1),所以|a +b |= 32+(-1)2=10.4.解析:选A.因为f (-x )=|-x |ln|-x |x 4=|x |ln|x |x4=f (x ),所以f (x )是偶函数, 可得图象关于y 轴对称,排除C ,D ;当x >0时,f (x )=ln xx 3,f (1)=0,f ⎝⎛⎭⎫12<0,排除B. 5.解析:选A.因为sin ⎝⎛⎭⎫π2-α=cos α=35,所以sin α=±45,因为α∈⎝⎛⎭⎫0,π2,所以sin α=45,所以tan α=43,所以tan 2α=2tan α1-tan 2α=831-169=-247,故选A.6.解析:选A.设所选2部专著中至少有一部是魏晋南北朝时期专著为事件A , 所以P (A )=C 23C 210=115,因此P (A )=1-P (A )=1-115=1415,故本题选A.7.解析:选B.第一次运行,i =10,满足条件,S =1×10=10,i =9; 第二次运行,i =9满足条件,S =10×9=90,i =8; 第三次运行,i =8满足条件,S =90×8=720,i =7; 此时不满足条件,输出的S =720.故条件应为8,9,10满足,i =7不满足,所以条件应为i >7.8.解析:选C.因为1=log 2 0182 018>a =log 2 018 2 019>log 2 018 2 018=12,b =log 2 019 2 018<log 2 0192 019=12,c =2 01812 019>2 0180=1,故本题选C.9.解析:选C.由递推公式可得:当n 为奇数时,a n +2-a n =4,数列{a 2n -1}是首项为1,公差为4的等差数列, 当n 为偶数时,a n +2-a n =0,数列{a n }是首项为2,公差为0的等差数列, S 2 017=(a 1+a 3+…+a 2 017)+(a 2+a 4+…+a 2 016) =1 009+12×1 009×1 008×4+1 008×2=2 017×1 010-1.本题选择C 选项.10.解析:选A.设P (x 0,x 0),所以切线的斜率为12x 0,又因为在点P 处的切线过双曲线的左焦点F (-1,0),所以12x 0=x 0x 0+1,解得x 0=1,所以P (1,1),因此2c =2,2a =5-1,故双曲线的离心率是5+12,故选A.11.解析:选D.b c +c b =b 2+c 2bc ,这个形式很容易联想到余弦定理cos A =b 2+c 2-a 22bc ,①而条件中的“高”容易联想到面积,12a ×36a =12bc sin A ,即a 2=23bc sin A ,②将②代入①得:b 2+c 2=2bc (cos A +3sin A ),所以b c +cb =2(cos A +3sin A )=4sin ⎝⎛⎭⎫A +π6,当A =π3时取得最大值4,故选D.12.解析:选A.依题意得,AB =2AD =2,∠DAB =π3,由余弦定理可得BD =3,则AD 2+DB 2=AB 2,则∠ADB =π2,又四边形ABCD 是等腰梯形,故四边形ABCD 的外接圆直径为AB ,设AB 的中点为O 1,球的半径为R ,因为SD ⊥平面ABCD ,所以R 2=12+⎝⎛⎭⎫SD 22=54,则S =4πR 2=5π,故选A. 13.解析:因为S 3=S 11,可得3a 1+3d =11a 1+55d ,把a 1=13代入得d =-2.故S n =13n -n (n -1)=-n 2+14n ,根据二次函数性质,当n =7时,S n 最大且最大值为49.答案:4914.解析:由题意得(1-3x )8展开式的通项为T r +1=C r 8(-3x )r=(-1)r C r 8x r3,r =0,1,2, (8)所以(a +3x )(1-3x )8展开式的常数项为(-1)0C 08·a =a =4,所以(4+3x )(1-3x )8展开式中x 2项的系数为4·(-1)6C 68x 63+3x ·(-1)3C 38x 33=-56x 2,所以展开式中x 2的系数是-56.故答案为-56. 答案:-5615.解析:法一:因为DE →=12DO →,DO →=OB →=12DB →,所以DE →=12DO →=14DB →,所以DE →=13EB →,由DF ∥BC ,得DF →=13CB →,所以CF →=CD →+DF →=CD →+13CB →=CO →+OD →+13(CO →+OB →)=43CO →+23OD →=-23AC →+13BD →,所以λ=-23,μ=13,λ+μ=-13.法二:不妨设ABCD 为矩形,建立平面直角坐标系如图,设AB =a ,BC =b ,则A (0,0),B (a ,0),C (a ,b ),D (0,b ),O ⎝⎛⎭⎫a 2,b 2,设E (x ,y ),因为DE →=12DO →,所以(x ,y -b )=12⎝⎛⎭⎫a 2,-b 2,所以x =a 4,y =34b ,即E ⎝⎛⎭⎫a 4,34b ,设F (0,m ),因为CF →∥CE →,CF →=(-a ,m -b ),CE →=⎝⎛⎭⎫-34a ,-14b ,所以14ab +34a (m -b )=0,解得m =23b ,即F ⎝⎛⎭⎫0,23b ,CF →=⎝⎛⎭⎫-a ,-13b .又AC →=(a ,b ),BD →=(-a ,b ),由CF →=λAC →+μBD →,得⎝⎛⎭⎫-a ,-13b =λ(a ,b )+μ(-a ,b )=((λ-μ)a ,(λ+μ)b ),所以λ+μ=-13.答案:-1316.解析:由题意得ln x +x =kx 有两个不同的解,k =ln xx +1,则k ′=1-ln x x 2=0⇒x =e ,因此当0<x <e 时,k ∈⎝⎛⎭⎫-∞,1+1e ,当x >e 时,k ∈⎝⎛⎭⎫1,1+1e ,从而要使ln x +x =kx 有两个不同的解,需k ∈⎝⎛⎭⎫1,1+1e . 答案:⎝⎛⎭⎫1,1+1e 17.解:(1)因为f (x )=3sin(3π+x )·cos(π-x )+cos 2⎝⎛⎭⎫π2+x ,所以f (x )=3(-sin x )·(-cos x )+(-sin x )2=32sin 2x +1-cos 2x 2=sin ⎝⎛⎭⎫2x -π6+12. 由2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z ,即函数f (x )的单调递增区间是⎣⎡⎦⎤k π-π6,k π+π3,k ∈Z .(2)由f (A )=32得,sin ⎝⎛⎭⎫2A -π6+12=32,所以sin ⎝⎛⎭⎫2A -π6=1,因为0<A <π,所以0<2A <2π,-π6<2A -π6<11π6,所以2A -π6=π2,所以A =π3,因为a =2,b +c =4,① 根据余弦定理得,4=b 2+c 2-2bc cos A =b 2+c 2-bc =(b +c )2-3bc =16-3bc , 所以bc =4,② 联立①②得,b =c =2.18.解:(1)依题意得,a =0.04×5×1 000=200,b =0.02×5×1 000=100.(2)设抽取的40名学生中,成绩为优秀的学生人数为x ,则x 40=350+300+1001 000,解得x=30,即抽取的40名学生中,成绩为优秀的学生人数为30. 依题意,X 的可能取值为0,1,2,P (X =0)=C 210C 240=352,P (X =1)=C 110C 130C 240=513,P (X =2)=C 230C 240=2952,所以X 的分布列为X 0 1 2 P3525132952所以X 的数学期望E (X )=0×352+1×513+2×2952=32.19.解:(1)证明:取BC 的中点Q ,连接NQ ,FQ ,则NQ =12AC ,NQ ∥AC .又MF =12AC ,MF ∥AC ,所以MF =NQ ,MF ∥NQ ,则四边形MNQF 为平行四边形,即MN ∥FQ .因为FQ ⊂平面FCB ,MN ⊄平面FCB , 所以MN ∥平面FCB .(2)由AB ∥CD ,AD =DC =CB =1,∠ABC =60°可得∠ACB =90°,AC =3,BC =1,AB =2.因为四边形ACFE 为矩形,所以AC ⊥平面FCB ,则∠AFC 为直线AF 与平面FCB 所成的角,即∠AFC =30°,所以FC =3.因为FB =10,所以FC ⊥BC ,则可建立如图所示的空间直角坐标系C -xyz ,所以A (3,0,0),B (0,1,0),M ⎝⎛⎭⎫32,0,3,MA →=⎝⎛⎭⎫32,0,-3,MB →=⎝⎛⎭⎫-32,1,-3. 设m =(x ,y ,z )为平面MAB 的法向量,则⎩⎪⎨⎪⎧MA →·m =0,MB →·m =0,即⎩⎨⎧32x -3z =0,-32x +y -3z =0.取x =23,则m =(23,6,1)为平面MAB 的一个法向量.又n =(3,0,0)为平面FCB 的一个法向量, 所以cos 〈m ,n 〉=m·n |m||n|=23×37×3=237.则平面MAB 与平面FCB 所成角的余弦值为237.20.解:(1)由题意知,b 等于原点到直线y =x +2的距离,即b =21+1=2,又2a =4,所以a =2,c 2=a 2-b 2=2,所以椭圆C 的两个焦点的坐标分别为()2,0,()-2,0.(2)由题意可设M (x 0,y 0),N (-x 0,-y 0),P (x ,y ),则x 20a 2+y 20b 2=1,x 2a 2+y 2b2=1, 两式相减得y 2-y 20x 2-x 20=-b 2a 2,又k PM =y -y 0x -x 0,k PN =y +y 0x +x 0, 所以k PM ·k PN =y -y 0x -x 0·y +y 0x +x 0=y 2-y 20x 2-x 20=-b 2a 2,所以-b 2a 2=-14,又a =2,所以b =1,故椭圆C 的方程为x 24+y 2=1.21.解:(1)f ′(x )=1x -k x 2=x -kx2,x >0.当k ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增,无极值.当k >0时,当0<x <k 时,f ′(x )<0,当x >k 时,f ′(x )>0,故f (x )的单调递减区间是(0,k ),单调递增区间是(k ,+∞),f (x )的极小值为h (k )=f (k )=ln k +1.当k >0时,h (k )≤ak 恒成立,即ln k +1≤ak ,即a ≥ln k +1k恒成立.令φ(k )=ln k +1k ,则φ′(k )=1-(1+ln k )k 2=-ln kk 2,令φ′(k )=0,得k =1,当0<k <1时,φ′(k )>0,φ(k )单调递增,当k >1时,φ′(k )<0,φ(k )单调递减,故k =1为φ(k )在(0,+∞)上唯一的极大值点,也是最大值点,所以φ(k )max =φ(1)=1,所以a ≥1,即实数a 的取值范围是[1,+∞).(2)证明:由(1)知,当k >0时,f (x )在(0,k )上单调递减,在(k ,+∞)上单调递增,设α<β,则一定有0<α<k <β.构造函数g (x )=f (x )-f (2k -x )=ln x +k x -ln (2k -x )-k2k -x ,0<x <k ,g ′(x )=1x +12k -x -k x 2-k(2k -x )2=2kx (2k -x )-2k (x 2-2kx +2k 2)x 2(2k -x )2 =-4k (x -k )2x 2(2k -x )2. 因为0<x <k ,所以g ′(x )<0,即g (x )在(0,k )上单调递减,又f (k )-f (2k -k )=0,所以g (x )>0,所以f (x )>f (2k -x ).因为0<α<k ,所以f (α)>f (2k -α),因为f (α)=f (β),所以f (β)>f (2k -α),因为0<α<k ,所以2k -α>k ,又函数f (x )在(k ,+∞)上单调递增,所以β>2k -α,所以α+β>2k .22.解:(1)x 2=⎣⎡⎦⎤2sin ⎝⎛⎭⎫α+π42=(sin α+cos α)2=sin 2α+1=y ,所以C 1的普通方程为y =x 2.将ρ2=x 2+y 2,ρsin θ=y 代入C 2的方程得x 2+y 2=4y -3,所以C 2的直角坐标方程为x 2+y 2-4y +3=0.(2)将x 2+y 2-4y +3=0变形为x 2+(y -2)2=1,它的圆心为C (0,2).设P (x 0,y 0)为C 1上任意一点,则y 0=x 20,从而|PC |2=(x 0-0)2+(y 0-2)2=x 20+(x 20-2)2=x 40-3x 20+4=⎝⎛⎭⎫x 20-322+74,所以当x 20=32时,|PC |min =72, 故曲线C 1上的点与曲线C 2上的点的距离的最小值为72-1. 23.解:(1)由已知可得f (x )=⎩⎪⎨⎪⎧1-2x ,x <0,1,0≤x <1,2x -1,x ≥1,所以f (x )min =1,所以只需|m -1|≤1,解得-1≤m -1≤1, 所以0≤m ≤2,所以实数m 的最大值M =2. (2)证明:因为a 2+b 2≥2ab , 所以ab ≤1,所以ab ≤1,当且仅当a =b 时取等号,① 又ab ≤a +b 2,所以ab a +b ≤12,所以ab a +b ≤ab2,当且仅当a =b 时取等号,②由①②得,ab a +b ≤12,所以a +b ≥2ab . 高考仿真模拟卷(三)1.解析:选C.因为A =(-2,1),B =(-∞,0)∪(1,+∞),所以∁R B =[0,1],A ∩(∁R B )=[0,1),选C.2.解析:选A.由复数z 1与z 3所对应的点关于原点对称,z 3与z 2关于实轴对称可得, 复数z 1与z 2所对应的点关于虚轴对称,z 1=3+4i ,所以z 2=-3+4i , 所以z 1·z 2=(3+4i)(-3+4i)=-25.3.解析:选C.抛掷红、蓝两枚骰子,第一个数字代表红色骰子,第二个数字代表蓝色骰子,当红色骰子点数为偶数时,有18种,分别为:(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),其中两颗骰子点数之和不小于9的有6种,分别为:(4,5),(4,6),(6,3),(6,4),(6,5),(6,6),所以当已知红色骰子的点数为偶数时,两颗骰子的点数之和不小于9的概率是P =618=13.故选C.4.解析:选B.本题可以转为等差数列问题:已知首项a 1=5,前30项的和S 30=390,求公差d .由等差数列的前n 项公式可得,390=30×5+30×292d ,解得d =1629.5.解析:选A.因为函数f (x )=x ln |x |,可得f (-x )=-f (x ),f (x )是奇函数,其图象关于原点对称,排除C ,D ;当x >0时,f ′(x )=ln x +1,令f ′(x )>0得x >1e ,得出函数f (x )在⎝⎛⎭⎫1e ,+∞上是增函数,排除B ,故选A.6.解析:选D.由m ⊥OA →,得3x +4y =0,即y =-34x ,所以tan α=-34,tan ⎝⎛⎭⎫α+π4=tan α+tan π41-tan αtan π4=tan α+11-tan α=-34+11-⎝⎛⎭⎫-34=17.7.解析:选D.设奇数项的公差为d ,偶数项的公比为q ,由a 3+a 4=7,a 5+a 6=13,得1+d +2q =7,1+2d +2q 2=13,解得d =2,q =2,所以a 7+a 8=1+3d +2q 3=7+16=23,故选D.8.解析:选C.第一次循环r =70,m =105,n =70;第二次循环r =35,m =70,n =35;第三次循环r =0,m =35,n =0.故输出的m 等于35.9.解析:选A.在△ADC 中,因为AC =32,AD =3,cos ∠ADC =cos ⎝⎛⎭⎫∠ABC +π2=-sin ∠ABC =-33,所以代入AC 2=AD 2+DC 2-2AD ·DC ·cos ∠ADC ,可得DC 2+2DC -15=0,舍掉负根有DC =3.所以BC =DC cot ∠ABC =3 2.AB =AD +BD =AD +DCsin ∠ABC =3+33=4 3.于是根据三角形的面积公式有:S △ABC =12AB ·BC ·sin ∠ABC =12·43·32·33=6 2.故选A.10.解析:选C.由AB =BC =2,AC =2,可知∠ABC =π2,取AC 的中点M ,则点M 为△ABC 外接圆的圆心,又O 为四面体ABCD 的外接球球心,所以OM ⊥平面ABC ,且OM 为△ACD 的中位线,所以DC ⊥平面ABC , 故三棱锥D -ABC 的体积为V =13×12×2×2×23=233.故选C.11.解析:选B.由题意知四边形F 1F 2PQ 的边长为2c ,连接QF 2,由对称性可知,|QF 2|=|QF 1|=2c ,则三角形QPF 2为等边三角形.过点P 作PH ⊥x 轴于点H ,则∠PF 2H =60°,因为|PF 2|=2c ,所以在直角三角形PF 2H 中,|PH |=3c ,|HF 2|=c ,则P (2c ,3c ),连接PF 1,则|PF 1|=23c .由双曲线的定义知,2a =|PF 1|-|PF 2|=23c -2c =2(3-1)c ,所以双曲线的离心率为c a =13-1=3+12.12.解析:选B.令g (x )=f (x )x 2,则g ′(x )=x 2f ′(x )-2xf (x )x 4=xf ′(x )-2f (x )x 3,由于x ∈(0,1),且xf ′(x )>2f (x ),所以g ′(x )>0,故函数g (x )在(0,1)上单调递增.又α,β为锐角三角形的两个内角,则π2>α>π2-β>0,所以1>sin α>sin ⎝⎛⎭⎫π2-β>0,即1>sin α>cos β>0,所以g (sin α)>g (cos β),即f (sin α)sin 2α>f (cos β)cos 2β,所以cos 2βf (sin α)>sin 2αf (cos β). 13.解析:依题意,得1a +4b =12⎝⎛⎭⎫1a +4b ·(a +b ) =12⎣⎡⎦⎤5+⎝⎛⎭⎫b a +4a b ≥12⎝⎛⎭⎫5+2b a ·4a b=92,当且仅当⎩⎪⎨⎪⎧a +b =2,b a =4a b ,a >0,b >0,即a =23,b =43时取等号,即1a +4b 的最小值是92. 答案:9214.解析:依题意,结合茎叶图,将题中的数由小到大依次排列得到:86,86,90,91,93,93,93,96,因此这8位学生得分的众数是93,中位数是91+932=92.答案:93,9215.解析:由AB →·AC →=6,∠A =60°,可得|AB →|·|AC →|=12,又在△ABC 中,13=AB 2+AC 2-2AB ·AC cos A ,所以AB 2+AC 2=25,因为AB >AC ,所以AB =4,AC =3.以A 为坐标原点,AB 所在的直线为x 轴建立如图所示的平面直角坐标系,则B (4,0),C ⎝⎛⎭⎫32,332,所以BC →=⎝⎛⎭⎫-52,332,因为M 是BC 的中点,所以M ⎝⎛⎭⎫114,334,H ⎝⎛⎭⎫114,0,所以MH →=⎝⎛⎭⎫0,-334,所以MH →·BC →=-278.答案:-27816.解析:函数f (x )=a ln x -x +a +3x 在定义域(0,+∞)内无极值等价于f ′(x )≥0或f ′(x )≤0在定义域(0,+∞)内恒成立.因为f ′(x )=ax -1-a +3x 2=-x 2+ax -(a +3)x 2,设g (x )=-x 2+ax -(a +3),则g (x )≥0或g (x )≤0在(0,+∞)内恒成立,可分两种情况进行讨论,即方程g (x )=-x 2+ax -(a +3)=0无解或只有小于等于零的解,因此Δ≤0或⎩⎪⎨⎪⎧Δ≥0,a2≤0,g (0)≤0,解得-2≤a ≤6或-3≤a ≤-2.故实数a 的取值范围为[-3,6]. 答案:[-3,6]17.解:(1)记甲运动员击中n 环为事件A n (n =1,2,3,…,10);乙运动员击中n 环为事件B n (n =1,2,3,…,10);甲运动员击中的环数不少于9环为事件A 9∪A 10,乙运动员击中的环数不少于9环为事件B 9∪B 10,根据已知事件A 9与事件A 10互斥,事件B 9与事件B 10互斥,事件A 9∪A 10与B 9∪B 10相互独立.P (A 9∪A 10)=P (A 9)+P (A 10)=1-0.2-0.15=0.65, P (B 9∪B 10)=P (B 9)+P (B 10)=0.2+0.35=0.55.所以甲、乙两名射击运动员击中的环数都不少于9环的概率等于0.65×0.55=0.357 5. (2)设甲、乙两名射击运动员击中的环数分别为随机变量X 、Y ,根据已知得X 、Y 的可能取值为:7,8,9,10.甲运动员射击环数X 的概率分布列为甲运动员射击环数X E (X )=7×0.2+8×0.15+9×0.3+10×0.35=8.8. 乙运动员射击环数Y 的概率分布列为乙运动员射击环数Y E (Y )=7×0.2+8×0.25+9×0.2+10×0.35=8.7.因为E (X )>E (Y ), 所以从随机变量均值意义的角度看,选甲去比较合适. 18.解:(1)当n =1时,a 1=S 1=2-a ; 当n ≥2时,a n =S n -S n -1=2n -1.因为{a n }为等比数列,所以2-a =1,解得a =1.所以a n =2n -1. 设数列{b n }的公差为d .因为b 2+5,b 4+5,b 8+5成等比数列, 所以(b 4+5)2=(b 2+5)(b 8+5),又b 1=3,所以(8+3d )2=(8+d )(8+7d ), 解得d =0(舍去)或d =8.所以b n =8n -5. (2)由a n =2n -1,得log 2a n =2(n -1),所以{log2a n }是以0为首项,2为公差的等差数列,所以T n =n (0+2n -2)2=n (n -1).由b n =8n -5,T n >b n ,得n (n -1)>8n -5, 即n 2-9n +5>0,因为n ∈N *,所以n ≥9. 故所求n 的最小正整数为9.19.解:(1)设BD =x (0<x <3),则CD =3-x .由AD ⊥BC ,∠ACB =45°知,△ADC 为等腰直角三角形,所以AD =CD =3-x . 由折起前AD ⊥BC 知,折起后,AD ⊥DC ,AD ⊥BD ,且BD ∩DC =D ,所以AD ⊥平面BCD .又∠BDC =90°, 所以S △BCD =12BD ·CD =12x (3-x ).于是V A­BCD=13AD ·S △BCD=13(3-x )·12x (3-x )=112·2x (3-x )·(3-x )≤112⎣⎡⎦⎤2x +(3-x )+(3-x )33=23(当且仅当2x =3-x ,即x =1时,等号成立),故当x =1,即BD =1时,三棱锥A -BCD 的体积最大.(2)以D 为原点,建立如图所示的空间直角坐标系D -xyz . 由(1)知,当三棱锥A -BCD 的体积最大时,BD =1,AD =CD =2.于是可得D (0,0,0),B (1,0,0),C (0,2,0),A (0,0,2),M (0,1,1),E ⎝⎛⎭⎫12,1,0,所以BM →=(-1,1,1).设N (0,λ,0),则EN →=⎝⎛⎭⎫-12,λ-1,0. 因为EN ⊥BM ,所以EN →·BM →=0,即⎝⎛⎭⎫-12,λ-1,0·(-1,1,1)=12+λ-1=0,故λ=12,N ⎝⎛⎭⎫0,12,0. 所以当DN =12(即N 是CD 上靠近点D 的一个四等分点)时,EN ⊥BM .设平面BMN 的一个法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ⊥BN →,n ⊥BM →,及BN →=⎝⎛⎭⎫-1,12,0, 得⎩⎪⎨⎪⎧-x +12y =0,-x +y +z =0,所以⎩⎪⎨⎪⎧y =2x ,z =-x .取x =1得n =(1,2,-1).设EN 与平面BMN 所成角的大小为θ,则由EN →=⎝⎛⎭⎫-12,-12,0, 可得sin θ=|cos 〈n ,EN →〉|=⎪⎪⎪⎪⎪⎪n ·EN →|n |·|EN →|=⎪⎪⎪⎪-12-16×22=32, 即θ=60°,故EN 与平面BMN 所成角的大小为60°.20.解:(1)证明:因为f ′(x )=x e x ≥0,即f (x )在[0,1]上单调递增,所以f (x )≥f (0)=0,结论成立.(2)令g (x )=e x -1x ,则g ′(x )=(x -1)e x +1x 2>0,x ∈(0,1),所以,当x ∈(0,1)时,g (x )<g (1)=e -1, 要使e x -1x<b ,只需b ≥e -1.要使e x -1x >a 成立,只需e x -ax -1>0在x ∈(0,1)上恒成立.令h (x )=e x -ax -1,x ∈(0,1),则h ′(x )=e x -a ,由x ∈(0,1),得e x ∈(1,e),①当a ≤1时,h ′(x )>0,此时x ∈(0,1),有h (x )>h (0)=0成立,所以a ≤1满足条件; ②当a ≥e 时,h ′(x )<0,此时x ∈(0,1),有h (x )<h (0)=0,不符合题意,舍去; ③当1<a <e 时,令h ′(x )=0,得x =ln a ,可得当x ∈(0,ln a )时,h ′(x )<0,即x ∈(0,ln a )时,h (x )<h (0)=0,不符合题意,舍去.综上,a ≤1.又b ≥e -1,所以b -a 的最小值为e -2.21.解:(1)由焦点坐标为(1,0),可知p2=1,所以p =2,所以抛物线C 的方程为y 2=4x .(2)证明:当直线l 垂直于x 轴时,△ABO 与△MNO 相似, 所以S △ABO S △MNO =⎝⎛⎭⎫|OF |22=14;当直线l 与x 轴不垂直时,设直线AB 的方程为y =k (x -1). 设M (-2,y M ),N (-2,y N ),A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,整理得k 2x 2-(4+2k 2)x +k 2=0,所以x 1·x 2=1.所以S △ABOS △MNO=12·|AO |·|BO |·sin ∠AOB 12·|MO |·|NO |·sin ∠MON=|AO ||MO |·|BO ||NO |=x 12·x 22=14. 综上,S △ABO S △MNO =14. 22.解:(1)由已知可得圆心O 的直角坐标为⎝⎛⎭⎫-22,-22,所以圆心O 的极坐标为⎝⎛⎭⎫1,5π4.(2)由直线l 的极坐标方程可得直线l 的直角坐标方程为x +y -1=0,所以圆心O 到直线l 的距离d =|-2-1|2,圆O 上的点到直线l 的距离的最大值为|-2-1|2+r =3,解得r =2-22. 23.解:(1)显然a ≠0,当a >0时,解集为⎣⎡⎦⎤-1a ,3a ,则-1a =-6,3a =2,无解; 当a <0时,解集为⎣⎡⎦⎤3a ,-1a ,令-1a =2,3a =-6,得a =-12. 综上所述,a =-12.(2)当a =2时,令h (x )=f (2x +1)-f (x -1)=|4x +1|-|2x -3|=⎩⎪⎨⎪⎧-2x -4,x ≤-14,6x -2,-14<x <32,2x +4,x ≥32, 由此可知,h (x )在⎝⎛⎦⎤-∞,-14上单调递减,在⎝⎛⎭⎫-14,32上单调递增,在⎣⎡⎭⎫32,+∞上单调递增,则当x =-14时,h (x )取到最小值-72,由题意知,-72≤7-3m ,则实数m 的取值范围是⎝⎛⎦⎤-∞,72.高考仿真模拟卷(四)1.解析:选B.因为M ={x |1≤x <3},N ={1,2},所以M ∩N ={1,2}.故选B. 2.解析:选C.由(z -1)i =4+2i ,得z -1=4+2i i =2-4i ,所以z =3-4i ,所以|z |=5.3.解析:选D.由题意知,四所中学报名参加某高校2017年自主招生考试的学生总人数为100,抽取的学生人数与学生总人数的比值为50100=12.所以应从A ,B ,C ,D 四所中学抽取的学生人数分别为20,15,5,10.4.解析:选C.因为a 5=a 2q 3<0,a 2<0,所以q >0,所以a n <0恒成立,所以S n -S n -1=a n <0,{S n }单调递减,故为充分条件;S n -S n -1=a n <0⇒a 2<0,a 5<0,故为必要条件.故选C.5.解析:选B.依题意得cos C =a 2+b 2-c 22ab =12,C =60°,因此△ABC 的面积等于12ab sinC =12×3×32=34.6.解析:选A.因为a =log 123<log 122=-1,0<b =⎝⎛⎭⎫130.2<1,c =2>1,所以a <b <c . 7.解析:选A.由(a -2b )·a =a 2-2a ·b =0,得a ·b =a 22=|a |22=8,从而a 在b 方向上的投影为a ·b |b |=82=4,故选A.8.解析:选C.第一次循环S =2,n =2,第二次循环S =6,n =3,第三次循环S =2,n =4,第四次循环S =18,n =5,第五次循环S =14,n =6,第六次循环S =78,n =7,需满足S ≥K ,此时输出n =7,所以18<K ≤78,所以整数K 的最大值为78.9.解析:选B.设长方体三条棱的长分别为a ,b ,c , 由题意得⎩⎪⎨⎪⎧ab =6bc =8ac =12,解得⎩⎪⎨⎪⎧a =3b =2c =4.再结合题意可得,铁球的直径最大只能为2. 故选B.10.解析:选B.设Q (x 0,y 0),中点M (x ,y ),则P (2x -x 0,2y -y 0)代入x 2+y 2=9, 得(2x -x 0)2+(2y -y 0)2=9, 化简得:⎝⎛⎭⎫x -x 022+⎝⎛⎭⎫y -y 022=94, 又x 20+y 20=25表示以原点为圆心半径为5的圆,故易知M 的轨迹是在以⎝⎛⎭⎫x 02,y 02为圆心,以32为半径的圆绕原点一周所形成的图形,即在以原点为圆心,宽度为3的圆环带上,即应有x 2+y 2=r 2(1≤r ≤4),那么在C 2内部任取一点落在M 内的概率为16π-π25π=1525=35.故选B.11.解析:选A.由题意得,F (c ,0),该双曲线的一条渐近线为y =-ba x ,将x =c 代入y=-b a x 得y =-bc a,所以bca =2a ,即bc =2a 2,所以4a 4=b 2c 2=c 2(c 2-a 2),所以e 4-e 2-4=0,解得e 2=1+172,故选A.12.解析:选A.二次函数f (x )=x 2+(a +8)x +a 2+a -12图象的对称轴为直线x =-a +82,由f (a 2-4)=f (2a -8)及二次函数的图象,可以得出a 2-4+2a -82=-a +82,解得a =-4或a=1,又a <0,所以a =-4,所以f (x )=x 2+4x ,所以f (n )-4a n +1=n 2+4n +16n +1=(n +1)2+2(n +1)+13n +1=n +1+13n +1+2≥2(n +1)·13n +1+2=213+2,又n ∈N *,所以当且仅当n +1=13n +1,即n =13-1时等号成立,当n =2时,f (n )-4a n +1=283,n =3时,f (n )-4a n +1=294+2=374<283,所以最小值为374,故选A.13.解析:因为函数f (x )=tan x +sin x +2 017,所以f (-x )=-tan x -sin x +2 017,从而f (-x )+f (x )=4 034,又f (m )=2,所以f (-m )=4 032.答案:4 03214.解析:不等式组表示的平面区域如图中阴影部分所示,假设z =x +ay 在点C (2,1)处取得最小值,则2+a =4,a =2,此时y =-12x +12z ,其在点C (2,1)处取得最小值,符合题意.假设z =x +ay 在点B (2,5)处取得最小值,则2+5a =4,a =25,此时y =-52x +52z ,其在点C 处取得最小值,不符合题意.假设z =x +ay 在点A (8,-1)处取得最小值,则8-a =4,a =4,此时y =-14x +14z ,其在点A处取得最小值,符合题意.所以a 的值为2或4.答案:2或415.解析:由S n =2n -1,得a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -1-2n -1+1=2n -1,a 1=1适合上式,所以a n =2n -1. 则b n =a 2n -7a n +6=⎝⎛⎭⎫a n -722-254.所以当n =3时(b n )min =⎝⎛⎭⎫4-722-254=-6.故答案为-6. 答案:-616.解析:该球形容器最小时,十字立方体与球内接,此时球直径2R 等于由两个正四棱柱组合而成的几何体的对角线,即2R =42+42+22=6,球形容器的表面积为4πR 2=36π.答案:36π17.解:(1)f (x )=23sin x cos x +cos 2x -sin 2x =3sin 2x +cos 2x =2⎝⎛⎭⎫32sin 2x +12cos 2x=2sin ⎝⎛⎭⎫2x +π6, 所以函数f (x )的最小正周期T =π.(2)由题意可知,不等式f (x )≥m 有解,即m ≤f (x )max .因为x ∈⎣⎡⎦⎤0,π2, 所以2x +π6∈⎣⎡⎦⎤π6,7π6, 故当2x +π6=π2,即x =π6时,f (x )取得最大值,且最大值为f ⎝⎛⎭⎫π6=2.从而可得m ≤2 . 18.解:(1)由题意知,ξ的所有可能取值为0,10,20,30. P (ξ=0)=15×14×13=160,P (ξ=10)=45×14×13+15×34×13+15×14×23=960=320,P (ξ=20)=45×34×13+45×14×23+15×34×23=2660=1330,P (ξ=30)=45×34×23=25.所以ξ的分布列为所以E (ξ)=0×160+10×320+20×1330+30×25=1336.(2)记“甲队得30分,乙队得0分”为事件A ,“甲队得20分,乙队得10分”为事件B ,则A ,B 互斥.又P (A )=⎝⎛⎭⎫343×160=91 280,P (B )=C 23⎝⎛⎭⎫342×14×320=811 280,故甲、乙两队总得分之和为30分且甲队获胜的概率为P (A +B )=P (A )+P (B )=901 280=9128. 19.解:(1)证明:连接BG ,因为BC ∥AD ,AD ⊥底面AEFB ,所以BC ⊥底面AEFB ,又AG ⊂底面AEFB ,所以BC ⊥AG ,因为AB =12EF ,且AB ∥EF ,所以AB 綊EG ,因为AB=AE ,所以四边形ABGE 为菱形,所以AG ⊥BE ,又BC ∩BE =B ,BE ⊂平面BCE ,BC ⊂平面BCE ,所以AG ⊥平面BCE .(2)由(1)知四边形ABGE 为菱形,AG ⊥BE ,AE =EG =BG =AB =4, 设AG ∩BE =O ,所以OE =OB =23,OA =OG =2, 以O 为坐标原点,建立如图所示的空间直角坐标系,则O (0,0,0),A (-2,0,0),E (0,-23,0),F (4,23,0),C (0,23,4),D (-2,0,4),所以AC →=(2,23,4),AE →=(2,-23,0),设平面ACE 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧AC →·n =0,AE →·n =0,所以⎩⎨⎧2x +23y +4z =0,2x -23y =0,令y =1,则x =3,z =-3,即平面ACE 的一个法向量为n =(3,1,-3),易知平面AEF 的一个法向量为AD →=(0,0,4),设二面角C -AE -F 的大小为θ,由图易知θ∈⎝⎛⎭⎫0,π2,所以cos θ=|n ·AD →||n |·|AD →|=437×4=217.20.解:(1)由题意知,F (x )=f (x )h (x )=x 2ln x ,F ′(x )=2x ln x +x (x >0). 令F ′(x )>0,得x >1e,故F (x )的单调递增区间为⎝⎛⎭⎫1e ,+∞;令F ′(x )<0,得0<x <1e ,故F (x )的单调递减区间为⎝⎛⎭⎫0,1e .(2)由题意知,G (x )=e x -bx ,故G ′(x )=e x -b ,又b >0,令G ′(x )=e x -b =0,得x =ln b ,故当x ∈(-∞,ln b )时,G ′(x )<0,此时G (x )单调递减;当x ∈(ln b ,+∞)时,G ′(x )>0,此时G (x )单调递增.故G (x )min =b -b ln b ,所以m ≤b -b ln b ,则mb ≤b 2-b 2ln b . 设r (b )=b 2-b 2ln b (b >0),则r ′(b )=2b -(2b ln b +b )=b -2b ln b ,由于b >0,令r ′(b )=0,得ln b =12,b =e ,当b ∈(0,e)时,r ′(b )>0,r (b )单调递增;当b ∈(e ,+∞)时,r ′(b )<0,r (b )单调递减,所以r (b )max =e 2,即当b =e ,m =12e 时,mb 取得最大值e2.21.解:(1)因为点P (2,t )到焦点F 的距离为52,所以2+p 2=52,解得p =1,故抛物线C 的方程为y 2=2x ,P (2,2), 所以l 1的方程为y =45x +25,联立得⎩⎪⎨⎪⎧y =45x +25,y 2=2x ,可解得x Q =18,又|QF |=x Q +12=58,|PF |=52,所以|QF ||PF |=5852=14.(2)设直线l 2的方程为x =ny +m (m ≠0),代入抛物线方程可得y 2-2ny -2m =0, 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2n ,y 1y 2=-2m ,① 由OA ⊥OB 得,(ny 1+m )(ny 2+m )+y 1y 2=0, 整理得(n 2+1)y 1y 2+nm (y 1+y 2)+m 2=0,②将①代入②解得m =2或m =0(舍去),满足Δ=4n 2+8m >0, 所以直线l 2:x =ny +2,因为圆心M (a ,0)到直线l 2的距离d =|a -2|1+n 2, 所以|DE |=212-(a -2)21+n 2,显然当a =2时,|DE |=2,所以存在实数a =2,使得|DE |为定值.22.解:(1)如图,设圆C 上任意一点A (ρ,θ),则∠AOC =θ-π3或π3-θ.由余弦定理得4+ρ2-4ρcos(θ-π3)=4,所以圆C 的极坐标方程为ρ=4cos ⎝⎛⎭⎫θ-π3.作图如图所示.(2)在直角坐标系中,点C 的坐标为(1,3),可设圆C 上任意一点P (1+2cos α,3+2sin α),又令M (x ,y ),由Q (5,-3),M 是线段PQ 的中点,得M 的参数方程为⎩⎨⎧x =6+2cos α2y =2sin α2(α为参数),即⎩⎪⎨⎪⎧x =3+cos αy =sin α(α为参数),所以点M 的轨迹的普通方程为(x -3)2+y 2=1.23.解:(1)由于a =1,故f (x )=⎩⎪⎨⎪⎧1-x ,x <1.x -1,x ≥1.当x <1时,由f (x )≥12(x +1),得1-x ≥12(x +1),解得x ≤13;当x ≥1时,由f (x )≥12(x +1),得x -1≥12(x +1),解得x ≥3.综上,不等式f (x )≥12(x +1)的解集为⎝⎛⎦⎤-∞,13∪[3,+∞). (2)当a <2时,g (x )=⎩⎪⎨⎪⎧a -2,x ≤a ,2x -2-a ,a <x <2,2-a ,x ≥2,g (x )的值域A =[a -2,2-a ],由A ⊆[-1,3],得⎩⎪⎨⎪⎧a -2≥-1,2-a ≤3,解得a ≥1,又a <2,故1≤a <2; 当a ≥2时,g (x )=⎩⎪⎨⎪⎧a -2,x ≤2,-2x +2+a ,2-a ,x ≥a ,2<x <a ,g (x )的值域A =[2-a ,a -2],由A ⊆[-1,3],得⎩⎪⎨⎪⎧2-a ≥-1,a -2≤3,解得a ≤3,又a ≥2,故2≤a ≤3. 综上,a 的取值范围为[1,3].高考仿真模拟卷(五)1.解析:选C.A ={x |x ≤3},B ={2,3,4}, 所以A ∩B ={2,3},故选C.2.解析:选D.由已知可得z =1+i 2-i =(1+i )(2+i )(2-i )(2+i )=1+3i 5=15+35i ,所以z =15-35i.3.解析:选A.所给圆的圆心为坐标原点,半径为2,当弦长大于2时,圆心到直线l 的距离小于1,即|m |5<1,所以-5<m <5,故所求概率P =5-(-5)9-(-6)=23.4.解析:选C.因为4a 1,a 3,2a 2成等差数列,所以2a 3=4a 1+2a 2,又a 3=a 1q 2,a 2=a 1q ,则2a 1q 2=4a 1+2a 1q ,解得q =2或q =-1,故选C.5.解析:选A.a =b =1时,两条直线ax -y +1=0与直线x -by -1=0平行, 反之由ax -y +1=0与直线x -by -1=0平行,可得ab =1,显然不一定是a =b =1, 所以,必要性不成立,所以“a =b =1”是“直线ax -y +1=0与直线x -by -1=0平行”的充分不必要条件. 故选A.6.解析:选A.BD →=AD →-AB →,所以BC →= 2 BD →=2(AD →-AB →),所以BC →·AB →=2(AD →-AB →)·AB →= 2 AD →·AB →- 2 AB →2=0-2×22=-4 2.7.解析:选C.该程序框图的功能是计算S =2+lg 12+lg 23+…+lg nn +1=2-lg(n +1)的值.要使输出的S 的值为-1,则2-lg(n +1)=-1,即n =999,故①中应填n <999?.8.解析:选C.F (1,0),故直线AB 的方程为y =x -1,联立方程组⎩⎪⎨⎪⎧y 2=4x y =x -1,可得x 2-6x +1=0,设A (x 1,y 1),B (x 2,y 2),由根与系数的关系可知x 1+x 2=6,x 1x 2=1.由抛物线的定义可知:|F A |=x 1+1, |FB |=x 2+1,所以||F A |-|FB ||=|x 1-x 2|=(x 1+x 2)2-4x 1x 2=36-4=4 2. 故选C.9.解析:选B.如图所示,在同一坐标系中分别作出y =f (x )与y =-x +a 的图象,其中a 表示直线在y 轴上的截距.由图可知,当a >1时,直线y =-x +a 与曲线y =f (x )只有一个交点.10.解析:选C.由题意得BC =CD =a ,∠BCD =90°,所以。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重点突击专题卷(11)选做题1、已知关于x 的不等式()110ax ax a a -+-≥>(1)当1a =时,求此不等式的解集; (2)若此不等式的解集为R,求实数a 的取值范围 2、已知函数()31f x x m x m =----. (1)若1m =,求不等式()1f x <的解集;(2)对任意的R x ∈,有()(2)f x f ≤,求实数m 的取值范围. 3、已知函数()212f x x x a =-+-. (1)当1a =时,求()3f x ≤的解集;(2)当[]1,2x ∈时,()3f x ≤恒成立,求实数a 的取值范围. 4、设函数()|1|,()|24|f x x g x x =-=-. (1)求不等式()()f x g x >的解集;(2)若存在R x ∈,使得不等式2(1)()1f x g x ax ++<+成立,求实数的取值范围. 5、设函数()214?f x x x =+--. 1.解不等式()2f x >; 2.求函数()y f x =的最小值.6、选修4-5 不等式选讲 已知函数()311f x x x =-++1.解不等式()5f x ≥2.若函数()f x 的最小值为m ,且42log (23)log (3)a b m +=,(0,0)a b >>,求ab 的最大值.7、在极坐标系中,直线:cos 3l ρθ=,P 为直线l 上一点,且点P 在极轴上方,以OP 为一边作正三角形OPQ (逆时针方向),且OPQ △(1)求点Q 的极坐标;(2)求OPQ △外接圆的极坐标方程,并判断直线l 与OPQ △的外接圆的位置关系.8、在平面直角坐标系中,以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系, 已知直线l 上两点N M ,的极坐标分别为)0,2(、π)2, 圆C 的参数方程⎩⎨⎧+-=+=θθsin 23cos 22y x (θ为参数)(1)设为P 线段MN 的中点,求直线OP 的平面直角坐标方程; (2)判断直线l 与圆C 的位置关系. 9、[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,直线l的参数方程为312x y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点O 为极点,以x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为4cos ρθ=. 1.求直线l 的普通方程及曲线C 的直角坐标方程;2.若直线l 与曲线C 交于,A B 两点,求线段AB 的中点P 到坐标原点O 的距离.10、在直角坐标系 xOy 中,曲线1C 的参数方程为2cos 2sin (x y ααα=+=+⎧⎨⎩为参数),直线2C的方程为y =,以 O 为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线1C 和直线2C 的极坐标方程;(2)若直线2C 与曲线1C 交于,A B 两点,求11OAOB+11、已知圆C 的极坐标方程为2cos ρθ=,直线l的参数方程为121122(x y t t =+=+⎧⎪⎪⎨⎪⎪⎩为参数),点A的极坐标为2π4⎛⎫⎪⎝⎭,设直线l 与圆C 交于点,P Q . 1.写出圆C 的直角坐标方程; 2.求AP AQ ⋅的值.1.因为圆C 的极坐标方程为2cos ρθ=, 所以22cos ρρθ=,将其转化成直角坐标方程为222x y x +=, 即()2211x y -+=.2.由点A的极坐标2π4⎛⎫⎪⎝⎭得直角坐标为11,22A ⎛⎫⎪⎝⎭. 将直线l的参数方程121122(x y t t =+=+⎧⎪⎪⎨⎪⎪⎩为参数)代入圆C 的直角坐标方程()2211x y -+=,得211022t t --=. 设12,t t为方程211022t t --=的两个根, 则1212t t =-, 所以1212AP AQ t t ⋅==-. 12、在极坐标系中,圆C 是以点11π2,6C ⎛⎫ ⎪⎝⎭为圆心, 2为半径的圆.1.求圆 C 的极坐标方程;2.求圆 C 被直线()7π:R 12l θρ=∈所截得的弦长答案以及解析1答案及解析:答案:(1)当1a =时,可得211,x -≥即112x -≥, 解得32x ≥或12x ≤,∴ 不等式的解集为13,,22⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭(2)∵ 不等式11ax ax a -+-≥解集为R ,等价于11a -≥.解得2,a ≥或0a ≤. 又∵0,2a a >∴≥.∴ 实数a 的取值范围为[)2,+∞ 解析:2答案及解析:答案:(,3)-∞;1123m -≤≤解析:(1)()141f x x x =---<,所以11(4)1x x x <⎧⎨---<⎩或141(4)1x x x ≤≤⎧⎨---<⎩或4141x x x >⎧⎨--+<⎩.解之得不等式()1f x <的解集为(,3)-∞.(2)当31m m +>,12m >-时,由题得2必须在31m +的右边或者31m +重合, 所以231m ≥+;∴12m ≤,所以1123m -<≤; 当1310,2m m +==-时,不等式恒成立;当131,2m m m +<<-时,由题得2必须在31m +的左边或者与31m +重合,由题得1231,3m m ≤+≥,所以m 没有解. 综上,1123m -≤≤.3答案及解析:答案:(1)[]0,2 (2)1a = 解析:4答案及解析:答案:(1)由|1||24|x x ->-得:222141616x x x x -+>-+ 2314150x x ∴-+<即(35)(3)0x x --<不等式()()f x g x >的解集为5(,3)3(2).当0x <时,441x ax -+<+即34a x<-在(,0)-∞上有解,故4a <-当0x =时,41<不成立当02x <≤时,41ax <+即3a x >在(0,2]上有解,故32a > 当2x >时,441x ax -<+即54a x >-在(2,,)+∞上有解,故32a >综上:32a >或4a <-解析:5答案及解析:答案:1. 法一:令210x +=,40x -=分别得12x =-,4x =. 原不等式可化为: 1{252x x <--->或14{2332x x -≤<->或4{52x x ≥+>, ∴原不等式的解集为.法二: ()()1521214{334254x x f x x x x x x x ⎛⎫--<- ⎪⎝⎭⎛⎫=+--=--≤< ⎪⎝⎭+≥, 画出()f x 的图象,求2y =与()f x 图象的交点为()7,2?-,5,23⎛⎫⎪⎝⎭.由图象知()2f x >的解集为.2.由1的法二知: ()min 92f x =-. 解析:6答案及解析:答案:1.解析:当1x ≤-时, ()()()31145f x x x x =---+=-≥,54x ≤-可知54x ≤-满足题意;当113x -<<时,可知()()()3311225,2f x x x x x =--++=-+≥≤-,无解; 当时13x ≥,()53115,4f x x x x =-++≥≥,可知54x ≥满足题意,可知不等式的解集为54x x ⎧≥⎨⎩或5}4x ≤- 2.函数4,11()22,1314,3x x f x x x x x ⎧⎪-≤-⎪⎪=-+-<<⎨⎪⎪≥⎪⎩,可知min 14()()33f x f ==.43m =,42log (23)log (3)a b m +=可变形424log (23)log (4)log 16a b +==2316a b +=,2112332(23)()6623a b ab a b +=⋅≤=,当且仅当23a b =,即当84,3a b ==时取等号.解析:7答案及解析:答案:(1)设3,cos P θθ⎛⎫ ⎪ ⎪⎝⎭,π3π0,,2π22θ⎡⎫⎛⎫∈⋃⎪ ⎪⎢⎣⎭⎝⎭, OPQ △的面积为3,23334cos θ⎛⎫∴= ⎪ ⎪⎝⎭,解得23cos 4θ=.3cos 2θ∴=±, 点P 在极轴上方,π6θ∴=. OPQ △为正三角形,OQ ∴的极角为π2,且2OP OQ ==. 点Q 的极坐标为π2,2⎛⎫⎪⎝⎭.(2)由OPQ △为正三角形可得其外接圆直径433OR =,其中,点R 为OPQ △外接圆的一条以O 为一端点的直径的另一端点.设00(,)M ρθ为OPQ △外接圆上异于点O R ,的一点, 在Rt OMR △中00πcos 3OR ρθ⎛⎫-= ⎪⎝⎭.00(,)M ρθ∴满足00π343cos 3θρ⎛⎫- ⎪⎝⎭=.① 经验证点O R ,的坐标均满足①, 故OPQ △外接圆的极坐标方程为43πcos 33ρθ⎛⎫=- ⎪⎝⎭. 直线:3l x =,OPQ △外接圆的直角坐标方程为2223203x y x y +--=,即()2234133x y ⎛⎫-+-= ⎪ ⎪⎝⎭. 圆心到直线l 的距离233d =,即为半径, 故直线l 与OPQ △的外接圆相切. 解析:8答案及解析:答案:(1),M N 的直角坐标分别为()2,0M 、230,3N ⎛⎫⎪ ⎪⎝⎭,则线段的中点31,3P ⎛⎫ ⎪ ⎪⎝⎭直线的平面直角坐标方程为:33y x =(2)圆的普通方程是()()22234x y -++=,圆心()2,3c -,,圆心到直线y =的距离52d r ===,直线与圆相离. 解析:9答案及解析:答案:1.将2t y =代入3x =+,整理得30x --=,所以直线l的普通方程为30x -=.由4cos ρθ=得24cos ρρθ=,将222,cos x y x ρρθ=+=代入24cos ρρθ=, 得2240x y x +-=,即曲线C 的直角坐标方程为22(2)4x y -+=. 2.设,A B 的参数分别为12,t t .将直线l 的参数方程代入曲线C的直角坐标方程得221(32)()42t -+=,化简得230t -=,由韦达定理得12t t +=于是122p t t t +==.设00(,)P x y,则0093(41(2x y ⎧=+=⎪⎪⎨⎪=⨯=⎪⎩则9(,4P .所以点P 到原点O2.解析:10答案及解析:答案:(1)曲线1C 的普通方程为()()22221x y -+-=, 则1C 的极坐标方程为24cos 4sin 70ρρθρθ--+=, 由于直线2C 过原点,且倾斜角为π3, 故其极坐标为()R 3πθρ=∈ (或tan θ=) (2)由24cos 4sin 70π3ρρθρθθ⎧--+==⎪⎨⎪⎩,得()2270ρρ-+=,故12122,7ρρρρ+==121211OA OB OA OB OA OB ρρρρ++∴+===⋅ 解析:11答案及解析: 答案: 解析:12答案及解析:答案:1.圆 C 的极坐标方程是π4cos()6p θ=+ 2.弦长为解析:1.圆C 是将圆4cos p θ=绕极点按顺时针方向旋转π6而得到的圆,所以圆 C 的极坐标方程是π4cos()6p θ=+2.将5π12θ=-代入圆C 的极坐标方程π4cos()6p θ=+得p =所以,圆C 被直线7π:12l θ=所截得的弦长,可将5π12θ=-代入极坐标方程求得为p =即弦长为。

相关文档
最新文档