基础荷载计算
设备基础荷载计算
设备基础荷载计算设备基础荷载计算是指根据建筑物的功能和使用需求,计算出建筑物所需的电力、照明、通风降温等设备的基础负荷。
正确的基础荷载计算能够确保建筑物的设备配电系统和其他设备系统的正常运行,提高建筑物的能源利用效率和舒适度。
在进行设备基础荷载计算之前,需要先确定以下几个基本参数:1.建筑物的总面积:建筑物的面积是计算基础负荷的重要依据。
可以根据建筑物的平面图或实际测量得出。
2.建筑物的类型和功能:不同类型和功能的建筑物对设备的需求是不同的。
例如,住宅需要考虑供水、供电和供暖等设备,而办公楼需要考虑电力和照明等设备。
3.建筑物的设计标准和规范:根据不同的国家和地区,建筑物的设计标准和规范也会有所不同。
这些标准和规范包括建筑物的能源利用效率、照明标准、设备容量等方面的要求。
在确定了上述参数后,可以按照以下步骤进行设备基础荷载计算:1.电力负荷计算:电力负荷计算是指根据建筑物的用电需求,计算出所需的电力负荷。
这包括根据建筑物的设备类型、功率和使用时长,计算出建筑物的总电力需求。
2.照明负荷计算:照明负荷计算是指根据建筑物的照明需求,计算出所需的照明负荷。
这包括根据建筑物的照明类型、灯具功率和使用时长,计算出建筑物的总照明需求。
3.通风降温负荷计算:通风降温负荷计算是指根据建筑物的通风和降温需求,计算出所需的通风降温负荷。
这包括根据建筑物的体积、人员数量、换气次数和室内外温差,计算出建筑物的总通风降温需求。
4.设备基础负荷求和:将上述三个方面的基础负荷求和,得出建筑物的设备基础负荷。
这个值通常以千瓦(kW)或千瓦时(kWh)为单位。
总之,设备基础荷载计算是建筑物设计过程中的重要环节,对于建筑物的能源利用效率和舒适度具有重要影响。
正确的设备基础荷载计算能够确保建筑物的设备系统正常运行,提高建筑物的整体能效水平。
塔吊基础承载力验算
塔吊天然基础计算书一、参数信息塔吊型号:JL5613,塔吊起升高度H=80.00m,塔吊倾覆力矩M=1930kN.m,混凝土强度等级:C35,塔身宽度B=1.5m,起重:6T自重F1=800kN,基础承台厚度h=1.6m,最大起重荷载F2=60kN,基础承台宽度Bc=5.00m,钢筋级别:三级钢。
二、塔吊基础承载力计算依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。
计算简图:当不考虑附着时的基础设计值计算公式:当考虑附着时的基础设计值计算公式:当考虑偏心矩较大时的基础设计值计算公式:式中F──塔吊作用于基础的竖向力,它包括塔吊自重和最大起重荷载,F=860.00kN;G──基础自重G=25.0×5×5×1.6=1000.00kN;Bc──基础底面的宽度,取Bc=5.000m;W──基础底面的抵抗矩,W=Bc×Bc×Bc/6=20.833m3;M──倾覆力矩,包括风荷载产生的力矩和最大起重力矩,M=1930.00kN.m;e──偏心矩,e=M / (F + G)=1.0376 m,故e>承台宽度/6=0.833 m;a──合力作用点至基础底面最大压力边缘距离(m),按下式计算:a= Bc / 2 - M / (F + G)=1.4624m。
经过计算得到:有附着的压力设计值P=(860.000+1000.00)/5.0002=74.4kPa;偏心矩较大时压力设计值Pkmax=2×(860.000+1000.00)/(3×5.000×1.462 4)=169.584kPa。
三、地基承载力验算依据设计强风化泥质粉砂岩地基承载力特征值fak=500kPa.地基承载力特征值计算依据《建筑地基基础设计规范》GB 50007-2002第5.2.3条。
计算公式如下:fa--修正后的地基承载力特征值(kN/m2);fak--强风化泥质粉砂岩地基承载力特征值fa大于有附着时压力设计值Pmax=74.4kPa,满足要求!地基承载力特征值1.2×fa大于偏心矩较大时的压力设计值Pkmax=169.584 kPa,满足要求!四、基础受冲切承载力验算依据《建筑地基基础设计规范》GB 50007-2002第8.2.7条。
地基承载力计算公式
地基承载力计算公式-CAL-FENGHAI.-(YICAI)-Company One1地基承载力计算公式地基承载力计算公式很多,有理论的、半理论半经验的和经验统计的,它们大都包括三项:1. 反映粘聚力c的作用;2. 反映基础宽度b的作用;3. 反映基础埋深d的作用。
在这三项中都含有一个数值不同的无量纲系数,称为承载力系数,它们都是内摩擦角φ的函数。
下面介绍三种典型的承载力公式。
a.太沙基公式式中:P u——极限承载力,K a c——土的粘聚力,KP aγ——土的重度,KN/m,注意地下水位下用浮重度;b,d——分别为基底宽及埋深,m;N c ,N q ,N r——承载力系数,可由图中实线查取。
图2对于松砂和软土,太沙基建议调整抗剪强度指标,采用c′=1/3c ,此时,承载力公式为:式中N c′,N q′,N r′——局部剪切破坏时的承载力系数,可由图中虚线查得。
对于宽度为b的正方形基础对于直径为b′的圆形基础b.汉森承载力公式式中Nr,Nq,Nr——无量纲承载力系数,仅与地基土的内摩擦角有关,可查表c,N q,N r值N c N q N r N c N q N r 02422642863083210341236143816401842204432246S c,S q,S r——基础形状系数,可查表表基础形状系数S c,S q,S r值基础形状S c S q S r 条形圆形和方形1+N q/N c1+tanφ矩形(长为L,宽为b)1+b/L×N q/N c1+b/LtanφL d c,d q,d r——基础埋深系数,可查表表埋深系数d c,d q,d rd/b 埋深系数d c d q d r≤〉i c,i q,i r——荷载倾斜系数,可查表表荷载倾斜系数i c i q i r注:H,V——倾斜荷载的水平分力,垂直分力,KN ;F——基础有效面积,F=b'L'm;当偏心荷载的偏心矩为e c和e b,则有效基底长度,L'=L-2e c;有效基底宽度:b'=b-2e b。
附:塔吊基础地基承载力及抗倾覆计算
附:塔吊基础地基承载力及抗倾覆计算。
1、基础外型:基础边长(b)为5000×5000,基础厚度h值1350mm 。
2、荷载:a:砼体积及自重F G(KN)。
F G=1.2×γ×v=1.2×25×(5×5×1.35)=1012.5KNb:F v作用于基础顶面的竖向力设计值F v(KN)。
按TC5013说明书:F v=1.2×113.2=135.8t=1358KNc:F h作用于基础顶面的水平力设计值F h(KN),根据TC5013说明书:P2=7.74t,F h=1.2×P2=9.3t=93KNd:M作用于基础顶面的力矩设计值(KN·m)根据TC5013说明书:M1=216.5t·m,所以设计值M=1.2×216.5=259.8t·m=2598KN·m3、基础地基承载力验算:整体式基础承受基础底面压力应符合:P≤fP——基础底面处的平均压力设计值f——基础承载力设计值,由于塔吊基础底位于-7.8m处,根据工程地质勘察报告f=150kpaP=(F v+F G)/A=(1012.5+1358)/(5×5)=94.82 KN/m2=94.82 kpa ∴P<f,满足要求。
4、抗倾覆验算基础底面积:《塔式起重机使用手册》第285页抗倾覆安全系数≥1.4最不利条件为:F h同M力矩方向一致,O为支点(见下图)。
ΣM稳=(F v+F G)·b/2=2370.5×2.5=5926KN·mΣM倾= M+F h·h= 2598+93×1.35=2724KN·mK= ΣM稳/ ΣM倾=5926/2724=2.18>1.4∴抗倾覆验算满足要求。
混凝土基础承载力计算
混凝土基础承载力计算1.土层性质:混凝土基础的承载力与土壤的性质有关,主要包括土壤的类型、密度、压缩性、剪切性等。
通常需要进行土层勘探,并获得土壤试验数据,如黏土的含水量、塑性指数、压缩模量等。
2.基础形式:混凝土基础的形式有很多种,如浅基础、深基础、承台基础等。
不同形式的基础具有不同的承载力计算方法。
一般来说,浅基础的承载力计算可以通过对附近土壤的强度参数和基础尺寸等进行简化计算获得。
3.基础尺寸:基础的尺寸对于承载力的计算也是一个重要的因素。
通常,基础的底面积越大,承载能力越高。
但是,在实际计算中,也需要考虑到基础周边的边界条件,如相邻基础或结构物的距离等。
4.荷载特性:混凝土基础承载力计算还需要考虑荷载特性,包括荷载的类型(静载荷、动载荷)、荷载组合、荷载的分布形式等。
不同类型和分布形式的荷载对基础的承载力有不同的影响。
5.安全系数:在进行混凝土基础承载力计算时,通常需要考虑一定的安全系数。
这个安全系数包括基础的安全系数和材料的安全系数。
基础的安全系数一般为2-3,即基础设计承载力为实际计算结果的2-3倍。
在进行混凝土基础承载力计算时,可以采用以下一般步骤:1.基础形式确定:根据具体工程要求和土壤条件,确定适合的基础形式。
常见的基础形式有简单基础、隔离基础、连续基础等。
2.土壤力学参数测定:通过土壤试验和实测数据,测定土壤的力学参数。
这些参数包括黏土的含水量、塑性指数、剪切强度等。
可以通过室内试验和现场试验等方法获得。
3.基础尺寸确定:根据工程需要,结合土壤的力学参数和所需的基础承载力,确定基础的尺寸。
一般来说,为了确保基础的稳定性和强度,可以适当增大基础的尺寸。
4.承载力计算:根据所选择的基础形式和土壤力学参数,采用适当的计算方法,计算基础的承载力。
一般来说,可以采用经验公式、荷载试验、数值模拟等方法进行计算。
5.安全性评估:根据计算结果,评估基础的安全性。
通常情况下,需要确保基础的设计承载力大于实际计算结果的2-3倍,以确保基础的安全性。
80吨龙门吊及台座基础地基荷载计算
80吨龙门吊及台座基础地基荷载计算991.3KN/3.9m2=254.18KN/m2≈254KPa为了确保预制梁台座基础受拉满足要求,对地基进行夯实,确保处理后的地基承载力达到300Kpa以上,方可进行下道工序施工。
龙门吊及台座基础地基荷载计算一、80吨龙门吊地基荷载计算龙门吊自重为45吨,移梁过程中梁体体重为138吨,龙门吊轴距砼条型基础为7m×0.9m×0.6m,荷载组合为(450/2+1380/2+95)×1.3=1313KN。
龙门吊轮间距按7m考虑,基础宽度设计为0.9m,承载面积为7×0.9=6.3m2.地基承受应力为σ= G/A= 1313KN /6.3 m2=208.5KN/m2≈209KPa。
由于该梁场位于鱼塘挖填路段,为了确保轨道基础承载力满足要求,对地基进行夯实,确保处理后的地基承载力达到250Kpa以上,方可进行下道工序。
二、40吨梁台座地基荷载计算2.1、未张拉时地基荷载计算:T梁自重为138吨,台座基础为38m×0.6m×0.35m+38m×1.5m×0.15=16.53m3,荷载组合为(1380+413.25)×1.3=2331.3KN。
基础宽度设计为0.6m,承载面积为0.6×38=22.8m2.地基承受应力为σ= G/A= 2331.3KN/22.8m2=102.3KN/m2≈103KPa。
由于该梁场位于鱼塘挖填路段,为了预制梁台座基础受压满足要求,对地基进行夯实,确保处理后的地基承载力达到150Kpa以上,方可进行下道工序施工。
2.2、张拉时地基荷载计算:箱梁自重为138吨,台座基础为2.6m×1.5m×0.6m+2.5×0.6m×0.35m=2.93m3,荷载组合为(1380/2+72.5)×1.3=991.3KN。
桩基地基承载力计算公式方法
地基承载力计算公式对于宽度为b的正方形基础对于直径为b′的圆形基础b.汉森承载力公式式中Nr,Nq,Nr——无量纲承载力系数,仅与地基土的内摩擦角有关,可查表8.4.1N c NqNrNcNqNr0 5.14 1.00 0.00 24 19.32 9.60 6.90 2 5.63 1.20 0.01 26 22.25 11.85 9.53 4 6.19 1.43 0.05 28 25.80 14.72 13.13 6 6.81 1.72 0.14 30 30.14 18.40 18.09 8 7.53 2.06 0.27 32 35.49 23.18 24.95 10 8.35 2.47 0.47 34 42.16 29.44 34.54 12 9.28 2.97 0.76 36 50.59 37.75 48.06 14 10.37 3.59 1.16 38 61.35 48.93 67.40 16 11.63 4.34 1.72 40 75.31 64.20 95.51 18 13.10 5.26 2.49 42 93.71 85.38 136.76 20 14.83 6.40 3.54 44 118.37 115.31 198.70 22 16.88 7.82 4.96 46 152.10 158.51 224.64S c ,Sq,Sr——基础形状系数,可查表8.4.2基础形状Sc SqSr条形 1.00 1.00 1.00圆形和方形1+Nq /Nc1+tanφ0.60矩形(长为L,宽为b) 1+b/L×Nq /Nc1+b/Ltanφ1-0.4b/Ld c ,dq,dr——基础埋深系数,可查表8.4.3表8.4.3埋深系数dc ,dq,drd/b 埋深系数dcdqdr≤1.0 1.0 〉1.0 1.0 i c,i q,i r——荷载倾斜系数,可查表8.4.4表8.4.4荷载倾斜系数i c iqir注:H,V——倾斜荷载的水平分力,垂直分力,KN ;F——基础有效面积,F=b'L'm;当偏心荷载的偏心矩为e c和e b,则有效基底长度,L'=L-2e c;有效基底宽度:b'=b-2e b。
房建地基基础承载力计算公式
房建地基基础承载力计算公式
房建地基基础承载力是指地基基础所能承受的荷载大小。
为了确保房屋安全,需要对地基基础的承载力进行计算。
以下是房建地基基础承载力计算公式:
1. 基础承载力计算公式:
Q = A × C × Nc + B ×γ× Nq + 0.5 ×γ× B × N γ
其中,Q为基础承载力,A为基础面积,C为基础底部土的可承载力系数,Nc、Nq、Nγ分别为土的内摩擦角、剪切强度、重度系数,B为基础宽度,γ为土的重量。
2. 影响基础承载力的因素:
(1)土壤类型和性质。
(2)基础的形状和尺寸。
(3)荷载的性质和大小。
(4)水分含量和饱和度。
(5)地震的影响。
以上公式和因素对于房建地基基础承载力的计算非常重要,建筑师和工程师需要认真研究和考虑,以确保建筑物的安全。
- 1 -。
地基承载力计算书
地基承载力计算计算书项目名称_____________构件编号_____________日期_____________设计者_____________校对者_____________一、设计资料1.基础信息基础长:l=4000mm基础宽:b=4000mm修正用基础埋深:d=1.50m基础底标高:dbg=-2.00m2.荷载信息竖向荷载:F k=1000.00kN绕X轴弯矩:M x=0.00kN·m绕Y轴弯矩:M y=0.00kN·mb=40 l=4000xY3.计算参数天然地面标高:bg=0.00m地下水位标高:wbg=-4.00m宽度修正系数:wxz=1是否进行地震修正:是单位面积基础覆土重:rh=2.00kPa计算方法:GB50007-2002--综合法地下水标高-4.00基底标高-2.00地面标高0.00555554.土层信息:土层参数表格二、计算结果1.基础底板反力计算基础自重和基础上的土重为:G k = A×p =16.0×2.0= 32.0kN基础底面平均压力为:1.1当轴心荷载作用时,根据5.2.2-1 :P k = F k+G kA=1000.00+32.0016.00= 64.50 kPa1.2当竖向力N和Mx同时作用时:x方向的偏心距为:e =M kF k+G k=0.001000.00 +32.00= 0.00mx方向的基础底面抵抗矩为:W = lb26=4.00×4.00 26= 10.67m3x方向的基底压力,根据5.2.2-2、5.2.2-3为:P kmax = F k+G kA+M kW= 64.50 +0.0010.67= 64.50 kPaP kmin = F k+G kA-M kW= 64.50 -0.0010.67= 64.50 kPa1.3当竖向力N和My同时作用时:y方向的偏心距为:e =M kF k+G k=0.001000.00 +32.00= 0.00my方向的基础底面抵抗矩为:W = bl26=4.00×4.00 26= 10.67m3y方向的基底压力,根据5.2.2-2、5.2.2-3为:P kmax = F k+G kA+M kW= 64.50 +0.0010.67= 64.50 kPaP kmin = F k+G kA-M kW= 64.50 -0.0010.67= 64.50 kPa2.修正后的地基承载力特征值计算基底标高以上天然土层的加权平均重度,地下水位下取浮重度γm = ∑γi h i∑h i=2.0×18.02.0= 18.00基底以下土层的重度为γ = 18.00b = 4.00f a = f ak + ηbγ (b-3) + ηdγm (d-0.5)= 150.00+1.00×18.00×(4.00-3)+1.00×18.00×(1.50-0.5)= 186.00 kPa调整后的地基抗震承载力计算查“抗震建筑设计规范GB50011-2001”表4.2.3, ζa = 1.30f aE = ζa f a = 1.30×186.00 = 241.80 kPa3.计算结果分析P k=64.50kPa, f aE=186.00kPaP k≤f aE当竖向力N和Mx同时作用时:P kmax=64.50kPa, 1.2f aE=.2×186.00=223.20kPaP kmax≤1.2f aE当竖向力N和My同时作用时:P kmax=64.50kPa, 1.2f aE=1.2×186.00=223.20kPaP kmax≤1.2f aE地基承载力验算满足。
地基承载力计算公式是什么
地基承载力问答1、地基承载力计算公式是什么?怎样使用?答1、f=fk+ηbγ(b-3)+ηdγο(d-0.5)式中:fk——垫层底面处软弱土层的承载力标准值(kN/m2)ηb、ηd——分别为基础宽度和埋深的承载力修正系数b--基础宽度(m)d——基础埋置深度(m)γ--基底下底重度(kN/m3)γ0——基底上底平均重度(kN/m3)答2 、你想直接用标贯计算承载力,是可行的,承载力有很多很多的计算方法,标贯是其中的一种,但目前规范都逐渐取消了,老版本的工程地质手册记录了很多的世界各地(包括中国)的标贯锤击数N确定承载力的公式,你可以从中选择一个适合你所在地方条件的公式来计算。
答3、根据土的强度理论公式确定地基承载力特征值公式:fa=Mb*γ*b+Md*γm*d+Mc*Ck其中Ck为粘聚力标准值,由勘察单位实地勘察、实验确定,在勘察报告上按土层列表显示。
2、地基承载力计算公式中的d如何取值?d是地基的埋置深度还是基底到该层土层底的深度?答、d就是基础埋置深度(m),一般自室外地面标高算起。
在填方整平地区,可自填土地面标高算起,但填土在上部结构施工后完成时,应从天然地面标高算起。
对于地下室,如采用箱形基础或筏基时,基础埋置深度自室外地面标高算起;当采用独立基础或条形基础时,应从室内地面标高算起。
3、地基承载力计算公式如何推导答、你可以到百度文库里面下载一个GB50007-2002《建筑地基基础设计规范》,里面有详细的给你介绍的!4、地基承载力计算公式是什么?具体符号代表什么?怎样计算?答、 1、地基承载力特征值可由载荷试验或其它原位测试、公式计算、并结合工程实践经验等方法综合确定。
2、当基础宽度大于3m或埋置深度大于0.5m时,从载荷试验或其它原位测试、经验值等方法确定的地基承载力特征值,尚应按下式修正:fa=fak+ηbγ(b-3)+ηdγm(d-0.5)式中fa--修正后的地基承载力特征值;fak--地基承载力特征值ηb、ηd--基础宽度和埋深的地基承载力修正系数γ--基础底面以下土的重度,地下水位以下取浮重度;b--基础底面宽度(m),当基宽小于3m按3m取值,大于6m按6m取值;γm--基础底面以上土的加权平均重度,地下水位以下取浮重度;d--基础埋置深度(m),一般自室外地面标高算起。
地基承载力计算公式
1.持力层承载力计算
作用在基础顶画的荷载,有竖向力F、水平剪力v、弯矩M,如图2—1所示。
不论其如何
组合,都可概括为中心受压和偏心受压两种状态。
所以,基础底面的压力应满足下列条件:
(1)中心受压基础(图2-1(e))
pk≤fa (2—1)
式中Pk——相应于荷载效应标准组合时,基础底面处的平均压力值,kPa;
fa——修正后地基承载力特征值(即宽度和深度修正后的特征值),kPa。
(2)偏心受压基础(如图2-1(f))除应符合公式(2—1)外,尚应符合
pkmax≤1.2fa(2—2)
式中pkmax——相应于荷载标准组合时,基础底面边缘的最大压力值,kPa。
Fk——相应于荷载标准组合时,上部结构传至基础顶面的竖向力值;
Gk——基础自重设计值及基础上的土重(可取平均重度20kN/m3),kN;
A——基础底面面积,m2。
式中Mk——相应于荷载标准组合时,作用于基础底面的力矩值;
W——基础底面的抵抗矩,m3;
Pkmin——基础底面边沿的最小压力值,kPa。
当偏心受压基础偏心较大时(e>b/6),Pkmin为负值,表示基础与地基脱离,但应尽量避免这种现象。
为了充分利用地基的承载力,对较小的工程,允许有较小的负值(负值区不得大于基础宽度的四分之一)。
塔吊地基承载力计算
矩形板式基础计算书计算依据:1、塔式起重机混凝土基础工程技术规程JGJ/T187-20092、混凝土结构设计规范GB50010-20103、建筑地基基础设计规范GB50007-2011一、塔机属性二、塔机荷载1、塔机自身荷载标准值2、风荷载标准值ωk kN/m23、塔机传递至基础荷载标准值4、塔机传递至基础荷载设计值三、基础验算基础及其上土的自重荷载标准值:Gk =blhγc=6×6×1.35×25=1215kN基础及其上土的自重荷载设计值:G=1.2Gk=1.2×1215=1458kN 荷载效应标准组合时,平行基础边长方向受力:Mk ''=G1RG1+G2RQmax-G3RG3-G4RG4+0.9×M2+0.5FvkH/1.2=60.7×29+3.5×3-34.6×6-183×12+0.9×1134+0.5×21.42×45/1.2 =749.26kN·mFvk ''=Fvk/1.2=21.42/1.2=17.85kN荷载效应基本组合时,平行基础边长方向受力:M''=1.2×G1RG1+G2RQmax-G3RG3-G4RG4+1.4×0.9×M2+0.5FvkH/1.2=1.2×60.7×29+3.5×3-34.6×6-183×12+1.4×0.9×1134+0.5×21.42×45/1.2=1175.53kN·mFv ''=Fv/1.2=29.99/1.2=24.99kN基础长宽比:l/b=6/6=1≤1.1,基础计算形式为方形基础;Wx=lb2/6=6×62/6=36m3Wy=bl2/6=6×62/6=36m3相应于荷载效应标准组合时,同时作用于基础X、Y方向的倾覆力矩:Mkx =Mkb/b2+l20.5=821.56×6/62+620.5=580.93kN·mMky =Mkl/b2+l20.5=821.56×6/62+620.5=580.93kN·m1、偏心距验算相应于荷载效应标准组合时,基础边缘的最小压力值:Pkmin =Fk+Gk/A-Mkx/Wx-Mky/Wy=741.8+1215/36-580.93/36-580.93/36=22.08kPa≥0偏心荷载合力作用点在核心区内;2、基础底面压力计算Pkmin=22.08kPaPkmax =Fk+Gk/A+Mkx/Wx+Mky/Wy=741.8+1215/36+580.93/36+580.93/36=86.63kPa 3、基础轴心荷载作用应力Pk =Fk+Gk/lb=741.8+1215/6×6=54.36kN/m24、基础底面压力验算1、修正后地基承载力特征值fa =fak+ηbγb-3+ηdγmd-0.5=150.00+2.00×19.00×6.00-3+3.00×19.00×20.00-0.5=1375.50kPa 2、轴心作用时地基承载力验算Pk =54.36kPa≤fa=1375.5kPa满足要求3、偏心作用时地基承载力验算Pkmax =86.63kPa≤1.2fa=1.2×1375.5=1650.6kPa满足要求5、基础抗剪验算基础有效高度:h=h-δ=1350-50+22/2=1289mmX轴方向净反力:Pxmin =γFk/A-Mk''+Fvk''h/Wx=1.35×741.800/36.000-749.263+17.850×1.350/36.000=-1.184kN/m2Pxmax =γFk/A+Mk''+Fvk''h/Wx=1.35×741.800/36.000+749.263+17.850×1.350/36.000=56.819kN/m2假设Pxmin=0,偏心安全,得P1x =b+B/2Pxmax/b=6.000+1.700/2×56.819/6.000=36.459kN/m2Y轴方向净反力:Pymin =γFk/A-Mk''+Fvk''h/Wy=1.35×741.800/36.000-749.263+17.850×1.350/36.000=-1.184kN/m2Pymax =γFk/A+Mk''+Fvk''h/Wy=1.35×741.800/36.000+749.263+17.850×1.350/36.000=56.819kN/m2假设Pymin=0,偏心安全,得P1y =l+B/2Pymax/l=6.000+1.700/2×56.819/6.000=36.459kN/m2基底平均压力设计值:px =Pxmax+P1x/2=56.82+36.46/2=46.64kN/m2py =Pymax+P1y/2=56.82+36.46/2=46.64kPa基础所受剪力:Vx =|px|b-Bl/2=46.64×6-1.7×6/2=601.64kNVy =|py|l-Bb/2=46.64×6-1.7×6/2=601.64kNX轴方向抗剪:h/l=1289/6000=0.21≤40.25βc fclh=0.25×1×16.7×6000×1289=32289.45kN≥Vx=601.64kN满足要求Y轴方向抗剪:h/b=1289/6000=0.21≤40.25βc fcbh=0.25×1×16.7×6000×1289=32289.45kN≥Vy=601.64kN满足要求四、基础配筋验算1、基础弯距计算基础X向弯矩:MⅠ=b-B2pxl/8=6-1.72×46.64×6/8=646.76kN·m基础Y向弯矩:MⅡ=l-B2pyb/8=6-1.72×46.64×6/8=646.76kN·m2、基础配筋计算1、底面长向配筋面积αS1=|MⅡ|/α1fcbh2=646.76×106/1×16.7×6000×12892=0.004ζ1=1-1-2αS10.5=1-1-2×0.0040.5=0.004γS1=1-ζ1/2=1-0.004/2=0.998AS1=|MⅡ|/γS1hfy1=646.76×106/0.998×1289×360=1396mm2基础底需要配筋:A1=max1396,ρbh=max1396,0.0015×6000×1289=11601mm2基础底长向实际配筋:As1'=13790mm2≥A1=11601mm2满足要求2、底面短向配筋面积αS2=|MⅠ|/α1fclh2=646.76×106/1×16.7×6000×12892=0.004ζ2=1-1-2αS20.5=1-1-2×0.0040.5=0.004γS2=1-ζ2/2=1-0.004/2=0.998AS2=|MⅠ|/γS2hfy2=646.76×106/0.998×1289×360=1396mm2基础底需要配筋:A2=max1396,ρlh=max1396,0.0015×6000×1289=11601mm2基础底短向实际配筋:AS2'=13790mm2≥A2=11601mm2满足要求3、顶面长向配筋面积基础顶长向实际配筋:AS3'=13790mm2≥0.5AS1'=0.5×13790=6895mm2满足要求4、顶面短向配筋面积基础顶短向实际配筋:AS4'=13790mm2≥0.5AS2'=0.5×13790=6895mm2满足要求5、基础竖向连接筋配筋面积基础竖向连接筋为双向Φ10500;五、配筋示意图。
地基承载力计算
塔吊起升高度H=i0im混凝土强度等级:C35, 基础埋深D=4.5m基础承台厚度h=1.5m, (GB50007-2002)第5.2条承载力计算 2(F + G)一、参数信息塔吊型号:TC5610, 塔吊倾覆力矩M=800kN.m 塔身宽度B=1.6m 自重 F1=450.8kN, 最大起重荷载F2=60.00kN,二、基础最小尺寸计算基础最小厚度:H=1.5m基础最小宽度:Bc=5.0m三、塔吊基础承载力计算 依据《建筑地基基础设计规范》 计算简图:当不考虑附着时的基础设计值计算公式:口 F + G MP = ---------- 4- --吨 髯 断当考虑附着时的基础设计值计算公式:当考虑偏心矩较大时的基础设计值计算公式:式中F ——塔吊作用于基础的竖向力,它包括塔吊自重和最大起重荷载,F=1.2 X510.8=612.96kN ;G ------- 基础自重与基础上面的土的自重:G=1.2 X( 25.0 X 5X 5X 1.5+20 爲X5X4.7) =3945kN ;Bc——基础底面的宽度,取Bc=5.000m;W ——基础底面的抵抗矩,W=B X Bc X Bc/6=20.83m3;M ——倾覆力矩,包括风荷载产生的力矩和最大起重力矩,M=1.4X 800=1120kN.m a 、合力作用点至基础底面最大压力边缘距离( m,按下式计算:a=Bc/ 2-M/ F+Ga=5.01 / 2-1120 / 612.96+3945=2.505-1120 / 4557.96=2.505-0.245=2.26m经过计算得到:无附着的最大压力设计值P max=(612.96+3954)/5.01 2+800/20.83=81.580kPa ;无附着的最小压力设计值P min=(612.96+3954)/5.01 2-800/20.83=143.18kPa ;有附着的压力设计值P=(612.96+3954)/5.01 2=181.59kPa偏心距较大时压力设计值:Pk max=2 X (612.96+3954)/3 X 5.01 X 2.26=268.36 kPa ; 四、地基承载力验算地基承载力特征值计算依据《建筑地基基础设计规范》GB 50007-2002第5.2.3条计算公式如下:+ 7b - 3) + 啓殊-0.5)fa-- 修正后的地基承载力特征值(kN/m2);f ak--地基承载力特征值,根据地堪报告取400.000kN/m2;n b基础宽度地基承载力修正系数取0.50nd基础埋深地基承载力修正系数取2.0Y、基础底面以下土的重度,取20.000kN/m3;b、基础底面宽度(m),取5.000m;d 、基础埋置深度(m)取4.7m;解得地基承载力设计值:fa=588kPa;实际计算取的地基承载力设计值为:fa=588kPa ;地基承载力特征值fa大于有附着时压力设计值Pmax=219.99kPa满足要求!地基承载力特征值1.2 x fa大于偏心较大时的压力设计值Pkma满足要求!五、基础受冲切承载力验算依据《建筑地基基础设计规范》GB 50007-2002第827条验算公式如下:式中环---受冲切承载力截面高度影响系数,取0p=0.96;f t --- 混凝土轴心抗拉强度设计值,取f t=1.5MPa;a m --- 冲切破坏锥体最不利一侧计算长度:% =⑷+巧"2am=3.5m ;h o --- 承台的有效高度,取h o=1.45m;P j --- 最大压力设计值,取P j=219.99KPa;F l ---实际冲切承载力:F i = P i A iF i=219.99 x (5.01+5) x 1.05/2=55.05kN。
基础荷载计算表
等效均布荷 载
7
0.441176471 0.6966
4.39
7
0.625
7.31
弯矩KN.M
强度等 级
梁高H
梁宽B
单筋矩形梁配筋表
梁有效高度
fc值
α值
1-2*α的平方 根值
12
C20
450
250
220
C25
600
250
42
C30
800
250
415
9.6 0.02903 0.97053409
540
分项系 数
乘1.2系数
1.2 5.27
1.2 8.77
γ值
钢筋面积 As
1.0149533 1.1750895 1.0109635
97.8 1595.8 191.3
扩头直桩长 度hc最小值
500
梁自重G 梁宽(B) 梁高(H) 砼容重KN/M3
g梁(恒) 0.25
0.6
Байду номын сангаас
25
梁自重①
3.75
梁线荷载计算表
梁侧抹 梁底抹 梁自重Q(不 灰重 灰重 包底)
0.38 0.095
3.85
板荷载计 算表
板自重 G(恒) 板自重 G(恒) 板自重 G(恒) 板自重 G(恒) 板自重 G(恒) 板自重 G(恒) 板自重 G(恒)
寸a
D
长度(mm) h h 高 b最大值 高 b最小值 hc最大值
250
1400
200~250
210
140
750
算表
梁自重 Q(包底)
4.13
分项系 乘1.2重 乘1.2梁重 数 Q(不包底) Q(包底)
地基承载力特征值fak计算公式
地基承载力特征值的计算公式当基础宽度大于3m或埋置深度大于0.5m时,从载荷试验或其它原位测试、经验值等方法确定的地基承载力特征值,尚应按下式修正:fa=fak+nby(b-3)+ndym(d-0.5)式中:fa--修正后的地基承载力特征值;fak--地基承载力特征值;ηb、ηd--基础宽度和埋深的地基承载力修正系数;γ--基础底面以下土的重度,地下水位以下取浮重度;b--基础底面宽度(m),当基宽小于3m按3m取值,大于6m按6m取值;γm--基础底面以上土的加权平均重度,地下水位以下取浮重度;d--基础埋置深度(m),一般自室外地面标高算起。
地基承载力特征值可由载荷试验或其它原位测试、公式计算、并结合工程实践经验等方法综合确定。
扩展资料:对于地下室,如采用箱形基础或筏基时,基础埋置深度自室外地面标高算起;当采用独立基础或条形基础时,应从室内地面标高算起。
《建筑地基基础设计规范》(GBJ7-89)以承力的允许值作为标准值,以深宽修正后的承载力值作为设计值,引起的问题是,抗力的设计值大于标准值。
修正后的地基承载力特征值fa是考虑了影响承载力的各项因素后,最终采用的相应于正常使用极限状态下的设计值的地基允许承载力。
在“2011 《地基规范》”中,有些称为标准值的岩土参数都是取试验破坏时的平均值乘以统计修正系数而得出,统计修正系数是按概率分布的0. 05 分位值确定的。
简单的说地基承载力标准值、地基承载力设计值是老规范的表述方式,特征值是新规范的表述方式,其取值方法大概相同,考虑的修正有所区别。
1、地基承载力标准值:在正常情况下,可能出现承载力最小值,系按标准方法试验,并经数理统计处理得出的数据。
可由野外鉴别结果和动力触探试验的锤击数直接查规范承载力表确定,也可根据承载力基本值乘以回归修正系数即得。
2、地基承载力设计值:地基在保证稳定性的条件下,满足建筑物基础沉降要求的所能承受荷载的能力。
可由塑性荷载直接,也可由极限荷载除以安全系数得到,或由地基承载力标准值经过基础宽度和埋深修正后确定。
混凝土地基承载力标准计算
混凝土地基承载力标准计算一、前言混凝土地基承载力是建筑物的重要参数之一,直接关系到建筑物的安全性能。
因此,对于混凝土地基承载力的计算标准至关重要。
本文将从混凝土地基承载力计算标准的相关概念、基本原理、计算方法、应用场景等方面进行详细阐述。
二、相关概念1.混凝土地基承载力:指地基对建筑物所能承受的最大荷载。
2.地基:指建筑物基础下面的土体,包括地下水、软土、黏土、砂土等。
3.荷载:指建筑物及其附属设施所受的外力,包括建筑物自重、风荷载、雪荷载、人员荷载、设备荷载等。
三、基本原理混凝土地基承载力计算的基本原理是根据地基的力学性质,结合建筑物的荷载情况,计算出地基所能承受的最大荷载。
具体来说,混凝土地基承载力的计算要考虑地基的强度、稳定性、变形等因素。
四、计算方法混凝土地基承载力的计算方法主要有以下两种:1.经验公式法经验公式法是根据实际工程经验得出的一种计算混凝土地基承载力的方法。
这种方法通常适用于土质较为均匀、无明显变形的地基。
常用的经验公式有孔隙比法、标贯击数法、波速法等。
其中,孔隙比法是根据土壤的孔隙比计算混凝土地基承载力的方法。
具体计算公式为:Qa = Nc × γ × Bc × (1 + 0.2 × (Bf/Bc) ) × (Nq/Nc) × (Ng/Nq) × Ic式中,Qa为混凝土地基承载力,Nc为土壤的承载力系数,γ为土壤的容重,Bc为基础底面积,Bf为基础顶面积,Nq为土壤的摩擦角系数,Ng为土壤的剪切模量,Ic为基础形状系数。
2.理论计算法理论计算法是根据土力学原理,利用有限元法、弹性理论、塑性理论等方法计算混凝土地基承载力的方法。
这种方法适用于土质较复杂、变形较大的地基。
常用的理论计算方法有承载力平衡法、差异法、有限元法等。
其中,承载力平衡法是根据土壤的承载力平衡条件计算混凝土地基承载力的方法。
具体计算公式为:Qa = ∑(i=1,n) Pi + 0.5G式中,Qa为混凝土地基承载力,Pi为建筑物所受的各种荷载,G为建筑物自重。
地基基础设计荷载计算书
地基基础设计荷载计算书本建筑采用独立筑基承重柱下独立筑基上部荷载B/①柱:(屋面为不上人保温屋面,计算时简化成平屋面计算。
其荷载如下所示)做法厚度(mm)容重(KN/m3)重量(KN/㎡)红瓦10 20 0.2 20厚1:2.5的水泥砂浆抹面压光20 20 0.4 3厚SBS改性沥青防水卷材 3 18 0.05 20厚1:2.5水泥砂浆找平20 20 0.4 20厚1:8的水泥珍珠岩找坡2%20 10 0.2 干铺100厚水泥珍珠岩面板100 4 0.4 120厚钢筋混凝土面板120 25 3 恒载分项系数 1.2 楼面荷载 4.65 活载分项系数 1.4 楼面活载0.5设计值 6.28 则作用在该柱上的屋面荷载为:P1=6.28×7÷2×3.9÷2=42.86KN墙、梁传来的荷载:P2=﹛(25×0.72×0.32×7×3+0.18×5.24×3.6×2﹚+0.18×1.5×5.24+0.72×25×0.32×7+[(3.6×0.18×3.9-1.5×0.18×0.75)×24]×2+1.5×0.18×5.24﹜÷2=142.23KN走廊传来的荷载:P3=1.2×﹛[3×0.12×26+(0.18×3×1.5)×2+0.12×26×1.5]+[1.2×0.12×26+(0.18×1.2×1.5)×2+0.12×26×1.5]×2﹜÷8﹢1.4×2.5=16.16KN板传来的荷载:P4=1.2×[(0.925×0.12×7×25﹚×2÷2+(0.925×0.12×3.9×25)×2÷2]+1.4×3.0=40.5KN柱及基础梁自重:(取基础梁截面为300㎜×700㎜﹚P5=0.4×0.4×11.2×25+0.32×0.72×7×25÷2=64.96KN则传到柱上的荷载P=P1+P2+P3+P4+P5=42.86+142.23+16.16+40.5+64.96=306.7KN B/④柱上部荷载:炮楼传来的荷载:P1=[(3×0.12×3×24)÷2]+[﹙3×0.12×7×24)÷2]=44.96 KN屋面荷载:由上面知P2=42.86KN墙、梁传来的荷载:P3=[(0.32×0.72×3×25)×3÷2+3.6×0.18×5.24×2÷2+0.18×3.6×5.24×2÷2=40.90KN板传来的荷载:P4=﹛1.2×[﹙0.925×7×0.12×25+0.925×3.8×0.12×25﹚×2]+1.4×3.0﹜÷2=32.05KN走廊传来的荷载:由上可知P5=16.16KN柱及基础自重:由上可知P6=64.96KN楼梯传来的荷载:P7=1.2×4+1.4×3=9KN则传到柱上的荷载:P=P1+P2+P3+P4+P5+P6+P7=44.96+42.86+40.90+32.05+16.16+64.96+9=208.03KN B/②柱:屋面传来的荷载:由上可知P1=42.86KN墙、梁传来的荷载:P2=0.32×0.72×7×25÷2×3+0.32×0.72×3.9×25+﹙0.12×3.6×5.24﹚×2÷2+(0.18×3.6×3.9-2.2×1.8×0.18﹚×24×2=174.42KN走廊传来的荷载:由上可知P3=16.16KN板传来的荷载:P4=40.5×2=91KN柱及基础梁的自重:由上可知 P5=64.96KN 则传到柱上的荷载:P=P1+P2+P3+P4+P5=42.86+174.42+16.16+91+64.96=389.1KN 比较得柱B/②上的荷载起控制作用,顾取其荷载算基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
▪ R:结构构件抗力的设计值
▪ Sk:荷载效应的标准组合值
(四)计算挡土墙、地基或斜坡稳定基滑坡 推力时,荷载效应,按承载能力极限状态下 荷载效应的基本组合,但其分项系数均为1:
n
S G SGk S Q1 Q1k Qi c Si Qik i2
n
S G SGk Qi Sci Qik i 1
G Qi 1
组合值系数c
GB50007-2002的设计理论应用
▪ 地基承载力-容许承载力 ▪ 稳定分析-单一安全系数 ▪ 结构计算-可靠度的分项系数
几种荷载组合的应用
▪ 地基承载力-标准组合 ▪ 稳定分析—基本组合,分项系数=1,
(单一安全系数法) ▪ 结构设计-基本组合 ▪ 沉降计算-准永久组合
地基基础的设计思想
▪ 可靠度理论:以概率理论未基础的 极限状态设计方法;是不确定性理 论方法——因果关系的破缺;结果 是破坏的概率或者工程的可靠度。
▪ 定值设计法:所有参数和条件是定 值,所有不确定性由一个安全系数K 包括。
一、地基基础承载力设计理论
▪ 1、容许承载力理 论
p fa
▪ 2、极限承载力理 论-安全系数法
0.5
2.5
0.7
0.6
0.5
礼堂、剧场、影院
3.0
0.7
0.5
0.5
商店、车站、机场大厅 3.5
0.7
0.6
0.3
健身房、舞厅
4.0
0.7
0.6
0.5
书库、档案库
5.0
0.9
0.9
0.8
规范GB5007-2002中的规定
(一)按地基承载力确定基础底面 积及埋深,传至基础底面上的荷载 应按正常使用极限状态下荷载效应 的标准组合 。承载力采用特征值。
组合值系数c
(4)准永久组合-
荷载效应组合的设计值
n
S SGk Sqi Qik i 1 准永久值系数q
民用建筑楼面均布活荷载的各种代 表值
类别
住宅、宿舍、办公楼 教室、实验室、会议室
食堂、餐厅
标准值 (kN/m2)
2.0
组合值系
数c 0.7
频遇值系
数f 0.5
准永久值
系数q 0.4
0.6
3·荷载的代表值
▪ (1)标准值:基本代表值,为设计基准期
内最大荷载统计分布的特征值(如:均值、众值、 中值··)
▪ (2)组合值:对于可变荷载,组合超越概
率与其出现概率相同(等于标准值)如:1%台 风+设防地震+最大楼面荷载········
▪ (3)频遇值:对于可变荷载,超越概率为
规定的较小比率;
化(自重);(2)变化与均值比可忽略(设备); (3)单调变化并趋于极值(正常水压力):结构 及基础自重、固定设备重量、土压力、正常稳定 水位的水压力
▪ 可变荷载(活荷载1) :变化与均值比不
可忽略:屋面、楼面、吊车、雪、风荷载
▪ 偶然荷载(特殊荷载、活荷载2) :在
结构使用期间不一定出现,一旦出现其值很大, 持续时间很短:地震、撞击、爆炸、
▪ 由于工程中的荷载和抗力都是随机 变量,有多少可能使荷载大于抗力 而失事是一个随机事件,
▪ 破坏的概率(可能性)决定于两个 随机变量的均值(众值,中值及某 个分位值)及其分布。
f(S) f(R)
S
R
S R
R, S
R, S
可靠度
▪ 其失事概率可用可靠度指标表示。例如,则 表示失效概率为万分之9.4。相应的设计公 式可简单表示为:3.0
2、极限承载力理论—安全系数法
▪ 承载力:极限承载力公式、平板载荷试验 的极限值/安全系数(2-3)
▪ 荷载采用标准值(组合)
2、极限承载力理论—安全系数法
•对于地基承载力问题,单一安全系数 法的一般表达式为:
p pu / K
▪ 在这一理论方法中,其安全程度用 单一的安全系数K表示,但这一安 全系数反映多大的失事概率是不得 而知的。
定值设计法
▪ 长期的经验的积累 ▪ 合理的综合判断 ▪ 工程的类比 ▪ 合理的反算
3、极限承载力理论-分项系数
▪ 承载力:采用标准值除以承载力分 项系数
▪ 荷载:荷载效应组合的代表值×分项 系数-设计值S(基本组合)
S Sk
R Rk / R 0S R
3、极限承载力理论-分项系数
▪ 基于可靠度理论的分项系数设计方 法也是一种极限状态设计方法。
超过某一特定状态,而不能满足设计规定 的某一功能要求时,这一特定状态为结构 对于该功能的极限状态。
▪ (1)承载能力极限状态:一般是结
构的内力超过其承载能力为依据;
▪ (2)正常使用极限状态:一般是以
结构的变形、裂缝、振动参数等超过设计 允许的限值为依据。
2·荷载种类:
▪ 永久荷载(恒荷载) : (1)不随时间变
载,采用频遇值(或准永久值)为荷载代表的组合:(永 久组合标准值)+(主导可变荷载频遇值)+(伴随可变 荷载的准永久值)
▪ 准永久组合:正常使用极限状态设计时,对于可变荷载,
采用准永久值为荷载代表的组合
(1)基本组合-
荷载效应组合的设计值
▪ (1)由可变荷载控制时: SQ1k: 在所有
可变荷载中产生最不利荷载效应的一个
n
S G SGk S Q1 Q1k Qi c Si Qik i2
(2)由永久荷载控制时:
n
组合值系数c
S G SGk Qi Sci Qik
i 1
(2)标准组合-
荷载效应组合的设计值
n
S SGk SQ1k Sci Qik i2
SQ1k: 在所有可变荷载中产生最不利荷载效应的一个
p fu / K
▪ 3、极限承载力理 论-分项系数法
分项系数
分项系数
重要性系数
S Sk
R Rk / R 0S R
1、容许承载力理论
▪ 承载力:塑性区开展范围:Pcr, P1/4,,s/b=0.01-0.02(载荷试验)、 计算公式
▪ 荷载:标准值(组合)
F
塑性区
1、容许承载力理论
▪ 在载荷试验中可以由其比例界限确定;
n
Sk SGk SQ1k c Si Qik i2
组合值系数c
(二)计算地基变形时,传至基础底面上的 荷载效应应按正常使用极限状态下的荷载效 应的准永久组合。不应计入风荷载和地震荷 载。相应的限值应为地基变形的允许值。
n
S SGk Sqi Qik i 1
准永久值系数q
(三)在确定基础或承台高度、支挡 结构高度、计算它们的内力、确定配 筋和验算材料强度时,上部结构传来 的荷载效应组合和相应的基底反力, 采用承载能力极限状态下荷载效应的 基本组合,采用相应的分项系数。
设计对象中的作用:轴力、水平力、力矩··
基础上荷载及荷载效应
▪ 上部结构F、M、H:结构自重 屋 面荷载 楼面荷载 活荷载
▪ 基础自重G:设计地面高程(内外地 面平均值)
基础上荷载及荷载效应
F
FM
FH
FM
H
一般为前两种情况,横向力不大,只做校核
6·荷载组合:按极限状态设计时,为保证结构的
可靠性对于同时出现的各种荷载设计值的规定。
李广信
目录 ▪ 1·地基基础设计理论与荷载 ▪ 2·关于地基承载力 ▪ 3·桩的承载特性与群桩效应 ▪ 4·复合地基设计的三个原则 ▪ 5·基坑及其事故分析 ▪ 6·基坑的设计 ▪ 7·土中水及其渗流问题 ▪ 8·土工合成材料
地基基础设计理论与 荷载
设计基本原则
满足如下要求:
1、承载力 2、变形
▪ 土层剖面与边界的不确定性 ▪ 现场与实验室岩土指标的不确定性 ▪ 现场应力与孔隙水压力的不确定性 ▪ 外加荷载及其分布的不确定性 ▪ 计算理论和方法的不确定性 ▪ 应力变形的机理不清楚。
三种设计理论
▪ 容许承载力法 ▪ 单一安全系数 ▪ 可靠度设计
二、 荷载计算
▪ 1·极限状态:结构或者结构的一部分
▪ 基本组合:承载能力极限状态设计时,永久作用与可变
作用的组合;(分项系数)
▪ 偶然组合:承载能力极限状态设计时,(永久作用)+
(可变作用)+(一个偶然作用)的组合;(大于基本组 合)
▪ 标准组合:正常使用极限状态设计时,采用标准值,
(或组合值)为荷载代表的组合;
▪ (频遇组合):正常使用极限状态设计时,对于可变荷
▪ (4)准永久值:对于可变荷载,在设计
基准期内,其超越的总时间为设计基准期一半的 荷载值。(人群活荷载-沉降)
p
R:抗力
S:荷载 标准值
荷载与抗力的取值
4·荷载与承载力的设计值
▪ 荷载S=代表值分项系数(大于1) ▪ 抗力R=代表值/分项系数(大于1)
▪ 5·荷载效应:指在一定的外荷载作用下,在一定
▪ 按一定沉降比人为规定,例如s/b0.002
▪ 在理论计算中可以由塑性区发展理论中的临塑荷 载pcr=p1/4、 p1/3确定。
▪ 按容许承载力理论确定的承载力,其沉降一般也 会满足要求,常常不需进行沉降验算。
▪ 在这种设计中,工程的安全性和可靠性是无定量 的概念的。因而是一种经验的设计方法。
▪ 其设计荷载可取为标准值或标准组合。
p本身(强度、 刚度、耐久性、抗 裂······)
两种极限状态设计
▪ 承载能力极限状态:以结构内力
(地基荷载)超过其承载能力为依据—各 种失稳、结构破坏。
▪ 正常使用极限状态:以结构(地
基)的变形、裂缝、振动参数(老化蠕变) 的限值为依据。有时间接通过应力控制 (例如最大塑性深度的限制—容许承载力)
(1)由可变荷载控制时: