剖析康托集及“有理数集”测度
康托尔集证明
康托尔集证明
康托尔集证明
康托尔集是由德国数学家Georg Cantor在19世纪末开创的概念,它这样定义:对于集合X,如果存在一种映射f:X->X,满足对于任意的x∈X,都有f(x)∈X,且f(x)≠x,那么集合X被称为康托尔集。
康托尔集的定义并不容易被理解,它包含了一种自相似的性质,使其在数学和物理学领域的研究中都有广泛的应用。
为了更好地理解康托尔集的本质,我们需要从数学证明的角度来探究它的性质。
首先,康托尔集本质上是一种不可数集合,也就是说,其元素无法一一对应于自然数集合。
这一点可以通过康托尔对角线法加以证明,即对于任何一种尝试用自然数对康托尔集进行编号的方法,总存在一种方式可以生成一个不在这个编号中存在的元素。
其次,康托尔集具有一种无限自相似的性质。
具体而言,在康托尔集中任意取一段区间,我们总能够通过将这个区间去掉1/3的部分来生成两个新的区间,这两个新的区间与原来的区间具有相同的形式。
这
个过程可以不断地重复下去,生成越来越小的自相似区间。
最后,康托尔集是一种处处不可微的集合,即其上没有定义连续的导数。
这个性质可以用反证法来证明,假设存在一个处处可微的函数,它的导数在康托尔集的每个点上均存在,那么这个函数必然是常数,因为导数处处相等。
康托尔集的这些性质让它在科学研究中具有广泛应用。
例如,在物理学领域中,康托尔集被用于描述混沌现象和分形几何学。
在计算机科学中,康托尔集被用于图像压缩和计算机图形学。
总之,康托尔集是一个神奇而又有趣的数学概念,它的诞生和发展为我们提供了一种新的思维方式和工具,也为我们的科学研究带来了极大的推动作用。
《康托尔的集合论》课件
康托尔的思想和方法对数学基础研究 产生了深远的影响,推动了数学的发 展。
02
集合论的起源
集合论的背景
数学基础的探讨
19世纪数学界开始对数学的基础 进行深入探讨,寻求数学知识的 内在一致性和完备性。
数学逻辑的兴起
数学逻辑的兴起为集合论的创立 提供了重要的思想基础,为数学 的发展提供了更加严谨的框架。
图论等。
数据结构和算法
集合论中的概念如并集、交集、 差集等,在数据结构和算法设计
中有着重要的应用。
形式化方法
在计算机科学中,形式化方法是 一种基于数学的证明和推理技术 ,而集合论为其提供了数学基础
。
06
康托尔集合论的影响与评 价
对数学发展的影响
革命性的概念引入
康托尔首次提出了无穷集合的概念,打破了传统数学对无穷的限 制,为后续数学理论的发展奠定了基础。
在物理学领域的应用
测度论
在物理学中,测度论是描 述物理量大小和变化的数 学工具,而集合论为其提 供了数学基础。
概率论
物理学中的随机现象可以 通过概率论来描述,而集 合论则为概率论提供了数 学框架。
量子力学
量子力学中的波函数和状 态空间都可以用集合论的 语言来描述。
在计算机科学领域的应用
离散数学
集合论在离散数学中有着广泛的 应用,如集合运算、集合划分、
集合论的应用
集合论不仅在纯粹数学领域有广泛应用,还涉及到物理学、计算机科学、经济 学等多个领域。
03
康托尔的集合论
集合论的基本概念
01
02
03
04
集合
由确定的、不同的部分组成的 整体。
元素
集合中的一个具体部分。
子集
康托尔的集合论
康托尔的集合论导言康托尔的集合论是一个重要的数学分支,它对于理解集合、无限、大小和无穷等概念起到了重要的作用。
本文将深入探讨康托尔的集合论,并从不同角度、不同层次对其进行详细阐述。
康托尔的生平及其贡献-集合的无穷性康托尔的生平•康托尔(Georg Cantor)是19世纪末20世纪初的德国数学家,生于1845年,逝于1918年。
•他是现代集合论的奠基人,被誉为”无穷的数学家”。
•受到当时一些著名数学家的质疑和反对,康托尔的一生充满了挫折和痛苦。
集合的无穷性康托尔的集合论最大的贡献之一是解决了无穷的问题。
在康托尔之前,无穷常常是一个模糊的概念,康托尔通过创造性的思考和构建数学体系,给出了严格的定义和推理,奠定了集合论的基础。
康托尔证明了不同无穷集的”大小”可以有差异,他引入了”基数”的概念,用于度量集合的大小。
康托尔的实质性无穷概念对于数学的发展产生了深远的影响,也挑战了当时数学家们对于无穷的传统看法。
康托尔的集合论体系集合和元素集合论的基础是对”集合”和”元素”的概念的明确定义。
集合是由一些对象组成的整体,而元素则是集合的组成成分。
康托尔提出了集合的比较、相等和包含等概念,他认为两个集合相等当且仅当它们具有相同的元素。
而一个集合包含另一个集合当且仅当前者的所有元素都属于后者。
基数和大小康托尔引入了”基数”的概念来度量集合的大小。
基数是一个整数,用于表示集合中元素的个数。
例如,一个集合的基数为0表示这个集合是空集,没有任何元素;基数为1表示集合中有一个元素,依此类推。
康托尔的集合论认可了两个集合的基数可以相等,也可以不等。
例如,有理数集合和自然数集合的基数是相等的,而实数集合的基数则比自然数集合要大。
具有不同大小的无穷集康托尔的集合论最重要的一个发现是存在不同大小的无穷集。
他通过引入”可数无穷”和”不可数无穷”的概念,对无穷集的大小进行了分类。
可数无穷集的基数和自然数集的基数相等,因此可以通过一一对应的方式进行计数。
Cantor集上Lebesgue测度的反例
Cantor集上Lebesgue测度的反例Cantor集,又称康托尔集,是数学中一个有趣且重要的集合。
康托尔集最早由德国数学家Georg Cantor于1874年引入,使用这个集合可以展示数学中一些奇特的性质。
本文将讨论康托尔集的一个重要性质,即其上的Lebesgue测度。
Lebesgue测度是由法国数学家Henri Lebesgue在20世纪初提出的一种测度方法。
相比于传统的黎曼积分,Lebesgue测度可以更好地描述不连续和不规则的函数。
然而,当应用Lebesgue测度在Cantor集上时,我们会遇到一个令人惊奇的结果。
在开始之前,让我们先回顾一下康托尔集的定义。
康托尔集由[0, 1]区间中初始的闭区间[0, 1]构建而成。
然后,在每个步骤中,我们将每个闭区间分成三个等长的闭区间,并移除中间的开区间。
重复此过程无限次,我们得到了康托尔集。
现在,让我们尝试计算康托尔集的Lebesgue测度。
根据Lebesgue测度的定义,我们需要找到一个覆盖Cantor集的开区间集合,并计算它们的总长度。
然而,对于Cantor集来说,这并不容易。
由于Cantor集是一个完全不连续的集合,任何区间都会被Cantor集的元素分割成两个部分。
因此,我们无法找到一个开区间集合,其总长度等于Cantor集的长度。
这一结论可以通过反证法加以证明。
假设我们找到了一个开区间集合X,其总长度等于Cantor集的长度。
由于Cantor集是不可数的,而每个开区间是可数的,所以至少存在一个开区间的长度为0。
那么,我们便可以将所有长度为0的开区间移除,得到一个新的开区间集合X'。
然而,新的开区间集合X'并不能完全覆盖Cantor集。
在每个步骤中,我们都会移除Cantor集中的一些元素,最终导致X'无法覆盖整个Cantor集。
因此,不存在一个开区间集合,其总长度等于Cantor集的长度。
这就是Cantor集上Lebesgue测度的反例。
Cantor集的性质及其应用
Cantor集的拓展及其应用黄玉霞指导老师:郭金生(河西学院数学与应用数学专业2012届1班09号, 甘肃张掖 734000)摘要本文对Cantor三分集进行了拓展,也就是以五分法构成了Cantor集,然后讨论在此分下Cantor集的相关性质及应用.关键词 Cantor集; 测度; 稠密集; 完备集中图分类号O174The Expandability and Applications of Cantor SetHuang Yuxia Instructor Guo Jinsheng(No.09,Class1 of 2012.Specislty of Mathematics and Applied Mathematics,Hexi University,Zhangye,Gansu,734000)Abstract: This paper expands Cantor set ,as well as makes Cantor set by dividing it into five parts, then discusses it’s related properties and applications in this situation. Keywords: Cantor set; measure; dense set; exhaustive set1 引言Cantor三分集是由德国数学家康托尔在研究三角级数问题时构造出来的一个特殊点集,具有许多显著和深刻的性质.它是人类理性思维的产物,并非某个现实原型的摹写,尤其是用传统的几何术语很难对他进行描述.它既不是满足某些简单条件的点的轨迹,也不是一个简单方程的解集,可以说,它是一种新的集合对象.厦门大学数学科学学院的伍火熊通过分析康托三分集的构造过程,剖析了其构造思想的本质特征在于对所给闭区间进行奇数次对等划分,去掉中央开区间后对存留的每一个闭子区间作同样的处理的无限构作过程.董大校指出康托尔集的构造过程是一个无穷操作或迭代过程.本文主要说明康托尔五分集与三分集具有完全相同的奇特性质,康托尔三分集的构造方法的奇特性并非偶然,它适用于由任何正奇数分得的集合,康托尔集巧妙构思和它奇特性质在解决实变函数中一些典型例题中起了重要作用.2 预备知识=(E'表示E的导集),则称E为完备集或完全定义2.1[1]设nE R⊂,如果E E'集.定义2.2[2] 凡和全体正整数所成集合Z +对等的集合都称为可数集,不是可数集的无限集合,称为不可数集.定义2.3[3] 若两个集合A ,B 之间存在着一一的到上的映射,则A 与B 是对等的,记为A B .此时也称A 与B 等势或者有相同的基数,记为A ==B =.定义2.4[4] 设E 为n R 中的一个点集,0x 是n R 中的一个定点,若0x 附近全是E 的点,即0,δ∃>使0(,)U x E δ⊂,则称0x 为E 的内点.定义2.5[5] 设A ,B 是直线上的两个点集,如果B 中每一点的任一环境中必有A 的点,那么称A 在B 中稠密.如果直线上的点集S 在每一个不空的开集中都不稠密,就称S 是疏朗集或无处稠密集.定理1.1(闭集的构造定理) 直线上的闭集F 或是全直线,或者是从直线上挖掉有限个或可数个互不相交的开区间(即F 的余区间)所得到的集.3 主要内容3.1 Cantor 集的构成(1)将闭区间[0,1]R ⊂三等分,去掉中间一个()02个个长度为13的开区间12,33⎛⎫⎪⎝⎭,记作1F ;剩下两个()12个长度均为13的闭区间10,3⎡⎤⎢⎥⎣⎦和2,13⎡⎤⎢⎥⎣⎦,分别记为11G 和21G ;(2)将剩下的两个闭区间10,3⎡⎤⎢⎥⎣⎦和2,13⎡⎤⎢⎥⎣⎦分别继续三等分,去掉其中间两个()12个长度为213的开区间12,99⎛⎫ ⎪⎝⎭和78,99⎛⎫⎪⎝⎭,分别记为12F 和22F ,剩下的四个()22个小闭区间,分别是10,9⎡⎤⎢⎥⎣⎦,23,99⎡⎤⎢⎥⎣⎦,67,99⎡⎤⎢⎥⎣⎦和8,19⎡⎤⎢⎥⎣⎦,分别记为123222,,G G G 和42G ;(3)如此继续下去,第次n 去掉12n -个长度为13n 的开区间1221,,,-n n n n F F F ,剩下2n个长度为13n 的闭区间,记为12,,n n G G nn G 2, ;上述构造过程中开、闭区间个数及区间长度与分割次数间的关系见表1:第1次分割第2次分割第3次分割第n 次分割开区间个数 02 12 22 12n - 闭区间个数 12 22 32 2n 小区间长度1321331313n表1(4)将上述过程无限进行. 最终得到一集合列12211n n n G G GG=()=1,2n ,.作点集P =1n n G ∞=,则称P 为Cantor 集.3.2 对Cantor 集构造方法的拓展基于Cantor 三分集巧妙的构造方法,尝试将闭区间[0,1]五等分、甚至任意正奇数等分.3.2.1 将闭区间[0,1]五等分,进行构造(1)将闭区间[0,1]R ⊂五等分,去掉中间两个()12个长度为15的开区间12,55⎛⎫ ⎪⎝⎭和34,55⎛⎫ ⎪⎝⎭,记作11F 和21F ;剩下三个长度均为15的闭区间10,5⎡⎤⎢⎥⎣⎦,23,55⎡⎤⎢⎥⎣⎦和4,15⎡⎤⎢⎥⎣⎦,分别记为11G ,21G 和31G ;(2)将剩下的三个闭区间1[0,]5,23[,]55和4[,1]5分别继续五等分,然后去掉其中间六个长度为215的开区间2212,55⎛⎫ ⎪⎝⎭,2234,55⎛⎫ ⎪⎝⎭,221112,55⎛⎫ ⎪⎝⎭,221314,55⎛⎫ ⎪⎝⎭,222122,55⎛⎫ ⎪⎝⎭222324,55⎛⎫ ⎪⎝⎭. 分别记为12F ,22F ,345222,,F F F 和62F .剩九个小闭区间,分别为210,5⎡⎤⎢⎥⎣⎦2223,,55⎡⎤⎢⎥⎣⎦,241,55⎡⎤⎢⎥⎣⎦,2211,55⎡⎤⎢⎥⎣⎦,221213,55⎡⎤⎢⎥⎣⎦,2143,55⎡⎤⎢⎥⎣⎦,2421,55⎡⎤⎢⎥⎣⎦,222223,55⎡⎤⎢⎥⎣⎦,224,15⎡⎤⎢⎥⎣⎦. 分别记为123222,,G G G ,42G ,52G ,62,G 72,G 82G 和92G ;(3)如此继续下去,第n 次去掉()1221n -+个长度为15n 的开区间()122112,,,n n n nF F F-+,剩下3n 个长度为15n的闭区间,记为12,,n n G G nn G 3, ;上述构造过程中开、闭区间个数及区间长度与分割次数间的关系见表2:第1次分割 第2次分割 第3次分割第n 次分割开区间个数 023⨯ 123⨯223⨯123n -⨯闭区间个数 1323 33 3n小区间长度15 215 31515n表2(4)将上述过程无限进行. 最终得到一集合列12311n n n G GGG=()=1,2n ,.作点集2P =1n n G ∞=.在下面3.3中可证得2P 具有与Cantor 三分集完全相同的性质.3.2.2 对于任意给定的正奇数21k +()k N +∈.(1) 将闭区间[0,1]进行21k +等分,并去掉中间的第2,4,k 2 个开区间1112(,)2121F k k =++,2134(,)2121F k k =++,,1212(,)2121k k kF k k -=++记留存部分为1G ,即111111k G G G G +=1232[0,][,][,1]21212121kk k k k =++++. (2) 将剩下的1k +个闭区间分别继续五等分,并去掉每一等分闭区间中的第2,4,,2k 个中间开区间;记1G 中留下来的部分为2G , (3) 如此继续下去,第n 次去掉()11n k k -+个长度为()121nk +的开区间,剩下()1nk +个长度为()121nk +的闭区间,记为()112,,,nk n nnG G G +;上述构造过程中开、闭区间个数及区间长度与分割次数间的关系件表3:第1次分割 第2次分割 第3次分割第n 次分割开区间个数 ()01k k +()11k k +()21k k +()11n k k -+闭区间个数 1k +()21k + ()31k +()1nk + 小区间长度121k + ()2121k +()3121k +()121nk +表3(4) 将上述过程无限进行. 最终得到一集合列()11211nk n nG GGG +=()=1,2n ,.作点集k P =1n n G ∞=.3.3 五分法下Cantor 集2P 的性质性质3.3.1 2P 是闭集.证明 由2P 的构造过程可知,第一次去掉的开区间为11F 和21F ,第二次去掉的开区间为1234522222,,,,F F F F F 和62F ,那么由表2知,第n 次去掉的是11223,,,n n n nF F F-⨯,依次下去,可以推想,共去掉的开区间可表示为12311n m n n m F -∞⨯==,则123211[0,1]\n m n n m P F -∞⨯===,由闭集构造定理知2P 为闭集.性质3.3.2 2P 是完备集.证明 由于2P 的邻接区间的作法,它们中的任何两个之间根本不存在公共的端点故2P 没有孤立点,因而2P 自密,又2P 是闭集,因此2P 是完备集.性质3.3.3 2P 没有内点.证明 在2P 的作法中,“去掉”过程进行到第n 次为止时,剩下3n 个长度是15n 的互相隔离的闭区间,因此任何一点02x P ∈必含在3n 个闭区间的某一个里面.从而在0x 的任意邻域01(,)5n U x 内至少有一点不属于2P ,但105n →()n →∞,故0x 不是2P 的内点.性质3.3.4 2[0,1]\P 是可数个互不相交的开区间,其长度之和为1.证明 在2P 的构造过程中,第n 次去掉的123n -⨯个长度为15n 的开区间,因2[0,1]\P中互不相交的开区间之和为11235n nn -∞=⨯∑1222323555n n-⨯⨯=+++ 11233(1)555n n --=⋅+++1=. 性质3.3.5 2P 是零测度集.证明 用2c P 表示[0,1]上2P 的余集,则22[0,1]\c P P =.由性质3.3.4知()21cm P =.故()()()22[0,1]c m P m m P =-110=-=.性质3.3.6 2P 是不可数集.证明 假设2P 是可数的,将2P 中点编号成点列1x ,2x ,,k x ,,也就是说,2P 中任一点必在上述点列中出现.显然,1[0,]5,23[,]55与4[,1]5中应至少有一个不含有1x ,用1G 表示这个闭区间.将1G 五等分后所得的三个闭区间中,应至少有一个不含2x ,用2G 表示它.然后用3G 表示五等分2G 时不含3x 的那个闭区间,如此下去.由归纳法,得到一个闭区间列{}k k N G ∈.由上述取法知,1G ⊃2G ⊃⊃k G ⊃,,k x ∉k G ,k ∈N ,同时,易见k G 的长为()105k k →→∞.于是根据数学分析中区间套定理,存在点∈ξk G ,k ∈N .可ξ是k G 的端点集的聚点,从而是闭集2P 的聚点,故∈ξ2P .由于上面已指出k x ∉k G ,k ∈N ,故≠ξk x ,k ∈N .这是一个矛盾.故2P 不可数.性质3.3.7 2P 非空.证明 从2P 的构造过程来看,每个区间的端点,例如0,125,23,,12525这样的端点都是被保留下来的,故2P ≠∅.性质3.3.8[6] 2P 不含任何区间.证明 由2P 的构造过程可知,第n 次分割后的第i ()1,2,,3n i =个小区间的长度为10()5n nL n =→→∞ 故2P 中不含任何区间. 性质3.3.9 2P 是疏朗集.证明 由2P 的构造,02x P ∀∈和0ε>,0(,)U x ε内包含有无穷多个被去掉的小区间,因此02(,)U x P ε⊄,即2P 在0(,)U x ε中不稠密,根据定义2.5即得2P 是疏朗集. 性质3.3.10 2P 没有孤立点.证明 由性质3.3.1知2P 是闭集,又由闭集构造定理知,闭集的孤立点一定是它的两个余区间的公共端点,由2P 的构造过程知,这样的公共端点是不存在的,即2P 没有孤立点.性质3.3.11 2P 与R 对等.证明 由性质3.3.6知,2P c ==,又R c ==,从而2P R .由此说明2P 中的点与R 中的一样多.又因为2P ⊂[0,1]⊂R ,由此说明,“部分小于全体”的结论在无穷集合中是不成立的.4 Cantor 集的应用Cantor 集的巧妙构思和它奇特的性质为构造一些反例提供了启示,也为一些题目的证明与求解带来的方便,下面将分别举例来说明.4.1 Cantor 集在反例中的应用.例1 孤立点集必是疏朗集,而疏朗集未必是孤立点集. 例如 Cantor 集中的任一元都是疏朗集,但不是孤立点集. 例2 存在R 中零测度集E ,使得对每个x E ∈及任意0δ>,有E(0,x δ-)0x δ+为不可数集.此题中可取{},E P Q x y x P y Q =+=+∈∈.其中P 为Cantor 集,Q 为有理数集.例3 在[]0,1上做出的完备疏朗集的测度必为1.反例 2P 是[]0,1上的完备疏朗集,但其测度为零.例 4 可数集的测度为零,但测度为零的集合未必都是可数集. 反例 2P 的测度为零,但它是不可数集. 4.2 Cantor 集及其性质在证明题中的应用.例1[8] 无理数在R 中是稠密的,但由无理数组成的疏朗的完全集是存在的. 证明 任取两个无理数α和β()αβ<,设闭区间[],αβ中有理数为{}12,,,,n r r r ,仿照Cantor 集的构造法,第一步,从[],αβ中挖掉开区间1F ,1F 满足以[],αβ的中点为中点,长度小于βα-且包含1r ;从余下的两个闭区间中挖掉与1F 性质类似的两个开区间12F 和22F ,且使122r F ∈,232r F ∈,如此这样做下去,[],αβ中余下的即是一个由无理数组成的疏朗的完备集.例2 设P 是Cantor 集,E 在[]0,1中为不可数集,在[]0,1上定义函数[]22,,()4,0,1.x x P E f x x x PE +∈⎧⎪=⎨+∈-⎪⎩判断()f x 在[]0,1上是否可测.解 由性质3.3.5知,0mP =.又P E P ⊂,由测度的非负性及单调性,有()0m PE ≥,()m PE mP ≤故()0m PE =即2()4f x x →+.a e 于[0,1],从而()f x 在[0,1]上可测.例3 设()f x 在集合2P 上为1,而在2P 的补集G 中的长度为15n的构成区间上()f x 为n ,求积分10()f x dx ⎰.解 记n G 为G 中长度为15n 的各个开区间之并,则n G 有123n -⨯个长度为15n的开区间且115n n G ∞==∑,1235n n nmG -⨯=. 由题意知21,,()(1,2,),.x P f x n n x G ∈⎧==⎨∈⎩1()f x dx ⎰=2()()P Gf x dx f x dx +⎰⎰=21()nP G n f x dx ndx ∞=+∑⎰⎰1nG n ndx ∞==∑⎰=1nn n mG ∞=⋅∑=111235n n n n ∞-=⋅⨯⋅∑=12335nn n ∞=⎛⎫ ⎪⎝⎭∑ 令12335nN N n S n =⎛⎫= ⎪⎝⎭∑,则11323535n N N n S n +=⎛⎫=⋅ ⎪⎝⎭∑. 21323333535555N N N N S S N +⎡⎤⎛⎫⎛⎫⎛⎫-=+++-⋅⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦即23211555NN S N ⎛⎫⎛⎫=-⋅+ ⎪ ⎪⎝⎭⎝⎭535252NN S N ⎛⎫⎛⎫=-⋅+ ⎪ ⎪⎝⎭⎝⎭5355lim lim 2522N N N N S N →∞→∞⎡⎤⎛⎫⎛⎫=-⋅+=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦故105()2f x dx =⎰.5 小结综合上述内容,根据Cantor 三分集的构造特征,对其构造进行了拓展,即以五分法构成了2P ,并对集合2P 所具有的性质做了探究证明,进而发现在五分法下构成的集合2P 具有与Cantor 三分集完全相同的奇特性质.从而揭示了Cantor 三分集这种奇特的构造方法并非偶然.之后通过实例将Cantor 三分集、五分集及其性质得以运用,特别是在范例中的运用破除了一些似是而非的错觉,体现了Cantor 集在数学问题的解决中的重要性.致谢 诚挚的感谢郭金生老师的悉心指导!参 考 文 献[1]于兴太,杨明顺.Cantor 三分集构造方法探究[J].江西科学学报,2010,28(2):147-149. [2]程其襄等.实变函数与泛函分析基础[M].三版.高等教育出版社,2010,6. [3]刘培德.实变函数教程[M].科学出版社,2006.[4]徐森林,薛春华.实变函数论[M].清华大学出版社,2009,8.[5]夏道行,吴卓人等.实变函数论与泛函分析[M].二版.高等教育出版社,2010,1.[6]熊国敏.谈谈Cantor集[J].安顺师专学报,2002,4(4):53-55.[7]王有一.Cantor集合的应用[J].宝鸡文理学院学报(自然科学版),1994,1(1):122-125.[8]董大校.Cantor集性质的应用[J].玉溪师范学报2009,25(8):18-22.(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。
康托尔集合论
康托尔集合论TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-(1)0P 是一个闭集,不含有任何区间。
这是显然的,0G 是任意个开集的并,所以0G 仍是开集,0P 是0G 的补集,所以0P 是闭集。
这表明不含有任何区间的闭集是存在的。
(2)0P 是完全集证明:要证0P 是完全集即证它不含有孤立点。
假设0P 有一孤立点0x ,则存在(α,β)使(α,β)中不含0P 中除0x 以外的任一点。
所以(α,0x )⊂0G ,(0x ,β)⊂0G 。
于是0x 将成为0G 的某两个区间的公共端点,但由于0G 的做法是不可能的。
所以不存在这样的点0x ,与假设矛盾,所以得证0P 是完全集。
(3)0P 是不可列的证明:假设0P 是可列的,将0P 中点编号成点列1x ,2x ,…,k x …,也就是说,0P 中任一点必在上述点列中出现。
显然,10,3⎡⎤⎢⎥⎣⎦与2,13⎡⎤⎢⎥⎣⎦中应有一个不含有1x ,用1I 表示这个闭区间。
将1I 三等分后所得的左与右两个闭区间中,应有一个不含2x ,用2I 表示它。
然后用3I 表示三等分2I 时不含3x 的左或右的那个闭区间,如此等等。
这样,根据归纳法,得到一个闭区间列N k k I ∈}{。
由所述取法知,1I ⊃2I ⊃…⊃k I ⊃…,k x k I ,k ∈N , 同时,易见k I 的长为13k →0(k →∞)。
于是根据数学分析中区间套定理,存在点k I ,k N 。
可是是k I 等的端点集的聚点,从而是闭集0P的聚点,故0P 。
由于上面已指出k x k I ,k ∈N ,故k x ,k N 。
这是一个矛盾。
故0P 不可列。
(4)0P 的势等于与0,1同势证明:引进0,1中小数的三进表示来考察区间(13,23)中每个点x 可表示成x=2x 3x …,其中2x ,3x ,…是0,1,2三个数字中之一。
这区间的两个端点均有两种表示,规定采用(不出现数字1):13=…,23=…,区间(213,223),(273,283)中的点x 可表示成x=3x 4x …或x=3x 4x …,其中3x ,4x ,…是0,1,2中任一数字。
Cantor集的性质及其应用
Cantor集的拓展及其应用黄玉霞指导老师:郭金生(河西学院数学与应用数学专业2012届1班09号, 甘肃张掖734000)摘要本文对Cantor三分集进行了拓展,也就是以五分法构成了Cantor集,然后讨论在此分下Cantor集的相关性质及应用.关键词Cantor集; 测度; 稠密集; 完备集中图分类号O174The Expandability and Applications of Cantor SetHuang Yuxia Instructor Guo Jinsheng(No.09,Class1 of 2012.Specislty of Mathematics and Applied Mathematics,Hexi University,Zhangye,Gansu,734000)Abstract: This paper expands Cantor set ,as well as makes Cantor set by dividing it into five parts, then discusses it’s related properties and applications in this situation.Keywords: Cantor set; measure; dense set; exhaustive set1 引言Cantor三分集是由德国数学家康托尔在研究三角级数问题时构造出来的一个特殊点集,具有许多显著和深刻的性质.它是人类理性思维的产物,并非某个现实原型的摹写,尤其是用传统的几何术语很难对他进行描述.它既不是满足某些简单条件的点的轨迹,也不是一个简单方程的解集,可以说,它是一种新的集合对象.厦门大学数学科学学院的伍火熊通过分析康托三分集的构造过程,剖析了其构造思想的本质特征在于对所给闭区间进行奇数次对等划分,去掉中央开区间后对存留的每一个闭子区间作同样的处理的无限构作过程.董大校指出康托尔集的构造过程是一个无穷操作或迭代过程.本文主要说明康托尔五分集与三分集具有完全相同的奇特性质,康托尔三分集的构造方法的奇特性并非偶然,它适用于由任何正奇数分得的集合,康托尔集巧妙构思和它奇特性质在解决实变函数中一些典型例题中起了重要作用.2 预备知识=(E'表示E的导集),则称E为完备集或完全集.定义2.1[1]设nE R⊂,如果E E'定义2.2[2] 凡和全体正整数所成集合Z +对等的集合都称为可数集,不是可数集的无限集合,称为不可数集.定义2.3[3] 若两个集合A ,B 之间存在着一一的到上的映射,则A 与B 是对等的,记为A B .此时也称A 与B 等势或者有相同的基数,记为A ==B =.定义2.4[4] 设E 为n R 中的一个点集,0x 是n R 中的一个定点,若0x 附近全是E 的点,即0,δ∃>使0(,)U x E δ⊂,则称0x 为E 的内点.定义2.5[5] 设A ,B 是直线上的两个点集,如果B 中每一点的任一环境中必有A 的点,那么称A 在B 中稠密.如果直线上的点集S 在每一个不空的开集中都不稠密,就称S 是疏朗集或无处稠密集.定理1.1(闭集的构造定理) 直线上的闭集F 或是全直线,或者是从直线上挖掉有限个或可数个互不相交的开区间(即F 的余区间)所得到的集.3 主要内容3.1 Cantor 集的构成(1)将闭区间[0,1]R ⊂三等分,去掉中间一个()02个个长度为13的开区间12,33⎛⎫⎪⎝⎭,记作1F ;剩下两个()12个长度均为13的闭区间10,3⎡⎤⎢⎥⎣⎦和2,13⎡⎤⎢⎥⎣⎦,分别记为11G 和21G ;(2)将剩下的两个闭区间10,3⎡⎤⎢⎥⎣⎦和2,13⎡⎤⎢⎥⎣⎦分别继续三等分,去掉其中间两个()12个长度为213的开区间12,99⎛⎫ ⎪⎝⎭和78,99⎛⎫⎪⎝⎭,分别记为12F 和22F ,剩下的四个()22个小闭区间,分别是10,9⎡⎤⎢⎥⎣⎦,23,99⎡⎤⎢⎥⎣⎦,67,99⎡⎤⎢⎥⎣⎦和8,19⎡⎤⎢⎥⎣⎦,分别记为123222,,G G G 和42G ;(3)如此继续下去,第次n 去掉12n -个长度为13n 的开区间1221,,,-n n n n F F F ,剩下2n 个长度为13n 的闭区间,记为12,,n n G G nn G 2, ;上述构造过程中开、闭区间个数及区间长度与分割次数间的关系见表1:第1次分割第2次分割第3次分割第n 次分割开区间个数 02 12 22 12n -闭区间个数 12 22 32 2n小区间长度1321331313n表1(4)将上述过程无限进行. 最终得到一集合列12211n n n G G GG=()=1,2n ,.作点集P =1n n G ∞=,则称P 为Cantor 集.3.2 对Cantor 集构造方法的拓展基于Cantor 三分集巧妙的构造方法,尝试将闭区间[0,1]五等分、甚至任意正奇数等分.3.2.1 将闭区间[0,1]五等分,进行构造(1)将闭区间[0,1]R ⊂五等分,去掉中间两个()12个长度为15的开区间12,55⎛⎫ ⎪⎝⎭和34,55⎛⎫ ⎪⎝⎭,记作11F 和21F ;剩下三个长度均为15的闭区间10,5⎡⎤⎢⎥⎣⎦,23,55⎡⎤⎢⎥⎣⎦和4,15⎡⎤⎢⎥⎣⎦,分别记为11G ,21G 和31G ;(2)将剩下的三个闭区间1[0,]5,23[,]55和4[,1]5分别继续五等分,然后去掉其中间六个长度为215的开区间2212,55⎛⎫ ⎪⎝⎭,2234,55⎛⎫ ⎪⎝⎭,221112,55⎛⎫ ⎪⎝⎭,221314,55⎛⎫ ⎪⎝⎭,222122,55⎛⎫ ⎪⎝⎭222324,55⎛⎫ ⎪⎝⎭. 分别记为12F ,22F ,345222,,F F F 和62F .剩九个小闭区间,分别为210,5⎡⎤⎢⎥⎣⎦2223,,55⎡⎤⎢⎥⎣⎦,241,55⎡⎤⎢⎥⎣⎦,2211,55⎡⎤⎢⎥⎣⎦,221213,55⎡⎤⎢⎥⎣⎦,2143,55⎡⎤⎢⎥⎣⎦,2421,55⎡⎤⎢⎥⎣⎦,222223,55⎡⎤⎢⎥⎣⎦,224,15⎡⎤⎢⎥⎣⎦. 分别记为123222,,G G G ,42G ,52G ,62,G 72,G 82G 和92G ;(3)如此继续下去,第n 次去掉()1221n -+个长度为15n 的开区间()122112,,,n n n nF F F-+,剩下3n 个长度为15n的闭区间,记为12,,n n G G nn G 3, ; 上述构造过程中开、闭区间个数及区间长度与分割次数间的关系见表2:第1次分割 第2次分割 第3次分割第n 次分割开区间个数 023⨯ 123⨯223⨯ 123n -⨯闭区间个数 1323 333n小区间长度15 21531515n表2(4)将上述过程无限进行.最终得到一集合列12311n n n G G GG=()=1,2n ,.作点集2P =1n n G ∞=.在下面3.3中可证得2P 具有与Cantor 三分集完全相同的性质.3.2.2 对于任意给定的正奇数21k +()k N +∈.(1) 将闭区间[0,1]进行21k +等分,并去掉中间的第2,4,k 2 个开区间1112(,)2121F k k =++,2134(,)2121F k k =++,,1212(,)2121k k kF k k -=++记留存部分为1G ,即111111k G G G G +=1232[0,][,][,1]21212121kk k k k =++++. (2) 将剩下的1k +个闭区间分别继续五等分,并去掉每一等分闭区间中的第2,4,,2k 个中间开区间;记1G 中留下来的部分为2G , (3) 如此继续下去,第n 次去掉()11n k k -+个长度为()121nk +的开区间,剩下()1nk +个长度为()121nk +的闭区间,记为()112,,,nk n n nG G G +; 上述构造过程中开、闭区间个数及区间长度与分割次数间的关系件表3:第1次分割 第2次分割 第3次分割第n 次分割开区间个数 ()01k k + ()11k k +()21k k +()11n k k -+闭区间个数 1k +()21k + ()31k +()1nk +小区间长度121k + ()2121k +()3121k +()121nk +表3(4) 将上述过程无限进行. 最终得到一集合列()11211nk n nG GGG +=()=1,2n ,.作点集k P =1n n G ∞=.3.3 五分法下Cantor 集2P 的性质性质3.3.1 2P 是闭集.证明 由2P 的构造过程可知,第一次去掉的开区间为11F 和21F ,第二次去掉的开区间为1234522222,,,,F F F F F 和62F ,那么由表2知,第n 次去掉的是11223,,,n n n n F F F -⨯,依次下去,可以推想,共去掉的开区间可表示为12311n m n n m F -∞⨯==,则123211[0,1]\n m n n m P F -∞⨯===,由闭集构造定理知2P 为闭集.性质3.3.2 2P 是完备集.证明 由于2P 的邻接区间的作法,它们中的任何两个之间根本不存在公共的端点故2P 没有孤立点,因而2P 自密,又2P 是闭集,因此2P 是完备集.性质3.3.3 2P 没有内点.证明 在2P 的作法中,“去掉”过程进行到第n 次为止时,剩下3n 个长度是15n的互相隔离的闭区间,因此任何一点02x P ∈必含在3n 个闭区间的某一个里面.从而在0x 的任意邻域01(,)5n U x 内至少有一点不属于2P ,但105n →()n →∞,故0x 不是2P 的内点.性质3.3.4 2[0,1]\P 是可数个互不相交的开区间,其长度之和为1.证明 在2P 的构造过程中,第n 次去掉的123n -⨯个长度为15n 的开区间,因2[0,1]\P中互不相交的开区间之和为11235n nn -∞=⨯∑1222323555n n-⨯⨯=+++ 11233(1)555n n --=⋅+++1=. 性质3.3.5 2P 是零测度集.证明 用2c P 表示[0,1]上2P 的余集,则22[0,1]\c P P =.由性质3.3.4知()21cm P =.故()()()22[0,1]c m P m m P =-110=-=.性质3.3.6 2P 是不可数集.证明 假设2P 是可数的,将2P 中点编号成点列1x ,2x ,,k x ,,也就是说,2P 中任一点必在上述点列中出现.显然,1[0,]5,23[,]55与4[,1]5中应至少有一个不含有1x ,用1G 表示这个闭区间.将1G 五等分后所得的三个闭区间中,应至少有一个不含2x ,用2G 表示它.然后用3G 表示五等分2G 时不含3x 的那个闭区间,如此下去.由归纳法,得到一个闭区间列{}k kN G ∈.由上述取法知,1G ⊃2G ⊃⊃k G ⊃,,k x ∉k G ,k ∈N ,同时,易见k G 的长为()105k k →→∞.于是根据数学分析中区间套定理,存在点∈ξk G ,k ∈N .可ξ是k G 的端 点集的聚点,从而是闭集2P 的聚点,故∈ξ2P .由于上面已指出k x ∉k G ,k ∈N ,故≠ξk x ,k ∈N .这是一个矛盾.故2P 不可数.性质3.3.7 2P 非空.证明 从2P 的构造过程来看,每个区间的端点,例如0,125,23,,12525这样的端点都是被保留下来的,故2P ≠∅.性质3.3.8[6] 2P 不含任何区间.证明 由2P 的构造过程可知,第n 次分割后的第i ()1,2,,3n i =个小区间的长度为10()5n n L n =→→∞ 故2P 中不含任何区间. 性质3.3.9 2P 是疏朗集.证明 由2P 的构造,02x P ∀∈和0ε>,0(,)U x ε内包含有无穷多个被去掉的小区间,因此02(,)U x P ε⊄,即2P 在0(,)U x ε中不稠密,根据定义2.5即得2P 是疏朗集. 性质3.3.10 2P 没有孤立点.证明 由性质3.3.1知2P 是闭集,又由闭集构造定理知,闭集的孤立点一定是它的两个余区间的公共端点,由2P 的构造过程知,这样的公共端点是不存在的,即2P 没有孤立点.性质3.3.11 2P 与R 对等.证明 由性质3.3.6知,2P c ==,又R c ==,从而2P R .由此说明2P 中的点与R 中的一样多.又因为2P ⊂[0,1]⊂R ,由此说明,“部分小于全体”的结论在无穷集合中是不成立的.4 Cantor 集的应用Cantor 集的巧妙构思和它奇特的性质为构造一些反例提供了启示,也为一些题目的证明与求解带来的方便,下面将分别举例来说明.4.1 Cantor 集在反例中的应用.例1 孤立点集必是疏朗集,而疏朗集未必是孤立点集. 例如 Cantor 集中的任一元都是疏朗集,但不是孤立点集. 例2 存在R 中零测度集E ,使得对每个x E ∈及任意0δ>,有E(0,x δ-)0x δ+为不可数集.此题中可取{},E P Q x y x P y Q =+=+∈∈.其中P 为Cantor 集,Q 为有理数集.例3 在[]0,1上做出的完备疏朗集的测度必为1. 反例 2P 是[]0,1上的完备疏朗集,但其测度为零.例 4 可数集的测度为零,但测度为零的集合未必都是可数集. 反例 2P 的测度为零,但它是不可数集. 4.2 Cantor 集及其性质在证明题中的应用.例1[8] 无理数在R 中是稠密的,但由无理数组成的疏朗的完全集是存在的.证明 任取两个无理数α和β()αβ<,设闭区间[],αβ中有理数为{}12,,,,n r r r ,仿照Cantor 集的构造法,第一步,从[],αβ中挖掉开区间1F ,1F 满足以[],αβ的中点为中点,长度小于βα-且包含1r ;从余下的两个闭区间中挖掉与1F 性质类似的两个开区间12F 和22F ,且使122r F ∈,232r F ∈,如此这样做下去,[],αβ中余下的即是一个由无理数组成的疏朗的完备集.例2 设P 是Cantor 集,E 在[]0,1中为不可数集,在[]0,1上定义函数[]22,,()4,0,1.x x P E f x x x PE +∈⎧⎪=⎨+∈-⎪⎩判断()f x 在[]0,1上是否可测.解 由性质3.3.5知,0mP =.又P E P ⊂,由测度的非负性及单调性,有()0m PE ≥,()m PE mP ≤故()0m PE =即2()4f x x →+.a e 于[0,1],从而()f x 在[0,1]上可测.例3 设()f x 在集合2P 上为1,而在2P 的补集G 中的长度为15n的构成区间上()f x 为n ,求积分10()f x dx ⎰.解 记n G 为G 中长度为15n 的各个开区间之并,则nG 有123n -⨯个长度为15n的开区间且115n n G ∞==∑,1235n n nmG -⨯=. 由题意知21,,()(1,2,),.x P f x n n x G ∈⎧==⎨∈⎩1()f x dx ⎰=2()()P G f x dx f x dx +⎰⎰=21()nP G n f x dx ndx ∞=+∑⎰⎰1nG n ndx ∞==∑⎰=1n n n mG ∞=⋅∑=111235n n n n ∞-=⋅⨯⋅∑=12335nn n ∞=⎛⎫ ⎪⎝⎭∑ 令12335nN N n S n =⎛⎫= ⎪⎝⎭∑,则11323535n N N n S n +=⎛⎫=⋅ ⎪⎝⎭∑. 21323333535555N N N N S S N +⎡⎤⎛⎫⎛⎫⎛⎫-=+++-⋅⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦即23211555NN S N ⎛⎫⎛⎫=-⋅+ ⎪ ⎪⎝⎭⎝⎭535252NN S N ⎛⎫⎛⎫=-⋅+ ⎪ ⎪⎝⎭⎝⎭5355lim lim 2522N N N N S N →∞→∞⎡⎤⎛⎫⎛⎫=-⋅+=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦故105()2f x dx =⎰.5 小结综合上述内容,根据Cantor 三分集的构造特征,对其构造进行了拓展,即以五分法构成了2P ,并对集合2P 所具有的性质做了探究证明,进而发现在五分法下构成的集合2P 具有与Cantor 三分集完全相同的奇特性质.从而揭示了Cantor 三分集这种奇特的构造方法并非偶然.之后通过实例将Cantor 三分集、五分集及其性质得以运用,特别是在范例中的运用破除了一些似是而非的错觉,体现了Cantor 集在数学问题的解决中的重要性. 致谢 诚挚的感谢郭金生老师的悉心指导!参 考 文 献[1]于兴太,杨明顺.Cantor 三分集构造方法探究[J].江西科学学报,2010,28(2):147-149. [2]程其襄等.实变函数与泛函分析基础[M].三版.高等教育出版社,2010,6. [3]刘培德.实变函数教程[M].科学出版社,2006.[4]徐森林,薛春华.实变函数论[M].清华大学出版社,2009,8.[5]夏道行,吴卓人等.实变函数论与泛函分析[M].二版.高等教育出版社,2010,1. [6]熊国敏.谈谈Cantor 集[J].安顺师专学报,2002,4(4):53-55.[7]王有一.Cantor 集合的应用[J].宝鸡文理学院学报(自然科学版),1994,1(1):122-125. [8]董大校.Cantor 集性质的应用[J].玉溪师范学报2009,25(8):18-22.。
康托尔与集合论
康托尔与集合论康托尔是19世纪末20世纪初德国伟大的数学家,集合论的创立者。
是数学史上最富有想象力,最有争议的人物之一。
19世纪末他所从事的关于连续性和无穷的研究从根本上背离了数学中关于无穷的使用和解释的传统,从而引起了激烈的争论乃至严厉的谴责。
然而数学的发展最终证明康托是正确的。
他所创立的集合论被誉为20世纪最伟大的数学创造,集合概念大大扩充了数学的研究领域,给数学结构提供了一个基础,集合论不仅影响了现代数学,而且也深深影响了现代哲学和逻辑。
1.康托尔的生平1845年3月3日,乔治·康托生于俄国的一个丹麦—犹太血统的家庭。
1856年康托和他的父母一起迁到德国的法兰克福。
像许多优秀的数学家一样,他在中学阶段就表现出一种对数学的特殊敏感,并不时得出令人惊奇的结论。
他的父亲力促他学工,因而康托在1863年带着这个目地进入了柏林大学。
这时柏林大学正在形成一个数学教学与研究的中心。
康托很早就向往这所由外尔斯托拉斯占据着的世界数学中心之一。
所以在柏林大学,康托受了外尔斯特拉斯的影响而转到纯粹的数学。
他在1869年取得在哈勒大学任教的资格,不久后就升为副教授,并在1879年被升为正教授。
1874年康托在克列勒的《数学杂志》上发表了关于无穷集合理论的第一篇革命性文章。
数学史上一般认为这篇文章的发表标志着集合论的诞生。
这篇文章的创造性引起人们的注意。
在以后的研究中,集合论和超限数成为康托研究的主流,他一直在这方面发表论文直到1897年,过度的思维劳累以及强列的外界刺激曾使康托患了精神分裂症。
这一难以消除的病根在他后来30多年间一直断断续续影响着他的生活。
1918年1月6日,康托在哈勒大学的精神病院中去世。
2.集合论的背景为了较清楚地了解康托在集合论上的工作,先介绍一下集合论产生的背景。
集合论在19世纪诞生的基本原因,来自数学分析基础的批判运动。
数学分析的发展必然涉及到无穷过程,无穷小和无穷大这些无穷概念。
康托尔与集合论
康托尔与集合论【摘要】康托尔是现代集合论的创始人,他在数学上做出了重要贡献。
他提出了引人注目的无穷悖论,挑战传统数学观念。
康托尔还提出了连续统假设和基数理论,推动了集合论的发展。
他的工作对数学领域产生了深远影响,为后来的数学家提供了重要的理论基础。
康托尔集合论在数学界引起了广泛讨论和研究,探讨集合的性质和基数的问题。
康托尔的理论不仅影响了数学领域,也对哲学和科学产生了深远影响。
康托尔对于集合论的贡献不可忽视,他开创了一条全新的数学研究方向,为数学界带来了巨大的成就和启发。
【关键词】康托尔、集合论、无穷悖论、连续统假设、基数理论、影响、发展、深远影响、意义、思考、展望。
1. 引言1.1 康托尔与集合论的起源康托尔与集合论的起源可以追溯到19世纪末,当时德国数学家格奥尔格·康托尔重新定义了数学中的集合概念,提出了独特的集合论。
康托尔认为集合是数学中最基本的概念之一,可以用来描述数学中的各种对象和结构。
他开始探讨集合的性质和运算规则,并提出了许多富有洞察力的论断。
康托尔在集合论中引入了无穷悖论的概念,挑战了人们对于无限概念的传统理解。
他认为无穷是一个多样化和丰富的概念,远远超出了人们的直觉和既有的数学理论。
康托尔的研究成果在当时引起了极大的争议和讨论,但随着时间的推移,人们逐渐开始意识到他的贡献对数学领域的深远影响。
康托尔的集合论为今后数学领域的发展奠定了坚实的基础,成为了现代数学中不可或缺的重要理论之一。
1.2 康托尔对集合论的贡献康托尔对集合论的贡献可以说是开创性的。
他的工作为集合论的发展奠定了重要基础,影响深远。
康托尔引入了无穷悖论,证明了存在不可数无穷集合,这一悖论颠覆了人们对无穷的传统认识。
他的工作使得数学家们开始关注无穷的研究,并推动了集合论的发展。
康托尔提出了连续统假设,猜想不存在介于可数集合和连续集合之间的集合。
这一猜想激发了数学家们对集合论中未解问题的探讨,并推动了集合论的进一步发展。
康托尔 集合论
康托尔康托尔,G.F.L.Ph.(Cantor,Georg FerdinandLudwig Philipp)1845年3月3日生于俄罗斯圣彼得堡;1918年1月6日卒于德国萨克森的哈雷.数学、集合论.康托尔的祖父母曾居住在丹麦的哥本哈根,1807年英国炮击哥本哈根时,他们家几乎丧失了一切,随后迁往俄罗斯的圣彼得堡,那里有康托尔祖母的亲戚.康托尔的父亲乔治·魏特曼·康托尔(George Wold emar Cantor)年轻时,曾在圣彼得堡经商.后来,在汉堡、哥本哈根、伦敦甚至远及纽约从事国际买卖.1 839年由于某种原因破产了.但不久,他又转到股票交易上,并很快取得了成功.1842年4月21日,魏特曼与们婚后有六个孩子,康托尔是他们的长子.1856年,康托尔随同全家移居德国的威斯巴登,并在当地的一所寄宿学校读书.后来在阿姆斯特丹读六年制中学.1862年,开始了他的大学生活.他曾就学于苏黎世大学、格丁根大学和法兰克福大学.1863年,他父亲突然病逝,为此,康托尔回到了柏林,在柏林大学重新开始学习.在那里,他从当时的几位数学大师K.W.T.魏尔斯特拉斯(Weierstrass)、E.E,库默尔(Kummer)和L.克罗内克(Kro-nechen)那里学到了不少东西.特别是受到魏尔斯特拉斯的影响而转入纯粹数学.从此,他集中全力于哲学、物理、数学的学习和研究,并选择了数学作为他的职业.可是,最初他父亲并不希望他献身于纯粹科学,而是力促他学工.但是,康托尔越来越多地受到数学的吸引.1862年,年轻的康托尔做出了准备献身数学的决定.尽管他父亲对他的这一选择是否明智曾表示怀疑,但仍以极大的热情支持儿子的事业.同时还提醒康托尔要广泛学习各科知识,他还极力培养康托尔在文学、音乐等方面的兴趣.康托尔在绘画方面表现出的才能使整个家庭为之自豪.由于康托尔一开始就具有献身数学的信念,这就为他创立超穷集合论,取得数学史上这一令人惊异的成就,奠定了基础.尽管19世纪末他所从事的关于连续性和无穷的研究从根本上背离了数学中关于无穷的使用和解释的传统,从而引起了激烈的争论乃至严厉的谴责,但是他不顾众多数学家、哲学家甚至神学家的反对,坚定地捍卫了超穷集合论.也正是这种坚定、乐观的信念使康托尔义无反顾地走向数学家之路并真正取得了成就.1866年12月14日,康托尔的第三篇论文“按照实际算学方法,决定极大类或相对解”(In re mathema tica ars proponendlpluris facienda est quam solvendi)使他获得了博士学位.这时,他的主要兴趣在数论方面.1869年,康托尔在哈雷大学得到教职.他的授课资格论文讨论的是三元二次型的变换问题.不久,任副教授,1879年任教授,从此一直在哈雷大学担任这个职务直到去世.1872年以后,他一直主持哈雷大学的数学讲座.在柏林,康托尔是数学学会的成员之一.1864—1865年任主席.他晚年积极为一个国际数学家联盟工作.他还设想成立一个德国数学家联合会,这个组织于1891年成立,康托尔是它的第一任主席.他还筹办了1897年在苏黎世召开的第一届国际数学家大会.1901年,康托尔被选为伦敦数学会和其他科学会的通讯会员或名誉会员,欧洲的一些大学授予他荣誉学位.1902年和1911年他分别获得来自克里斯丁亚那(Ch ristiania)和圣安德鲁斯(St.Andrews)的荣誉博士学位.1904年伦敦皇家学会授予他最高的荣誉:西尔威斯特(Sylvester)奖章.1874年初,康托尔经姐姐G.索菲(Sophie)介绍,与瓦雷·古德曼(Vally Guttmann)订婚,并于同年仲夏结婚.他们共有五个孩子.那时,哈雷大学教授的收入很微薄,康托尔一家一直处在经济困难之中.为此,康托尔希望在柏林获得一份收入较高、更受人尊敬的大学教授的职位.然而在柏林,康托尔的老师克罗内克几乎有无限的权力.他是一个有穷论者,竭力反对康托尔“超穷数”的观点.他不仅对康托尔的工作进行粗暴的攻击,还阻碍康托尔到首都柏林工作,使康托尔得不到柏林大学的职位.由于他的攻击,还使数学家们对康托尔的工作总抱着怀疑的态度,致使康托尔在1884年患了抑郁症.最初发病的时间较短,1899年,来自事业和家庭生活两方面的打击,使他旧病复发.这年夏天,集合论悖论萦绕在他的头脑中,而连续统假设问题的解决仍毫无线索.这使康托尔陷入了失望的深渊.他请求学校停止他秋季学期的教学,还给文化大臣写信,要求完全放弃哈雷大学的职位,宁愿在一个图书馆找一份较轻松的工作.但他的请求没有得到批准.他不得不仍然留在哈雷,而且这一年的大部时间是在医院度过的.同时,家庭不幸的消息也不断传来.在他母亲去世三年后,他的弟弟G.康士坦丁(Constantin)从部队退役后去世.12月16日,当康托尔在莱比锡发表演讲时,得到了将满13岁的小儿子G.鲁道夫(R udolf)去世的噩耗.鲁道夫极有音乐天赋,康托尔希望他继承家族的优良传统,成为一个著名的小提琴家.康托尔在给F.克莱因(Klein)的信中不仅流露出他失去爱子的悲痛心情,而且使他回想起自己早年学习小提琴的经历,并对放弃音乐转入数学是否值得表示怀疑.到1902年,康托尔勉强维持了三年的平静,后又被送到医院.1904年,他在两个女儿的陪同下,出席了第三次国际数学家大会.会上,他的精神又受到强烈的刺激,他被立即送往医院.在他生命的最后十年里,大都处在一种严重抑郁状态中.他在哈雷大学的精神病诊所里度过了漫长的时期.1917年5月他最后一次住进这所医院直到去世.康托尔的工作大致分为三个时期,早期,他的主要兴趣在数论和经典分析等方面;之后,他创立了超穷集合论;晚年,他较多地从事哲学和神学的研究.康托尔的成就不是一直在解决问题,他对数学最重要的贡献是他询问问题的特殊方法,从而开创了大量新的研究领域.这使他成为数学史上最富于想象力,也是最有争议的人物之一.1874年,29岁的康托尔就在《克雷尔数学杂志》(Crelles Jo-urnal für Mathematik)上发表了关于超穷集合理论的第一篇革命性文章,引入了震憾知识界的无穷的概念.这篇文章的题目叫:“关于一切代数实数Zahle n).尽管有些命题被指出是错误的,但这篇文章总体上的创造性引起了人们的注意.康托尔的集合论理论分散在他的许多文章和书信中,他的这些文章从1874年开始分载在《克雷尔数学杂志》和《数学年鉴》(M athemati-sche Annale)两种杂志上.后被收入由E.策梅罗(Zermelo)编的康托尔的《数学和哲学论文全集》(Gesammelte Abhandlangenmathematischen und philosophischen Inhelts)中.1879年至1884年间,康托尔相继发表了六篇系列文章,并汇集成《关于无穷线性点集》其中前四篇直接建立了集合论的一些重要的数学结果.1883年,康托尔认识到,要想对无穷的新理论作进一步推广,必须给出较前四篇系列文章更为详尽的阐述.随后他又发表了第五和第六两篇文章,简洁而系统地阐述了超穷集合论.他在第五篇文章里,还专门讨论了由集合论产生的数学和哲学问题,其中包括回答反对者们对实无穷的非难.这篇文章非常重要,后来曾以《集合通论基础,无穷理论的数学和哲学的探讨》(Grundlageneiner allgemeinen Mannigfaltigkeits lehre,ein mathematisch-philosophischer Versuch in der Lehre des Unendlichen)(以下简称《集合通论基础》)为题作专著单独出版.康托尔最著名的著作是1895—1897年出版的《超穷数理论基础》(共两卷).下面分述康托尔的主要工作.1.三角级数康托尔早年对数论、不定方程和三角级数极感兴趣.似乎是微妙的三角级数激发他去仔细研究分析的基础.与三角级数和傅里叶级数唯一性有关的问题,促使他研究E.海涅(Heine)的工作.康托尔从寻找函数的三角级数表示的唯一性的判别准则开始了他的研究.后来,他在H.施瓦兹(Schwarz)的启发下证明了:假定对同一函数f(x),存在两个对每个x都收敛到同一值的三角级数表达式,将两式相减,得到一个0的表达式,同样对所有x的值收敛:0=C0+C1+C2+...+C n+ (1)1870年3月,康托尔发表了一个关于唯一性定理所需要的初步结果.后来,人们把它叫康托尔-勒贝格(Lebesgue)定理.同年4月,康托尔证明了(pp.80—83):当f(x)用一个对一切x都收敛的三角级数表示时,就不存在同一形式的另一级数,它也对每个x收敛并且代表同一函数f(x).在另一篇论文(pp.84—86)中,他给出了上述结果的一个更好的证明.康托尔还证明了唯一性定理可以重新叙述为:如果对一切x,有一个收敛的三角级数等于零,则系数a n和b n都是零.1871年,康托尔将这个结果推广到可以存在着有穷多个例外的点.到了1872年,他又将结果进一步推广到无穷多个例外的点([8],pp.92—108).为了描述这种点所构成的集合,他引进了点集的导出集的概念.为了说明这些无穷例外点的性质,他以一集合的导出集的性质为标准,对无穷集作了一次分类.2.无穷集的分类(Ⅰ)设给定一集合P,P的一阶导出集为P',二阶导出集为P″,…,v阶导出集为P(v).P为第二种集合,如果P′,P″…P(v),…皆为无穷.此处,P′可不包含于P,但P″,,…中的点皆属于P′.P为第一种集合,如果P(v)只含有有穷多个点.在第二种集合的情况下,P'可含有不属于P的点,而高阶导出集并没有引入新点.他还定义P(∞)为包括那些属于一切P(v)的点集,称为“p的∞次导出集”.3.无理数理论由于定义导出集要用到极限的概念,而极限的存在又必须以实数系为前提,因之,康托尔在不预先假定无理数存在的条件下,利用有理数,建立了一个令人满意的无理数理论.他通过“基本级数”(现在我们叫做基本序列或柯西序列)引入了无理数.他的作法与R.戴德金(Dedekind)从几何方面作的处理截然不同.对于有理数,他在1883年的一篇文章([8],pp.165—204)中说,巳经没有必要去讨论它,因为这方面的工作已经由H.G.格拉斯曼(Grassmann)在他的《算术教本》(Lehrbuch der Arithmetik,1861)和J.H.T.缪勒(Müller)在他的《一般算术教程》(Lehrbuch der allgemeinen Arithmetik,1855)中完成了.康托尔在他的《关于无穷线性点集(5)》中,给出了无理数理论较详细的内容.他引进一个新的数类——实数,它既包含有理数又包含无理数.他从有理数序列{a n}开始研究,这种序列满足:对于任何一个给定的正有理数ε>0,序列中除去有限个项以外,彼此相差都小于ε,亦即对于任意的正整数m一致地有lim(a n+m-a n)=0成立.这样的序列叫基本序列.每个这样的序列定义一个实数,记作b.在这篇文章里,康托尔还定义了实数的四则运算和两个实数的不等关系,证明了:实数系是完备的.康托尔进一步得到:任意的正实数r可以通过如下形式的级数来表示:其中系数c r,满足不等式:0≤c r≤r-1.(2)式现在叫做康托尔基数.实数系建立以后,可知直线上每一点都有对应的实数.但是,对每一实数,是否直线上都有一相应的点?这必须通过公理才能保证.康托尔在这篇论文里把它作为公理提了出来.因此这条公理又被称为康托尔公理.据此,实数集与直线上的点集就有了一一对应.4.无穷集的分类(Ⅱ)康托尔对无穷集的第二种分类标准是建立在集合论中的.他的这种思想出自1873年11月他给在布伦兹维克的伙伴戴德金的一封交流信中,并在1874年的论文“关于一切代数实数的一个性质”里正式提出.他以“一一对应”为标准,对于凡能和正整数构成一一对应的集合都称为可数集.这是最小的无穷集.不久,康托尔证明了:有理数是可数的;而全体实数是不可数的.1873年11月他给出了有理数集合可数的第一个证明([8],pp.115—118);但他的第二个证明([8],pp.2 83—356)是现在常采用的.康托尔把有理数排列成如下的形式(下图):在一个半平面上,最上面一排称为第一行,标以数1,从上而下,分别称为第二行,第三行,…,顺次标以数2,3,….每行正中间为0列,标以数0.从中间开始向右,顺次为1列,2列,…,从0列向左,顺次为-1列,-2列,…等等.在m 行n列相交处放置有理数集与正整数集构成一一对应.这就证明了有理数集可数.更让人惊讶的是,康托尔还证明了所有代数数的全体所构成的集也是可数的.这里所谓代数数就是满足下面代数方程a0x n+a1x n-1+…+a n=0的数,其中a i(i=0,1,2,…,n)都是整数.为了证明这一点,康托尔对任一个n次代数方程指定一个数(叫高)N如下:N=(n-1)+|a0|+|a1|+…+|a n|.其中a i(i=0,1,…,n)都是这个方程的系数.数N是一个正整数.对每一个N,以N为高的代数方程只有有限个.因此它们的全部解也只有有限个,除去重复的之外,所对应的代数数也只有有限个,设为φ(N).他从N=1开始,对于所对应的代数数从1到n1给以标号;对应于N=2的代数数从n1+1到n2给以标号;依次下去.由于每一个代数数一定会编到号,并且必与唯一的一个正整数相对应,从而所有代数数的集合是可数的.1873年12月7日,康托尔还成功地证明了实数集和正整数集之间不存在一一对应.他曾给出两个证明,第一个证明在前面提到过的1874年的那篇文章里.第二个证明([8],pp.278—281)比第一个证明复杂得多,但它不依赖于无理数的技术.今天大多数教科书中采用的是他的第二个证明.其实,他主要证明区间(0,1]中的点不可数.在十进制下,0与1之间的每个实数都可以写成0.p1p2p3…这样形式的无穷小数.并约定将有理数写成无穷小数,如假设实数集(0,1]是可数的,将其元素全部枚举出来,得到序列 a1,a2,a3,...,a n, (3)于是正整数集与实数集(0,1]之间可构成一一对应:现在构造一个数b=0.b1b2b3…b k…,其中则b是0与1之间的其数字都是4或5的一个无穷小数.并且它的第K位数字b k≠p KK,所以b与(3)中任何一个数都不相同.这就是说,数列(3)并没有把(0,1]中的数枚举完.因此,假设(0,1]可数是错误的.故(0,0]不可数.值得注意的是:上述证明中,康托尔在构造数b时,那里的数字4和5并不起什么特殊的作用.只用了b的一种性质:即b的第K位数字b k与(3)式中第K个数的第K位数字p kk不同.其实,与p kk不同的其余九个数字都可以作为b k.在证明中起决定作用的是对角线上的数字p kk.这种证明方法称为康托尔对角线法.在发现了两个不同的无穷集(整数集和实数集)以后,康托尔开始考虑是否还有更大的无穷.他首先想到,平面上的所有的点构成的集合是否就是那更大的无穷.三年之后,他证明了:一条直线上的点和整个R n(n维空间)中的点可以构成一一对应.这个结果和他始料的相反.1877年6月他写信给戴德金,请审查他的证明,并说:“我见到了,但是简直不能相信它.”(Briefweichsel Cantor-Dedekind,p.34)康托尔关于一直线中的点和R n中的点构成一一对应的思想是:把单位正方形中的点和(0,1)线段上的点之间构成一一对应.设(x,y)是单位正方形内的一个点.x是(0,1)中的点.设x,y都表示成无穷小数(当为有限小数时,写成9的无限循环).我们把x和y的小数分成一组一组的,每一组都终止在第一个非零的数字上.例如令 z=0.3 01 02 7 4 06 005 8 6 04 …其中各组数字是:先排x的第一组,再排y的第一组,然后排x的第二组,y的第二组,依次下去.如果两个x或两个y有不同的小数位数字,则所对应的两个x不同.这说明(x,y)→z是一对一的.反之,对于任意的z∈(0,1),把z的小数也像上面那样分组,并把上述过程倒过去使用,作出相应的x和y,则(x,y)是单位正方形中的点,所以上述映射是一一的.但它是不连续的.粗略地说,对应于彼此靠近的x点的(x,y)点不一定靠近,反之亦然.5.点集理论康托尔的点集理论,包含了大量的定义、定理和例子.例如,“闭包”、“稠密集”和“良定义集”等概念.康托尔还把一个闭的并且在它自身是稠密的集合叫“完备的”.他还给出了一个著名的三分集的例子,后来人们把它叫做“康托尔集”,它是一个完备的不连续集.这个集合被定义在[0,1]区间,它的所有点满足公式其中C r取值0或2.他还给出了“处处稠密”集的定义,指出了处处稠密集和导集之间的联系.康托尔点集理论中的第二个重要问题是:讨论无穷集合的基数,并按基数对集合进行分类.他给出了一些很重要的结果.另外,康托尔的可除容度理论使一些数学家感兴趣,并将其应用到微积分的某些定理的推广上.6.初等集合论康托尔把集合定义为“把我们的感觉或思维所确定的不同对象(称之为集合的元素)汇合成一个总体”(《数学年竖》,1895,pp.481—512).在他早年的论文中,他有时使用“杂多”(Mannig-faltigkeit)一词代替集合.一个集合包含它的元素(或分子),反过来这些元素属于集合.一给定集合S的一个子集是:它的所有元素都是S的元素;子集与元素不同,它是S的一部分.一个集合可以用列出它所有元素的方法来表示,如集合{1,2};或者用一个性质来刻画它的元素.在每一种情况下,有相同元素的两个集合A和B,称为相等.记作A=B.至此可以看到,康托尔的集合论类似于G.布尔(Boole)的类理论,但更加复杂.两个集合S和T称之为等价的,如果在它们之间存在一一对应,记作S T.一个集合的基数是一切等价集合所共有而其他集合不具有的东西.集合P的基数被记作.这里两道水平线表示双重抽象.如果P有穷,就是一个自然数;如果P无穷,不是自然数,这个推广可借助对无穷所下的新定义而极易达到.我们说,一个集合是无穷的,当且仅当它能与它的一个真子集一一对应.正如有穷集合的基数可比较,无穷集合的基数也可比较.因为如果任一集合S等价于集合T的某一子集但不等价于T本身,那么S的基数小于T的基数.康托尔还借已知集合定义了构成新集合的并、交、笛卡儿积和嵌入等运算.除此之外,还定义了一种特别重要的集合,叫集合S的幂集.它是S的一切子集的集合(在S的子集中包括S本身和空集),他常用“S”表示,这里的字母取自德文词Untermenge.现在人们则喜欢用P(S)表示S的幂集.引进集合的运算以后,康托尔又定义了基数的一般算术,包括加、乘和幂运算.当考虑无穷集时,由定义所得的结果在许多方面与自然数算术不同.7.超穷数康托尔关于良序集和序数的理论,发表在1879年到1884年的《数学年鉴》杂志上.后来这些文章都被收入题为《关于无穷线性点集(5)》中.康托尔指出:自然数序列1,2,3,…是从1开始,并通过相继加1而产生的.他把这种通过相继加1定义有穷序数的过程概括为“第一生成原则”.将全体有穷序数集称为第一数类,用(Ⅰ)表示,显然其中无最大元.但康托尔觉得,用一个新数ω来表示它的自然顺序没有什么不妥,这个新数ω是紧跟在整个自然数序列之后的第一个数——第一个超穷序数.从ω出发运用第一生成原则,可以得到一个超穷序数序列:ω,ω+1,ω+2,...,ω+n, (4)在(4)里,没有最大数.不妨用2ω来表示它.继续使用第一生成原则,得2ω,2ω+1,2ω+2,…,2ω+n,…在这一过程中,可以把ω看成自然数(单增序列)的一个永远达不到的极限.不过,康托尔仅仅强调ω是作为紧跟在全体自然数n∈N之后的第一个序数.它比所有的自然数n都大.第二生成原则是:给定任意有特定顺序、但其中无最大元素的集合,可以作为原集合的极限或后继者而得一新序数.反复运用这两个生成原则,就能产生无穷多个序数,如ω,ω+1,…,n0ωμ+n1ωμ-1+…+nμ-1ω+nμ,…,ω∞,…等等.它们的全体构成第二数类,记为(Ⅱ).这些序数的基数都是可数的.接着,康托尔证明了:第二数类的基数不可数,他把这个基数记作,第二数类中也无最大序数.根据第二生成原则,在这些新序数之后又有一新序数ω1.这是第三数类的始数.如此逐步上升可以得到一系列的始序数ω1,ω2,ω3,…,与其相应的基数为:1,2,3,….如果无限制地使用第一和第二生成原则,第二数类似乎不存在最大元素.为此,康托尔引出了第三生成原则——限制原则.限制原则的目的在于保证,一个新数类的基数大于前一数类的基数而且是满足这个条件的最小数类.值得注意的是,康托尔的超穷数理论,不同于以往数学家们在变量意义下使用的无穷.他说,有穷集和无穷集的重要差别在于:在有穷集的情况下,不论其中元素的顺序如何,所得的序数相同;对无穷集来说,由于元素顺序不同,从一无穷集可以形成无穷多个不同的良序集,因而得到不同的序数.为了强调超穷序数是一种实无穷,是被看作象实数那样具有真实数学意义的数,在这篇文章中,他选用了ω代替∞.他还期望所引进的这些超穷序数能像无理数、复数那样,最终被数学家们所接受.限制原则引进后,康托尔考虑了数集的顺序和它们的基数.他指出:(Ⅰ)和(Ⅱ)的重要区别在于(Ⅱ)的基数大于(Ⅰ)的基数.(Ⅰ)和(Ⅱ)的基数分别称为第一种基数和第二种基数,康托尔在引进超穷基数以及相应的超穷算术的过程中,用了一个很重要的概念——良序集.定义给定良定义集,如果它的元素按确定的顺序排列.依照这个顺序,存在这个集合的第一个元素,而且对每个元素都存在一个确定的后继(除非它是最后一个元素).这样的集合称为一个良序集.显然,自然数集是良序的.数类(Ⅰ)与(Ⅱ)都是良序的.良序集的概念对于区别有穷集和无穷集起了重要的作用.接下来,康托尔引进了无穷良序集的编号——它用于刻画给定集合中元素出现的顺序.他还指出,这个新概念赋予超穷数一种直接的客观性.他证明了:给定任何一个可数无穷的良序集,总存在(Ⅱ)中的一个数能够唯一地表示它的顺序或编号.因此,从一个简单的可数集出发,就可以产生不同的良序集,如正整数这个可数无穷集,可以形成序数为ω,ω+1,ω+2,…,2ω,…,ωω,…等无穷多个良序集.如果两个良序集相似,则它们有相同的编号.因此,给定任意的(Ⅰ)或(Ⅱ)中的数α,按照自然顺序选出先于α的所有元素,则所有与之相似的良序集的编号由α唯一确定.以下三个良序集{α1,α2,α3,…,αn,αn+1,…},{α2,α1,α4,…,αn+1,αn,…},{1,2,3,4,…,n,…}的编号均为ω.下面的三个良序集{α2,α3,…,αn,…,α1},{α3,α4,…,αn+1,…,α1,α2},{α1,α3,…,α2,α4,…}的编号分别为ω+1,ω+2和2ω.康托尔还用数和编号之间的差别,给出了有穷集和无穷集的新解释.有穷集中不管元素怎样排列,编号总是相同的.有趣的是,具有相同基数的无穷集,其元素的个数相同,也可有不同的良序并产生不同的编号.因此,集合的编号完全依赖于集合无素所选取的顺序.他还强调,有穷集的基数和编号的概念是一致的.对于无穷集,基数和编号之间的区别是重要的.康托尔还把编号看成是计数概念的一种推广.一个无穷集的编号由它的一个超穷数给定.另外,良序的概念还为定义超穷算术提供了基础. 8.康托尔定理和边续统假设n维空间的点与直线上的点相比,并不是更大的无穷.那么,是否能从已知的无穷集合出发,根据正确的数学运算,构成更大的无穷集呢?康托尔在1891年的论文“集合论的一个根本问题”(Über eine elem entare Frage der Mannigfaltig keitslehre)里作了肯定的回答.他用对角线方法证明1899年,康托尔在给戴得金的信中说,1891年论文里的结果可以表示成:2a>a.这里a为某一集合的基数,不管这个集合是什么,这个命题在康托尔的理论中都具有重要意义.它还被叙述为:一集合的幂集,其基数比原集合的基数大.因此,给定一集合,我们可以通过其幂集来形成一更大的集合;给定一基数,我们可以得到一更大的基数.所以没有最大的集合,也没有最大的基数.给定集合S,用求幂集的方法,可得下面一系列一个比一个大的集合:S,P(S),PP(S),….如果S的基数为a,其相应的一个比一个大的基数为:a,2a,22a,….。
康托尔的集合论
康托尔的集合理论(2011-08-18 06:39:53)标签:杂谈分类:杂七杂八康托尔,1862年入苏黎世大学学工,翌年转入柏林大学攻读数学和神学,受教于库默尔(Kummer,Ernst Eduard,1810.1.29-1893.5.14)、维尔斯特拉斯(Weierstrass,Karl Theodor Wilhelm,1815.10.31-1897.2.19)和克罗内克(Kronecker,Leopold,1823.12.7-1891.12.29)。
1866年曾去格丁根学习一学期。
1867年在库默尔指导下以解决一般整系数不定方程ax2+by2+cz2=0求解问题的论文获博士学位。
毕业后受魏尔斯特拉斯的直接影响,由数论转向严格的分析理论的研究,不久崭露头角。
他在哈雷大学任教(1869-1913)的初期证明了复合变量函数三角级数展开的唯一性,继而用有理数列极限定义无理数。
1872年成为该校副教授,1879年任教授。
由于学术观点上受到的沉重打击,使康托尔曾一度患精神分裂症,虽在1887年恢复了健康,继续工作,但晚年一直病魔缠身。
1918年1月6日在德国哈雷(Halle)-维滕贝格大学附属精神病院去世。
康托尔爱好广泛,极有个性,终身信奉宗教。
早期在数学方面的兴趣是数论,1870年开始研究三角级数并由此导致19世纪末、20世纪初最伟大的数学成就——集合论和超穷数理论的建立。
除此之外,他还努力探讨在新理论创立过程中所涉及的数理哲学问题.1888-1893年康托尔任柏林数学会第一任会长,1890年领导创立德国数学家联合会并任首届主席。
集合论的建立19世纪由于分析的严格化和函数论的发展,数学家们提出了一系列重要问题,并对无理数理论、不连续函数理论进行认真考察,这方面的研究成果为康托尔后来的工作奠定了必要的思想基础。
康托尔是在寻找函数展开为三角级数表示的唯一性判别准则的工作中,认识到无穷集合的重要性,并开始从事无穷集合的一般理论研究。
浅谈Cantor集
【标题】<B style='color:black;background-color:#ffff66'>浅谈</B>Cantor集【作者】刘勇【关键词】Cantor集??函数??测度【指导老师】林昌盛【专业】数学与应用数学【正文】1引言集合论自19世纪80年代由Cantor创立以来,现在已经发展成为一个独立的数学分支,它的基本思想与基本方法已渗透到各个数学分支,成为近代数学的基础.Cantor集,又称为三分集,是一个构思非常巧妙的特殊的点集.Cantor集是Cantor在解三角级数的时候构造出来的.学习和掌握Cantor集具有的重要特征,对于学习和掌握集合论的基本知识是很有帮助的.2基本理论2.1定义Cantor集的两种定义1.?区间定义cantor集合将闭区间?三等分,去掉中间的开区间;再将余下的两个闭区间?和?分别三等分,去掉中间的两个开区间?和?;再将余下的四个闭区间分别三等分,去掉中间的开区间,这种过程无限次地做下去,?中余下的点所组成的集合,称为康托集,记为??(见图2.1)? ?????????? 0???????????????????????????????????????????????????????????????????????? 1 ?????????????????????????????????????图 2.1显然?.?因为每次去掉的开区间的端点都属于?,去掉的所有开区间所组成的集合记为?,则?为开集.?通常称为康托余集.?[[]1]2.映射定义cantor集先定义映射?,?:?使得对于任何?有?和?.容易验证映射?和?都是同胚,因此任何开集?的?象?和?的象?都是开集.现在按归纳原则定义一系列开集,?如下:令?;对于任何?,定义?.事实上,?是两个开区间?和?之并,?是四个开区间?,?,?,?之并,…令?,它是可数个开集之并,当然是一个开集,容易验证,?.集合?称为cantor集,或称为标准cantor三分集.它是一个闭集.由康托集的定义可知下列事实成立.???从??中第?次去掉??个长度为??的开区间后,余下的每个闭区间的长度仍是??.???无论去掉开区间的过程进行多少次,?的点必属于每次留下来的某个闭区间.???从??中每次去掉开区间后,开区间的端点都属于?.?2.2性质Cantor集的主要性质[[]2]性质1??非空.在?的构造过程中,被挖去的开区间的端点及0、1都不会被除去而留在?内.性质2??的基数为?.已知(0,1)和?进位无限小数全体是一一对应的,考虑三进位小数表示法,由?的作法,每次都是把区间三等分,然后去掉中间的开区间.所以去掉的点,即?中的点在用三进位小数表示时,必出现1这个数字,令?为三进位无限小数中不出现数字1的全体,即?则?且?.故?,但?显然与二进位无限小数全体可建立一一对应,只要令?即可.故?.而?,由伯恩斯坦定理,?.性质3??是闭集.因??为可数个互不相交的开区间的并集,故?为开集,而?为闭集. 性质4??是完备集.被挖去的开集?没有相邻接的构成区间,故?没有孤立点.性质5??是疏朗集.在?的构造过程中,“挖去”手续进行到第?次后,剩下的是?个长度为?的小闭区间,对于以?中某点?为中心的无论怎样小的开区间??,当?充分大时总有? ?,因此这个小区间不可能包含在?中.性质6??是可测集且测度为零.第?次挖去的开区间记为?,共有?个,每个小区间的测度?,这?个互不相交的开区间的并集的测度?是?的构成区间,从?.因此?.性质7??上的任何函数均是可测函数.零测度集上的任何函数都是可测函数.性质8??上的任何函数Lebesgue可积.零测度集上的任何函数Lebesgue可积,且积分值为零.3具体举例为了推广区间长度的概念,对一般点集建立一种能反映集合的“容量”、与长度概念相当的度量,这种度量既要发展长度的概念,又必须保留长度概念的一些最基本的性质,也就是集合的“测度”,测度理论是建立新型积分理论的基础.例1 设在[[]0,1]中作点集:??={?|在?的十进位小数表示中只出现9个数码},试问??的测度与基数是多少?[[]3]解?不妨设?在的十进位制小数中不出现数字“2”(约定采用0.2=0.1999…,0.62=0.61999…等表示),于是按照Cantor集的方法作一开集?,?.其中,?是将[[]0,1]分成十等分所得的第三个开区间,显然?中任一小数点后第一位数字是“2”;将[[]0,1]十等分并去掉?后所余下的9个区间分别再十等分,各自的第三个开区间之并记为?,?中任一数,其小数点后第二位数字是“2”…,将余下的?个区间每个进行十等分,取各自的第三开区间,它们的并记为?,则?中任一数,其小数点后第?位数字是“2”;…令?,由?的作法知,?中任一数,其小数点后任一数字都不是“2”,且?与Cantor集的构造完全类似,由性质2及性质6有(1)??的基数是?;(2)??可测,且?,事实上?.例2 试作一闭集?,使F中不含任何开区间,且?.解?仿照Cantor集的作法步骤完成?的构作,第一步:在[[]0,1]的中央挖去长为?的开区间?;第二步:在余下的两个闭区间?和?中分别挖去中央处的长为?的开区间,它们的并是?.……第?步:在余下的?个闭区间中,分别挖去其中央处长为?的开区间,记这?个互不相交的开区间之并为?.……令?,则?为开集,且??=?与Cantor集具有类似的性质;从而?为可测集,且?.故?再看看Cantor集的结构公式.????第一步:在实直线R上将单位闭区间?分成三等分,去掉中间的开区间?剩下两个分离的区间?,??,记??第?步:设已得到?上的点集?为?个闭区间的分离并,其长均为?,记? 第?步:对?,把闭区间?分成三等分,去掉中间的开区间,将剩下的两个闭区间记作?与?得到?个长度为?的不交闭区间,有?在形成Cantor集的过程中,对?,?其中,???????????????????????????????????(*)这里?取值0或1,使?;可以这样理解,将?化为2进位制数,??,则取?即可?及(*)式就是Cantor集合的结构式.[[]4]4 Cantor集性质的应用实变函数论的中心问题是建立一种新型的积分理论,从而扩大函数的可积性范围,诸如Dirichlet函数?之类的点点不连续的函数也能求出其积分值,而我们建立新积分的思路就是从研究集合的测度,到定义在可测集上函数的可测性,最终讨论可测函数的可积性问题,Cantor函数起着积极的作用.下面给出几个应用实例:实例1 存在连续函数,将疏朗集映成区间.[[]5]Cantor函数?即为一例,它将疏朗集?映成区间[[]0,1].下面说明?=[[]0,1]?.只需说明?在?所取的值,?在?上也均能取到即可.而由?的定义这是明显的,因为每个余区间的右端点都属于?,而?在此点的取值等于?在该余区间上的值.所以??.实例2 存在连续函数,它把零测集映成正测度集,把正测集映成零测度集.[[]6]当?是区间?上的绝对连续函数时(?定义在?上,若?,使得对于任意两两不交的开区间族?,只要满足?,就有?,则称?是绝对连续的),它将零测度集仍然映射成零测度集.但是,如果?连续而非绝对连续,则它可将零测度集映成正测度集.例如Cantor函数?是[[]0,1]上的连续增函数,由它的构造知,它将零测度集?映成测度为1的区间[[]0,1];将?映成零测集,即将测度为1的集映成零测度集.实例3??(1)?可测集在连续映射下的像未必可测.[[]7]绝对连续函数将可测集映成可测集,然而,即使是严格单调的函数也不能保证可测集的像仍为可测集,当然可测函数更不能保证可测集的像仍为可测集.反例?设?为[[]0,1]上的Cantor函数,令?,则?:[[]0,1]→[[]0,1]为严格递增的连续函数,使?,其中?为Cantor集,取?为不可测集,则?可测,使?不可测.[[]8](2)?可测集在连续映射下的原象未必可测.连续映射能保证Borel集的原像仍为Borel集,但不能保证可测集的原像仍为可测集,当然可测函数更不能保证可测集的原像为可测集.[[]9]反例?上例中的?为[[]0,1]上的同胚映射,易知其反函数?于[[]0,1]上连续且递增.但此连续映射?使可测集?的原像?不可测.(3)?连续函数与可测函数的复合函数未必可测.若?为?上的可测函数,??为?上的连续函数,则复合函数?仍为可测函数,但??未必是可测函数,从而两个可测函数的复合函数也未必是可测函数.记?,则?连续且严格递增,并使?不可测,?可测;令?为?的特征函数,则?可测;记?,则由?不可测知,?为不可测函数.实例4?(1)存在导数几乎处处为零的递增的连续函数.[[]10]例如[[]0,1]上的Cantor函数?,它连续且单调不减,?,?,它在?的每个余区间上为常数,所以在[[]0,1]上几乎处处有?.(更强有,存在导数几乎处处为0的严格递增的连续函数)?.(2)存在递增函数?,使得?.由实变函数中的知识,如果?为?上的递增函数,则?在?上可积且?,不等号可能成立,例如Cantor函数?,?几乎处处为0,?.5结束语Cantor29岁(1874)时在《数学杂志》上发表了关于集合论的第一篇论文,提出了“无穷集合”这个数学概念,引起了数学界的极大关注,他引进了无穷点集的一些概念,如:基数,势,序数等,试图把不同的无穷离散点集和无穷连续点集按某种方式加以区分,他还构造了实变函数论中著名的“Cantor集”,“Cantor序列”.本文通过对cantor集性质,定义,定理及其基本概念的阐述,结合诸多具体实例,说明了cantor集在数学领域,在实际生活中的广泛应用.Cantor函数是一类性质很好的函数,它的特有性质在上述实例中得以体现,决定了Cantor函数巧妙应用的广泛性. Cantor集合作为一个构思非常巧妙的特殊的点集,对于学习和掌握集合论的基本知识是很有帮助的.<div id="loadingAD"><div class="ad_box"><div class="waiting"><strong>文档加载中...</strong>广告还剩<emid="adtime"></em>秒。
[整理版]浅谈cantor集
【标题】<B style='color:black;background-color:#ffff66'>浅谈</B>Cantor集【作者】刘勇【关键词】Cantor集??函数??测度【指导老师】林昌盛【专业】数学与应用数学【正文】1引言集合论自19世纪80年代由Cantor创立以来,现在已经发展成为一个独立的数学分支,它的基本思想与基本方法已渗透到各个数学分支,成为近代数学的基础.Cantor集,又称为三分集,是一个构思非常巧妙的特殊的点集.Cantor集是Cantor在解三角级数的时候构造出来的.学习和掌握Cantor集具有的重要特征,对于学习和掌握集合论的基本知识是很有帮助的.2基本理论2.1定义Cantor集的两种定义1.?区间定义cantor集合将闭区间?三等分,去掉中间的开区间;再将余下的两个闭区间?和?分别三等分,去掉中间的两个开区间?和?;再将余下的四个闭区间分别三等分,去掉中间的开区间,这种过程无限次地做下去,?中余下的点所组成的集合,称为康托集,记为??(见图2.1)?0 1图 2.1显然?.?因为每次去掉的开区间的端点都属于?,去掉的所有开区间所组成的集合记为?,则?为开集.?通常称为康托余集.?[[]1]2.映射定义cantor集先定义映射?,?:?使得对于任何?有和?.容易验证映射?和?都是同胚,因此任何开集?的?象?和?的象?都是开集.现在按归纳原则定义一系列开集,?如下:令?;对于任何?,定义?.事实上,?是两个开区间?和?之并,?是四个开区间?,?,?,?之并,…令?,它是可数个开集之并,当然是一个开集,容易验证,?.集合?称为cantor集,或称为标准cantor三分集.它是一个闭集.由康托集的定义可知下列事实成立.???从??中第?次去掉??个长度为??的开区间后,余下的每个闭区间的长度仍是??.?无论去掉开区间的过程进行多少次,?的点必属于每次留下来的某个闭区间.?从??中每次去掉开区间后,开区间的端点都属于?.?2.2性质Cantor集的主要性质[[]2]性质1??非空.在?的构造过程中,被挖去的开区间的端点及0、1都不会被除去而留在?内.性质2??的基数为?.已知(0,1)和?进位无限小数全体是一一对应的,考虑三进位小数表示法,由?的作法,每次都是把区间三等分,然后去掉中间的开区间.所以去掉的点,即?中的点在用三进位小数表示时,必出现1这个数字,令?为三进位无限小数中不出现数字1的全体,即则?且?.故?,但?显然与二进位无限小数全体可建立一一对应,只要令?即可.故?.而?,由伯恩斯坦定理,?.性质3??是闭集.因??为可数个互不相交的开区间的并集,故?为开集,而?为闭集. 性质4??是完备集.被挖去的开集?没有相邻接的构成区间,故?没有孤立点.性质5??是疏朗集.在?的构造过程中,“挖去”手续进行到第?次后,剩下的是?个长度为?的小闭区间,对于以?中某点?为中心的无论怎样小的开区间??,当?充分大时总有? ?,因此这个小区间不可能包含在?中.性质6??是可测集且测度为零.第?次挖去的开区间记为?,共有?个,每个小区间的测度?,这?个互不相交的开区间的并集的测度?是?的构成区间,从.因此?.性质7??上的任何函数均是可测函数.零测度集上的任何函数都是可测函数.性质8??上的任何函数Lebesgue可积.零测度集上的任何函数Lebesgue可积,且积分值为零.3具体举例为了推广区间长度的概念,对一般点集建立一种能反映集合的“容量”、与长度概念相当的度量,这种度量既要发展长度的概念,又必须保留长度概念的一些最基本的性质,也就是集合的“测度”,测度理论是建立新型积分理论的基础.例1 设在[[]0,1]中作点集:??={?|在?的十进位小数表示中只出现9个数码},试问??的测度与基数是多少?[[]3]解?不妨设?在的十进位制小数中不出现数字“2”(约定采用0.2=0.1999…,0.62=0.61999…等表示),于是按照Cantor集的方法作一开集?,?.其中,?是将[[]0,1]分成十等分所得的第三个开区间,显然?中任一小数点后第一位数字是“2”;将[[]0,1]十等分并去掉?后所余下的9个区间分别再十等分,各自的第三个开区间之并记为?,?中任一数,其小数点后第二位数字是“2”…,将余下的?个区间每个进行十等分,取各自的第三开区间,它们的并记为?,则?中任一数,其小数点后第?位数字是“2”;…令?,由?的作法知,?中任一数,其小数点后任一数字都不是“2”,且?与Cantor集的构造完全类似,由性质2及性质6有(1)??的基数是?;(2)??可测,且?,事实上?.例2 试作一闭集?,使F中不含任何开区间,且?.解?仿照Cantor集的作法步骤完成?的构作,第一步:在[[]0,1]的中央挖去长为?的开区间?;第二步:在余下的两个闭区间?和?中分别挖去中央处的长为?的开区间,它们的并是?.……第?步:在余下的?个闭区间中,分别挖去其中央处长为?的开区间,记这?个互不相交的开区间之并为?.……令?,则?为开集,且??=?与Cantor集具有类似的性质;从而?为可测集,且.故?再看看Cantor集的结构公式.第一步:在实直线R上将单位闭区间?分成三等分,去掉中间的开区间?剩下两个分离的区间?,??,记第?步:设已得到?上的点集?为?个闭区间的分离并,其长均为?,记? 第?步:对?,把闭区间?分成三等分,去掉中间的开区间,将剩下的两个闭区间记作?与?得到?个长度为?的不交闭区间,有在形成Cantor集的过程中,对?,?其中,(*)这里?取值0或1,使?;可以这样理解,将?化为2进位制数,??,则取?即可及(*)式就是Cantor集合的结构式.[[]4]4 Cantor集性质的应用实变函数论的中心问题是建立一种新型的积分理论,从而扩大函数的可积性范围,诸如Dirichlet函数?之类的点点不连续的函数也能求出其积分值,而我们建立新积分的思路就是从研究集合的测度,到定义在可测集上函数的可测性,最终讨论可测函数的可积性问题,Cantor函数起着积极的作用.下面给出几个应用实例:实例1 存在连续函数,将疏朗集映成区间.[[]5]Cantor函数?即为一例,它将疏朗集?映成区间[[]0,1].下面说明?=[[]0,1]?.只需说明?在?所取的值,?在?上也均能取到即可.而由?的定义这是明显的,因为每个余区间的右端点都属于?,而?在此点的取值等于?在该余区间上的值.所以??.实例2 存在连续函数,它把零测集映成正测度集,把正测集映成零测度集.[[]6]当?是区间?上的绝对连续函数时(?定义在?上,若?,使得对于任意两两不交的开区间族?,只要满足?,就有?,则称?是绝对连续的),它将零测度集仍然映射成零测度集.但是,如果?连续而非绝对连续,则它可将零测度集映成正测度集.例如Cantor函数?是[[]0,1]上的连续增函数,由它的构造知,它将零测度集?映成测度为1的区间[[]0,1];将?映成零测集,即将测度为1的集映成零测度集.实例3??(1)?可测集在连续映射下的像未必可测.[[]7]绝对连续函数将可测集映成可测集,然而,即使是严格单调的函数也不能保证可测集的像仍为可测集,当然可测函数更不能保证可测集的像仍为可测集.反例?设?为[[]0,1]上的Cantor函数,令?,则?:[[]0,1]→[[]0,1]为严格递增的连续函数,使?,其中?为Cantor集,取?为不可测集,则?可测,使?不可测.[[]8](2)?可测集在连续映射下的原象未必可测.连续映射能保证Borel集的原像仍为Borel集,但不能保证可测集的原像仍为可测集,当然可测函数更不能保证可测集的原像为可测集.[[]9]反例?上例中的?为[[]0,1]上的同胚映射,易知其反函数?于[[]0,1]上连续且递增.但此连续映射?使可测集?的原像?不可测.(3)?连续函数与可测函数的复合函数未必可测.若?为?上的可测函数,??为?上的连续函数,则复合函数?仍为可测函数,但??未必是可测函数,从而两个可测函数的复合函数也未必是可测函数.记?,则?连续且严格递增,并使?不可测,?可测;令?为?的特征函数,则?可测;记?,则由?不可测知,?为不可测函数.实例4?(1)存在导数几乎处处为零的递增的连续函数.[[]10]例如[[]0,1]上的Cantor函数?,它连续且单调不减,?,?,它在?的每个余区间上为常数,所以在[[]0,1]上几乎处处有?.(更强有,存在导数几乎处处为0的严格递增的连续函数)?.(2)存在递增函数?,使得?.由实变函数中的知识,如果?为?上的递增函数,则?在?上可积且?,不等号可能成立,例如Cantor函数?,?几乎处处为0,?.5结束语Cantor29岁(1874)时在《数学杂志》上发表了关于集合论的第一篇论文,提出了“无穷集合”这个数学概念,引起了数学界的极大关注,他引进了无穷点集的一些概念,如:基数,势,序数等,试图把不同的无穷离散点集和无穷连续点集按某种方式加以区分,他还构造了实变函数论中著名的“Cantor集”,“Cantor序列”.本文通过对cantor集性质,定义,定理及其基本概念的阐述,结合诸多具体实例,说明了cantor集在数学领域,在实际生活中的广泛应用.Cantor函数是一类性质很好的函数,它的特有性质在上述实例中得以体现,决定了Cantor函数巧妙应用的广泛性. Cantor集合作为一个构思非常巧妙的特殊的点集,对于学习和掌握集合论的基本知识是很有帮助的.。
康托尔与集合
康 托 尔 与集 合
■ 张 丽
格 奥 尔 格 ・康 托 尔, 德 国数 学 家 ,
1 9世 纪 数 学 伟 大 成
了有 关 集 合 和无 限 问题 具 有 革 命 意 义 的研 究, 并 给 出 了度 量 集 合 的基 本 概 念 : 一 一 对 应 , 依此 作 为 衡 量 集 合 大 小 的 一 把 “ 尺 子” 。 这样 , 如 果 两 个 集 合 之 间 能 够 建 立 一 一 对 应 关系, 就 说 明 它 们 的 个 数 是 相 等 的 。 康 托 尔 利 用 自己 的 这 一 结 论 成 功 证 明 了 正 整 数 的 集 合 N 和 实 数 的 集 合 R 之 间 不 能 建 立 一 一 对 应关系, 即 实 数 集 合 是 不 可 数 的 。 并 于 同 年
数学家 康 托 尔
就之 一
集 合 论
的创 立 人 , 他 是 数 学 史上 最 富 有想 象 力 、 最 有 争 议 的 人 物 之
一
。
1 8 4 5 年 3月 3
日生 于 俄 国 圣 彼 得 堡 一 个 犹 太 商 人 的
1 2月 7 日 将 自 己 的 这 一 发 现 写 信 告 诉 了 戴
系数不 定 方 程 口 z。 +b y + C Z 。 一 0求 解 问 题 的论 文获博 士 学位 。毕业 后 受魏 尔 斯特 拉斯
这是集 合 理 论 研 究 的开 端 。1 8 7 4年 , 数 学家康 托尔 在 著名 的《 克雷 尔数 学 杂 志》 上 发 表 了《 论 所有 实 代数 集 合 的一个 性 质 》 这 一 关 于无 穷 集 合 论 的革 命 性 文 章 。从 1 8 7 4 年 到 1 8 8 4年 , 康 托尔 的一 系列 关 于集合 的文章 , 奠 定 了集 合 理 论 的 基 础 。他 对 集 合 所 下 的 定 义 是 : 把若 干确定 的、 有 区别 的 ( 不 论 是 具 体 的 或 抽象 的) 事物合并起来 , 看作 一个整 体 , 其 中 各 事 物 称 为 该 集 合 的 元 素 。这 一 定 义 与 现 行 集 合定 义 ( 把 一 些元 素组 成 的 总体 叫作 集合 ) 表 述基 本一致 , 在 定 义 中 就 已 经 概 括 出 了 集 合 中 元 素的特征 : 确定性 、 互异性 、 无序性 。 然而事情并非 总是顺利 的。1 9 0 0年 左 右, 正 当康托 尔 的思想 逐渐 被 人接 受 , 并 成 功
康托尔集合论
康托尔集合论
康托尔集合论是德国数学家Georg Cantor开创的一门新数学分支,主要研究集合和基数的性质。
该理论的基本观点是集合可以有不同的大小(基数),其中最小的基数是空集合的基数为0,其他的基数由无穷集合的势(cardinality)给出。
康托尔集合论中最著名的是可数集和不可数集的概念。
对于一个集合,如果它与一个有限自然数集合的基数相同,则称之为可数集;否则称之为不可数集。
比如整数集、有理数集都是可数集,而实数集是不可数集。
康托尔集合论中还有基数和连续统假设等重要概念。
基数是用来描述无穷集合大小的概念,可以用自然数来表示任意可数集的基数,用基数$2^{\aleph_0}$来表示实数集的基数;连续统假设(Continuum Hypothesis)是指不存在介于可数集和实数集之间的集合,即$2^{\aleph_0}$是否等于$\aleph_1$(第一个不可数基数)。
康托尔集合论在数学、数理逻辑、理论计算机科学、物理学等领域都有广泛的应用,其中最为显著的是在数学中的应用。
使用Brouwer 的定义,在康托尔集合论中,选择公理,闭区间套定理和Zorn引理是一些最为基本的概念和定理,它们被应用于集合论、拓扑学和函数分析等领域。
康托尔集合的概念
康托尔集合的概念康托尔集合是德国数学家Georg Cantor于19世纪末提出的一种特殊的数学集合。
它在数学上具有很多神奇的性质和深刻的理论意义。
康托尔集合的概念源于对于无理数和可数性的研究,通过构造一种既无理又不可数的集合,揭示出了现代集合论的重要内容。
为了理解康托尔集合的概念,我们首先需要明确什么是集合。
在数学中,集合是由一些特定元素组成的整体,这些元素可以是任何事物,符合某种特定的规则。
集合是数学的基础概念之一,我们用大写字母表示集合,用小写字母表示集合中的元素。
康托尔集合是通过一种特殊的构造方法来定义的。
这个构造方法被称为Cantor 的势标记法(Cantor's diagonal argument),它以Cantor的名字命名,是康托尔首次引入并证明了可数集和不可数集的概念。
在介绍康托尔集合之前,我们要先了解一下可数集和不可数集的概念。
一个集合被称为可数集,如果它的元素可以一一对应到自然数集(N),也就是说,可以按照一定的顺序,将集合中的每个元素与自然数一一对应。
例如,整数集和有理数集都是可数集。
而一个集合如果不是可数的,就称为不可数集。
最经典的不可数集就是实数集(R),其中包含了所有的实数。
回到康托尔集合的构造方法。
康托尔集合的构造方法是通过二进制小数来构造的。
二进制小数是指小数部分只包含0和1的小数。
康托尔集合可以被看作是由所有的二进制小数组成的集合。
具体来说,我们可以将实数区间[0,1)内的所有二进制小数按照以下的形式排列起来:0.000000...0.000000...0.000000...0.000000...0.000000...0.000000...0.000000...0.000000...0.000000...0.000000......其中,每一行都是一个二进制小数,每一位都可以是0或1。
康托尔集合就是由这个表格中的所有二进制小数组成的集合。
这里需要注意的是,康托尔集合与我们通常理解的自然数集不同,自然数集是无穷可数的,而康托尔集合是无穷不可数的。
集合的测度——精选推荐
2002年11月第6期常熟高专学报Journal of Changshu C ollege N ov.,2002N o.6集合的测度Ξ金家(常熟高等专科学校数学系,江苏常熟215500) 摘 要:集合的测度作为长度的推广,是一个重要的数学概念,本文论述了由长度公理推广到测度公理的过程,建立了勒贝格测度公理及勒贝格一斯蒂吉斯测度公理。
关键词:长度;测度;集合 中图分类号:O14 文献标识码:A 文章编号:1008-2794(2002)06-0060-03 度量是一个永久的研究课题。
大的数字有光年,小的有微米。
简单图形的度量问题容易解决,但稍复杂的图形的度量就较困难。
例如椭圆的面积很好计算,但要求椭圆的弧长就麻烦了,用普通的解析式和初等函数根本表示不出来,需用一种特别的函数—椭圆函数来计算。
象椭圆这样的规则曲线尚且如此,求出一般曲线图形的周长和面积就更加难办了。
到了20世纪初期,又一类困难的度量问题浮现出来。
康托把许多奇奇怪怪的集合摆到了我们面前,诸如:有理数集合,无理数集合,康托三分集等等,一个很自然的问题提出来了:这些古怪的集合有没有“长度”?如果有应当如何规定?是否有“无法给大小度量”的集合?解决这些问题,就要用到测度理论。
众所周知:集合的长度是一个定义在集合上的函数,它满足下述长度公理:设x ={I |I 是端点区间或有限个不相交的区间的并;区间可开可闭,或半开半闭,或退化成点},L (I )是定义在区上的非负实值函数,若满足:(1)L ([0,1])=1 (单位长度为1);(2)L ([a ,b])=b -a ,当仅且a =b 时,L ([a ,b ])=0;(3)若I 1,I 2∈Z ,且I 1∩I 2= ,则L (I 1∪I 2)=L (I 1)+L (I 2),若I i 与I j 无公共点,i ,j =1,2,…,则L (∪ni =1I n )=∑ni =1L n(I i )(有限可加性);(4)I 1∈X ,当I 1移置到I 2时,L (I 1)=L (I 2),运动不变性,则称L (I )是X 中的集合的长度函数。
康托集的定义
康托集的定义
嘿,朋友们!今天咱们来聊聊一个特别有意思的东西——康托集。
康托集啊,就像是一个神奇的数学小精灵。
想象一下,有一条线段,咱们把它三等分,然后把中间那一段去掉,剩下两段。
接着呢,对这剩下的两段又重复刚才的操作,再三等分,再去掉中间那段。
就这样不断地重复下去,一直这么搞。
最后剩下的那些点组成的集合,就是康托集啦!这是不是很神奇呢?
康托集有很多特别的性质呢!比如说,它虽然是由无数个点组成的,但它的长度却是零哦!你说奇怪不奇怪?这就好像一个看起来很丰富的东西,实际测量起来却几乎没有长度。
而且哦,康托集的点数可是无穷多的呢!这无穷多的点却能组成这么个神奇的集合,真的让人惊叹不已呀!这就好比是无数颗星星组成了一个独特的星座一样。
康托集在数学中可是有着重要地位的哟!它是分形几何的重要研究对象之一。
分形几何呢,就是专门研究那些有着自相似性的图形和结构。
康托集就具有很强的自相似性,就是说不管你把它放大多少倍,看起来都还是差不多的样子。
想想看,数学的世界里怎么会有这么奇妙的东西存在呢?它就像是一个隐藏的宝藏,等待着我们去发现和探索。
康托集虽然看起来很抽象,但一旦你了解了它,就会被它深深吸引住。
康托集真的是数学中的一颗璀璨明珠啊!它让我们看到了数学的神奇和美妙,也让我们对这个世界有了更深的认识。
难道不是吗?。
有 理 数 集
4. 有理数集的长度为0
有理数们,排出来! 每“人”发一顶帽子戴一戴!
…
…
4. 有理数集的长度为0 量一量有理数帽子总宽度!
So small! 有理数的长度为0!
总结一下
从代数上看,
数学欣赏
1. 有理数集的代数属性
有理数集是最小的数域 有理数集在四则运算下是封闭的, 而且加法、乘法满足结合律与交换 律,并且满足乘法对加法的分配律, 具有这种性质的数集叫做数域。
2. 有理数集的几何属性
有理数在数轴上是稠密的、和谐的。 稠密性:任意两个有理数之间,必然 存在第三个有理数,而不管这两个有 理数有多么接近。
知道了:
所有平方数和所有正整数都一样多!√
可数集
➢ 像自然数这样可以排成一列或者 可以一个一个数下去的无限集叫 做可数集。
➢ 因此偶数数集、平方数集都是可 数集。
看看格点与整数的比较
y
5 4 3 2 1
1 (1 , 1)
2 (2 , 1) 3 (1 , 2) 4 (3 , 1) 5 (2 , 2) 6 (1 , 3)
➢ 从几何上看,有理数在 数轴上还有许多缝隙;
➢ 从分析上看,有理数对 极限运算不封闭。
数学欣赏
先数数偶数 这个世界上,正偶数多一些,还是正整 数多一些呢?
1 2 3 4 5 6 7 8… 2 4 6 8 10 12 14 16 …
知道了:
所有正整数和所有正偶数都一样多!√
再数数平方数 这个世界上,平方数多一些,还是正整数 多一些呢?
1 2 3 4 5 6 7 8… 12 22 32 42 52 62 72 82 …
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十 剖析康托集及“有理数集”测度山东枣庄二中 赵 录(emall :zhaolu48@)康托把有理数集E 排列为下面的文字框:“个数”为n 2(n →∞)个。
每个“点”x 用开区间(x-312n,x+312n)覆盖,即其外测度为:33112331111lim [()()]1lim lim 0*()22n nn j i n nn n j i ii j j m E n nn nn→∞==→∞→∞==+--===≤∑∑∑∑下面我们就来分析一下外测度为零的实质。
区间(x-312n,x+312n)的长度为31n,而区间的个数为n 2,那么当然有2311lim()lim 0n n nnn→∞→∞∙==。
取文字框一中的主对角线及上方的元素(文字框二):当n →∞时,按康托的概念就应当是区间[0,1)上的“有理数集”E 。
那么取区间长为31n的开区间族“覆盖”E ,可得外测度:3331111(1)1*()lim ()()]lim[]0222jn n n j i i i n n m E j j n n n→∞→∞==+=+--=∙=∑∑ (1)我们再来用黎曼积分定义的方法求函数y=1在区间(0,1)上的定积分:10111lim (1)lim()1nn n i dx n n n →∞→∞==∙=∙=∑⎰,即把(0,1)n 等分,每等分的长度为1n ,与这个小区间上的函数值1的积仍是1n ,这n 个1n的和,当n →∞时,就是(0,1)上的定积分1。
由定积分的定义可得:把区间分成多少份,就应当这些分都“参与”到积分中来【注一】,而不能是分成n 2份,而只取其中n 份的和。
那么使前面文字框内的有理数集的外测度等于零的密诀就是先把长度为n 的线段n 等分,则每等分为单位长,再把每等分再n 3等分,即把长度为n 的线段n 4等分,而均匀地取其中的n 2份之和,当n 趋于无穷大时,便有其外测度为零。
这种使其为零的“方法”确实高明巧妙得很。
不巧的是它违反了积分的定义。
如果是把长度为n 的线段n 2等分,再把其n 2份求和,则其“外测度”为22lim()x nnn→∞∙=∞。
即可得12n n n n12n n n n“有理数集”外测度为无穷大。
再看康托集。
把闭区间[0,1]三等分得到三个闭区间[0,1/3],[1/3,2/3],[2/3,1],把中间的去掉,剩下的两个闭区间为:[0,1/3],[2/3,1]。
两个区间长度和为2/3。
两个区间分别与二进制小数0.0,0.1对应。
第二次,再把这两个区间分别三等分去掉其中间的区间得到4个闭区间: [0,1/9],[2/9,3/9],[6/9,7/9],[8/9,9/9]。
4个区间长度和为(2/3)2。
4个区间分别与二进制小数0.0,0.1,0.01,0.11对应。
第三次,再把这4个区间分别三等分去掉其中间的区间得到23=8个闭区间:[0,1/27],[2/27,3/27],[6/27,7/27],[8/27,9/27],[18/27,19/27],[20/27,21/27],[24/27,25/27],[26/27,1]。
8个区间长的和为(2/3)3。
8个区间可依次与位数不大于3的8个二进制小数 0.0,0.1,0.01,0.11,0.001,0.011,0.101,0.111一一对应。
推论可得,第n 次可把第n-1次得到的2n-1个闭区间都三等分,去掉中间的小区间,可以得到2n 个小区间,这些区间长的和为(2/3)n 。
位数不大于n 的二进制小数也是2n 个(包括0),因此2n 个小闭区间可以与2n 个位数不大于n 的二进制小数一一对应。
当n →∞时,(2/3)n →0,由区间套定理知n →∞时,只有一个点属于一个小区间,这个点集就叫作“康托集”。
而这些点恰好可以与[0,1]上的二进制小数全体存在一一映射,因此康托集可以与实数集存在一一映射,从而其“势”等于连续集的“势”,而其外测度为零。
可是康托却没有发现,位数不大于n 位的二进制自然数也是2n 个,那么当n →∞时,康托集岂不是与自然数集存在一一映射了吗?即与自然数集对等。
把区间[0,1]三等分,而不去掉中间的区间,得到相邻区间有公共端点的三个闭区间: [0,1/3],[1/3,2/3],[2/3,1]。
只有一位的三进制小数有三个:0.0,0.1,0.2把三个区间[0,1/3],[1/3,2/3],[2/3,1]都三等分,可得相邻区间有公共端点的9个闭区间: [0,1/9],[1/9,2/9],[2/9,3/9],[3/9,4/9],[4/9,5/9],[5/9,5/9],[6/9,7/9],[7/9.8/9],[8/9,1]。
位数不超过2位的[0,1]上的三进制小数也是9个,可以与9个小区间构成一一映射。
把这次等分称为对区间[0,1]的第二次三等分。
那么对区间[0,1]进行n 次三等分后可以得到相邻区间有公共端点的3n 个闭区间,而位数不超过n 的三进制小数也是3n 个(包括零)。
因此3n 个闭区间与位数不超过n 的三进制小数对等。
3n 个闭区间长的和是1。
当n →∞时,只有一个点属于一上小区间,即闭区间紧缩为点。
按康托理论这些点便是[0,1]上的全部点,其外测度为1,与[0,1]上的三进制小数全体对等。
与[0,1]区间上的二进制小数对等的康托集外测度是零,与[0,1]区间上的三进制小数全体对等的集合其外测度为1,这就是康托理论的奇特之处。
用长度等于1/3n 的开区间覆盖位数不超过n 的区间[0,1]上的三进制小数全体,其覆盖和为:1311[()()]323323nnnnni ii=+--∑∙∙则[0,1]上的三进制小数的外测度为 13111lim [()()]lim()133233233nnnnnnnn n i ii →∞→∞=+--=∙=∑∙∙用长度等于1/4n 的开区间覆盖位数不超过n 的区间[0,1]上的三进制小数全体,其覆盖和为:1311[()()]324324nn nnni ii=+--∑∙∙则[0,1]上的三进制小数的外测度又为13111lim [()()]lim()033243244nnnnnnnn n i ii→∞→∞=+--=∙=∑∙∙如果用长度为22n的开区间覆盖[0,1]上的分母不小于分子且分母的不大于n 的 “有理数”(文字框二)当n →∞时构成的(0,1]上的有理数集E 的外测度:222111(1)2*()lim ()()]lim[]12n nn n j i i i i n n m E j j n n n→∞→∞==+≤+--=∙=∑∑ (2)由此产生疑问,对于文字框二,当n →∞只是[0,1]上的有理数全体吗?从积分的定义的意义上说,对于文字框二上的数集,当n →∞时,应该是[0,1]上的实数全体。
第二个疑问是:应该用什么样的开区间族去覆盖一个需要计算外测度的点集呢?难道用定积分定义的方法去选定开区间族也是不合理的吗?用外测度的理论,对一个点集选择不同的开区间族,得到的外测度可以是不同的值。
因此不但康托的理论不可靠;就是外测度的理论也不是十分可靠的。
《实变函数论与泛函分析》(上册,夏道行等著,人民教育出版社1978.11.北京)106页(以下简称《泛函上》)有这样一个定理及证明:R 1中的任何有限集或可列集是可测集,而且是Borel 集,它的外测度为零。
证 对任何实数α,单元素集{α}=11(,]n n αα∞=-,因为1(,]nαα-∈R 0⊂B 并且因为B 是σ-环,所以m({α})≤m(1(,]n αα-)=1n,可知m({α})=0。
再由B 是σ-环及m 的可列可加性,即知中任何有限集及可列集E 都必定是Borel 集,而且m(E)=0。
证毕。
《泛函上》从65页开始到这个定理前论述的都是勒贝格测度的问题。
前40页可以说论述的都很严谨,不象康托理论那样几乎处处都有矛盾,也只有直接应用康托的结论的地方有质疑之处。
可对这个定理的“可列集E ……,而且m(E)=0”并没有必然性。
由“m*({α})≤m*(1(,]n αα-)=1n,可知m*({α})=0”,可知m({α})=0是一个求极限得到的结果,可列集的“加”也是求极限的过程。
数学分析告诉我们,两个有关的极限是不能独立运算的,从极限的类型看,求m(E)是一个“0∙∞”的极限类型。
文字框二内的分数,当n →∞时构成的数集,按康托观点是(0,1)上的有理数集,同时也是可列集,那么取它的第n 列:1231,,,,n n n nn-当n →∞时构成的数集E ,也是可列集。
由阿基米德公理知,对任意分数q p ,存在m n ,使1n n q n p n m m -<≤,因此1(,]n n q p n n nm m ∈-,从而令(0,1)上的有理数集为Q 时,则有m*(Q)=m*(E)。
由可外测度的加性知:12311*()*()lim[*{}*{}{}*{}]lim[(1)]1n n n m Q m E m m m m n n n nn n→∞→∞-=≤++++=-∙=从黎曼积分定义的观点,应该是m(E)=1。
怎么会有“可列集E ……,而且m*(E)=0”呢?由此可知,而n→∞时,集合1231{,,,,}nn n n n-已经是区间(0,1)上的实数全体且可列。
实数的“可数”所以很难被接受的一个主要原因,就是因为“可数集”的外测度是零,区间[0,1]上的实数外测度是1。
如果区间[0,1]上的实数是“可数集”,岂不是[0,1]上的实数外测度为零了吗,从而实数“不实”了。
现在已经把“可数集”的外测度为零的也被推翻了,难道对实数集“可数”还有什么可怀疑吗?所以把“可数”加引号,是因为实数集也“可数”,那么几乎不存在“不可数”集合了,因此“可数”与“不可数”的概念存在的必要性已经不大了。
因为有理数集的外测度为零,已经成为广泛的共识,因此把有理数的定义给予改进(严格地说是明确),事实上也需要改进。
因为现在的有理数的定义与另一个定义――有限小数与无限循环小数是有理数――不一致:显然无限循环小数的循环节的位数是有限的,如果循环节的位数可以无限,那么无限不循环小数可以看作是循环节位数为无限大的循环小数了。
无限循环小数的循环节的位数有限,那么它对应的既约分数的分母的位数也应该是有限的了,有限小数对应的既约分数的分母的位数当然是有限的了,从而作为有理数的分数的分母的位数应是有限的,因此[0,1]上的有理数的个数也是有限的,从而任意有限区间[a,b]上的有理数的外测度是零。
无限区间上的有理数的外测度可以是大于零的有限实数,也可以是无穷大【注】。
勒贝格测度的论述也有故弄玄虚之嫌。
实变函数论重点讨论的是测度。