17.1 勾股定理 第1课时 教学设计
教学设计《勾股定理》
课题:17.1 探索勾股定理教学设计(第1课时)一、教材地位作用这节课内容部编版八年级下册第十七章第一节勾股定理第一课时。
勾股定理是学生在学习了直角三角形有关性质的基础上进行本课学习,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,在实际生活中用途很大。
通过课题的学习,学生可以经历从实际问题观察、发现、抽象出数学问题,猜想并验证直角三角形三条边之间满足的数量关系,到综合应用已学知识联想、证明的全过程,从而加深对相关知识的理解,提高思维能力。
本节课学习过程中渗透了数形结合、从特殊到一般和方程思想等重要数学思想,同时为勾股定理逆定理和后续解直角三角形的学习奠定了基础,也为高中学习的一般三角形中余弦定理和平面解析几何的部分公式做铺垫。
二、教学重点、难点勾股定理的学习是建立在掌握一般三角形的性质、直角三角形以及三角形全等的基础上, 是直角三角形性质的拓展。
本节课主要是对勾股定理的探索和勾股定理的证明。
勾股定理的证明方法很多,本节课介绍的是等积法。
通过本节课的教学,引领学生从不同的角度发现问题、用多样化策略解决问题,从而提高学生分析、解决问题的能力。
基于以上考虑,本节课的教学重点为:探索、验证、证明勾股定理过程。
八年级学生已初步具备几何的观察能力和说理能力,也有了一定的空间想象和动手操作能力,但是他们的推理能力较弱、抽象思维能力不足。
而本节课先采用的是等积法证明。
对于其他的证明方法,由于需要合理的发散思维和联想,没有教师的启发引领,学生不容易独立想到。
难点:用拼图的方式利用等积法证明勾股定理,并结合方程思想尝试从不同角度理解、证明勾股定理。
三、目标和目标解析本节活动课应当恰当发展学生的几何直观、推理能力和模型思想的数学核心观念与数学能力,还要注重发展学生的创新意识。
知识技能目标(1)经历勾股定理的探索过程,理解并掌握勾股定理;(2)能尝试从不同角度证明勾股定理。
数学思考目标:(1)让学生切实经历“观察—猜想---验证---证明”的探索过程;(2)发展合情推理能力,分析勾股定理的证明思路;(3)体会数形结合,从特殊到一般,化归和方程思想方法。
八年级数学下册(人教版)17.1.1勾股定理(第一课时)教学设计
5.总结反思,拓展提高:在教学结束时,引导学生对勾股定理进行总结,明确其应用范围和注意事项。同时,布置一些拓展提高的练习题,让学生在课后进行巩固。
本节课的教学设计以勾股定理为核心,紧密结合教材内容,注重培养学生的知识技能、过程方法和情感态度与价值观,旨在提高学生的数学素养和实际应用能力。
二、学情分析
八年级学生在经过前两年的数学学习后,已经具备了一定的数学基础和逻辑思维能力。在本节课之前,学生已经学习了平面几何、立体几何的基本概念,掌握了直角三角形的性质和判定方法,这些都为学习勾股定理奠定了基础。然而,由于勾股定理涉及斜边与直角边的平方关系,学生在理解上可能会存在一定难度。因此,在教学过程中,教师需关注以下几点:
2.自主探究,发现定理:引导学生观察教材中的直角三角形图形,鼓励他们大胆猜想勾股定理的表达形式。在学生自主探究的基础上,引导他们通过实际测量、计算,验证勾股定理的正确性。
3.精讲精练,突破难点:针对勾股定理的证明过程,教师进行详细讲解,并设计具有梯度的问题,让学生逐步掌握定理的证明方法。同时,通过典型例题的讲解和练习,帮助学生巩固定理的应用。
(四)课堂练习,500字
为了巩固学生对勾股定理的理解,我将设计一些课堂练习题。这些练习题分为基础题和提高题,以满足不同层次学生的学习需求。
1.基础题:主要针对勾股定理的基本应用,如已知直角三角形的两边,求解第三边。
2.提高题:涉及勾股定理在实际问题中的应用,如计算建筑物的高度、距离等。
我会让学生独立完成练习题,并在必要时给予指导。通过课堂练习,学生可以检验自己对勾股定理的掌握程度,并为课后作业打下基础。
人教版八年级下册17.1《勾股定理》第一课时教学设计
四、教学内容与过程
(一)导入新课
1.教师通过展示一组图片,包括古代建筑、现代桥梁等,引导学生观察这些图形中的直角三角形,并提出问题:“这些图形有什么共同特点?它们在数学中有什么特殊性质?”
2.学生观察后,教师总结直角三角形的定义,并引导学生回顾已知的直角三角形相关知识,为新课的学习做好铺垫。
5.针对教学难点,采取以下措施:
a.对勾股定理的证明过程进行详细讲解,通过画图、举例等方式,让学生在直观感知的基础上,理解证明的严密性。
b.专门安排一节课,让学生列举并分析勾股数的特点,总结规律,以便更好地辨识和应用勾股数。
c.结合实际情境,开展数学建模活动,让学生在小组内共同探讨、解决问题,提高他们的数学建模能力。
5.掌握勾股数的特点,能够辨识和列举出一组勾股数。
(二)过程与方法
在教学过程中,学生将通过以下方式来达成目标:
1.通过观察直角三角形的特性,引导学生发现勾股定理,培养观察力和逻辑思维能力。
2.通过小组合作,探究勾股定理的证明方法,提高合作意识和解决问题的能力。
3.通过数学问题的解答,培养学生将理论知识应用于实际情境的能力。
4.利用数形结合的方法,让学生在直观的图形中理解抽象的数学公式,提高形象思维和抽象思维的能力。
5.通过分析勾股数的特点,让学生总结规律,增强数学归纳和总结的能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发他们探究数学问题的热情。
2.使学生体会到数学知识与现实生活的紧密联系,增强学生的数学应用意识。
人教版八年级下册17.1《勾股定理》第一课时教学设计
一、教学目标
八年级数学下册17.1勾股定理教学设计
3.拓展作业:
(1)查阅资料,了解勾股定理在古今中外的应用,如建筑、天文学等领域。
(2)探讨勾股定理在解决其他数学问题中的应用,如解三角形、计算面积等。
4.实践作业:
(1)运用勾股定理,设计并制作一个直角三角形的模型,标注三边的长度。
五、作业布置
为了巩固学生对勾股定理的理解和应用,确保学习效果,特布置以下作业:
1.基础作业:
(1)完成课本第17.1节后的练习题1、2、3。
(2)运用勾股定理,解决以下实际问题:某直角三角形的两条直角边分别为3米和4米,求斜边的长度。
2.提高作业:
(1)证明勾股定理的另一种方法,如拼图法、归纳法等。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握勾股定理的表达式及其应用。
2.掌握勾股定理的证明过程,理解其背后的数学原理。
3.能够运用勾股定理解决实际问题,尤其是涉及直角三角形斜边长度计算的问题。
4.培养学生的几何直观能力和逻辑推理能力。
(二)教学设想
1.引入阶段:通过实际问题引入勾股定理,激发学生兴趣。例如,可以提出一个关于直角三角形斜边长度的问题,引导学生运用已有知识尝试解决,进而引出勾股定理。
4.通过勾股定理的证明过程,引导学生掌握数学推理的基本方法,提高逻辑思维能力。
5.设计丰富的例题和练习题,帮助学生巩固所学知识,提高解题技巧。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,使其体会到数学在生活中的实际应用。
2.培养学生勇于探索、敢于创新的精神,使其在数学学习过程中充满自信。
3.培养学生严谨、细致的学习态度,使其在解决问题的过程中注重逻辑性和条理性。
17.1《勾股定理》教学设计
17.1《勾股定理》教学设计1、教学目标.【教学内容解析】本节课是人教版八年级下册第十七章第一节勾股定理第一课时.本节之前学生已经学习了三角形一些知识,勾股定理研究的是直角三角形三边之间特有的数量关系,将形与数密切联系起来,是解直角三角形的主要依据,在生产和生活实际中应用广泛.本节课我从学生实际出发,创设有助于学生自主学习的问题情境,引导学生自主地经历一条由观察猜想到实践验证到推理论证的科学探索之路.我期望通过本节课达成四个一,为此我确定本节课教学目标为:【教学目标】知识与技能:掌握一个定理——勾股定理,并会用定理解决简单问题.过程与方法:(1)、经历一次由特殊到一般的探索过程,通过观察、思考、尝试猜想结论,发展合情推理能力.(2)、体验一种利用几何图形的面积证明代数恒等式的数形结合的思想,感受数学思维的严谨性.情感与态度:通过对勾股定理历史的了解,感受数学文化,增添一份民族自豪感. 在探究活动中,培养学生的合作交流意识和探索精神.2、学情分析.【学生学情】八年级学生已经具备了一定的观察、归纳、猜想和推理能力,已经学习了一些几何图形的面积的计算方法,但是运用面积法和割补思想解决问题的意识和能力还不够,对于如何将形与数有机的结合起来还有待提高.3、重点难点.【教学重点】勾股定理的证明与运用.【教学难点】用拼图法证明勾股定理.【教学策略】本节课主要采用启发式、探究式教学,由浅入深,由特殊到一般的提出问题,引导学生采用观察思考、动手实践、自主探索、合作交流的学习方法,使学生主动获得知识并发展能力.4、教学过程.【导入】.教师出示情景图片提出问题,学生实践思考、探索交流等.一、设置情景引发思考从A地到B地有两条路,并且AC垂直于BC.问题一:哪条路近?为什么?问题二:你能知道走第一条比走第二条近几米吗?为什么?那么在Rt△ABC中,已知AC=8,BC=6,能否求出AB的长呢?带着这个问题我们开始第十八章《勾股定理》的学习.本章我们将探索直角三角形三边之间特有的数量关系,并运用所得的结论解决问题.今天我们学习第十八章第一节——勾股定理.从简单的生活实例入手,引领学生预知本章的研究主题,引出课题.二、探索定理获得知识勾股定理给同学们设了三关,大家有没有信心冲过这三关!冲过这三关,我们就能获得知识,解决问题.使教学内容富有挑战性.观察猜想首先由毕达哥拉斯带领我们进入第一关.(学生读题)2500年前,古希腊著名数学家毕达哥拉斯非常善于观察和思考,经常能够从平淡的生活现象中发现数学问题.(教师提问,学生发表见解)观察:这个地面是由什么图形拼成的?观察:这些直角三角形都什么关系?毕达哥拉斯发现以直角三角形三边为边长都可做出一个正方形.观察:图中两个小正方形与大正方形的面积之间有什么关系?如果中间直角三角形的两直角边分别为a, b,斜边为c,思考:直角三角形三边之间有什么关系?问题:对于任意直角三角形如果两直角边分别为a, b,斜边为c,那么三边之间是否也有a2+b2=c2这样的关系呢?得出猜想,猜想之后进入第二关.从观察生活中常见的地砖入手,让学生感受到数学就在身边.通过设计问题串,让探索过程由浅入深,使学生从观察中得到猜想.适时穿插毕达哥拉斯这一人文背景,使学生获得新知,同时也感染学生养成善于观察勤于思考的科学的学习品质.2、实践验证:图中每个小方格的面积均为1,请分别算出正方形A,B,C的面积,利用面积关系验证三边关系.(同样的图形学案中有,让学生先独立完成,再小组交流,然后全班展示) 给学生充分的自主探索、合作交流的空间,鼓励学生尝试用不同的方式解决问题.学生活动:分别求出图1、图2中三个正方形的面积.学生动脑思考,动手做,动口说想法.师生总结:图1:9 + 16 = 25图2: 4 + 9 = 13所以: SA + SB = SC所以: a2 +b2=c2讨论中发表自己的看法,提高语言表达能力. 通过交流总结出用面积割补法求大正方形的面积,为定理的证明做铺垫,突破本节课的难点.3、推理论证特殊数据不能代表一般规律,我们猜想的这个结论要作为定理必须经过推理论证.学生活动:通过动手合作拼正方形,并利用所拼的图形完成此猜想的证明.学生探索交流之后展示自己的拼图,解释自己的想法.由猜想到验证到论证,有效地启发学生的思考,使学生成为学习的主体,经历知识的形成过程.4、总结定理学生总结:定理的文字表达形式,和符号推理形式.教师介绍:我国古代学者把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦.早在3000年前的《周髀算经》就记载勾三股四弦五的说法。
人教版八下数学17.1 课时1 勾股定理教案+学案
人教版八年级下册数学第17章勾股定理17.1 勾股定理课时1 勾股定理教案【教学目标】1.经历探索及验证勾股定理的过程,体会数形结合的思想;2.掌握勾股定理,并运用它解决简单的计算题;3.了解利用拼图验证勾股定理的方法..【教学重点】1.经历探索及验证勾股定理的过程,体会数形结合的思想;2.掌握勾股定理,并运用它解决简单的计算题.【教学难点】了解利用拼图验证勾股定理的方法.【教学过程设计】一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究知识点一:勾股定理【类型一】直接运用勾股定理例1如图,在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,CD⊥AB于D,求:(1)AC的长;(2)S△ABC;(3)CD的长.解析:(1)由于在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,根据勾股定理即可求出AC的长;(2)直接利用三角形的面积公式即可求出S△ABC;(3)根据面积公式得到CD·AB=BC·AC即可求出CD.解:(1)∵在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,∴AC=AB2-BC2=12cm;(2)S△ABC=12CB·AC=12×5×12=30(cm2);(3)∵S△ABC=12AC·BC=12CD·AB,∴CD=AC·BCAB=6013cm.方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.【类型二】分类讨论思想在勾股定理中的应用例2在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC 的周长.解析:本题应分△ABC为锐角三角形和钝角三角形两种情况进行讨论.解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,如图①所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=5+9=14,∴△ABC的周长为15+13+14=42;(2)当△ABC为钝角三角形时,如图②所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=9-5=4,∴△ABC的周长为15+13+4=32.∴当△ABC为锐角三角形时,△ABC 的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.【类型三】勾股定理的证明例3探索与研究:方法1:如图:对任意的符合条件的直角三角形ABC 绕其顶点A 旋转90°得直角三角形AED ,所以∠BAE =90°,且四边形ACFD 是一个正方形,它的面积和四边形ABFE的面积相等,而四边形ABFE 的面积等于Rt △BAE 和Rt △BFE 的面积之和.根据图示写出证明勾股定理的过程;方法2:如图:该图形是由任意的符合条件的两个全等的Rt △BEA 和Rt △ACD 拼成的,你能根据图示再写出一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE 面积等于Rt △BAE 和Rt △BFE 的面积之和进行解答;方法2:根据△ABC 和Rt △ACD 的面积之和等于Rt △ABD 和△BCD的面积之和解答.解:方法1:S 正方形ACFD =S 四边形ABFE =S △BAE +S △BFE ,即b 2=12c 2+12(b +a )(b -a ),整理得2b 2=c 2+b 2-a 2,∴a 2+b 2=c 2;方法2:此图也可以看成Rt △BEA 绕其直角顶点E 顺时针旋转90°,再向下平移得到.∵S 四边形ABCD =S △ABC +S △ACD ,S 四边形ABCD =S △ABD +S △BCD ,∴S △ABC +S △ACD=S △ABD +S △BCD ,即12b 2+12ab =12c 2+12a (b -a ),整理得b 2+ab =c 2+a (b -a ),b 2+ab =c 2+ab -a 2,∴a 2+b 2=c 2.方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.知识点二:勾股定理与图形的面积例4 如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别为2,5,1,2.则最大的正方形E 的面积是________.解析:根据勾股定理的几何意义,可得正方形A、B的面积和为S1,正方形C、D的面积和为S2,S1+S2=S3,即S3=2+5+1+2=10.故答案为10.方法总结:能够发现正方形A、B、C、D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A、B、C、D的面积和即是最大正方形的面积.【板书设计】17.1 勾股定理课时1 勾股定理1.勾股定理如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.2.勾股定理的证明“赵爽弦图”、“刘徽青朱出入图”、“詹姆斯·加菲尔德拼图”、“毕达哥拉斯图”.【教学反思】在课堂教学中应注意调动学生学习数学的积极性.让学生满怀激情地投入到数学学习中,提高数学课堂教学效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,设计一些拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点.人教版八年级下册数学第17章勾股定理17.1 勾股定理课时1 勾股定理学案【学习目标】1.经历勾股定理的探究过程,了解关于勾股定理的一些文化历史背景,会用面积法来证明勾股定理,体会数形结合的思想;2.会用勾股定理进行简单的计算.【学习重点】掌握用面积法来证明勾股定理,体会数形结合的思想.【学习难点】能够运用勾股定理进行有关的运算.【自主学习】一、知识回顾网格中每个小正方形的面积为单位1,你能数出图中的正方形A、B 的面积吗?你又能想到什么方法算出正方形C的面积呢?AB CCBA方法1:补形法(把以斜边为边长的正方形补成各边都在网格线上的正方形):左图:S c=__________________________;右图:S c=__________________________.方法2:分割法(把以斜边为边长的正方形分割成易求出面积的三角形和四边形):左图:S c=__________________________;右图:S c=__________________________.二、合作探究考点1:勾股定理的认识及验证想一想 1.2500年前,毕达哥拉斯去老朋友家做客,看到他朋友家用等腰三角形砖铺成的地面,联想到了正方形A,B和C面积之间的关系,你能想到是什么关系吗?2.右图中正方形A、B、C所围成的等腰直角三角形三边之间有什么特殊关系?3.在网格中一般的直角三角形,以它的三边为边长的三个正方形A、B、C 是否也有类似的面积关系?(每个小正方形的面积为单位1)4.正方形A、B、C 所围成的直角三角形三条边之间有怎样的特殊关系?思考你发现了直角三角形三条边之间的什么规律?你能结合字母表示出来吗?猜测:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么________.活动2 接下来让我们跟着以前的数学家们用拼图法来证明活动1的猜想.证法利用我国汉代数学家赵爽的“赵爽弦图”=________,证明:∵S大正方形S小正方形=________,S大正方形=___·S三角形+S小正方形,∴________=________+__________.要点归纳:勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 公式变形:222222, ,=+--.a cb bc a c a b知识点2:利用勾股定理进行计算【典例探究】例1如图,在Rt△ABC中,∠C=90°.(1)若a=b=5,求c;(2)若a=1,c=2,求b.变式题1 在Rt△ABC中,∠C=90°.(1)若a:b=1:2 ,c=5,求a;(2)若b=15,∠A=30°,求a,c.方法总结:已知直角三角形两边关系和第三边的长求未知两边时,要运用方程思想设未知数,根据勾股定理列方程求解.变式题2在Rt△ABC中,AB=4,AC=3,求BC的长.方法总结:当直角三角形中所给的两条边没有指明是斜边或直角边时,其中一较长边可能是直角边,也可能是斜边,这种情况下一定要进行分类讨论,否则容易丢解.例2已知∠ACB=90°,CD⊥AB,AC=3,BC=4.求CD的长.方法总结:由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,它常与勾股定理联合使用.【跟踪训练】求下列图中未知数x、y的值:三、知识梳理内容勾股定理如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.注意1.在直角三角形中2.看清哪个角是直角3.已知两边没有指明是直角边还是斜边时一定要分类讨论四、学习中我产生的疑惑【学习检测】1.下列说法中,正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c22. 如图,Rt△ABC(∠C=90°)的主要性质:(用几何语言表示)(1)两锐角之间的关系:____________________.(2)若∠B=30°,则∠B的对边和斜边:_________.3.如果直角三角形的两直角边分别为a、b,斜边为c,那么_________.4. 右图中阴影部分是一个正方形,则此正方形的面积为_____________.5.在△ABC中,∠C=90°.(1)若a=15,b=8,则c=_______.(2)若c=13,b=12,则a=_______.6.若直角三角形中,有两边长是5和7,则第三边长的平方为_________.7.如图所示,所有的四边形都是正方形,三角形是直角三角形,其中最大的正方形的边长为6,则正方形A,B的面积的和为_______.8.求斜边长17cm、一条直角边长15cm的直角三角形的面积.9.如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=1,求△ABC的周长.10.如图,将长为10米的梯子AC斜靠在墙上,BC长为6米,求梯子上端A到墙的底端B的距离AB。
勾股定理教案
教学过程一、导入1.如图,蜗牛爬行多长路?2.小鸟最少飞了多远?3飞机的速度是多少?飞机在空中水平飞行某一时刻刚好飞到一男孩头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机飞行了多少千米?4.两船相距多少?甲轮船以15海里/时的速度从港口向东南方向航行,乙船同时以25海里/时速度向东北方向航行求它们离开港口2小时后相距多远?二.新授:1.2、3、4、5、6、8、9、11、12、三、课堂小结:四、作业:附:板书设计17.1 勾股定理第一课时一、导入二.新授:三、课堂小结:备课人学科数学备课时间课时安排一课时课题17.1 勾股定理第二课时教学目标知识教育目标:会用勾股定理进行简单的计算能力培养目标:树立数形结合的思想、分类讨论思想。
品德培养目标:加强爱国主义教育1、通过了解勾股定理的历史,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。
附赠材料优秀的教学是练出来的在上一堂课里,你已经学会了区分高效教学法和低效教学法之间的区别。
现在,我们还要继续巩固这一概念。
在高效教学法和低效教学法之间,是否存在一个灰色的中间地带呢?是的,这个灰色地带确实存在。
如果能带领那些还不够高效的教师们进人这一中间地带,那也是很大的进步。
当然,本课的主要目的是发掘出教师的最大潜力,以最终实现高效教学。
如果能成功做到这一点,那么你最终会发现学生的表现有了显著的提高。
显而易见,教师能力的优劣会直接影响到学生的表现。
教师越优秀,学生的表现就越好。
课程:首先,我们回顾一下上一节课所学的如何区分高效和低效教学上一节课,我已经要求你总结出自身存在的弱项,并且在课后进行针对性的练习。
今天,请你仔细思考,在下面列举的教学情景中高效和低效的教师将如何做出不同的应对措施。
高效教学与低效教学实践一个学生在课堂上一直和其他学生聊天。
他这个举动非常明显,必须及时制止。
面对这个情形时,低效的教师会如何应对?高效的教师又会如何应对?一个学生在课堂上不断发出声响,这个声音越来越吵,并且影响到了班级里的其他学生。
人教版八年级数学下17.1勾股定理(教案)
在今天的教学中,我发现学生们对勾股定理的概念和应用表现出浓厚的兴趣。通过引入日常生活中的例子,他们能够更直观地理解这个定理的重要性。在讲授理论时,我注意到有些学生对于定理的证明过程感到困惑,特别是几何证明部分。这让我意识到,需要进一步通过不同的例子和解释来帮助他们克服这个难点。
在实践活动环节,学生们分组讨论并进行了实验操作,这极大地提高了他们的参与度。我观察到他们在尝试解决实际问题时,能够积极思考,相互交流,这有助于巩固他们对勾股定理的理解。然而,我也注意到,在讨论过程中,有些小组在问题的分析和解决上存在困难,这时我及时给予了引导和启发,帮助他们找到了解决问题的方法。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的表述和证明这两个重点。对于难点部分,如定理的证明,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量实际物体的直角边和斜边长度,验证勾股定理。
举例解释:
-对于定理的证明,教师需要提供多个角度和方法的证明,如代数法、几何法等,帮助学生从不同角度理解定理的本质;
-在解决实际问题时,教师要指导学生如何从复杂问题中提取关键信息,识别出勾股定理的应用场景;
-在探索勾股数时,教师应引导学生通过具体的计算和观察,发现勾股数的规律,如3、4、5是勾股数,并能够推广到其他勾股数的寻找和应用。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过直角三角形的情况?”比如,我们常见的楼梯、墙壁与地面形成的角等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。
17.1勾股定理(1)教学设计
17.1 勾股定理(1)教学设计教学内容17.1 勾股定理(一)教学目标知识与技能:让学生通过观察、计算、猜想直角三角形两条直角边的平方和等于斜边的平方的结论.过程与方法:1.在学生充分观察、归纳、猜想、探索直角三角形两条直角边的平方和等于斜边的平方的过程中,发展合情推理能力,体会数形结合的思想.2.在探索上述结论的过程中,发展学生归纳、概括和有条理地表达活动的过程和结论.情感、态度与价值观:1.培养学生积极参与、合作交流的意识,2.在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气.教学重点探索直角三角形两条直角边的平方和等于斜边的平方的结论。
从而发现勾股定理.教学难点以直角三角形的边为边的正方形面积的计算.教学方法读一读,练一练,议一议教学准备课件教学过程设计(含各环节中的教师活动和学生活动以及设计意图)教学过程一、创设问题情境,引入新课问题1:在我国古代,人们将直角三角形中的短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.根据我国古算书《周髀算经》记载,在约公元前1100年,人们已经知道,如果勾是三,股是四,那么弦是五,你知道是为什么吗?问题2:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队能否进入三楼灭火?问题3:我们再来看章头图,在下角的图案,它有什么童义?为什么选定它作为2002年在北京召开的国际数学家大会的会徽?学习本章,我们就能回答上述问题.首先我们先来看一个传说.二.实际操作,探索直角三角形的三边关系问题1:毕达哥拉斯是古希腊著名的哲学家、数学家、天文学家,相传2500年前,一次,毕达哥拉斯去朋友家作客.在宴席上,其他的宾客都在尽情欢乐,高谈阔论,只有毕达哥拉斯却看着朋友家的方砖地而发起呆来.原来,朋友家的地是用一块块直角三角形形状的砖铺成的,黑白相间,非常美观大方.主人看到毕达哥拉斯的样子非常奇怪,就想过去问他.谁知毕达哥拉斯突然恍然大悟的样子,站起来,大笑着跑回家去了.同学们,我们也来观察下面图中的地面,看看你能发现什么?是否也和大哲学家有同样的发现呢?问题2:你能发现下图中等腰直角三角形ABC有什么性质吗?问题3:等腰直角三角形都有上述性质吗?观察下图,并回答问题:引导学生发现等腰直角三角形以直角边为边的小正方形的面积和等于以斜边为边的稍大的正方形的面积.即两直角边的平方和等于斜边的平方.对于问题3,可让学生在自己准备好的小方格纸上画出,并计算A、B、C三个正方形的面积,并在小组内交流.学生计算C正方形的面积,可能有不同的方法.不管是通过直接数小方格的个数,还是将C划成为4个全等的等腰直角三角形来求,都应予以肯定,并鼓励学生用语言进行描述.通过上面操作,让学生更进一步验证等腰直角三角形直角边的平方和等于斜边的平方.等腰直角三角形有上述性质,其他的直角三角形是否也有这个性质呢?问题4:等腰三角形有上述性质,其他的三角形也有这个性质吗?如下图,每个小方格的面积均为1,请分别计算出下图中正方形A、B、C,A'、B'、C'的面积,看看能得出什么结论.(提示:以斜边为边长的正方形的面积,等于虚线标出的正方形的面积减去四个直角三角形的面积.)由上面的几个例子,我们猜想:命题1 如果直角三角形的两直角边长分别为a,b,斜边为c,那么2c22+.ba=下图是我国古人赵爽利用弦图证明命题1的基本思路如下,如图(7).把边长为a,b的两个正方形连在一起,它的面积为a2+b2,另一方面这个图形由四个全等的直角三角形和一个正方形组成.把田(7)中左、右两个三角形移到图(9)所示的位置,就会形成一个c为边长的正方形.因为图(7)与图(9)都是由四个全等的直角三角形和一个正方形组成,所以它们的面积相等.因此a2+b2=c2这样就通过推理证实了命题1的正确性,我们把经过证明被确定为正确的命题叫做定理.命题1与直角三角形的边有关,我国把它称为勾股定理.我国古代的学者们对勾股定理的研究有许多重要成就,不仅在很久以前独立地发现了勾股定理,而且使用了许多巧妙的方法证明了它。
17.1《勾股定理》教案(第1课时)
勾股定理
教学设计说明
“勾股定理”是几何中一个非常重要的定理,它揭示了直角三角形三边之间的数量关系,将数与形密切联系起来,它有着丰富的历史背景,在理论上占有重要地位.整节课以“问题情境——分析探究——得出猜想——实践验证——总结升华”为主线,使学生亲身体验勾股定理的探索和验证过程,努力做到由传统的数学课堂向实验课堂转变.根据教材的特点,本节课从知识与方法、能力与素质的层面确定了相应的教学目标.把学生的探索和验证活动放在首位,一方面要求学生在老师的引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的.
本节课运用的教学方法是“启发探索”式,采用教师引导启发、学生独立思考、自主探究、师生讨论交流相结合的方式,为学生提供观察、思考、探索、发现的时间和空间.使学生以一个创造者或发明者的身份去探究知识,从而形成自觉实践的氛围,达到收获的目的.。
人教版数学八年级下册17.1第1课时《 勾股定理》教案
人教版数学八年级下册17.1第1课时《勾股定理》教案一. 教材分析《勾股定理》是中学数学中的一个重要定理,它揭示了直角三角形三边之间的一种简单而美妙的关系。
人教版八年级下册第17.1节《勾股定理》主要介绍了勾股定理的证明和应用。
通过这一节的学习,学生可以加深对勾股定理的理解,提高解决几何问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了相似三角形的性质、全等三角形的判定和性质等基础知识。
但勾股定理的证明和应用需要学生具备较强的逻辑思维能力和空间想象能力。
因此,在教学过程中,教师需要关注学生的学习基础,针对不同学生进行有针对性的教学。
三. 教学目标1.理解勾股定理的证明过程,掌握勾股定理的内容。
2.能够运用勾股定理解决实际问题,提高解决问题的能力。
3.培养学生的逻辑思维能力和空间想象能力。
四. 教学重难点1.勾股定理的证明过程。
2.勾股定理在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活中的实例,引发学生对勾股定理的思考,激发学生的学习兴趣。
2.演示教学法:通过几何画板等软件,直观地展示勾股定理的证明过程。
3.问题驱动法:引导学生通过解决问题,深入理解勾股定理的内涵。
4.小组合作法:鼓励学生分组讨论,培养学生的团队协作能力。
六. 教学准备1.教学课件:制作勾股定理的课件,包括证明过程的动画演示。
2.几何画板:用于展示勾股定理的证明过程。
3.练习题:准备一些有关勾股定理的应用题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过展示一些生活中的实例,如篮球架、自行车等,引导学生思考这些实例中是否存在勾股定理的应用。
让学生感受到勾股定理在现实生活中的重要性。
2.呈现(10分钟)利用几何画板,演示勾股定理的证明过程。
首先,展示一个直角三角形,然后通过动态变化,引导学生发现直角三角形三边之间存在的关系。
最后,给出勾股定理的数学表达式。
3.操练(10分钟)让学生分组讨论,运用勾股定理解决一些实际问题。
《17.1勾股定理》教学设计(第1课时)
《17.1 勾股定理》教学设计(第1课时)一、内容和内容解析1.内容勾股定理的探究、证明及简单应用.2.内容解析勾股定理的内容是:假如直角三角形的两条直角边长分别为a、b,斜边长为c,那么.它揭示了直角三角形三边之间的数量关系.在直角三角形中,已知任意两边长,就能够求出第三边长.勾股定理常用来求解线段长度或距离问题.勾股定理的探究是从专门的等腰直角三角形动身,到网格中的直角三角形,再到一样的直角三角形,表达了从专门到一样的探探究、发觉和证明的过程.证明勾股定理的关键是利用割补法求以斜边为边长的正方形的面积,教学中要注意引导学生通过探究去发觉图形的性质,提出一样的猜想,并获得定理的证明.我国古代在数学方面又许多杰出的研究成果,关于勾股定理的研究确实是一个突出的例子.教学中能够介绍我国古代在勾股定理的证明和应用方面取得的成就和作出的奉献,以培养学生的民族自豪感;围绕证明勾股定理的过程,培养学生学习数学的热情和信心.基于以上分析,确定本节课的教学重点:探究并证明勾股定理.二、目标和目标解析1.教学目标(1)经历勾股定理的探究过程.了解关于勾股定理的文化历史背景,通过对我国古代研究勾股定理的成就的介绍,培养学生的民族自豪感.(2)能用勾股定明白得决一些简单问题.2.目标解析(1)学生通过观看直角三角形的三边为边长的正方形面积之间的关系,归纳并合理地用数学语言表示勾股定理的结论.明白得赵爽弦图的意义及其证明勾股定理的思路,能通过割补法构造图形证明勾股定理.了解勾股定理相关的史料,明白我国古代在研究勾股定理上的杰出成就.(2)学生能运用勾股定理进行简单的运算,关键是已知直角三角形的两边长能求第三条边的长度.三、教学问题诊断分析勾股定理是反映直角三角形三边关系的一个专门的结论.在正方形网格中比较容易发觉以等腰直角三角形三边为边长的正方形的面积关系,进而得出三边之间的关系.但要从等腰直角三角形过渡到网格中的一样直角三角形,提出合理的猜想,学生有较大困难.学生第一次尝试用构造图形的方法来证明定理存在较大的困难,解决问题的关键是要想到用合理的割补方法求以斜边为边的正方形的面积.因此,在教学中需要先引导学生观看网格背景下的正方形的面积关系,然后摸索没有网格背景下的正方形的面积关系,再将这种关系表示成边长之间的关系,这有利于学生自然合理地发觉和证明勾股定理.本节课的教学难点是:勾股定理的探究和证明.四、教学过程设计1. 创设情境复习引入国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”.2021年在北京召开了第24届国际数学家大会.右图确实是大会会徽的图案.你见过那个图案吗?它由哪些我们学过的差不多图形组成?那个图案有什么专门的意义?前面我们学习了有关三角形的知识,我们明白,三角形有三个角和三条边.问题1三个角的数量关系明确吗?三条边的数量关系明确吗?师生活动教师引导,学生回答。
人教版数学八年级下册17.1勾股定理(第一课时)优秀教学案例
4.总结归纳:教师组织学生进行总结,让学生分享自己在学习勾股定理过程中的收获和感悟。通过总结归纳,教师帮助学生巩固所学知识,构建知识体系,提高学生的知识运用能力。
2.教师设计具体情境,如测量未知边长的直角三角形,让学生面临实际问题,引出勾股定理的学习需求。
3.教师利用多媒体课件,展示勾股定理的动态演示,帮助学生直观理解勾股定理的含义和应用。
(二)讲授新知
1.教师引导学生从特殊到一般,思考直角三角形边长之间的关系,引导学生发现勾股定理的规律。
2.教师给出勾股定理的定义,解释勾股定理的表达式,并通过几何图形的演示,帮助学生理解勾股定理的含义。
(三)小组合作
1.教师将学生分为若干小组,鼓励学生相互讨论、交流,共同探究勾股定理的证明方法。
2.教师设计合作任务,如共同制作勾股定理的演示道具,让学生在实践中深化对勾股定理的理解。
3.教师组织小组竞赛,激发学生的竞争意识和团队合作精神,提高学生的学习积极性。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,如在学习勾股定理的过程中遇到了哪些困难,如何克服等。
2.学生通过教师引导,运用数学归纳法证明勾股定理,培养逻辑思维与推理能力。
3.学生通过解决实际问题,运用勾股定理,提高问题解决能力,培养创新实践能力。
(三)情感态度与价值观
1.学生感受数学文化的魅力,了解勾股定理的历史背景,提高对数学学科的兴趣。
2.学生在探究过程中,培养克服困难、勇于探索的精神,增强自信心。
五、案例亮点
人教版数学八年级下册17.1勾股定理(第1课时)优秀教学案例
3.教师引导学生运用数形结合的思想,将抽象的数学问题具体化,提高学生的数学思维能力。
(三)情感态度与价值观
1.激发学生对古代数学文化的兴趣,培养学生对数学的热爱,提高学生的学科素养。
2.通过赞美勾股定理的美,让学生感受数学的严谨、精确,树立正确的数学观念。
5.人文素养培养:教师在教学过程中注重培养学生的人文素养,让学生体会数学的博大精深,感受数学的美。这种教学方式使学生在学习数学知识的同时,也能够提升自己的综合素质,培养自己的审美情趣。
本节课的案例亮点体现了教学的实用性、互动性和人文性,充分调动了学生的积极性、主动性,使学生在探究、合作、交流中收获知识,提高能力。同时,注重培养学生的人文素养,让学生体会数学的博大精深,感受数学的美。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示古代中国建筑中的勾股定理应用,如赵州桥、故宫等,让学生感受数学与实际生活的紧密联系。
2.创设有趣的问题情境,如“勾股定理是如何被发现的?”、“你能用勾股定理解决生活中的问题吗?”等,激发学生的好奇心,引发学生的思考。
3.教师总结并提出本节课的学习目标,引导学生明确本节课的学习内容。
(四)反思与评价
1.教师引导学生对所学知识进行总结,让学生明确勾股定理的定义、证明方法及其应用。
2.学生通过自我评价、同伴评价等方式,反思自己在探究过程中的表现,发现自身的不足,提高自我调控能力。
3.教师针对学生的学习情况,给予及时的反馈和评价,关注学生的成长过程,激发学生的学习动力。
在整个教学过程中,教师应以引导者、组织者、合作者的角色,关注学生的个体差异,充分调动学生的积极性、主动性,使学生在探究、合作、交流中收获知识,提高能力。同时,注重培养学生的人文素养,让学生体会数学的博大精深,感受数学的美。
八年级数学下学期17.1勾股定理教学设计
5.结合勾股定理在实际生活中的应用,培养学生的社会责任感和创新意识。
在本章节的教学过程中,教师应以学生为主体,关注学生的个体差异,因材施教。通过启发式教学法和丰富的教学活动,引导学生主动探究、积极思考,培养学生的几何思维能力和解决问题的能力。同时,注重情感态度与价值观的培养,使学生在掌握知识技能的同时,形成良好的学习态度和价值观念。
4.利用信息技术手段,如多媒体课件、网络资源等,辅助教学,提高课堂教学效果。
5.定期进行课堂小结,巩固所学知识,培养学生自主总结、归纳的能力。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣,激发学生的求知欲和探索精神。
2.培养学生严谨、细致的学习态度,养成良好的学习习惯。
3.培养学生团队协作意识,学会与人沟通、交流,共同解决问题。
二、学情分析
八年级学生在经历了前两年的数学学习后,已经具备了基本的几何知识和逻辑思维能力。他们对直角三角形有一定的了解,掌握了直角三角形的性质和判定方法。在此基础上,学习勾股定理,学生能够更好地理解直角三角形边长之间的关系,进一步发展空间观念。
然而,学生在解决实际问题时,可能还存在以下问题:1.对勾股定理的理解不够深入,不能灵活运用;2.在运用勾股定理计算过程中,可能会出现计算错误;3.部分学生对数学学习兴趣不足,缺乏主动探究的精神。
四、教学内容与过程
(一)导入新课,500字
1.教师以故事形式介绍勾股定理的起源,如古希腊数学家毕达哥拉斯在朋友家发现直角三角形地板图案中的规律,从而发现了勾股定理。这样既吸引了学生的注意力,又激发了他们对勾股定理的兴趣。
2.提问学生:“同学们,你们知道直角三角形有什么特殊性质吗?”引导学生回顾直角三角形的定义和性质,为新课的学习做好铺垫。
人教版数学八年级下册17.1《勾股定理》(第1课时)教案
人教版数学八年级下册17.1《勾股定理》(第1课时)教案一. 教材分析《勾股定理》是初中数学的重要内容,也是八年级下册的教学重点。
本节课主要介绍勾股定理的定义、证明及应用。
通过学习,使学生了解勾股定理在几何学中的重要性,培养学生的逻辑思维能力和空间想象力。
二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的性质、直角三角形的性质等知识。
但勾股定理的证明及应用还需要学生具备一定的探究能力和合作精神。
因此,在教学过程中,要关注学生的学习兴趣,激发学生的探究欲望,培养学生的合作精神。
三. 教学目标1.理解勾股定理的定义,掌握勾股定理的证明方法。
2.能够运用勾股定理解决实际问题,提高学生的应用能力。
3.培养学生的逻辑思维能力、空间想象能力和合作精神。
四. 教学重难点1.勾股定理的证明方法。
2.运用勾股定理解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究勾股定理。
2.运用多媒体辅助教学,直观展示勾股定理的应用场景。
3.采用合作学习法,培养学生的团队协作能力。
六. 教学准备1.多媒体教学课件。
2.勾股定理相关案例资料。
3.直角三角形道具。
七. 教学过程1. 导入(5分钟)教师通过展示直角三角形道具,引导学生观察直角三角形的特征,提问:“你们能发现直角三角形之间的某种特殊关系吗?”学生思考后,教师给出答案:“直角三角形两个直角边的平方和等于斜边的平方。
”进而引出本节课的主题——勾股定理。
2. 呈现(10分钟)教师通过多媒体课件,展示勾股定理的定义及证明过程。
首先,介绍勾股定理的起源,然后展示古代数学家们证明勾股定理的方法,如赵爽弦图、欧几里得证明等。
让学生了解勾股定理的重要性和历史价值。
3. 操练(10分钟)教师提出练习题,让学生运用勾股定理计算直角三角形的边长。
例如:“一个直角三角形,两个直角边的长度分别是3cm和4cm,求斜边的长度。
”学生独立完成后,教师进行讲解。
4. 巩固(10分钟)教师通过多媒体课件,展示勾股定理在现实生活中的应用案例,如建筑设计、工程测量等。
17.1.1《勾股定理》教案
17.1.1《勾股定理》教案《17.1.1 《勾股定理》教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!作业内容17.1.1《勾股定理》【教材分析】本节课是勾股定理的第1课时,根据课程标准的要求,注意让学生经历探索勾股定理的过程,鼓励学生用不同的方法解决问题,在解决问题的过程中,注意渗透数形结合的思想。
另外,勾股定理具有很高的文化价值,这点要充分体现,以提高学生探索的欲望.【学情分析】学生经历了一年的初中学习,具备了一定的归纳、总结、类比、转化以及数学表达的能力,对现实生活中的数学知识充满了强烈的好奇心与探究欲,并能在老师的指导下通过小组成员间的互助合作,发表自己的见解。
另外,在学本节课时,通过前置知识的学习,学生对直角三角形有了初步的认识,并能从直观把握直角三角形的一些特征,为此在授课时要抓住学生的这些特点,激发学生学习数学的兴趣,建立他们的自信心,为学生空间观念的发展、数学活动经验的积累、个性的发挥提供机会.【教学目标】1.经历探索勾股定理的过程,提高学生的推理能力,体会数形结合的思想.2.理解并掌握勾股定理通过对勾股定理的历史介绍及交流,让学生体会它的文化价值,提高学习数学的兴趣和信心.【教学重点】掌握勾股定理,让学生深刻感悟到直角三角形三边所具备的特殊关系【教学难点】勾股定理的证明【教学方法】五步教学法、引导探究法【课前准备】三角板【课时设置】一课时【教学过程】活动一:课堂引入目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。
我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。
这个事实可以说明勾股定理的重大意义。
尤其是在两千年前,是非常了不起的成就。
让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。
以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
人教版八年级下册17.1《勾股定理》第一课时教学设计
2.培养学生严谨、细致的学习态度,养成科学的学习方法。
3.引导学生体会数学的简洁美、逻辑美,提高学生的审美情趣。
4.培养学生团队合作意识,学会倾听、尊重他人的意见,形成良好的沟通能力。
二、学情分析
八年级下册的学生已经具备了一定的数学基础,掌握了直角三角形的基本概念和性质,能够进行简单的几何图形的推理和计算。在此基础上,他们对勾股定理这一章节的学习将更加深入地理解直角三角形的内在联系。然而,学生在解决实际问题时,可能仍存在以下困难:对勾股定理的理解不够深入,不能灵活运用;在计算过程中容易出现粗心大意的情况;对于定理的证明过程,可能感到困惑。因此,在教学过程中,教师应关注学生的个体差异,提供充足的实践机会,引导学生通过自主探究、合作交流等方式,逐步提高解决问题的能力,增强数学思维能力。同时,注重激发学生的学习兴趣,培养他们面对困难的勇气和毅力,使学生在轻松愉快的氛围中学习数学。
3.拓展提高题:针对学有余力的学生,设计一道涉及勾股定理与其他数学知识相结合的题目,鼓励学生进行思考和探究。
4.小组合作作业:布置一道小组合作完成的作业,要求学生相互讨论、分工合作,共同解决一个较为复杂的勾股定理问题。培养学生团队合作意识,提高交流沟通能力。
5.思考题:提出一个关于勾股定理的思考题,引导学生深入思考定理的本质和内涵,激发学生的求知欲。
2.创设情境:展示一个实际情境,如一块直角三角形的土地,要求学生计算斜边的长度。让学生意识到勾股定理在实际生活中的应用,为新课的学习奠定基础。
(二)讲授新知
1.勾股定理的概念:通过导入环节的实际问题,引导学生观察直角三角形的边长关系,发现勾股定理。用数学符号表示勾股定理,并解释定理的含义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西藏萨迦县中学电子教案
单位:西藏萨迦县中学年级:八年级学科:数学课题 18.1勾股定理(第1课时)主备教师达娃加参
单元第十八章教学课时一节课时授课教师达娃加参备课时间2017.6
教学目标1、通过观察、分析方格图,经历探索勾股定理的过程,会运用勾股定理进行简单的计算.
2、在勾股定理探索过程中,发展合情推理能力,体会数形结合思想,激发学习热情.
教学重点1.重点:探索勾股定理.
教学难点
2.难点:探索勾股定理.
考点分析勾股定理的应用题
教学准备直尺
教学过程
(一)创设情境,导入新课
师:同学们听说过外星人吗?
生:(齐答)听说过.
师:外星人就是生活在别的星球上的智慧生物.长期以来,人类一直在寻找外星
人,并试图与他们交流.那么怎么寻找外星人?又怎么与外星人交流呢?主要
的办法是向处太空发射探测器,希望有朝一日外星人能接收到探测器发出的
信号,最好能直接收到探测器.为什么要直接收到探测器?因为在探测器里有
很多图片,这些图片反映了地球的情况、地球人的形象、生活和文明成果.
师:在这些图片中,有一张图片特别有意思,它所反映的恰好是我们这节课要
学习的内容.这是一张什么样的图片呢?
(师出示下图)
教学补充
(二)尝试指导,讲授新课
师:(指准图)在这张图片上,中间画的是一个直角三角形,这个直角三角形的一条直角边等于3,另一条直角边等于4,斜边等于5.在直角三角形的外面画了三个正方形,这三个正方形的边长分别是3、4、5,所以这个正方形的面积是9,这个正方形的面积是16,这个正方形的面积是25.
师:现在要问大家的是,通过这个图形地球人想告诉外星人什么呢?如果你是外星人,你看到这个图形能发现什么呢?
(让生观察思考,要给学生充足的观察思考时间)
师:(指图)谁来说说从这个图形你发现了什么?
生:……(多让几名同学发表看法)
师:(指准图)这个正方形的面积是9,这个正方形的面积是16,这个正方形的面积是25,9+16恰好等于25,可见,这个正方形的面积加上这个正方形的面积恰好等于这个大正方形的面积(板书:一个正方形的面积+另一个正方形的面积=大正方形的面积).
师:(指准图)从这三个正方形面积的关系,我们可以进一步发现这个直角三角形三边的关系.
师:(指准图)看到没有?这个正方形的面积实际上就是这条直角边的平方,这个正方形的面积实际上就是这条直角边的平方,而这个正方形的面积实际上就是这条斜边的平方.可见,这条直角边的平方加上这条直角边的平方恰好等于这条斜边的平方(板书:一条直角边的平方+另一条直角边的平方=斜边的平方).
师:以上我们通过观察分析图形,发现这个直角三角形的三边有这样的关系:(指准式子)一条直角边的平方+另一条直角边的平方=斜边的平方.
师:发现了这个关系,我们会进一步想到一个问题,什么问题?(稍停后边讲边指准图)这个直角三角形的三边有这样的关系,那么别的三角形的三边是否也有这样的关系呢?
师:下面我们就来看别的直角三角形的情况.
(师出示下图)
A
B
C
师:(指准图)这个图的中间是一个直角三角形,外面是三个正方形.正方形A 以这条直角边为边长,正方形B以这条直角边为边长,正方形C以斜边为边长.现在我们来算一算正方形A、B、C的面积.
师:(指准图)正方形A的面积是多少?
生:(齐答)4.(师在图中注上4)
师:(指准图)正方形B的面积是多少?
生:(齐答)9.(师在图中注上9)
师:(指准图)正方形C的面积是多少?
生:……(让生思考一会儿)
师:正方形C的面积不好算,怎么来计算正方形C的面积呢?
(师用彩笔在上图画出大正方形,如下图所示)
C B
A
师:(指准图)正方形C的面积等于这个大正方形的面积减去这四个直角三角形的面积.
师:(指准图)这个大正方形的面积等于多少?(稍停)它的边长为5,所以面积为25.这个直角三角形的面积等于多少?(稍停)它的这条直角边为2,
这条直角边为3,所以面积为1
2
×2×3=3.其它几个直角形的面积也都等于3,
所以四个直角三角形的面积等于12.
师:(指准图)这个大正方形的面积为25,四个直角三角形的面积为12,所以正方形C的面积是13(在图中注上13).
师:(指准图)正方形A、B、C的面积都求出来了,正方形A的面积为4,正方形B的面积为9,正方形C的面积为13.现在我们可以看到,正方形A的面积加上正方形B的面积恰好等于正方形C的面积(板书:正方形A的面积+正方形B的面积=正方形C的面积).
师:(指准图)从三个正方形面积的关系,我们可以进一步得出这个直角三角形三边的关系.
师:(指准图)正方形A 的面积就是这条直角边的平方,正方形B 的面积就是这条直角边的平方,正方形C 的面积就是斜边的平方.所以这个直角三角形的三边有这样的的关系:这条直角边的平方加上这条直角边的平方恰好等于斜边的平方(板书:一条直角边的平方+另一条直角边的平方=斜边的平方). 师:(指准图)可见,这个直角三角形的三边也具有我们刚才所说的那种关系. 师:下面同学们自己再来看一个直角三角形,看一看这个直角三角形的三边是否也具有这种关系.
(三)试探练习,回授调节 1.探究题:如图,填空:
(1)正方形A 的面积= ,
正方形B 的面积= ,
正方形C 的面积 ;
(2)正方形A 、B 、C 的面积具有的关系是: ; (3)中间的直角三角形的三边具有的关系是: . (四)尝试指导,讲授新课
师:通过上面的探索,关于直角三角形三边的关系,同学们能得出一个什么结论呢?
生:……(多让几名同学发表看法,要鼓励学生用自己的语言,哪怕是不十分准确的语言,来表达他们感悟到的东西) (师出示下图)
师:我们可以得出这样的结论:(指准图)如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.
(师出示板书:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2)
师:请大家把这个结论读两遍.(生读)
师:这个结论很重要,也很有用.有了这个结论,已知直角三角形的两边,我们可以求出第三边.下面我们就来看一个例题. (师出示例题)
例 求出下列直角三角形中未知边的长度.
(1) (2)
(师边讲解边板演,解题过程如下) c b
a
125C B A 23
A B C A
B C
解:(1)AB 2=AC 2+BC 2=122+52=169 AB=169=13 (2)AC 2=AB 2-BC 2=32-22=5 AC=5
(五)试探练习,回授调节
2.a ,b 表示直角边,c 表示斜边,填空: (1)已知a=9,b=12,则c= ; (2)已知b=5,c=7,则a= . (六)归纳小结,布置作业
师:本节课我们探索了直角三角形三边的关系,通过探索得出了一个结论.请大家把这个结论再读一遍.(生读)
师:利用这个结论,已知直角三角形的两边可以求出第三边
板书设计
图一 图二
……=大正方形的面积 ……=正方形C 的面积 如果……
……=斜边的平方 ……=斜边的平方 那么a 2+b 2=c
2
例
作业设计
(作业:P 28习题1)
教学反思
c b a。