液压三种调速回路特性比较分析报告
实验四 进口节流调速回路性能实验实验报告
专业班级指导教师
姓名同组人
实验室K1-206实验名称实验四进口节流调速回路性能实验时间
一、实验目的:
通过对节流阀三种调速回路的实验,得出它们的调速特性曲线,并分析比较它们的调速性能
二、实验仪器设备:
本实验在RCYCS-C型智能液压综合实验台上进行,实验部分液压系统原理图如下:
三、实验内容:
1、用节流阀的进油节流调速回路的调速性能
负载压力p7
MPa
负载F
N
行程L
m
时间t
s
速度V
m/s
进油压力p4
MPa
回油压力p5MPa
系统压力p1
MPa
节流阀开口
实验内容:用节流阀的旁路节流调速回路的调速性能
表4-3
调定参数
负载压力p7
MPa
负载F
N
行程L
m
时间t
s
速度V
m/s
进油压力p4
MPa
回油压力p5MPa
系统压力p1
MPa
节流阀开口
实验内容:用调速阀的进油节流调速回路的调速性能
6.在[实验项目选择]栏选中[变负载速度负载/功率特性测试],按[项目运行]键,[AD卡]指示变
为绿色,说明测试系统工作正常;同时弹出一个[开始下次测试]的对话框;
7.鼠标按对话框上的[OK]键,工作缸右行;当达到[测试行程]时,测试数据自动显示在[实验数据
表(VF)]一行内,工作缸左行返回;此时弹出一个[工作缸停止返回]的对话框;
(三)采用节流阀的旁路节流调速回路:
实验方法同上。工作缸无需另外连接节流阀,直接将泵出口油路板上的节流阀作为J1。
恒负载功率特性测试第1步调节Py1为5MPa,Py2为期望的加载压力(建议调为1MPa左右)。由于开大J1阀口,系统压力下降,注意不可降低到小于负载缸压力。
液压控制实验报告
桂林电子科技大学流体传动与控制实验报告实验名称液压元件拆装实验机电工程学院微电子制造工程专业辅导员意见:12001503班第实验小组作者学号同作者辅导员实验时间年月日成绩签名一、实验目的1、进一步理解常用液压泵的结构组成及工作原理。
2、掌握的正确拆卸、装配及安装连接方法。
3、掌握常用液压泵维修的基本方法。
二、实验要求1、实习前认真预习,搞清楚相关液压泵的工作原理,对其结构组成有一个基本的认识。
2、针对不同的液压元件,利用相应工具,严格按照其拆卸、装配步骤进行,严禁违反操作规程进行私自拆卸、装配。
3、实习中弄清楚常用液压泵的结构组成、工作原理及主要零件、组件特殊结构的作用。
三、实验内容在实验老师的指导下,拆解各类液压泵、液压阀,观察、了解各类零件在液压泵中的作用,了解各类液压泵的工作原理,按照规定的步骤装配各类液压泵。
四、实验过程齿轮泵工作原理:在吸油腔,轮齿在啮合点相互从对方齿谷中退出,密封工作空间的有效容积不断增大,完成吸油过程。
在排油腔,轮齿在啮合点相互进入对方齿谷中,密封工作空间的有1-后泵盖 2-滚针轴承 3-泵体 4-前泵盖 5-传动轴 思考题:齿轮泵由哪几部分组成?各密封腔是怎样形成?答:(1)齿轮泵由泵盖、平衡区、前支撑座、齿轮、密封圈、后支承座、进油口、出油口、壳体组成的(2)外啮合齿轮泵壳体中的一对齿轮的各个齿间槽和壳体共同组成了密封工作腔。
2、齿轮泵的密封工作区是指哪一部分?答:吸油区和压油区。
3、图中,a、b、c、d 的作用是什么?答:封油槽d的作用:用来防止泵内油液从泵体一泵盖接合面外泄。
4、齿轮泵的困油现象的原因及消除措施。
答:(1)困油现象:液压油在渐开线齿轮泵运转过程中,常有一部分液压油被封闭在齿轮啮和处的封闭体积区内,因齿间的封闭体积大小随着时间改变,会导致该封闭体积内液体的压力急剧波动变化,这种现象被称作为困油现象。
(2)消除措施:在侧板开设卸荷槽5、该齿轮泵有无配流装置?它是如何完成吸、压油分配的?答:该齿轮没有配流装置,齿轮啮合分开时候吸油,在啮合时候排油,如此往复。
(最新版)液压实验报告范文格式-图文
(最新版)液压实验报告范文格式-图文实训一液压泵拆装液压泵是液压系统中的动力元件,是液压传动系统中的能量转换装置。
它将原动机(电动机或内燃机)输出的机械能转换为工作液体的压力能,为液压系统提供压力油。
液压传动中的液压泵大多是靠密封的工作容积变化而工作的,属容积式泵。
容积式泵液压泵的种类很多,按结构形式分,主要包括各类齿轮泵、叶片泵和柱塞泵三大类。
一、实训目的本实训通过对典型齿轮泵的拆装,加深对齿轮泵结构及其工作原理的认识。
二、实验要求通过CB—B型外啮合齿轮泵结构拆卸和安装实训,了解外啮合齿轮泵的结构,增强对液压元件的感性认识,掌握外啮合齿轮泵的工作原理。
(1)齿轮泵主要零件分析;(2)掌握齿轮泵的拆卸步骤;(3)掌握齿轮泵的组装步骤。
三、实训用工具及材料表1—1CB—B型外啮合齿轮泵拆装实验仪器仪器名称数量仪器名称数量仪器名称数量固定和活动扳手组合螺丝刀各一把一套内卡簧钳铜棒一把一根橡胶锤汽油一把若干内六角扳手一套专用钢套一个液压油若干四、液压泵的工作原理1、CB—B型外啮合齿轮泵工作原理CB—B型外啮合齿轮泵是一种常见的齿轮泵.属于分离三片式结构,结构图如图1所示。
当泵的主动齿轮按顺时针方向旋转时,齿轮泵右侧(吸油腔)的齿轮脱开啮合,齿轮的轮齿退出齿间,使密封容积增大,形成局部真空,这时油箱中的油液在外界大气压的作用下,经吸油管路、吸油腔进入齿间。
随着齿轮的旋转.吸入齿间的油液被带到另一侧,进入压油腔。
当轮齿进入啮合时.使密封容积逐渐减小,齿轮齿间部分的油液被挤出,形成了齿轮泵的压油过程。
齿轮啮合时齿向接触线把吸油腔和压油腔分开,起配油作用。
当齿轮泵的主动齿轮由电动机带动不断旋转时,轮齿脱开啮合的一侧,由于密封容积变大则不断从油箱吸油,使齿轮进入啮合的一侧,由于密封容积减小则不断地排油。
2、cy14—1型轴向柱塞泵工作原理(结构见课本图)当油泵的输入轴通过电机带动旋转时,缸体随之旋转,由于装在缸体中的柱塞的球头部分上的滑靴被回程盘压向斜盘,因此柱塞将随着斜盘的斜面在缸体中作往复运动。
实验报告5:节流调速回路的装调
实验报告5:节流调速回路的装调
一、实验描述
通过对三种节流调速回路的组装和观察,加深对节流调速回路工作原理的理解,能对三种不同节流调速回路——进油路节流调速回路、回油路节流调速回路、旁油路节流调速回路进行性能比较与分析。
二、实验目标
(1)正确选取液压元件;
(2)准确进行元件的连接、回路的组建;
(3)掌握节流调速回路的工作原理;
(4)能够对三种节流调速回路的性能进行比较和分析。
三、实验分析
(1)进口节流调速回路中,经节流阀发热的油液进入液压缸,增大液压缸泄漏。
图1 进口节流调速回路
(2)回油节流调速回路中,回油路有背压力,活塞运动速度平稳。
经节流阀发热的油液排回油箱,对液压缸的泄漏、效率无影响。
图2 回油节流调速回路
(3)旁路节流调速回路中,承载能力随节流口通流面积的增大而减小,低速时承载能力差,调速范围小,速度稳定性受液压泵泄漏的影响,故速度稳定性不如前两种,回路只有节流功率损失,无溢流功率损失,回路效率高于前两种。
图3旁路节流调速回路
四、实验实施
(1)组装节流调速回路;
(2)全部打开溢流阀;
(3)旋紧节流阀;
(4)启动液压泵,调节溢流阀的手柄到一定位置,两个电磁换向阀交替通断电,观察液压缸的往返运动速度;
(4)节流阀调到一定位置(大、中、小),两个电磁换向阀交替通电,观察液压缸的往返速度的变化。
五、实验总结
液压基本回路是为了实现特定的功能而把某些液压元件和管道按一定的方式组合起来的油路结构。
在实验报告中简述液压基本回路——节流调速回路安装调试的步骤及注意事项。
液压传动第8章 调速回路概述
影响因素:①、当q1∕qp↑(或△q↓) → ηc↑ ②、当p1∕pp↑(F↑) → ηc↑
14
2)、当液压缸在变载下工作时: 当AT1不变时,若F↑↓→p1↑↓→q1 ↓↑
∵ P1= p1q1
∴ 当p1= 0 或 p1= pp 时,P1= 0 因此,当p1在0 ~ pp之间变化时,P1有 一最大值,即:
10
(三)、回路速度刚性:活塞运动速度受负 载影响的程度,它是回路对负载变化抗 衡能力的一种说明。
某处的斜率↓→kv↑→机械特性越硬→活塞 运动速度受负载变化的影响↓→活塞在负载下 的运动越平稳。
11
影响kv的因素: 1、当AT1不变时,F↓→kv↑ 2、当F不变时,AT1↓→kv↑ 3、pp↑或A1↑或φ↓→ kv↑ (pp,A1,φ的变化受其它条件的限制)
30
一 、 泵 缸 式 开 式 容 积 调 速 回 路
一 、 泵 缸 式 容 积 调 速 回 路
( ) —
—
1、变量泵
2、安全阀
31
1、回路特点 • 执行元件的运动速度由变量泵的排量来调 节; • 回路中的最大工作压力由溢流阀限定。
2、机械特性 若不考虑液压泵以外元件和管边的泄 漏,则
32
下面按不同的q 值作图,可得一组机 械特性曲线。 由图可知
没有溢流损失,效率 较高 ,速度稳定性比单纯 的容积调速回路好。
回路 的 优缺 点
41
一 、 定 压 式 容 积 节 流 调 速 回 路
42
回路的特点
1、这种回路使用了限压式变量叶片泵和调 速阀; 2、活塞运动速度v由调速阀中节流阀的通 流截面积A T来控制; 3、变量泵输出的流量qp和进入缸中的流量 q1自相适应: • 当qp ﹥ q1时→泵的供油压力↑→变量泵 的流量自动↓→ qp≈ q1;
液压系统节流调速回路性能实验
• 实验学时:2学时 • 实验类型:综合性实验 • 实验要求:必修
一、实验目的
1、了解节流调速回路的组成及调速原理。 2、掌握变负载工况下采用节流阀的进油路节流调速回路的速度负载特性; 2、测试采用节流阀的回油路节流调速回路的速度负载特性; 3、测试采用节流阀的旁油路节流调速回路的速度负载特性;
四、实验组织运行要求
根据本实验的特点、要求和具体条件,采 用集中授课的教学模式。
五、实验条件
RCYCS-C智能型液压综合实验台5台
六、思考题
1、根据实验结果分析比较三种节流调速回路的特点。 2、采用调速阀的进油路节流调速和节流阀的进油路节 流调速时,其速度负载特性曲线有何不同?
七、实验报告
1、实验前认真阅读实验指导书及教材上相应得理论知识。 2、实验数据记录。 3、将速度负载特性曲线绘制在实验报告的“实验总结” 栏中,将思考题解答填写在实验报告的“实验总结”栏中。
三、实验原理及方法
3.1 实验原理 3.1.1 变负载速度-负载特性的测试 3.1.2 实验软件功能
软件的操作功能:显示液压原理图、变负载速度-负载 特性和功率特性的测试、恒负载功率特性的测试、实验结果 表显示、变负载实验曲线显示、恒负载实验曲线显示、变负 载输出实验报告(HTML 格式)、恒负载输出实验报告( HTML 格式)、删除实验记录、实验结果图查询、实验结果 表查询等。实验软件界面如图3-2所示:
(6) 在[实验项目选择]栏选中[变负载速度负载/功率特性测 试],按[项目运行]键; (7) 鼠标按对话框上的[OK]键,工作缸右行; (8) 当工作缸左行至末端,鼠标按对话框上的[OK]键,该测 压点测试结束,同时又弹出一个[开始下次测试]的对话框; (9) 调整 Py1 至下一个加压点,重复 1.7-1.8 操作,直至测试 全部完成。
心得体会 液压基本回路实验心得体会
液压基本回路实验心得体会液压基本回路实验心得体会实验日期:年月日班级:姓名:.典型液压回路实验报告一、调速回路实验实验数据1(差动连接):实验数据2(普通连接):液压缸伸出和返回曲线:实验总结:结合实验,说明在差动连接和普通连接情况下液压缸伸出速度不同的原因。
二、压力回路实验实验总结:根据所做的实验,对图3、4在调定参数下,分析液压缸伸出缩回速度不同的原因;对图5分析液控单向阀的启闭过程及应用场合。
三、顺序动作回路实验实验总结:据所做的实验,对图6分析液压缸顺序动作次序及起作用的元件;对图7分析液压缸顺序动作次序、压力继电器所控制的元件及电磁阀通断电关系;对图8分析液压缸顺序动作次序及电磁阀通断电动作循环表。
第二篇、简单液压回路实验报告液压基本回路实验心得体会第三篇、实验1液压基本回路液压基本回路实验心得体会实验一液压基本回路一、实验目的:了解各类液压基本回路的组成,学会采用FluidSIM软件构建简单的液压基本回路,并仿真回路运行,对液压回路进行调试。
通过本实验达到如下目的:1.熟悉掌握各种液压基本回路的构成及其工作原理。
2.学会利用FluidSIM软件构建简单的液压基本回路,并仿真回路运行,对液压回路进行调试。
3.完成二位三通电磁阀单作用缸的换向回路、单级减压回路、用调速阀的同步回路。
二、实验内容:(一)实际液压回路——单活塞杆双作用液压缸的双向运动的控制(1)调试下面液压系统并绘制该系统的液压回路图(2)利用FluidSIM软件仿真该液压回路并调试该回路二)实际液压回路——单活塞杆双作用液压缸的调速回路的控制(1)调试下面液压系统并绘制该系统的液压回路图(2)利用FluidSIM软件仿真该液压回路并调试该回路三、实验数据记录及处理:一)用FluidSIM软件构建简单的液压基本回路。
二)调试液压回路图,写出其回路工作原理。
三)记录各元件压力、流量等参数以及,并计算校验回路相关参数。
四)实验内容分析与讨论。
节流调速回路性能实验
实验四节流调速回路性能实验一、实验目的1、通过实验熟练掌握液压系统中广泛采用的速度控制回路:节流调速回路的组成;2、通过实验得出节流阀三种调速方式的调速回路特性曲线,深入理解节流阀三种调速方式的调速性能,分析与比较它们的调速特性;3、通过对节流阀和调速阀进口节流调速回路的对比实验,分析与比较它们的调速性能。
二、实验内容1、采用节流阀的进油节流调速系统2、采用节流阀的回油节流调速系统3、采用节流阀的旁路节流调速系统4、采用调速阀的进油节流调速系统三、实验设备QCS003B型液压实验台 1台QCS014型可拆装式液压教学实验台 1台四、实验步骤(一)节流阀的进油节流调速回路1、实验装置调整:(1)加载系统调整:关闭节流阀10,启动液压泵8,调节溢流阀9,使系统压力小于0.5MPa,通过三位四通电磁阀12的切换,使加载缸往复运动3~5次,排出系统内的空气,然后使之处于退回位置。
(2)调速回路调整:将调速阀4、旁路节流阀7、回油节流阀6全闭,将进油节流阀5全开,启动液压泵1,调节溢流阀2,使系统压力低于0.5MPa,使电磁换向阀3的P、A口接通,慢慢调节节流阀5的开度,使工作缸的运动速度适中,反复切换电磁阀3,使工作缸活塞往复运动,检查系统是否正常工作。
(二)节流阀的回油节流调速回路1、实验装置调整:(1)加载系统调整同上;(2)调速回路调整:在电磁换向阀处于中位情况下,将调速阀、节流阀7全关,进油节流阀5全开,使电磁换向阀3的P、A口接通,调节回油节流阀6的开度A,使工作缸的运动速度适中,其余做法同上。
2、3、4各步同上。
(三)节流阀的旁路节流调速回路1、实验装置调整:(1)加载系统调整同上;(2)调速回路调整:在电磁换向阀处于中位情况下,将调速阀全关,进油节流阀5、回油节流阀6全开,使电磁换向阀3的P、A口接通,调节旁路节流阀7的开度A,使工作缸的运动速度适中,其余做法同上。
2、3、4各步同上。
(四)调速阀的进油节流调速回路1、实验装置调整:(1)加载系统调整,同上;(2)调速回路调整:在电磁换向阀处于中位情况下,将回油节流阀6全开,进油节流阀5、旁路节流阀7全关,使电磁换向阀3的P、A口接通,调节调速阀4的开度A,使工作缸的运动速度适中,其余做法同上。
液压气动多种回路实验报告
液压气动多种回路实验报告液压气动多种回路实验报告桂林电子科技大学实验报告辅导有意见:实验名称气动多种回路实验机电工程学院系机械设计及其自动化专业班第实验小组作者学号同作者辅导员实验时间年月日成绩签名实验三气动多种回路实验一、实验目的及要求:自行设计气动回路,通过动手联接,掌握设计图联接成气动回路的方法。
了解气动回路的操作要求。
根据设计图联成的气动回路,要求能够实现动作,采用PLC 控制的,要求能实现自动循环动作。
二、实验装置:气动装拆实验台:1、气动元件的装拆板气动元件可通过香蕉插头快速拆装2、电路板快速拆装板本电路板是个拆装式多功能线路板,它的特点是版面上各元件都是单个独立的,使用者可根据自己所设计的要求,在电路板上通过香蕉插头任意组合各种回路。
由于板面上元件都焊接在电路板上,各元件间通过香蕉插头联结,所以接触可靠、调试及检查都及为方便。
节点处与PLC联结,例:孔X16对应PLC的X16,孔Y对应PLC的Y0。
快速拆装电路板香蕉插头三、气动元件:气缸1、CDM2B20-50型3个电缸1个2、L-CM2B20-50S型1个双向限流器2个3、L-CM2H20-200型1个ASFG系列汽缸限流器8个4、CDU20-50D型(带磁性开关)1个磁性开关4个5、ZCDUKD10-20D型(带磁性开关)1个真空吸盘(小)1个6、CCT40-100型2个延时阀VR2110型3个减压阀、电磁换向阀、气控换向阀、机械换向阀、手动换向阀、逻辑阀、快速排气阀、节流阀等等。
四、电器控制原理图:五、气动简介和用途:流体动力系统是通用压力油或压缩气体来传送和控制能量的一种系统。
在气动中,这种能源的介质通常就是空气,把大气中的空气的体积加以压缩,从而提高它的压力。
压缩空气主要是通过作用与活塞来作功。
这种能量可用于工业上许多方面,这里我们考虑于工业气动的范围。
正确使用气动控制,要求充分熟悉气动元件和确保气动元件使用到有效工作系统中元件的功能。
节流调速性能实验
节流调速性能实验一、实验目的机械设备的液压系统中,调速回路占有重要的位置,尤其对于运动速度要求较高的的机械设备,调速回路往往起着决定性的作用,在调速回路中,节流调速回路结构简单,成本低,使用维护方便,是一种常用的调速方法。
节流调速回路是由定量泵,流量控制阀,溢流阀和执行元件等组成,通过改变流量控制阀阀口的开度,改变进入执行元件的流量,达到调节元件的目的,常用流量控制阀有节流阀和调速阀两种,视其在回路中安放位置不同,有进油路节流调速,回油路节流调速和旁油路节流调速。
通过本实验主要达到以下目的:1、分析、比较采用节流阀的进油路节流调速回路中,节流阀具有不同的阀口开度时速度负载特性;2、分析、比较采用节流阀分析、比较的进、回、旁三种调速回路的速度负载特性;3、分析、比较节流阀和调速阀的调速特性;4、进一步加深对调速回路的理解、掌握有关的实验方法。
二、实验内容1、测试采用节流阀的进油路节流调速回路的速度负载特性;2、测试采用节流阀的回油路节流调速回路的速度负载特性;3、测试采用节流阀的旁油路节流调速回路的速度负载特性;4、测试采用调速阀的进油路节流调速回路的速度负载特性。
三、实验装置QCS003B型液压试验台四、实验方法及原理实验原理图如图2-5所示。
图2-5中左半部为调速回路,右半部为加载回路。
在加载回路中液压油进入加载缸18右腔时,由于加载缸活塞杆与调速回路中液压缸17的活塞杆将处于同心对顶,且缸筒都固定在工作台上,因此工作缸17的活塞杆受到一向右的作用力F L(即为负载),调节溢流阀9就可以改变F L的大小。
在调速回路中,工作液压缸17的活塞杆的工作速度v与节流阀的通流截面,溢流阀的调定压力(泵1的供油压力)及负载F L有关。
而在一次工作过程中,前二项参数都预先调定不再变化,此时活塞杆运动速度v只与负载F L有关,活塞杆工作速度v与负载F L之间的关系,称为节流调速回路的速度负载特性。
当节流阀通流截面和调定压力确定后,改变负载F L的大小,同时测出相应的工作液压缸活塞杆速度v,就可测出一条速度负载特性曲线。
液压系统设计--容积调速回路分析
例4-2在图所示回路中,已知: 定量泵1的排量: V p = 13 ×10 6 m3 / rad 定量泵1的转速: n p = 157rad / s 定量泵1的机械效率: η pm = 84% 定量泵1的容积效率: η pv = 90% 变量马达3的最大排量: Vm max = 10 ×10 6 m3 / rad 变量马达3的容积效率: η mv = 90% 变量马达3的机械效率: η mm = 84% 高压侧管路压力损失: P = 1.3MPa = const 回路的最高工作压力: P0 = 13.5MPa 溢流阀4的调定压力: Pr = 0.5MPa 变量马达驱动一个转矩: T = 34 N m 试确定: 1)变量马达的最低转速和在该转速下液压马达的进出口压力差。 2)变量马达的最大转速和在该转速下液压马达的调节参数。 3)回路的最大输出功率和调速范围。
Tm = Vm pmη mm = Vm max xm pmη mm = K m3 xm
K m3 = Vm maxpmηmm = const
Pm = n m Tm = K n 3η pvη mv = K N 3η pvη mv x p
K
N 3
xp xm
K m 3 xm
= K n 3 K m 3 = const
容积- 容积-节流调速回路
这种回路宜用在负载变化 不大的中、 不大的中、小功率场合
回路宜用在负载变化大, 回路宜用在负载变化大,速度 较低的中、 较低的中、小功率场合
(三)容积节流调速回路
容积节流调速回路是采用特定的变量泵 和调速阀组成, 和调速阀组成,它兼有节流调速回路和容积 调速回路的优点。无溢流损失、效率较高、 调速回路的优点。无溢流损失、效率较高、 低速稳定性好、调节方便, 低速稳定性好、调节方便,广泛应用于机床 液压系统。 液压系统。
液压基本回路速度回路
比例阀的优势和不足
优势
• 控制精度高 • 响应速度快 • 适应性强 • 运作稳定
不足
• 价格昂贵 • 维护成本高 • 需要外部信号控制
伺服阀的种类和优势
伺服液压阀 使用液体做为工作介质 适用于大流量,大功率情况 精度较低
电液伺服阀 与电子技术有机结合 适用于小流量,小功率情况 精度较高
1 响应速度快
速度回路的基本组成元件
溢流阀
控制回路流量,确保压力稳定和安全性
比例阀
可以根据信号输入精确控制回路的流量和速度
流量控制阀
可以对回路的流量进行精确的控制
伺服阀
可以通过感应器感知外部环境并调整工作状态
流量控制阀的种类及特点
1
节流阀
通过缩小液流通道实现控制流量
电磁阀
2
通过电磁控制实现流量控制,具有快速
响应的特点
溢流阀用于保持回路压力稳定和保护液压系统。当回路压力达到设定值时,多余的液体会从溢流阀放出保护系 统。
比例阀的分类和应用
工业领域
比例阀被广泛应用于机床、服务 机器人等各种设备中。
能源领域
风力液压传动系统中可以使用比 例阀进行精确控制。
救援领域
比例阀在消防车等救援设备中发 挥着重要作用,如控制水泵流量 等。
3 可以适应不同的工作场景
速度回路可以灵活配置来满足不同的需求, 比如扭矩保持、定位操作等等。
4 可以减少设备维护和成本
速度回路可以帮助提升工作效率,减少能量 消耗,降低维护成本。
速度回路的分类及应用
工业领域
速度回路被广泛应用于机床、冲 压机、注塑成型机器等各种设备 中。
交通运输
高速列车和飞机等交通工具上引 入了速度回路技术,以提高动力 性能。
液压三种调速回路特性比较分析报告
液压三种调速回路特性分析报告学院:机械工程学院班级:机师1111姓名:***学号:***********液压三种调速回路特性分析报告下面分析三种调速回路为什么在速度稳定性、承载能力、调速范围、功率特性、适用范围等特性方面不同。
三种调速回路特性比较1、首先分析比较进出油回路与旁油回路在速度稳定性、承载能力、调速范围、功率特性、适用范围等方面的区别:(1)进油节流调速回路:液压缸动作后,活塞杆缓慢动作,逐渐调大通流面积可以观察到活塞杆运动速度增大;在运行过程中,可以看到活塞杆动作时快时慢,这个是由于进油口有节流阀限制流量,而在回油口又没有背压阀的原因,所以运动平稳性差;通常在刚启动时由于有节流阀串联在进油口,所以启动冲击小;另外多余的油液被溢出,所以工作效率低。
在本回路中,工作部件的运动速度随外负载的增减而忽快忽慢,难以得到准确的速度,故适用于轻负载或负载变化不大,以及速度不高的场合。
(2)回油节流调速回路:节流阀在回油路中,所以这种回路多用在功率不大,但载荷变化较大,运动平稳性要求较高的液压系统中,如磨削和精镗的组合机床等。
(3)旁路节流调速回路:与前两种回路的调速方法不同,它的节流阀和执行元件是并联关系,节流阀开的越大,活塞杆运行越慢。
这种回路适用于负载变化小,对运动平稳性要求不高的高速大功率的场合,例如牛头刨床的主传动系统,有时候也可用在随着负载增大,要求进给速度自动减小的场合。
2、分析比较用节流阀和用调速阀在速度稳定性、承载能力、调速范围、功率特性、适用范围等方面的区别:由于调速阀本身能在负载变化的变件下保证节流阀进、出油口间压差基本不变,通过的流量也基本不变,因而回路的速度-负载性将得到改善,旁路节流调速回路的承载能力也不会因活塞速度降低而减小。
调速阀节流调速回路的速度-负载特性曲线如图7-6所示3、分析比较限压式和稳流式容积节流调速回路在速度稳定性、承载能力、调速范围、功率特性、适用范围等方面的区别:(1)限压式容积节流调速回路变量泵输出的流量P q 和进入液压缸的流量1q 相适应。
液压气动技术实验报告
《液压气动技术》实验报告分校名称:松江学生班级: 10秋学生学号: 108071282学生姓名:高亦超上海远程教育集团上海电视大学信息与工程系2010.12实验一:节流调速性能试验实验目的:1.分析、比较采用节流阀的进油路调速回路中,节流阀具有不同通流面积时的速度负载特性;2.分析、比较采用节流阀的进、回、旁三种调速回路的速度负载特性;3.分析、比较节流阀、调速阀的调速性能。
实验内容:1、采用节流阀的进油路调速回路2、采用节流阀的回油路调速回路3、采用节流阀的旁油路调速回路4、采用调速阀的进油路调速回路实验要求:1、根据要求完成节流调速回路的调试2、以上4个实验任选两个完成实验报告一、进油路节流调速回路性能实验1、实验步骤:1,全部打开溢流阀B,并将电磁阀B置于中位,启动液压泵B;2,调节溢流阀B的旋钮,使压力等于0.5;3,转换电磁阀B的控制旋钮,使电磁阀B左右切换,排回路中的空气;4,使活塞杆B处于退回位置;5,全部打开溢流阀A,适当调节节流阀,并将电磁阀A置于中位,启动泵A;6,调节溢流阀A的旋钮,使压力等于0.5;7,转换电磁阀A的控制旋钮,使电磁阀A左右切换,排回路中的空气;8,使活塞杆A处于退回位置;9,用溢流阀A调节工作缸的工作压力等于4;10,调节节流阀的通流截面积a,使工作缸的活塞运动速度等于(大口:90mm/S, 中口:60mm/S, 小口:30mm/S)2,进行测试:1,工作缸活塞杆处于退回位置,加载缸活塞杆向前伸出,两活塞杆对顶;1、用溢流阀B调节加载缸的工作压力,分别测出工作缸的活塞运动速度V,负载Fl应加到工作缸活塞不运动为止。
节流阀的通流截面积a的选择:2、负载FL= PB2×A1的选择:PB2--0.5、1.0、1.5、2.0、2.5、3.0、3.5(MPa)(A=π/4×D2,D=50mm)3、PA3—4.0(MPa)3,关闭电源方可退出本实验.4, 实验数据及结论1234567 PB(MPA)0.5 1.0 1.5 2.0 2.5 3.0 3.5 FL(N)981.251962.52943.7539254906.255887.56868.75S=200mmt(S)V(mm/s)a1t 6.677.197.698.6710.5012.2615.37 v29.527.826.023.119.016.3113.0 a2t 3.52 3.73 3.99 4.50 5.45 6.378.62 v56.853.650.144.436.731.4823.2a3t 2.61 2.77 3.06 3.55 3.97 4.59 6.49 v76.772.265.456.350.443.630.8二、回油路节流调速回路性能实验1,实验步骤:1,全部打开溢流阀B,并将电磁阀B置于中位,启动液压泵B;2,调节溢流阀B的旋钮,使压力等于0.5;3,转换电磁阀B的控制旋钮,使电磁阀B左右切换,排回路中的空气;4,使活塞杆B处于退回位置;5,全部打开溢流阀A,适当调节节流阀,并将电磁阀A置于中位,启动泵A;6,调节溢流阀A的旋钮,使压力等于0.5;7,转换电磁阀A的控制旋钮,使电磁阀A左右切换,排回路中的空气;8,使活塞杆A处于退回位置;9,用溢流阀A调节工作缸的工作压力等于4;10,调节节流阀的通流截面积a,使工作缸的活塞运动速度适中(60mm/S,)2,进行测试:2,工作缸活塞杆处于退回位置,加载缸活塞杆向前伸出,两活塞杆对顶;4、用溢流阀B调节加载缸的工作压力,分别测出工作缸的活塞运动速度V,负载应加到工作缸活塞不运动为止。
调速回路比较
较大,但最低速度大于进口 节流 较好 能 有冲击
由于低速时稳定性差,承载 能力小,故调速范围小 最差 不能 有冲击
表 2 三种容积调速比较 性能 变量泵-定量执行机构 调速原理 , 调速方式 定量泵-变量执行机构 变量泵-变量执行机构 分两阶段分析
速度刚度
同左
同左
速度-负载特性
1)与负载大小无关 2) 增大活塞有效工作面和减 少泵(马达)泄露可提高 速度刚度 最大承载力由安全阀调定压 力决定,恒推力(转矩) 最大输出功率随速度(流 量)的上升而线性增加 较大
1)负载增加,速度下降 2)增大活塞有效工作面和 减少泵(马达)泄露可提 高速度刚度 输出转矩随液压马达排量 的增减而增减 1) 不考虑效率:恒功率 2) 排量减小,效率降低, 功率降低 很小,一般为 4
分两阶段分析
承载特性 输出功率特性
分两阶段分析 分两阶段分析
调速范围
最大
主油缸
顶件缸 增压缸
压边缸
调速阀
调压阀
速度刚度
速度负载一定,速度越 小刚性越好) 1) 增大活塞有效工作面和 供油压力可提高速度刚 度 最大承载力由溢流阀调定 压力决定,恒推力 1) 系统功率消耗与速度、 负载无关 2) 有效功率低速小负载时 低 较大 较差 不能 无冲击
表 1 三种节流调速回路的比较 性能 进口节流 调速原理 调速方式 出口节流 旁路节流
q ka F v 1 ( pb ) m A1 A1 A1
q ka p1 A1 F m v 2 ( ) A2 A2 A2
同进口节流
q q q CAT pP v P T P A1 A1
同进口节流
1) 高速大负载时速度刚性 好(速度一定,负载越大 刚性越好;负载一定,速 度越大刚性越好) 2) 增大活塞有效工作面可 提高速度刚度 最大承载能力随速度降低而 减小 1) 系统功率与负载成正比 2) 有效功率高速时高
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液压三种调速回路特性分析报告学院:机械工程学院班级:机师1111姓名:***学号:***********液压三种调速回路特性分析报告下面分析三种调速回路为什么在速度稳定性、承载能力、调速范围、功率特性、适用范围等特性方面不同。
三种调速回路特性比较1、首先分析比较进出油回路与旁油回路在速度稳定性、承载能力、调速范围、功率特性、适用范围等方面的区别:(1)进油节流调速回路:液压缸动作后,活塞杆缓慢动作,逐渐调大通流面积可以观察到活塞杆运动速度增大;在运行过程中,可以看到活塞杆动作时快时慢,这个是由于进油口有节流阀限制流量,而在回油口又没有背压阀的原因,所以运动平稳性差;通常在刚启动时由于有节流阀串联在进油口,所以启动冲击小;另外多余的油液被溢出,所以工作效率低。
在本回路中,工作部件的运动速度随外负载的增减而忽快忽慢,难以得到准确的速度,故适用于轻负载或负载变化不大,以及速度不高的场合。
(2)回油节流调速回路:节流阀在回油路中,所以这种回路多用在功率不大,但载荷变化较大,运动平稳性要求较高的液压系统中,如磨削和精镗的组合机床等。
(3)旁路节流调速回路:与前两种回路的调速方法不同,它的节流阀和执行元件是并联关系,节流阀开的越大,活塞杆运行越慢。
这种回路适用于负载变化小,对运动平稳性要求不高的高速大功率的场合,例如牛头刨床的主传动系统,有时候也可用在随着负载增大,要求进给速度自动减小的场合。
2、分析比较用节流阀和用调速阀在速度稳定性、承载能力、调速范围、功率特性、适用范围等方面的区别:由于调速阀本身能在负载变化的变件下保证节流阀进、出油口间压差基本不变,通过的流量也基本不变,因而回路的速度-负载性将得到改善,旁路节流调速回路的承载能力也不会因活塞速度降低而减小。
调速阀节流调速回路的速度-负载特性曲线如图7-6所示3、分析比较限压式和稳流式容积节流调速回路在速度稳定性、承载能力、调速范围、功率特性、适用范围等方面的区别:(1)限压式容积节流调速回路变量泵输出的流量P q 和进入液压缸的流量1q 相适应。
当1P q q >时,泵的供油压力P q 上升,使限压式变量泵的流量自动减少到1P q q ≈;反之,当1P q q <时,泵的供油压力P q 下降,该泵又会自动使1P q q =。
可见调速阀在回路中的作用不仅是使进入液压缸的流量保持恒定,而且还使泵的供油量和供油压力基本上保持不变,从而变量泵和进入液压缸的流量匹配。
这种容积节流调速回路的速度刚性、运动平稳性、承载能力及调速范围都和调速阀节流调速回路相同。
(2)稳流式容积节流调速回路由节流阀控制进入液压缸的流量1q ,并使变量泵输出的流量p q 自动和1q 相适应。
当1p q q >时,泵的供油压力上升,定子在左右两侧控制柱塞的作用下向右移动,减小泵的偏心量,使液压泵输出的流量减小到1p q q =。
反之,当1p q q <时,泵的供油压力下降,加大泵的偏心量,使泵输出的流量增大到1p q q =。
输入液压缸的流量基本上不受负载变化的影响,因此,回路的速度刚性、运动平稳性和图7-6 调速阀式节流调速回路承载能力与限压式变量泵和调速阀组成的调速回路相似。
此外,回路因能补偿由负载变化引起的泵泄漏量的变化,它在低速小流量场合下使用显得更优越。
容积节流调速回路不但没有溢流损失,而且泵的供油压力随负载而变化,回路中的功率损失只有节流阀压降造成的节流损失一项,因此发热少,效率高。
这种回路的效率表达式为 1111P P p q p p q p pη==+∆ 这种回路适用于负载变化大,速度较低的中、小功率场合。
4、分析比较节流调速回路、容积调速回路、容积节流调速回路 在速度稳定性、承载能力、调速范围、功率特性、适用范围等方面的区别:节流调速回路:节流调速回路是通过调节流量阀的通流截面积大小来改变进行执行机构的流量,从而实现运动速度的调节。
调速范围较小,速度稳定性和承载能力较差,进出油调速回路效率较低发热较大,旁路调速回路效率较高发热较小,适用于小功率、轻载的中、低压系统。
容积调速回路:调节变量泵和变量马达均可调节液压马达的转速,所以这种回路的工作特性是上述两种回路工作特性的综合。
其理想情况下的特性曲线如图所示。
这种回路的调速范围很大,等于泵的调速范围和马达调速范围的乘积。
这种回路适用于大功率的液压系统。
容积节流调速回路:由节流阀控制进入液压缸的流量1q ,并使变量泵输出的流量p q 自动和1q 相适应。
当1p q q >时,泵的供油压力上升,定子在左右两侧控制柱塞的作用下向右移动,减小泵的偏心量,使液压泵输出的流量减小到1p q q =。
反之,当1p q q <时,泵的供油压力下降,加大泵的偏心量,使泵输出的流量增大到1p q q =。
输入液压缸的流量基本上不受负载变化的影响,因此,回路的速度刚性、运动平稳性和承载能力与限压式变量泵和调速阀组成的调速回路相似。
此外,回路因能补偿由负载变化引起的泵泄漏量的变化,它在低速小流量场合下使用显得更优越。
容积节流调速回路不但没有溢流损失,而且泵的供油压力随负载而变化,回路中的功率损失只有节流阀压降造成的节流损失一项,因此发热少,效率高。
这种回路适用于负载变化大,速度较低的中、小功率场合。
7.2速度控制回路功能分析速度控制回路是对液压系统中执行元件的运动速度和速度切换实现控制的回路。
速度控制回路分类 调速、快速、换速回路7.2.1调速回路调速回路调速原理液压缸: v q A = 液压马达:m n q V =,由此可知: 改变q 、m V 、A ,皆可改变v 或n ,一般A 是不可改变的。
液压缸:改变q ,即可改变v 液压马达:既可改变q ,又可改变m V 调速回路主要有以下三种方式:(1)节流调速回路:用定量泵供油,改变q 。
(2)容积调速回路:改变变量泵或)改变变量马达的m V 。
(3)容积节流调速回路:即可改变q ,又可改变m V 。
对调速的要求:范围大、稳定性好、效率高。
1.节流调速回路◆按采用流量阀不同分为:节流阀节流调速,调速阀节流调速。
◆按流量阀安装位置不同分为:进油路节流调速、回油路节流调速、旁路节流调速。
(1)进口节流阀式节流调速回路:①速度—负载特性调速回路的速度—负载特性,也称机械特性。
液压缸在稳定工作时,其受力平衡方程式为:A p F A p 21+= 式中:1p ——液压缸进油腔压力; 2p ——液压缸回油腔压力;F ——液压缸的负载; A ——液压缸有效工作面积。
由于回油腔通油箱,2p 视为零,则有 AFp =1进油路节流调速回路设液压泵的供油压力为p p ,则节流阀进出口的压差为:1P P Fp p p p A∆=-=- 由小孔流量公式知,流经节流阀进入液压缸的流量为:1()T P F q CA p Aϕ=- 式中:C ——节流阀系数,视为常数;T A ——节流阀过流截面积; ϕ——节流阀指数。
故液压缸的运动速度为: 1T p q A F v C p A A A ϕ⎛⎫==-⎪ ⎭⎝上式为进口节流调速回路的速度负载特性方程。
分析:v 与A ,F 有关。
◆当负载F 恒定时, v 与T A 成正比,调节T A 可实现无级调速,且调速范围较大(速度比 minmaxv v =λ 可达100)。
◆当TA 调定后,v 随负载F 增大而减小。
当p F p A =时,v =0。
此时,10P p p p ∆=-=。
◆速度负载特性曲线T A ↑→曲线越陡,特性越软;L F ↑→曲线越陡,特性越软;②功率特性该调速回路的输入功率,即液压泵输出功率p p p P p q ==常数 该调速回路的输出功率,即液压缸的输入功率111P p q = 回路的功率1111 P P P P P P P p q p q p q pq ∆=-=-=∆+∆式中:P q ——液压泵供油流量; q ∆ ——溢流阀溢流量。
这种调速回路的功率损失由两部分组成,即溢流损失p p q ∆和节流损失1pq ∆。
回路效率为: 111p p pP p q P p q η==回油节流阀式节流调速回路由上可知,节流阀进口节流调速回路适用于轻载、低速、负载变化不大和对速度稳定性要求不高的小功率液压系统。
(2)出口节流阀式节流调速回路它是将节流阀放置在回油路上,用它来控制从液压缸回油腔流出的流量,也就控制了进入液压缸的流量,达到调速的目的。
回油节流阀式节流调速回路的静态特性与进口节流阀式节流调速回路完全相同,不再赘述。
◆回油节流与进由节流比较速度负载特性相同回油节流20p p=∆≠,能承受负值负载,速度平稳性好;并且流经节流阀而发热的油液,可直接流回油箱冷却。
进油节流,液压缸运动到终端停止,进油压力上升,可用压力继电器,易于控制单杆缸无杆腔进油,进油节流低速时TA大,速度稳定性较好。
(3)旁路节流阀式节流调速回路旁路节流阀式节流调速回路如图7-4所示。
它是将节流阀安放在与执行元件并联的支路上,用它来调节从支路流回油箱的流量,以控制进入液压缸的流量来达到调速的日的。
回路中溢流阀起安全阀作用,泵的工作压力不是恒定的,它随负载发生变化。
①速度-负载特性旁路节流调速回路的速度-负载特性方程为:旁路节流调速回路旁路节流调速速度负载特性曲线1()() t T t F F q k CA q A A v A Aϕ--== 式中:t q ——泵的理论流量; 1k ——泵的泄漏系数。
特性曲线分析TA 越大,曲线越陡,特性越软;LF 越大,曲线越平缓,特性越硬;最大承载能力,TA 越小,maxL F 越大当负载F 恒定时,v 随T A 的增大而减小,当T A 调定后,v 随负载的增大而减小。
②最大承载能力旁路节流调速回路的最大承载能力随节流阀开口面积T A 的增大而减小,即该回路低速时承载能力很差,调速范围也小。
③功率特性旁路节流调速回路无溢流损失1p ∆,有节流损失2p ∆,回路效率η较进油。
回油回路的效率高适用于高速、重载且对速度平稳性要求不高的较大功率的液压系统。
④调速范围这种调速回路的调速范围不仅与节流阀的调速范围有关,而且还与负载、液压缸的泄露有关。
因此其数值要比进口、出口节流阀式调速回路的调速范围要小。
(4)采用调速阀的节流调速回路由于调速阀本身能在负载变化的变件下保证节流阀进、出油口间压差基本不变,通过的流量也基本不变,因而回路的速度-负载性将得到改善,旁路节流调速回路的承载能力也不会因活塞速度降低而减小。
调速阀节流调速回路的速度-负载特性曲线如图7-6所图7-6 调速阀式节流调速回路2.容积调速回路:容积式调速回路是通过改变变量泵或变量马达的排量来调节执行元件的运行速度。