高考物理压轴题30道
高三物理各地最新试卷之压轴题(20题)

各地最新试卷之压轴题〔20题5月15以后〕1.如下列图,轻绳绕过轻滑轮连接着边长为L 的正方形导线框A 1和物块A 2,线框A 1的电阻为R ,质量为M ,物块A 2的质量为m 〔M>m 〕,两匀强磁场区域I 、II 的高度也为L ,磁感应强度均为B ,方向水平与线框平面垂直。
线框ab 边距磁场边界高度为h 。
开始时各段绳都处于伸直状态,把它们由静止释放,ab 边刚穿过两磁场的分界限CC /进入磁场II 时线框做匀速运动。
求:〔1〕ab 边刚进入磁场I 时线框A 1的速度v 1;〔2〕ab 边进入磁场II 后线框A 1所受重力的功率P ; 〔3〕从ab 边刚进入磁场II 到ab 边刚穿出磁场II 的过程中,线框中产生的焦耳热Q .答案:〔1〕由机械守恒:21)(21v m M mgh Mgh +=-① 〔3分〕解得:mM ghm M v +-=)(21② 〔1分〕〔2〕设线框ab 边进入磁场II 时速度为2v ,如此线框中产生的电动势:22BLv E =③ 〔2分〕线框中的电流RBLv R E I 22==④ 〔2分〕 线框受到的安培力Rv L B IBL F 22242==⑤ 〔2分〕设绳对A 1、A 2的拉力大小为T 如此: 对A 1:T+F=Mg ⑥ 〔1分〕 对A 2:T=mg ⑦ 〔1分〕联立⑤⑥⑦解得:2224)(L B Rgm M v -=⑧〔3分〕22224)(L B Rg m M M Mgv P -==⑨〔1分〕2A 1A a b hB BⅠ Ⅱ C /C〔3〕从ab 边刚进入磁场II 到ab 边刚穿出磁场II 的此过程中线框一直做匀速运动,根据能量守恒得:gL m M Q )(-=⑩ 〔3分〕2.〔18分〕如下列图,质量M =0.40 kg 的靶盒A 位于光滑水平导轨上,开始时静止在O 点,在O 点右侧有范围很广的“相互作用区域〞,如图中的虚线区域.当靶盒A 进入相互作用区域时便有向左的水平恒力F =20 N 作用.在P 处有一固定的发射器B ,它可根据需要瞄准靶盒每次发射一颗水平速度v 0=50 m/s 、质量m =0.10 kg 的子弹,当子弹打入靶盒A 后,便留在盒内,碰撞时间极短.假设每当靶盒A 停在或到达O 点时,就有一颗子弹进入靶盒A 内.求:〔1〕当第一颗子弹进入靶盒A 后,靶盒A 离开O 点的最大距离;〔2〕当第三颗子弹进入靶盒A 后,靶盒A 从离开O 点到又回到O 点所经历的时间; 〔3〕当第100颗子弹进入靶盒时,靶盒已经在相互作用区中运动的时间总和. 答案:〔1〕设第一颗子弹进入靶盒A 后,子弹与靶盒的共同速度为v 1.根据碰撞过程系统动量守恒,有:mv 0=(m+M)v 1〔2分〕设A 离开O 点的最大距离为s 1,由动能定理有:-Fs 1=0-21(m+M)v 12〔2分〕 解得:s 1=1.25 m.〔2分〕〔2〕根据题意,A 在的恒力F 的作用返回O 点时第二颗子弹正好打入,由于A 的动量与第二颗子弹动量大小一样、方向相反,故第二颗子弹打入后,A 将静止在O 点.设第三颗子弹打入A 后,它们的共同速度为v 3,由系统动量守恒得:mv 0=(3m+M)v 3〔2分〕设A 从离开O 点到又回到O 点所经历的时间为t ,取碰后A 运动的方向为正方向,由动量定理得:-F2t=0-(3m+M)v 3〔2分〕 解得:t=0.5 s.〔2分〕〔3〕由〔2〕问可知,第1、3、5、…、〔2n+1〕颗子弹打入A 后,A 运动时间均为t=0.5s 〔3分〕故总时间t 总=50t=25 s.〔3分〕3.〔18分〕如图,在xOy 平面内,MN 和x 轴之间有平行于y 轴的匀强电场和垂直于xOy平面的匀强磁场,y 轴上离坐标原点4L 的A 点处有一电子枪,可以沿+x 方向射出速度为v 0的电子〔质量为m ,电荷量为e 〕.如果电场和磁场同时存在,电子将做匀速直线运动.如果撤去电场,只保存磁场,电子将从x 轴上距坐标原点3L 的C 点离开磁场.不计重力的影响,求:〔1〕磁感应强度B 和电场强度E 的大小和方向;〔2〕如果撤去磁场,只保存电场,电子将从D 点〔图中未标出〕离开电场,求D 点的坐标; 〔3〕电子通过D 点时的动能.答案:〔1〕只有磁场时,电子运动轨迹如图1所示 〔1分〕洛伦兹力提供向心力Bev 0=m Rv20 〔1分〕由几何关系R 2=(3L)2+〔4L-R 〕2 〔2分〕 求出B=eLmv 2580,垂直纸面向里. 〔1分〕 电子做匀速直线运动Ee=Bev 0 〔1分〕求出E=eLmv 2582沿y 轴负方向 〔1分〕〔2〕只有电场时,电子从MN 上的D 点离开电场,如图2所示〔1分〕 设D 点横坐标为x x=v 0t 〔2分〕 2L=22t meE 〔2分〕 求出D 点的横坐标为x=225≈3.5L 〔1分〕 纵坐标为y=6L. 〔1分〕 〔3〕从A 点到D 点,由动能定理Ee ·2L=E kD -21mv 02 〔2分〕 求出E kD =5057mv 02. 〔2分〕4.(18分)如图13所示,在一光滑水平的桌面上,放置一质量为M ,宽为L 的足够长“U 〞型框架,其ab 局部电阻为R ,框架其它局部的电阻不计。
高考物理最难压轴题

高考物理最难压轴题一、一物体在水平面上做匀速圆周运动,当向心力突然减小为原来的一半时,下列说法正确的是:A. 物体将做匀速直线运动B. 物体将做匀变速曲线运动C. 物体的速度将突然减小D. 物体的速率在短时间内不变(答案:D)二、在双缝干涉实验中,若保持双缝间距不变,增大光源到双缝的距离,则干涉条纹的间距将:A. 增大B. 减小C. 不变D. 无法确定(答案:B)三、一轻质弹簧一端固定,另一端用一细线系住一小物块,小物块放在光滑的水平面上。
开始时弹簧处于原长状态,现对小物块施加一个拉力,使小物块从静止开始做匀加速直线运动。
在拉力逐渐增大的过程中,下列说法正确的是:A. 弹簧的弹性势能保持不变B. 小物块的动能保持不变C. 小物块与弹簧组成的系统机械能增大D. 小物块与弹簧组成的系统机械能守恒(答案:C)四、在电场中,一个带负电的粒子(不计重力)在电场力作用下,从A点移动到B点,电场力做了负功。
则下列说法正确的是:A. A点的电势一定低于B点的电势B. 粒子的电势能一定减小C. 粒子的动能一定增大D. 粒子的速度可能增大(答案:D)注:此题考虑的是粒子可能受到其他力(如洛伦兹力)的影响,导致速度方向变化,但电场力做负功仍使电势能增加。
五、一轻质杆两端分别固定有质量相等的小球A和B,杆可绕中点O在竖直平面内无摩擦转动。
当杆从水平位置由静止释放后,杆转至竖直位置时,下列说法正确的是:A. A、B两球的速度大小相等B. A、B两球的动能相等C. A、B两球的重力势能相等D. 杆对A球做的功大于杆对B球做的功(答案:D)六、在闭合电路中,当外电阻增大时,下列说法正确的是:A. 电源的电动势将增大B. 电源的内电压将增大C. 通过电源的电流将减小D. 电源内部非静电力做功将增大(答案:C)七、一物体以某一速度冲上一光滑斜面(足够长),加速度恒定。
前4s内位移是1.6m,随后4s内位移是零,则下列说法中正确的是:A. 物体的初速度大小为0.6m/sB. 物体的加速度大小为6m/s²(方向沿斜面向下)C. 物体向上运动的最大距离为1.8mD. 物体回到斜面底端,总共需时12s(答案:C)八、在核反应过程中,质量数和电荷数守恒。
2024年高考物理压轴题

2024年高考物理压轴题一、在双缝干涉实验中,若增大双缝间距,同时保持光源和观察屏的位置不变,则干涉条纹的间距将如何变化?A. 增大B. 减小C. 不变D. 无法确定(答案:B)二、一质点以初速度v₀沿直线运动,先后经过A、B、C三点,已知AB段与BC段的距离相等,且质点在AB段的平均速度大小为3v₀/2,在BC段的平均速度大小为v₀/2,则质点在B 点的瞬时速度大小为?A. v₀B. (√3 + 1)v₀/2C. (3 + √3)v₀/4D. (3 - √3)v₀/4(答案:A,利用匀变速直线运动的中间时刻速度等于全程平均速度以及位移速度关系式求解)三、在电场中,一电荷q从A点移动到B点,电场力做功为W。
若将该电荷的电量增大为2q,再从A点移动到B点,则电场力做功为?A. W/2B. WC. 2WD. 4W(答案:C,电场力做功与电荷量的多少成正比)四、一均匀带电球体,其内部电场强度的大小与距离球心的距离r的关系是?A. 与r成正比B. 与r成反比C. 与r的平方成正比D. 在球内部,电场强度处处为零(答案:D,对于均匀带电球体,其内部电场强度处处为零,由高斯定理可证)五、在核反应过程中,质量数和电荷数守恒是基本规律。
下列哪个核反应方程是可能的?A. ²H + ³H →⁴He + n + 能量B. ²H + ²H →³H + p + 能量C. ²H + ²H →⁴He + 2p - 能量D. ³H + ³H →⁴He + ²H + 能量(答案:B,根据质量数和电荷数守恒判断)六、一弹簧振子在振动过程中,当其速度减小时,下列说法正确的是?A. 回复力增大B. 位移增大C. 加速度减小D. 动能增大(答案:A、B,弹簧振子速度减小时,正向平衡位置运动,回复力增大,位移增大,加速度增大,动能减小)七、在光电效应实验中,若入射光的频率增加,而光强保持不变,则单位时间内从金属表面逸出的光电子数将?A. 增加B. 减少C. 不变D. 无法确定(答案:B,光强不变意味着总的光子数不变,频率增加则单个光子能量增加,因此光子数减少,导致逸出的光电子数减少)八、在相对论中,关于时间和长度的变化,下列说法正确的是?A. 高速运动的物体,其内部的时间流逝会变慢B. 高速运动的物体,在其运动方向上测量得到的长度会变长C. 无论物体运动速度如何,时间和长度都是不变的D. 以上说法都不正确(答案:A,根据相对论的时间膨胀和长度收缩效应,高速运动的物体内部时间流逝会变慢,沿运动方向上的长度会变短)。
高考物理压轴题30道之欧阳引擎创编

高考物理压轴题欧阳引擎(2021.01.01)(30道)1(20分)如图12所示,PR是一块长为L=4 m的绝缘平板固定在水平地面上,整个空间有一个平行于PR的匀强电场E,在板的右半部分有一个垂直于纸面向外的匀强磁场B,一个质量为m=0.1 kg,带电量为q=0.5 C的物体,从板的P端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。
当物体碰到板R端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C点,PC=L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s2 ,求:(1)判断物体带电性质,正电荷还是负电荷?(2)物体与挡板碰撞前后的速度v1和v2(3)磁感应强度B的大小(4)电场强度E的大小和方向图121.(1)由于物体返回后在磁场中无电场,且仍做匀速运动,故知摩擦力为0,所以物体带正电荷.且:mg=qBv2…………………………………………………………①(2)离开电场后,按动能定理,有:-μmg 4L =0-21mv2………………………………②由①式得:v2=22 m/s(3)代入前式①求得:B=22T(4)由于电荷由P 运动到C 点做匀加速运动,可知电场强度方向水平向右,且:(Eq-μmg )212=L mv12-0……………………………………………③ 进入电磁场后做匀速运动,故有:Eq=μ(qBv1+mg )……………………………④由以上③④两式得:⎩⎨⎧==N/C2.4m/s 241E v 2(10分)如图2—14所示,光滑水平桌面上有长L=2m 的木板C ,质量mc=5kg ,在其正中央并排放着两个小滑块A 和B ,mA=1kg ,mB=4kg ,开始时三物都静止.在A 、B 间有少量塑胶炸药,爆炸后A 以速度6m /s 水平向左运动,A 、B 中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求:(1)当两滑块A 、B 都与挡板碰撞后,C的速度是多大?(2)到A 、B 都与挡板碰撞为止,C 的位移为多少?2(1)A 、B 、C 系统所受合外力为零,故系统动量守恒,且总动量为零,故两物块与挡板碰撞后,C 的速度为零,即0=C v(2)炸药爆炸时有解得s m v B /5.1=又B B A A s m s m =当sA =1 m 时sB =0.25m ,即当A 、C 相撞时B 与C 右板相距m s L s B 75.02=-=A 、C 相撞时有:解得v =1m/s ,方向向左而B v =1.5m/s ,方向向右,两者相距0.75m ,故到A ,B都与挡板碰撞为止,C 的位移为3.0=+=B C v v sv s m19. 3(10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F 1,放手后,木板沿斜面下滑,稳定后弹簧示数为F 2,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上)3固定时示数为F 1,对小球F 1=mgsinθ①整体下滑:(M+m )sinθ-μ(M+m)gcosθ=(M+m)a ②下滑时,对小球:mgsinθ-F 2=ma ③由式①、式②、式③得 μ=12F F tan θ4有一倾角为θ的斜面,其底端固定一挡板M ,另有三个木块A 、B 和C ,它们的质量分别为m A =m B =m ,m C =3 m ,它们与斜面间的动摩擦因数都相同.其中木块A 连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M 相连,如图所示.开始时,木块A 静止在P 处,弹簧处于自然伸长状态.木块B 在Q 点以初速度v 0向下运动,P 、Q 间的距离为L.已知木块B 在下滑过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点.若木块A 静止于P 点,木块C 从Q 点开始以初速度032v 向下运动,经历同样过程,最后木块C 停在斜面上的R 点,求P 、R 间的距离L′的大小。
高考物理压轴题30道

高考物理压轴题(30道)1(20分)如图12所示,PR 是一块长为L =4 m 的绝缘平板固定在水平地面上,整个空间有一个平行于PR 的匀强电场E ,在板的右半部分有一个垂直于纸面向外的匀强磁场B ,一个质量为m =0.1 kg ,带电量为q =0.5 C 的物体,从板的P 端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。
当物体碰到板R 端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC =L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s 2 ,求:(1)判断物体带电性质,正电荷还是负电荷?(2)物体与挡板碰撞前后的速度v 1和v 2(3)磁感应强度B 的大小 (4)电场强度E 的大小和方向1.(1)由于物体返回后在磁场中无电场,且仍做匀速运动,故知摩擦力为0,所以物体带正电荷.且:mg =qBv 2…………………………………………………………①(2)离开电场后,按动能定理,有:-μ图12mg 4L =0-21mv 2………………………………②由①式得:v 2=22 m/s (3)代入前式①求得:B =22T (4)由于电荷由P 运动到C 点做匀加速运动,可知电场强度方向水平向右,且:(Eq -μmg )212=L mv 12-0……………………………………………③ 进入电磁场后做匀速运动,故有:Eq =μ(qBv 1+mg )……………………………④由以上③④两式得:⎩⎨⎧==N/C2.4m/s241E v2(10分)如图2—14所示,光滑水平桌面上有长L=2m 的木板C ,质量m c =5kg ,在其正中央并排放着两个小滑块A 和B ,m A =1kg ,m B =4kg ,开始时三物都静止.在A 、B 间有少量塑胶炸药,爆炸后A 以速度6m /s 水平向左运动,A 、B 中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求:(1)当两滑块A 、B 都与挡板碰撞后,C 的速度是多大?(2)到A 、B 都与挡板碰撞为止,C 的位移为多少?2(1)A 、B 、C 系统所受合外力为零,故系统动量守恒,且总动量为零,故两物块与挡板碰撞后,C 的速度为零,即0=C v(2)炸药爆炸时有B B A A v m v m =解得s m v B /5.1= 又B B A A s m s m =当s A =1 m 时s B =0.25m ,即当A 、C 相撞时B 与C 右板相距m s Ls B 75.02=-=A 、C 相撞时有: v m m v m C A A A )(+=解得v =1m/s ,方向向左而B v =1.5m/s ,方向向右,两者相距0.75m ,故到A ,B 都与挡板碰撞为止,C 的位移为3.0=+=BC v v svs m19.3(10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F 1,放手后,木板沿斜面下滑,稳定后弹簧示数为F 2,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上) 3固定时示数为F 1,对小球F 1=mgsin θ ① 整体下滑:(M+m )sin θ-μ(M+m)gcos θ=(M+m)a ② 下滑时,对小球:mgsin θ-F 2=ma ③由式①、式②、式③得 μ=12F F tan θ4有一倾角为θ的斜面,其底端固定一挡板M ,另有三个木块A 、B 和C ,它们的质量分别为m A =m B =m ,m C =3 m ,它们与斜面间的动摩擦因数都相同.其中木块A 连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M 相连,如图所示.开始时,木块A 静止在P 处,弹簧处于自然伸长状态.木块B 在Q 点以初速度v 0向下运动,P 、Q 间的距离为L.已知木块B 在下滑过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点.若木块A 静止于P 点,木块C 从Q 点开始以初速度032v 向下运动,经历同样过程,最后木块C 停在斜面上的R 点,求P 、R 间的距离L ′的大小。
(完整版)高考物理压轴题集(精选)

1(20分)如图12所示,PR是一块长为L=4 m的绝缘平板固定在水平地面上,整个空间有一个平行于PR的匀强电场E,在板的右半部分有一个垂直于纸面向外的匀强磁场B,一个质量为m=0.1 kg,带电量为q=0.5 C的物体,从板的P端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。
当物体碰到板R端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C点,PC=L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s2 ,求:(1)判断物体带电性质,正电荷还是负电荷?(2)物体与挡板碰撞前后的速度v1和v2(3)磁感应强度B的大小(4)电场强度E的大小和方向图122(10分)如图2—14所示,光滑水平桌面上有长L=2m的木板C,质量m c=5kg,在其正中央并排放着两个小滑块A和B,m A=1kg,m B=4kg,开始时三物都静止.在A、B间有少量塑胶炸药,爆炸后A以速度6m/s水平向左运动,A、B中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求:(1)当两滑块A、B都与挡板碰撞后,C的速度是多大?(2)到A、B都与挡板碰撞为止,C的位移为多少?3(10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、,放手后,木板沿斜面下滑,稳定后弹小球放在斜面上,用手固定木板时,弹簧示数为F1簧示数为F,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地2面上)4有一倾角为θ的斜面,其底端固定一挡板M ,另有三个木块A 、B 和C ,它们的质 量分别为m A =m B =m ,m C =3 m ,它们与斜面间的动摩擦因数都相同.其中木块A 连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M 相连,如图所示.开始时,木块A 静止在P 处,弹簧处于自然伸长状态.木块B 在Q 点以初速度v 0向下运动,P 、Q 间的距离为L.已知木块B 在下滑过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点.若木块A 静止于P 点,木块C 从Q 点开始以初速度032v 向下运动,经历同样过程,最后木块C 停在斜面上的R 点,求P 、R 间的距离L ′的大小。
高考物理压轴题30道之欧阳与创编

高考物理压轴题时间:2021.03.08 创作:欧阳与(30道)1(20分)如图12所示,PR是一块长为L=4 m的绝缘平板固定在水平地面上,整个空间有一个平行于PR的匀强电场E,在板的右半部分有一个垂直于纸面向外的匀强磁场B,一个质量为m=0.1 kg,带电量为q=0.5 C的物体,从板的P端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。
当物体碰到板R端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C点,PC=L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s2 ,求:(1)判断物体带电性质,正电荷还是负电荷?(2)物体与挡板碰撞前后的速度v1和v2(3)磁感应强度B 的大小(4)电场强度E 的大小和方向1.(1)由于物体返回后在磁场中无电场,且仍做匀速运动,故知摩擦力为0,所以物体带正电荷.且:mg =qBv 2…………………………………………………………①(2)离开电场后,按动能定理,有:-μmg 4L =0-21mv 2………………………………② 由①式得:v 2=22 m/s(3)代入前式①求得:B =22T(4)由于电荷由P 运动到C 点做匀加速运动,可知电场强度方向水平向右,且:(Eq -μmg )212=L mv 12-0……………………………………………③ 进入电磁场后做匀速运动,故有:Eq =μ(qBv 1+mg )……………………………④ 由以上③④两式得:⎩⎨⎧==N/C 2.4m/s 241E v 2(10分)如图2—14所示,光滑水平桌面上有长L=2m 的木板C ,质量m c =5kg ,在其正中央并排放着两个小滑块A 和B ,m A =1kg ,m B =4kg ,开始时三物都静图12止.在A 、B 间有少量塑胶炸药,爆炸后A 以速度6m /s 水平向左运动,A 、B 中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求:(1)当两滑块A 、B 都与挡板碰撞后,C的速度是多大?(2)到A 、B 都与挡板碰撞为止,C 的位移为多少?2(1)A 、B 、C 系统所受合外力为零,故系统动量守恒,且总动量为零,故两物块与挡板碰撞后,C 的速度为零,即0=Cv(2)炸药爆炸时有解得s m v B/5.1= 又B B A A s m s m = 当s A =1 m 时s B =0.25m ,即当A 、C 相撞时B 与C 右板相距m s L s B 75.02=-=A 、C 相撞时有:解得v =1m/s ,方向向左而B v =1.5m/s ,方向向右,两者相距0.75m ,故到A ,B 都与挡板碰撞为止,C 的位移为3.0=+=B C v v sv s m19.3(10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F 1,放手后,木板沿斜面下滑,稳定后弹簧示数为F 2,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上)3固定时示数为F 1,对小球F 1=mgsin θ①整体下滑:(M+m )sin θ-μ(M+m)gcos θ=(M+m)a ②下滑时,对小球:mgsin θ-F2=ma ③由式①、式②、式③得μ=12F F tan θ4有一倾角为θ的斜面,其底端固定一挡板M ,另有三个木块A 、B 和C ,它们的质量分别为m A =m B =m ,m C =3 m ,它们与斜面间的动摩擦因数都相同.其中木块A 连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M 相连,如图所示.开始时,木块A 静止在P 处,弹簧处于自然伸长状态.木块B 在Q 点以初速度v 0向下运动,P 、Q 间的距离为L.已知木块B 在下滑过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点.若木块A 静止于P 点,木块C 从Q 点开始以初速度032v 向下运动,经历同样过程,最后木块C 停在斜面上的R 点,求P 、R 间的距离L ′的大小。
高三物理压轴题

高三物理压轴题
1. 一辆汽车以30m/s的速度匀速行驶,在1小时内所行驶的距离是多少?
2. 一块质量为2kg的物体,从10m/s的速度加速到20m/s,其动能增加多少?
3. 一根长为2m的铁棒,两端分别固定在墙上,当温度升高时,铁棒的长度会发生变化吗?
4. 一根光滑的斜面上有一个半径为1m的圆盘,圆盘质量为4kg,从斜面顶端滚下来,最终速度是多少?
5. 一根导线通过一个磁场,在导线上加一个电压,导线会受到什么影响?
6. 一个质点做匀速圆周运动,半径为2m,角速度为4rad/s,则质点的线速度是多少?
7. 一块质量为500g的物体受到20N的拉力,加速度是多少?
8. 一个声源以600Hz的频率发出声音,测听者所在的媒质中声速为340m/s,听者离声源300m,听到的声音频率是多少?
9. 有一支射击运动员从50m开环击中靶子,计算他的准确度。
10. 在均匀磁场中,有一圆形轨道,半径为0.1m,一个质子在轨道上飞行,计算质子的运动轨迹。
压轴题30道

一.力学综合压轴题1.如图所示,ABCD 为竖直平面内的光滑绝缘轨道,直轨道AB 和圆弧轨道BCD 相切于B 点,圆弧轨道半径为R ,AB 与水平面的夹角为θ=53°,CD 为圆弧轨道的竖直直径,整个轨道处于竖直向下的匀强电场中。
带正电的小球b 质量为m ,带电荷量为q(电荷量始终不变),若将小球b 从B 点由静止释放,则它运动到轨道最低点C 时对轨道的压力大小为3.6mg(g 为重力加速度)。
现让一不带电的质量为M 的绝缘小球a 从直轨道的A 点由静止释放,运动到C 点时恰好与静止在C 点的小球b 发生弹性碰撞。
不计空气阻力,sin 53°=0.8,cos 53°=0.6。
(1)求匀强电场的电场强度的大小E;(2)若M=m ,且碰后小球b 恰好到达最高点D ,则轨道A 点离B 点的高度h 为多少?(3)若在C 点碰撞后小球b 的速度大小为257gR , ,则小球b 从D 点离开轨道到再次回到轨道的时间t 为多长?2.一置于竖直平面内、倾角θ=37∘的光滑斜面的顶端连结一光滑的半径为R,圆心角为143∘的圆弧轨道,圆弧轨道与斜面相切于P 点,一轻质弹簧的下端与光滑斜面底端的固定挡板连接,上端与小球接触(不连接),静止在Q 点。
在P 点由静止释放一小滑块,滑块在Q 点与小球相碰,碰后瞬间小球嵌入滑块,形成一个组合体。
组合体沿着斜面上升到PQ 的中点时速度为零。
已知小球和滑块质量均为m,PQ 之间的距离为2R,重力加速度为g,sin37∘=0.6,cos37∘=0.8.(计算结果可含根式)(1)求碰撞后瞬间,组合体的速度大小;(2)求碰撞前弹簧的弹性势能;,滑块与小球相碰后,组合体沿斜(3)若在P点给滑块一个沿斜面向下的初速度v面上滑进入圆弧轨道,从轨道最高点M离开后做平抛运动,当运动到与圆心O等高的大小。
时,组合体与O点的距离为2R,求初速度v3.如图所示为放置在竖直平面内游戏滑轨的模拟装置,滑轨由四部分粗细均匀的金属杆组成,其中倾斜直轨AB与水平直轨CD长均为L=3m,圆弧形轨道APD和BQC 均光滑,AB、CD与两圆弧形轨道相切,BQC的半径为r=1m,APD的半径为R=2m,O2A、O1B与竖直方向的夹角均为θ=37∘.现有一质量为m=1kg的小球穿在滑轨上,以Ek0的初动能从B点开始沿AB向上运动,小球与两段直轨道间的动摩擦因数均为μ=13,设小球经过轨道连接处均无能量损失.(g=10m/s2,sin37∘=0.6,cos37∘=0.8)求:(1)要使小球能够通过弧形轨道APD的最高点,初动能EK0至少多大?(2)求小球第二次到达D点时的动能;(3)小球在CD段上运动的总路程.(第(2)(3)两问中的EK0取第(1)问中的数值)4.如图所示,固定斜面足够长,斜面与水平面的夹角α=30∘,一质量为3m的“L”型工件沿斜面以速度v0匀速向下运动,工件上表面光滑,下端为挡板。
高考物理压轴题30道之欧阳引擎创编

高考物理压轴题欧阳引擎(2021.01.01)(30道)1(20分)如图12所示,PR是一块长为L=4 m的绝缘平板固定在水平地面上,整个空间有一个平行于PR的匀强电场E,在板的右半部分有一个垂直于纸面向外的匀强磁场B,一个质量为m=0.1 kg,带电量为q=0.5 C的物体,从板的P端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。
当物体碰到板R端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C点,PC=L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s2 ,求:(1)判断物体带电性质,正电荷还是负电荷?(2)物体与挡板碰撞前后的速度v1和v2(3)磁感应强度B的大小(4)电场强度E的大小和方向图121.(1)由于物体返回后在磁场中无电场,且仍做匀速运动,故知摩擦力为0,所以物体带正电荷.且:mg =qBv 2…………………………………………………………①(2)离开电场后,按动能定理,有:-μmg 4L =0-21mv 2………………………………② 由①式得:v 2=22 m/s(3)代入前式①求得:B =22T(4)由于电荷由P 运动到C 点做匀加速运动,可知电场强度方向水平向右,且:(Eq -μmg )212=L mv 12-0……………………………………………③进入电磁场后做匀速运动,故有:Eq =μ(qBv 1+mg )……………………………④由以上③④两式得:⎩⎨⎧==N/C 2.4m/s241E v2(10分)如图2—14所示,光滑水平桌面上有长L=2m 的木板C ,质量m c =5kg ,在其正中央并排放着两个小滑块A 和B ,m A =1kg ,m B =4kg ,开始时三物都静止.在A 、B 间有少量塑胶炸药,爆炸后A 以速度6m /s 水平向左运动,A 、B 中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求:(1)当两滑块A 、B 都与挡板碰撞后,C的速度是多大?(2)到A 、B 都与挡板碰撞为止,C 的位移为多少?2(1)A 、B 、C 系统所受合外力为零,故系统动量守恒,且总动量为零,故两物块与挡板碰撞后,C 的速度为零,即0=C v(2)炸药爆炸时有解得s m v B /5.1=又B B A A s m s m =当s A =1 m 时s B =0.25m ,即当A 、C 相撞时B 与C 右板相距m s L s B 75.02=-=A 、C 相撞时有:解得v =1m/s ,方向向左而B v =1.5m/s ,方向向右,两者相距0.75m ,故到A ,B都与挡板碰撞为止,C 的位移为3.0=+=B C v v sv s m19. 3(10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F 1,放手后,木板沿斜面下滑,稳定后弹簧示数为F 2,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上)3固定时示数为F 1,对小球F 1=mgsin θ①整体下滑:(M+m )sin θ-μ(M+m)gcos θ=(M+m)a ②下滑时,对小球:mgsin θ-F 2=ma ③由式①、式②、式③得μ=12F F tan θ4有一倾角为θ的斜面,其底端固定一挡板M ,另有三个木块A 、B 和C ,它们的质量分别为m A =m B =m ,m C =3 m ,它们与斜面间的动摩擦因数都相同.其中木块A 连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M 相连,如图所示.开始时,木块A 静止在P 处,弹簧处于自然伸长状态.木块B 在Q 点以初速度v 0向下运动,P 、Q 间的距离为L.已知木块B 在下滑过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点.若木块A 静止于P 点,木块C 从Q 点开始以初速度032v 向下运动,经历同样过程,最后木块C 停在斜面上的R 点,求P 、R 间的距离L ′的大小。
高三物理力学压轴题集

1.质量为M 的平板车在光滑的水平地面上以速度v0向右做匀速直线运动:若将一个质量为m (M= 4m )的沙袋轻轻地放到平板车的右端:沙袋相对平板车滑动的最大距离等于车长的41:若将沙袋以水平向左的速度扔到平板车上:为了不使沙袋从车上滑出:沙袋的初速度最大是多少?解:设平板车长为L :沙袋在车上受到的摩擦力为f 。
沙袋轻轻放到车上时:设最终车与沙袋的速度为v′:则()v m M Mv '+=0 =-fL ()2022121Mv v m M -'+ 又M= 4m 可得:258mv fL =设沙袋以水平向左的初速度扔到车上:显然沙袋的初速度越大:在车上滑行的距离越长:沙袋刚好不从车上落下时:相对与车滑行的距离为L :其初速度为最大初速设为v :车的最终速度设为v 终:以向右为坐标的正方向:有:()终v m M mv Mv +=-0 =-fL ()2202212121mv Mv v m M --+终又M= 4m 258mv fL = 可得:v=v0(v=3v0舍去)车的最终速度设为v 终=053v 方向向左2在光滑的水平面上有一质量M=2kg 的木版A :其右端挡板上固定一根轻质弹簧:在靠近木版左端的P 处有一大小忽略不计质量m=2kg 的滑块B 。
木版上Q 处的左侧粗糙:右侧光滑。
且PQ 间距离L=2m :如图所示。
某时刻木版A 以υA=1m/s 的速度向左滑行:同时滑块B 以υB=5m/s 的速度向右滑行:当滑块B 与P 处相距L43时:二者刚好处于相对静止状态:若在二者其共同运动方向的前方有一障碍物:木块A 与障碍物碰后以原速率反弹(碰后立即撤去该障碍物)。
求B 与A 的粗糙面之间的动摩擦因数μ和滑块B 最终停在木板A 上的位置。
(g 取10m/s2)解: 设M.m 共同速度为v :由动量守恒得 mvB-MV A=(m+M)v 代入数据得: v=2m/s对AB 组成得系统:由能量守恒4143umgL=21MV A2+21mvB2—21(M+m)V2代入数据得: u=0.6木板A 与障碍物发生碰后以原速度反弹:假设B 向右滑行:并与弹簧发生相互作用:当AB 再次处于相对静止时:共同速度为u由动量守恒得mv —Mv=(m+m)u 设B 相对A 的路程为s :由能量守恒得umgs=(m+M)v2--( m+M)u2 代入数据得:s=32(m)由于s>41L :所以B 滑过Q 点并与弹簧相互作用:然后相对A 向左滑动到Q 点左边:设离Q 点距离为s1 S1=s-41L=0.17(m)3.(15分)一轻质弹簧:两端连接两滑块A 和B :已知mA=0.99kg : mB=3kg :放在光滑水平桌面上:开始时弹簧处于原长。
高考物理压轴题集(含答案),推荐文档

4、有一倾角为 θ的斜面,其底端固定一挡板 M ,另有三个木块 A 、 B 和 C,它们的质量分
别为 m A =m B =m , m C =3 m,它们与斜面间的动摩擦因数都相同 .其中木块 A 连接一轻弹簧
放于斜面上,并通过轻弹簧与挡板 M 相连,如图所示 .开始时,木块 A 静止在 P 处,弹簧处
体,由动能定理得: EqL1 1 mv12 2
v1
2 EqL1 .
m
(2)碰后小物体反弹,由动量守恒定律:得
mv1 m 3 v1 4mv2 5
得 v2 2 v1 2 2Eq.L1 5 5m
之后滑板以 v2 匀速运动,直到与物体第二次碰撞,从第一
次碰撞到第二次碰撞时,物体与滑板位移相等、时间相等、平均速度相等
L 形滑板 (平面部分足够长 ),质量为 4m,
距滑板的 A 壁为 L1 距离的 B 处放有一质量为 m,电量为 +q 的大小不计的小物体, 物体与板
面的摩擦不计.整个装置置于场强为 E 的匀强电场中,初始时刻,滑板与物体都静止.问:
(1) 释放小物体,第一次与滑板 A 壁碰前物体的速度 v1,多大 ?
μ 2mgcosθ· 212·s2=mv12
1 2
·2mv22
两木块在 P 点处分开后,木块 B 上滑到 Q 点的过程:
( mgsinθ+μmgcosθ) L=
1 2
mv22
木块 C 与 A 碰撞前后,总动量守恒,则
3
2
3m· v0 2
4mv 1 ,所以 v ′1 = 4 v 0
设木块 C 和 A 压缩弹簧的最大长度为
因
此弹簧被压缩而具有的最大弹性势能等于开始压缩弹簧时两木块的总动能
高考物理电磁场压轴题

以下是高考物理电磁场的压轴题:
1.带电粒子在电磁场中的运动
在一个匀强磁场中,有一个竖直向下的匀强电场。
一个带正电的粒子从A点以一定的初速度垂直射入这个电磁场中,粒子在电场力和洛伦兹力的共同作用下做运动。
已知粒子在A点的初速度为v₀,质量为m,电量为q,磁场的磁感应强度为B,电场强度为E,重力加速度为g。
若粒子能沿直线从A点运动到B点,求A、B两点间的距离。
2.电容器与电磁场的综合问题
真空中有一个竖直放置的平行板电容器,两极板间的距离为d,电容为C,上极板带正电。
现有一个质量为m、带电量为+q的小球,从小孔正上方h高度处由静止开始释放,小球穿过小孔到达下极板处速度恰好为零。
已知小球在运动过程中所受空气阻力的大小恒为f,静电力常量为k,重力加速度为g。
求:
(1) 小球到达下极板时的动能;
(2) 电容器的带电量。
3.电磁感应与电磁场的综合问题
在匀强磁场中,一矩形金属线圈两次分别以不同的转速,绕与磁感线垂直的轴匀速转动,产生的交变电动势的图象分别如甲、乙所示,则在两图中t₁和t₁时刻()
A. 甲图中线圈平面与磁感线平行,乙图中线圈平面与磁感线垂直
B. 甲图中线圈的转速小于乙图中线圈的转速
C. 甲、乙两图中交变电动势的有效值相等
D. 甲、乙两图中交变电动势的瞬时值表达式相同。
高考物理压轴题集(含答案)

1、如图12所示,PR 是一块长为L =4 m 的绝缘平板固定在水平地面上,整个空间有一个平行于PR 的匀强电场E ,在板的右半部分有一个垂直于纸面向外的匀强磁场B ,一个质量为m =0.1 kg ,带电量为q =0.5 C 的物体,从板的P 端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。
当物体碰到板R 端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC =L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s 2 ,求:(1)判断物体带电性质,正电荷还是负电荷?(2)物体与挡板碰撞前后的速度v 1和v 2(3)磁感应强度B 的大小(4)电场强度E 的大小和方向解:(1)由于物体返回后在磁场中无电场,且仍做匀速运动,故知摩擦力为0,所以物体带正电荷.且:mg =qBv 2 ①(2)离开电场后,按动能定理,有:-μmg 4L =0-21mv 2 ② 由①式得:v 2=22 m/s (3)代入前式①求得:B =22 T (4)由于电荷由P 运动到C 点做匀加速运动,可知电场强度方向水平向右,且:(Eq -μmg )212=L mv 12-0 ③ 进入电磁场后做匀速运动,故有:Eq =μ(qBv 1+mg ) ④由以上③④两式得:⎩⎨⎧==N/C 2.4m/s241E v2、如图2—14所示,光滑水平桌面上有长L=2m 的木板C ,质量m c =5kg ,在其正中央并排放着两个小滑块A 和B ,m A =1kg ,m B =4kg ,开始时三物都静止.在A 、B 间有少量塑胶炸药,爆炸后A 以速度6m /s 水平向左运动,A 、B 中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求:(1)当两滑块A 、B 都与挡板碰撞后,C 的速度是多大?(2)到A 、B 都与挡板碰撞为止,C 的位移为多少?解:(1)A 、B 、C 系统所受合外力为零,故系统动量守恒,且总动量为零,故两物块与挡板碰撞后,C 的速度为零,即0=C v(2)炸药爆炸时有B B A A v m v m = 解得s m v B /5.1=又B B A A s m s m =当s A =1 m 时s B =0.25m ,即当A 、C 相撞时B 与C 右板相距m s L s B 75.02=-= A 、C 相撞时有:v m m v m C A A A )(+= 解得v =1m/s ,方向向左而B v =1.5m/s ,方向向右,两者相距0.75m ,故到A ,B 都与挡板碰撞为止,C 的位移为3.0=+=BC v v sv s m19.3、为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F 1,放手后,木板沿斜面下滑,稳定后弹簧示数为F2,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上)解:固定时示数为F 1,对小球F 1=mgsinθ ①整体下滑:(M+m )sinθ-μ(M+m)gcosθ=(M+m)a ②下滑时,对小球:mgsinθ-F 2=ma ③由式①、式②、式③得 μ=12F F tan θ 4、有一倾角为θ的斜面,其底端固定一挡板M ,另有三个木块A 、B 和C ,它们的质量分别为m A =m B =m ,m C =3 m ,它们与斜面间的动摩擦因数都相同.其中木块A 连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M 相连,如图所示.开始时,木块A 静止在P 处,弹簧处于自然伸长状态.木块B 在Q 点以初速度v 0向下运动,P 、Q 间的距离为L.已知木块B 在下滑过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点.若木块A 静止于P 点,木块C 从Q点开始以初速度032v 向下运动,经历同样过程,最后木块C 停在斜面上的R 点,求P 、R 间的距离L′的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理压轴题(30道)1(20分)如图12所示,PR是一块长为L=4 m的绝缘平板固定在水平地面上,整个空间有一个平行于PR的匀强电场E,在板的右半部分有一个垂直于纸面向外的匀强磁场B,一个质量为m=0.1 kg,带电量为q=0.5 C的物体,从板的P端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。
当物体碰到板R 端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C点,PC=L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s2 ,求:(1)判断物体带电性质,正电荷还是负电荷?(2)物体与挡板碰撞前后的速度v1和v2(3)磁感应强度B的大小(4)电场强度E的大小和方向图121.(1)由于物体返回后在磁场中无电场,且仍做匀速运动,故知摩擦力为0,所以物体带正电荷.且:mg=qBv2…………………………………………………………①(2)离开电场后,按动能定理,有:-μmg 4L =0-21mv 2………………………………② 由①式得:v 2=22 m/s(3)代入前式①求得:B =22 T (4)由于电荷由P 运动到C 点做匀加速运动,可知电场强度方向水平向右,且:(Eq -μmg )212=L mv 12-0……………………………………………③ 进入电磁场后做匀速运动,故有:Eq =μ(qBv 1+mg )……………………………④由以上③④两式得:⎩⎨⎧==N/C 2.4m/s 241E v 2(10分)如图2—14所示,光滑水平桌面上有长L=2m 的木板C ,质量m c =5kg ,在其正中央并排放着两个小滑块A 和B ,m A =1kg ,m B =4kg ,开始时三物都静止.在A 、B 间有少量塑胶炸药,爆炸后A 以速度6m /s 水平向左运动,A 、B 中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求:(1)当两滑块A 、B 都与挡板碰撞后,C的速度是多大?(2)到A 、B 都与挡板碰撞为止,C 的位移为多少?2(1)A 、B 、C 系统所受合外力为零,故系统动量守恒,且总动量为零,故两物块与挡板碰撞后,C 的速度为零,即0=C v(2)炸药爆炸时有B B A A v m v m =解得s m v B /5.1=又B B A A s m s m =当s A =1 m 时s B =0.25m ,即当A 、C 相撞时B 与C 右板相距m s L s B 75.02=-= A 、C 相撞时有:v m m v m C A A A )(+=解得v =1m/s ,方向向左而B v =1.5m/s ,方向向右,两者相距0.75m ,故到A ,B 都与挡板碰撞为止,C 的位移为3.0=+=BC v v sv s m19. 3(10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F 1,放手后,木板沿斜面下滑,稳定后弹簧示数为F 2,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上)3固定时示数为F 1,对小球F 1=mgsin θ①整体下滑:(M+m )sin θ-μ(M+m)gcos θ=(M+m)a ②下滑时,对小球:mgsin θ-F 2=ma ③由式①、式②、式③得μ=12F F tan θ 4有一倾角为θ的斜面,其底端固定一挡板M ,另有三个木块A 、B 和C ,它们的质量分别为m A =m B =m ,m C =3 m ,它们与斜面间的动摩擦因数都相同.其中木块A 连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M 相连,如图所示.开始时,木块A 静止在P 处,弹簧处于自然伸长状态.木块B在Q 点以初速度v 0向下运动,P 、Q 间的距离为L.已知木块B 在下滑过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点.若木块A 静止于P 点,木块C 从Q 点开始以初速度032v 向下运动,经历同样过程,最后木块C 停在斜面上的R 点,求P 、R 间的距离L ′的大小。
4.木块B 下滑做匀速直线运动,有mgsin θ=μmgcos θB 和A 相撞前后,总动量守恒,mv 0=2mv 1,所以v 1=20v 设两木块向下压缩弹簧的最大长度为s,两木块被弹簧弹回到P 点时的速度为v 2,则μ2mgcos θ·2s=22212·212·21mv mv两木块在P 点处分开后,木块B 上滑到Q 点的过程:(mgsin θ+μmgcos θ)L=2221mv 木块C 与A 碰撞前后,总动量守恒,则3m ·10423'=mv v ,所以 v ′1=42v 0 设木块C 和A 压缩弹簧的最大长度为s ′,两木块被弹簧弹回到P点时的速度为v 2',则μ4mgcos θ·2s ′=22224214·21'-'mv mv木块C 与A 在P 点处分开后,木块C 上滑到R 点的过程:(3mgsin θ+μ3mgcos θ)L ′=223·21'mv在木块压缩弹簧的过程中,重力对木块所做的功与摩擦力对木块所做的功大小相等,因此弹簧被压缩而具有的最大弹性势能等于开始压缩弹簧时两木块的总动能.因此,木块B 和A 压缩弹簧的初动能E ,412·2120211mv mv k ==木块C 与A 压缩弹簧的初动能E ,412120212mv mv k ='=即E 21k k E = 因此,弹簧前后两次的最大压缩量相等,即s=s ′综上,得L ′=L-θsin 3220g v 5如图,足够长的水平传送带始终以大小为v =3m/s 的速度向左运动,传送带上有一质量为M =2kg 的小木盒A ,A 与传送带之间的动摩擦因数为μ=0.3,开始时,A 与传送带之间保持相对静止。
先后相隔△t =3s 有两个光滑的质量为m =1kg 的小球B 自传送带的左端出发,以v 0=15m/s 的速度在传送带上向右运动。
第1个球与木盒相遇后,球立即进入盒中与盒保持相对静止,第2个球出发后历时△t 1=1s/3而与木盒相遇。
求(取g =10m/s 2)(1)第1个球与木盒相遇后瞬间,两者共同运动的速度时多大?(2)第1个球出发后经过多长时间与木盒相遇?(3)自木盒与第1个球相遇至与第2个球相遇的过程中,由于木盒与传送带间的摩擦而产生的热量是多少?5(1)设第1个球与木盒相遇后瞬间,两者共同运动的速度为v 1,根据动量守恒定律:01()mv Mv m M v -=+ (1分)代入数据,解得: v 1=3m/s (1分)(2)设第1个球与木盒的相遇点离传送带左端的距离为s ,第1个球经过t 0与木盒相遇,则: 00s t v =(1分)设第1个球进入木盒后两者共同运动的加速度为a ,根据牛顿第二定律: ()()m M g m M a μ+=+得: 23/a g m s μ==(1分)设木盒减速运动的时间为t 1,加速到与传送带相同的速度的时间为t 2,则:12v t t a∆===1s (1分) 故木盒在2s 内的位移为零 (1分)依题意: 011120()s v t v t t t t t =∆+∆+∆---(2分)代入数据,解得: s =7.5m t 0=0.5s (1分)(3)自木盒与第1个球相遇至与第2个球相遇的这一过程中,传送带的位移为S ,木盒的位移为s 1,则:10()8.5S v t t t m =∆+∆-=(1分)11120() 2.5s v t t t t t m =∆+∆---=(1分)故木盒相对与传送带的位移: 16s S s m ∆=-=则木盒与传送带间的摩擦而产生的热量是: 54Q f s J =∆=(2分)6.如图所示,两平行金属板A 、B 长l =8cm ,两板间距离d =8cm ,A板比B 板电势高300V ,即U AB =300V 。
一带正电的粒子电量q =10-10C ,质量m =10-20kg ,从R 点沿电场中心线垂直电场线飞入电场,初速度v 0=2×106m/s ,粒子飞出平行板电场后经过界面MN 、PS 间的无电场区域后,进入固定在中心线上的O 点的点电荷Q 形成的电场区域(设界面PS 右边点电荷的电场分布不受界面的影响)。
已知两界面MN 、PS 相距为L =12cm ,粒子穿过界面PS 最后垂直打在放置于中心线上的荧光屏EF 上。
求(静电力常数k =9×109N ·m 2/C 2)(1)粒子穿过界面PS 时偏离中心线RO 的距离多远?(2)点电荷的电量。
B A RE F6(1)设粒子从电场中飞出时的侧向位移为h, 穿过界面PS 时偏离中心线OR 的距离为y ,则: h=at 2/2(1分)qE qU a m md==0l t v = 即:20()2qU l h md v =(1分) 代入数据,解得: h =0.03m =3cm (1分)带电粒子在离开电场后将做匀速直线运动,由相似三角形知识得:22l hl y L =+(1分)代入数据,解得: y =0.12m =12cm (1分)(2)设粒子从电场中飞出时沿电场方向的速度为v y ,则:v y =at=0qUl mdv 代入数据,解得: v y =1.5×106m/s (1分)所以粒子从电场中飞出时沿电场方向的速度为:62.510/v m s ==⨯(1分)设粒子从电场中飞出时的速度方向与水平方向的夹角为θ,则:034yv tan v θ==37θ=︒(1分) 因为粒子穿过界面PS 最后垂直打在放置于中心线上的荧光屏上,所以该带电粒子在穿过界面PS 后将绕点电荷Q 作匀速圆周运动,其半径与速度方向垂直。
匀速圆周运动的半径: 0.15y r m cos θ==(1分) 由: 22kQq v m r r=(2分) 代入数据,解得: Q =1.04×10-8C (1分)7光滑水平面上放有如图所示的用绝缘材料制成的L 形滑板(平面部分足够长),质量为4m ,距滑板的A 壁为L 1距离的B 处放有一质量为m ,电量为+q 的大小不计的小物体,物体与板面的摩擦不计.整个装置置于场强为E 的匀强电场中,初始时刻,滑板与物体都静止.试问:(1)释放小物体,第一次与滑板A 壁碰前物体的速度v 1,多大?(2)若物体与A 壁碰后相对水平面的速度大小为碰前速率的3/5,则物体在第二次跟A 碰撞之前,滑板相对于水平面的速度v 2和物体相对于水平面的速度v 3分别为多大?(3)物体从开始到第二次碰撞前,电场力做功为多大?(设碰撞经历时间极短且无能量损失)7(1)释放小物体,物体在电场力作用下水平向右运动,此时,滑板静止不动,对于小物体,由动能定理得:21121mv EqL =.211mEqL v =(2)碰后小物体反弹,由动量守恒定律:得得 . 之后,滑板以v 2匀速运动,直到与物体第二次碰撞,从第一次碰撞到第二次碰撞时,物体与滑板位移相等、时间相等、平均速度相等(3)电场力做功等于系统所增加的动能8如图(甲)所示,两水平放置的平行金属板C 、D 相距很近,上面分别开有小孔 O 和O',水平放置的平行金属导轨P 、Q 与金属板C 、D 接触良好,且导轨垂直放在磁感强度为B 1=10T 的匀强磁场中,导轨间距L =0.50m ,金属棒AB 紧贴着导轨沿平行导轨方向在磁场中做往复运动,其速度图象如图(乙),若规定向右运动速度方向为正方向.从t =0时刻开始,由C 板小孔O 处连续不断地以垂直于C 板方向飘入质量为m =3.2×10-21kg 、电量q =1.6×10 -19C的带正电的粒子(设飘入速度很小,可视为零).在D 板外侧有以MN 为边界的匀强磁场B 2=10T ,MN 与D 相距d =10cm ,B 1和B 2方向如图所示(粒子重力及其相互作用不计),求(1)0到4.Os 内哪些时刻从O 处飘入的粒子能穿过电场并飞出磁场边界MN ?(2)粒子从边界MN 射出来的位置之间最大的距离为多少?8.(1)只有当CD 板间的电场力方向向上即AB 棒向右运动时,粒子211453mv v m mv +-=mEqL v v 11225252==.25757:522531131231m EqL v v v v v v ====+-得.5131013121EqL mv W ==电222342121mv mv W ⋅+=电才可能从O 运动到O ’,而 粒子要飞出磁场边界MN 最小速度v 0必须满足: ①设CD 间的电压为U ,则 ② 解①②得 U =25V ,又U =ε=B 1Lv 解得v =5m/s.所以根据(乙)图可以推断在0.25s<t<1.75s 内,粒子能穿过CD 间的电场。