核磁共振氢谱解析 PPT课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
溶剂
CCl4 CS2 CDCl3 (CD3)2CO (CD3)2SO D2O 苯d6 (C6D6) 二氧六环d6 CF3COOH 还己烷-d12 吡啶-d5 CD3OH
δ 1H
7.27 2.05 2.50 4.8(变化大与样品浓度及温度有关) 7.20 3.55 12.5 1.63 6.98, 7.35, 8.50 3.35
让处于外磁场的自旋核接受一定频率的 电磁波辐射,而辐射的能量又恰好等于高低 两种不同取向的能量差时,质子就吸收电磁 辐射,从低能态跃迁到高能态而产生共振现 象,称为核磁共振(NMR)。
以吸收的能量的强度为纵坐标,以吸收 的频率为横坐标,用记录仪描绘下来,分子 中各个核在核磁共振谱上即出现吸收峰,成 为核磁共振谱图。
第二章 核磁共振氢谱
1. 核磁共振的基本原理 2. 核磁共振仪与实验方法 3. 氢的化学位移 4. 各类质子的化学位移 5. 自旋偶合和自旋裂分 6. 自旋系统及图谱分类 7. 核磁共振氢谱的解析
前言
过去50年,波谱学已全然改变了化学家、生物学家和生物医学 家的日常工作,波谱技术成为探究大自然中分子内部秘密的最 可靠、最有效的手段。NMR是其中应用最广泛研究分子性质的 最通用的技术:从分子的三维结构到分子动力学、化学平衡、 化学反应性和超分子集体、有机化学的各个领域。
I = n / 2 n = 0 , 1 , 2 , 3 ---- (取整数)
一些原子核有自旋现象,因而具有角动量,原子核是带电的粒子, 在自旋的同时将产生磁矩,磁矩和角动量都是矢量,方向是平行的。
哪些原子核有自旋现象? 实践证明自旋量子数I与原子核的质量数A 和原子序数Z:
A
Z
I
自旋形状 NMR信号 原子核
英国R.R.Ernst教授因对二维谱的贡献而获得1991年的Nobel奖。
• 瑞士科学家库尔特·维特里希因“发明了利用核磁共振技术测定溶液 中生物大分子三维结构的方法”而获得2002年诺贝尔化学奖。
1H-NMR Target
o how many types of hydrogen ? o how many of each type ? o what types of hydrogen ? o how are they connected ?
1945年 Purcell(哈佛大学) 和 Bloch(斯坦福大学) 发现核磁共振现象,他们获得1952年Nobel物理奖
1951年 Arnold 发现乙醇的NMR信号,及与结构的关系 1953年 Varian公司试制了第一台NMR仪器
NMR发展
近二十多年发展 高强超导磁场的NMR仪器,大大提高灵敏度和分辨率; 脉冲傅立叶变换NMR谱仪,使灵敏度小的原子核能被测定; 计算机技术的应用和多脉冲激发方法采用,产生二维谱,对判断化合 物的空间结构起重大作用。
交变电场的能量,跃迁到高能态,称核磁共振。
核磁共振的条件:
ΔE = h v迴= h v射= h BO /2π 或 v射= v迴= BO /2π
射频频率与磁场强度Bo是成正比的,在进行核磁共振
实验时,所用的磁强强度越高,发生核磁共振所需的 射频频率也越高。
: 要满足核磁共振条件,可通过二种方法来实现
共振
交变频率与分辨率的关系
核磁共振波谱的测定
样品:纯度高,固体样品和粘度大液体样品必须溶解。 溶剂:氘代试剂(CDCl3, C6D6 ,CD3OD,
CD3COCD3, C5D5N ) 标准:四甲基硅烷 (CH3)4Si ,缩写:TMS
优点:信号简单,且在高场,其他信号在低场, 值为正值;沸点低(26。5 C),利于回收样品; 易溶于有机溶剂;化学惰性
核的自旋驰豫
驰豫过程可分为两种类型:自旋-晶格驰豫 和自旋-自旋驰豫。
驰豫过程:由激发态恢复到平衡态的过程
自旋晶格驰豫:核与环境进行能量交换。体系能量降 低而逐渐趋于平衡。又称纵向驰豫。速率1/T1,T1为 自旋晶格驰豫时间。
自旋自旋驰豫:自旋体系内部、核与核之间能量平均 及消散。又称横向驰豫。体系的能量不变,速率1/T2, T2为自旋自旋时间。
核自旋取向能级差高几个数量级,热运动使这种倾向受破坏,当达到 热平衡时,处于高低能态的核数的分布服从Boltzmann分布:
n+/n- or Nl/Nh=eΔE/KT
式中:n+ ---- 低能态的核数 n- ---- 高能态的核数
k ----- Boltzmann 常数 T ----- 绝对温度 当T=27 C,磁场强度为1.0特斯拉时,高低能态的核数只差6.8ppm 磁场强度为1.4092时,高低能态的核数只差10ppm
δ 13C 96.1 192.8 77.1(3) 30.3(7), 207.3 39.5(7)
128.0(3) 67.4 116.5(4), 163.3(4) 26.3(7) 149.3(3),123.5(3), 135.5(3) 49.0(7)
图2-5 乙醚的氢核磁共振谱
3. 氢的化学位移
原子核由于所处的化学环境不同,而在不同的共振磁场下显示吸收 峰的现象。
实验方法:内标法、外标法 此外还有:六甲基二硅醚(HMDC, 值为0.07ppm),
4,4-二甲基-4-硅代戊磺酸钠(DSS, 水溶性,作为极性化合物的内标,但三 个CH2的 值为0.5~3.0ppm,对样品信号有影响)
Acetone
NMR Lock Solvents
Chloroform
Dichloro Methane
原子核的进动
在磁场中,原子核的自旋取向有2I+1个。各个取向由一个自旋量子 数m表示。
磁旋比:1H=26753, 2H=410 7,13C= 6726弧度/秒 高斯
N
H0
2
H0
自旋角速度ω,外磁场H0,进动频率ν
共振条件
原子核在磁场中发生能级分裂,在磁场的垂直方向上加小交变电场,
如频率为v射,当v射等于进动频率ν,发生共振。低能态原子核吸收
信号。 化学不等价的质子在 NMR 谱中出现不同的信号组。
例1:CH3-O-CH3 例2:CH3-CH2-Br 例3:(CH3)2CHCH(CH3)2 例4:CH3-CH2COO-CH3
一组NMR 信号 二组NMR信号 二组NMR 信号 三组NMR 信号
化学等价质子与化学不等价质子的判断
Toluene
Pyridine
Cyclohexane
CD3COCD3 CDCl3 CD2Cl2 CD3CN C6D6 D2O (CD3CD2)2O (CD3)2O (CD3)2NCDO CD3SOCD3 CD3CD2OD CD3OD C4D8O C6D5CD3 C5D5N C6H12
常用溶剂的化学位移值
偶数 偶数
0
无自旋现象
奇数 奇数或偶数 1/ 2
自旋球体
奇数 奇数或偶数 3/2, 5/2,--- 自旋惰球体
偶数 奇数
1, 2, 3, --- 自旋惰球体
无
12C,16O, 32S, 28Si, 30Si
有
1H, 13C, 15N, 19F, 31P
有 11B,17O,33S,35Cl,79Br,127I
1. 核磁共振的基本原理
原子核的磁矩 自旋核在磁场中的取向和能级 核的回旋和核磁共振 核的自旋弛豫
原子核的自旋、Baidu Nhomakorabea矩
质量数与电荷数均为双数,如C12,O16,没有自 旋现象。I=0
质量数为单数,如H1,C13,N15,F19,P31。I为 半整数,1/2,3/2,5/2……
质量数为双数,但电荷数为单数,如H2,N14,I为 整数,1,2……
驰豫时间与谱线宽度的关系 :即谱线宽度与驰豫时间 成反比。
饱和:高能级的核不能回到低能级,则NMR信号消失 的现象。
核磁共振仪
分类:按磁场源分:永久磁铁、电磁铁、超导磁场 按交变频率分:40 ,60 ,90 ,100 , 200 ,500,--,800
MHZ(兆赫兹),频率越高,分辨率越高 按射频源和扫描方式不同分:连续波NMR谱仪(CW-NMR) 脉冲傅立叶变换NMR谱仪(FT-NMR)
NMR谱的结构信息
化学位移 偶合常数 积分高度
让处于外磁场的自旋核接受一定频率的 电磁波辐射,而辐射的能量又恰好等于高低 两种不同取向的能量差时,质子就吸收电磁 辐射,从低能态跃迁到高能态而产生共振现 象,称为核磁共振(NMR)。
以吸收的能量的强度为纵坐标,以吸收 的频率为横坐标,用记录仪描绘下来,分子 中各个核在核磁共振谱上即出现吸收峰,成 为核磁共振谱图。
化学等价
分子中若有一组核,其化学位移严格相等, 则这组核称为彼此化学等价的核。例如 CH3CH2Cl中的甲基三个质子,它们的化学 位移相等,为化学等价质子,同样亚甲基的 二个质子也是化学等价的质子。
化学等价
处于相同化学环境的原子 — 化学等价原子 化学等价的质子其化学位移相同,仅出现一组NMR
NMR仪器的主要组成部件: 磁体:提供强而均匀的磁场 样品管:直径4mm, 长度15cm,质量均匀的玻璃管 射频振荡器:在垂直于主磁场方向提供一个射频波照射样品 扫描发生器:安装在磁极上的Helmholtz线圈,提供一个附加可 变磁场,用于扫描测定 射频接受器 :用于探测NMR信号,此线圈与射频发生器、扫描 发生器三者彼此互相垂直。
有
2H, 10B, 14N
能级分裂
两种取向代表两个能级,m=-1/2能级高于m=1/2能级。
E
N
I
H0
2N H0
核的回旋和核磁共振
当一个原子核的核磁矩处于磁场BO中,由于 核自身的旋转,而外磁场又力求它取向于磁场 方向,在这两种力的作用下,核会在自旋的同 时绕外磁场的方向进行回旋,这种运动称为 Larmor进动。
第一季度 0 10 20 30 40 50 60 70 80 90
北部 西部 东部
第二季度
第三季度
第四季度
PFT-NMR谱仪
PFT-NMR谱仪与CW谱仪主要区别:信号观测系统,增加了脉冲程序器 和数据采集、处理系统。各种核同时激发,发生共振,同时接受信号 ,得到宏观磁化强度的自由衰减信号(FID信号),通过计算机进行 模数转换和FT变换运算,使FID时间函数变成频率函数,再经数模变 换后,显示或记录下来,即得到通常的NMR谱图。
射频 40 MHZ
60 100
磁场强度 0.9400 特斯拉 1.4092
2.3500
200
4.7000
300
7.1000
500
11.7500
Boltzmann分布
在质子群中处于高低能态的核各有多少?
在绝对温度0度时,全部核处于低能态 在无磁场时,二种自旋取向的几率几乎相等 在磁场作用下,原子核自旋取向倾向取低能态,但室温时热能比原子
Methylnitrile
Benzene
Water
Diethylether (DEE)
Dimethylether (DME)
N,N-Dimethylformamide (DMF)
Dimethyl Sulfoxide (DMSO)
Ethanol
Methanol
Tetrehydrofuran (THF)
FT-NMR谱仪特点: 有很强的累加信号的能力,信噪比高(600:1),灵敏度高,分辨
率好(0.45Hz)。可用于测定1H, 13C, 15N ,19F, 31P等核的一维和二维 谱。可用于少量样品的测定。
2. 核磁共振仪与实验方法
按磁场源分:永久磁铁、电磁铁、超导磁 按交变频率分:40兆,60兆,90兆,100兆,220兆,250兆,300兆 赫兹…… 频率越高,分辨率越高
I为自旋量子数
自旋角动量(PN),自旋量子数(I) I=0,1/2,1,3/2……
磁矩(μN*),核磁矩单位(βN),核磁子;磁旋比(γN)
N
gN
I(I 1)N
N
N
PN
自旋核在磁场中的取向和能级
具有磁矩的核在外磁场中的自旋取向是量子化 的,可用磁量子数m来表示核自旋不同的空间 取向,其数值可取:m =I,I-1,I-2, ……,-I ,共 有2I +1个取向。
频率扫描(扫频):固定磁场强度,改变射频频率
磁场扫描(扫场):固定射频频率,改变磁场强度
实际上多用后者。
各种核的共振条件不同,如:在1.4092特斯拉的磁场,各种核的
共振频率为:
1H
60.000 MHZ
13C
15.086 MHZ
19F
56.444 MHZ
31P
24.288 MHZ
对于1H 核,不同的频率对应的磁场强度: