亥姆霍兹方程中的格林函数Green Function for Helmholtz
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Hale Waihona Puke Baidu
其中G0(r,r’)表示上半空间电流元产生的场, G0(r,ri’)表示下半空间电流 元的镜像所产生的场
Half Space Dyadic Function for Perfect Magnetic Conductor
并矢格林函数的本征展开
矢量波函数L, M,N 的定义
如在矩形波导中正交函数
ψe
引入并矢格林函数的主要目的是为了得到矢量Helmholtz方程 的解。 并矢格林函数与格林函数的关系
并矢格林函数也满足对称关系:
证明见P135
The Dyadic Green’s Function for Half space by Perfect Conductor
The Boundary Condition of Dyadic Green Function
o mn
其中
对于不同的m,n或奇偶模 是正交的
ψe
o mn
并矢格林函数的展开
ψe
o mn
其中AemnBemn,Cemn为展开系数,由正交函数的特性有:
并矢格林函数的展开2
其他两系数为
最后可得并矢格林函数的展开式为
并矢格林函数的展开3
如果定义并矢 S (r , r ' ) 矢格林函数还可以 定义为
Applications of the Dyadic Green Function
并矢格林函数的主要应用是求解矢量Helmholtz方程的解。 这种解可以用并矢格林函数,以很简洁的形式给出。 由电流元给出的电场和磁场满足如下方程
电场的格林函数表达式
由并矢格林函数和电场E所满足的方程可 以得到
Dyadic Green Function
Dyadic Green Function in free space
其中 I
是单位并矢。 上式还可以表示为
The radiation condition of Dyadic Green Function in free space
Dyadic Green Function
第一类边界条件 第二类边界条件
其中en是边界上的外向法向矢量
The Dyadic Green’s Function for Half space by Perfect Conductor
The Dyadic Green’s Function for Half space by Perfect Conductor 2
上式是非齐次Helmholtz方程的通解.它表明,V中任一点的场取决于V中的源 和边界S上的场量分布。 如f(r)=0,v为无源空间,场由面积分确定
非齐次Helmholtz方程的通解2
若边界上Green函数为零,则场由V内的源给定
此时格林函数为第一类格林函数,用下标1表示。 1
场Ψ也满足相同的辐 射条件
一维自由空间中的GF
半空间中的GF
The Expansion of Green Function in eigen function
Expansion of Green Function
Applications of the Green Function
由第二格林恒等式,可得
非齐次Helmholtz方程的通解
Green Function For Helmholtz Equations
电子科技大学 物理电子学院 喻志远 2009
满足Helmholtz方程的GF
2 G (r , r ' ) + k 2 G (r , r ' ) = δ (r r ' )
其中δ(r-r;)是三维Delta函数,如k=0,上式则化为Poisson 方程。 在不同的边界条件下Green函数具有不同的结构。 在Lorentz规范下,势Φ 满足下列方程
可化为:
ρ (r ) φ (r ) + k φ (r ) = ε
2 2
2φ (r ) + k 2φ (r ) = δ (r r ' )
GF满足的边界条件
这里αβ不同时为零
Green Function 分类
1。在边界上为零的Green 函 数为第一类Green 函数。 2。在边界上法向导数为零的 Green 函数为第二类Green 函 数
所以
电场的格林函数表达式2
电场的面积分消失,则电场由V中的电流确定
由格林函数的对称性,交换r,r’得到
磁场的并矢表达式
Electric Dyadic Green function and Magnetic Dyadic Function
电并矢和磁并矢分别 用以下两个符号来表示
G ( r r ' ), G
他们满足以下的方程:
e
m
(r r ' )
他们之间的关系为
Electric Dyadic Green function and Magnetic Dyadic Function 2
性质
1对称性和互易性 G(r,r’)=G(r’,r),是由于 Delta函数的对称性而引起的
三维自由空间中的GF
由Foureir变换可以求得:
又可以化为:
其中h是球汉克尔 函数
二维自由空间中的GF
二维GF满足如下的方程
同样应用留数来计算围道积分,可以得到
一维自由空间中的GF
可以作为无限均匀传输线中的单位电 压源或电流源产生的场
其中G0(r,r’)表示上半空间电流元产生的场, G0(r,ri’)表示下半空间电流 元的镜像所产生的场
Half Space Dyadic Function for Perfect Magnetic Conductor
并矢格林函数的本征展开
矢量波函数L, M,N 的定义
如在矩形波导中正交函数
ψe
引入并矢格林函数的主要目的是为了得到矢量Helmholtz方程 的解。 并矢格林函数与格林函数的关系
并矢格林函数也满足对称关系:
证明见P135
The Dyadic Green’s Function for Half space by Perfect Conductor
The Boundary Condition of Dyadic Green Function
o mn
其中
对于不同的m,n或奇偶模 是正交的
ψe
o mn
并矢格林函数的展开
ψe
o mn
其中AemnBemn,Cemn为展开系数,由正交函数的特性有:
并矢格林函数的展开2
其他两系数为
最后可得并矢格林函数的展开式为
并矢格林函数的展开3
如果定义并矢 S (r , r ' ) 矢格林函数还可以 定义为
Applications of the Dyadic Green Function
并矢格林函数的主要应用是求解矢量Helmholtz方程的解。 这种解可以用并矢格林函数,以很简洁的形式给出。 由电流元给出的电场和磁场满足如下方程
电场的格林函数表达式
由并矢格林函数和电场E所满足的方程可 以得到
Dyadic Green Function
Dyadic Green Function in free space
其中 I
是单位并矢。 上式还可以表示为
The radiation condition of Dyadic Green Function in free space
Dyadic Green Function
第一类边界条件 第二类边界条件
其中en是边界上的外向法向矢量
The Dyadic Green’s Function for Half space by Perfect Conductor
The Dyadic Green’s Function for Half space by Perfect Conductor 2
上式是非齐次Helmholtz方程的通解.它表明,V中任一点的场取决于V中的源 和边界S上的场量分布。 如f(r)=0,v为无源空间,场由面积分确定
非齐次Helmholtz方程的通解2
若边界上Green函数为零,则场由V内的源给定
此时格林函数为第一类格林函数,用下标1表示。 1
场Ψ也满足相同的辐 射条件
一维自由空间中的GF
半空间中的GF
The Expansion of Green Function in eigen function
Expansion of Green Function
Applications of the Green Function
由第二格林恒等式,可得
非齐次Helmholtz方程的通解
Green Function For Helmholtz Equations
电子科技大学 物理电子学院 喻志远 2009
满足Helmholtz方程的GF
2 G (r , r ' ) + k 2 G (r , r ' ) = δ (r r ' )
其中δ(r-r;)是三维Delta函数,如k=0,上式则化为Poisson 方程。 在不同的边界条件下Green函数具有不同的结构。 在Lorentz规范下,势Φ 满足下列方程
可化为:
ρ (r ) φ (r ) + k φ (r ) = ε
2 2
2φ (r ) + k 2φ (r ) = δ (r r ' )
GF满足的边界条件
这里αβ不同时为零
Green Function 分类
1。在边界上为零的Green 函 数为第一类Green 函数。 2。在边界上法向导数为零的 Green 函数为第二类Green 函 数
所以
电场的格林函数表达式2
电场的面积分消失,则电场由V中的电流确定
由格林函数的对称性,交换r,r’得到
磁场的并矢表达式
Electric Dyadic Green function and Magnetic Dyadic Function
电并矢和磁并矢分别 用以下两个符号来表示
G ( r r ' ), G
他们满足以下的方程:
e
m
(r r ' )
他们之间的关系为
Electric Dyadic Green function and Magnetic Dyadic Function 2
性质
1对称性和互易性 G(r,r’)=G(r’,r),是由于 Delta函数的对称性而引起的
三维自由空间中的GF
由Foureir变换可以求得:
又可以化为:
其中h是球汉克尔 函数
二维自由空间中的GF
二维GF满足如下的方程
同样应用留数来计算围道积分,可以得到
一维自由空间中的GF
可以作为无限均匀传输线中的单位电 压源或电流源产生的场