膜分离实验吧
超过滤膜分离实验报告
实验二 超过滤膜分离一、实验目的1.了解和熟悉超过滤膜分离的工艺过程;2.了解膜分离技术的特点;二、分离机理根据溶解-扩散模型,膜的选择透过性是由于不同组分在膜中的溶解度和扩散系数不同而造成的。
若假设组分在膜中的扩散服从Fick 定律,则可推出透水速率F W 及溶质通过速率F S 方程。
1、 透水速率'()()w w M w D c V p F A p RT ππδ∆-∆==∆-∆式中22332/;;//;;;/w w w M w w MF g cm s D cm s c g cm V cm mol p atm atm R T K cm D c V A g cm s at RT πδδ-⋅-⋅--∆-∆-----⋅⋅’透水速率,水在膜中的扩散系数,水在膜中的浓度,;水的偏摩尔体积,膜两侧的压力差,膜两侧的渗透压差,气体常数;温度,;膜的有效厚度,;膜的水渗透系数(=),。
2、溶质透过速率2323()()s s s s s D K cD K c c F B c B c c δδ∆-===∆=-式中2/;s s D cm s K B c ---∆-溶质在膜中的扩散系数,溶质在溶液和膜两相中的分配系数;溶质渗透系数;膜两侧的浓度差。
有了上述方程,下面建立中空纤维在定态时的宏观方程。
料液在管中流动情况如图十三所示。
取假设条件:(1)径向混合均匀;(2)A BX π=A ,渗透压正比于摩尔分数; (3)AB N N ,31A X ,B 组分优先通过;(4)/AM D K δ⋅,1A X K 同或无关; (5)0U LPeB E==∞,忽略轴向混合扩散。
图十三 料液在管中流动示意图由假设看出,其实质是一维问题,只是侧壁有液体流出的情况,因为关心的是管中组分的浓度分布和平均速度分布,只需做出两个质量衡算方程即可求解。
由连续性方程:和总流率方程:可推出013[()]w V l r c c du dx h--= (1) 式中,h 为装填系数。
膜分离实验指导书
膜分离实验指导书中空纤维超滤膜分离聚乙二醇实验一.实验目的1.介绍超滤膜拆分的基本原理。
2.熟识超滤膜拆分的工艺流程,3.掌握中空纤维超滤膜分离的实验方法。
4.学会用分光光度计法测定水中聚乙二醇的含量。
二.实验原理约束条件器的工作原理如下:在一定的压力促进作用下,当所含高分子和高分子溶质的混合溶液通过被提振的超滤膜表面时,溶剂(例如水)和高分子溶质(例如无机盐类)将借由超滤膜,做为借由物被搜集出来;高分子溶质(例如有机胶体)则被超滤膜侵吞而做为浓缩液被废旧。
筛分理论被广为用以分析其拆分机理。
该理论指出,膜表面具备无数个微孔,这些实际存有的相同孔径的孔眼像是筛子一样,侵吞居住分子直径大于孔径的溶质和颗粒,从而达至拆分的目的。
应表示的就是,若约束条件全然用“筛分”的概念去表述,则可以非常模棱两可。
孔径大小并不是就是物料拆分的唯一支配因素,在有些情况下,超滤膜材料表面的化学特性起著了关键的侵吞促进作用。
例如有些膜的孔径既比溶剂分子小,又比溶质分子小,本不应当具备侵吞功能,但令人不幸的就是,它却仍具备显著的拆分效果。
由此可知,比较全面的表述就是:在超滤膜拆分过程中,膜的孔径大小和膜表面的化学性质等,将分别起至着相同的侵吞促进作用。
因此,无法直观地分析约束条件现象,孔结构就是关键因素,但不是唯一因素,另一关键因素就是膜表面的化学性质。
三.实验装置及仪器1、装置流程实验装置为天津大学基础化工实验中心生产的中空纤维超滤膜拆分装置。
1:压力表;2、3、4、5、8、9:阀门;6:原水流量;7、10:超滤膜;11:反洗水流量12、13、14、15、16、17、18:阀门;19:精滤器;20:过滤泵;21、22:阀门;23:反洗泵膜分离工艺流程图2、主要仪器:722n型可见分光光度计,用于测定聚乙二醇的吸光度。
3、其他仪器和试剂:仪器:分析天平,细天平,真空干燥箱,容量瓶,干燥器,移液管,吸量管,烧杯,量筒,秒表等。
膜分离装置实验讲义1
膜分离实验实验讲义湖南城市学院化工实验教学中心一、实验目的1、 熟悉和了解膜分离原理;2、熟悉和了解膜污染及其清洗方法;3、熟习多通道管式无机陶瓷膜、膜组件的结构及基本流程;4、掌握表征膜分离性能参数(膜通量、截留率、粒径分离效率等)的测定方法;5、测定并讨论膜面流速、操作压差、料液性质等操作条件对膜分离性能的影响。
二、实验原理膜分离技术是利用半透膜作为选择分离层,允许某些组分透过而保留混合物中其它组分,从而达到分离目的的一大类新兴的高效分离技术,其分离推动力是膜两侧的压差、浓度差或电位差,适于对双组分或多组分液体或气体进行分离、分级、提纯或富集。
膜是两相之间的选择性屏障,选择性是膜或膜过程的固有特性。
常见的膜分离过程如图1所示,原料混合物通过膜后被分离成截留物(浓缩物)和透过物。
通常原料混合物、截留物及透过物为液体或气体,有时可在膜的透过物一侧加入一个清扫流体以帮助移除透过物。
半透膜可以是薄的无孔聚合物膜,也可以是多孔聚合物、陶瓷或金属材料的薄膜。
图1-1 膜分离过程示意图一、各类分离膜的功能比较微孔膜、超滤膜、纳滤膜和反渗透膜的划分是以膜孔径为标准。
四类膜孔径及功能如下表所示。
项目 反渗透RO 纳滤NF 超滤UF 微滤MF 膜类型非对称膜非对称膜非对称膜对称膜 非对称膜整体厚度 150μm 150μm 150~250μm10~150μm薄膜厚度1μm1μm1μm膜原料混截留清扫透过孔径 <0.002μm<0.02μm0.01~0.2μm 0.2~10μm 截流组分HMWC ,LMWC 氯化纳 葡萄糖 氨基酸HMWC 小分子组分单糖、低聚糖 多价负离子蛋白质 多糖多聚糖 病毒 颗粒 粘土 细菌膜材质 醋酸纤维素 薄膜(CA)醋酸纤维素 薄膜(CA)陶瓷 聚醚砜(PeS)聚偏二氟乙烯(PVDF) 醋酸纤维素薄膜(CA) 陶瓷 聚丙烯(PP)聚偏二氟乙烯(PVDF)膜组件类型 卷式 板框式 管式卷式 板框式 管式卷式 板式 管式 中空纤维板式 管式 中空纤维操作压力bar 15~150 5~35 1~10<2二、卷式膜组件的结构 1.超滤膜超滤膜一般为非对称膜,超滤膜的活性分离层上有无数不规则的小孔,且孔径大小不一,很难确定其孔径,也很难用孔径去判断其分离能力,其孔径大致为m 0.20.01μ--。
无机膜分离实验报告(3篇)
第1篇一、实验目的本次实验旨在探究无机膜在分离技术中的应用效果,通过对特定溶液进行分离实验,验证无机膜在分离过程中的稳定性、选择性和效率。
实验主要针对无机陶瓷膜进行操作,研究其在实际应用中的可行性。
二、实验材料与设备1. 实验材料:- 赖氨酸发酵液(含赖氨酸、短杆菌、菌体蛋白质、颗粒杂质等)- CO2混合气体(含N2、CF4、C3F6等)- 工业废气(含SO2、NOx、颗粒物等)- 无机陶瓷膜(孔径约0.4~0.6μm)- 聚四氟乙烯(Teflon AF 2400)- 有机-无机复合膜材料2. 实验设备:- 膜过滤装置- 气体分离装置- 工业废气净化装置- 分光光度计- 精密天平- 恒温水浴锅- 高压气体钢瓶三、实验方法1. 赖氨酸分离实验:- 将赖氨酸发酵液通过无机陶瓷膜进行过滤,收集滤液和滤渣。
- 分析滤液中赖氨酸的含量,计算提取率。
- 观察滤液悬浮物和浊度,评估过滤效果。
2. 气体分离实验:- 将CO2混合气体通过Teflon AF 2400制作用于分离氮气、四氟甲烷和六氟丙烯的气体分离无机膜。
- 分析分离后气体的成分,计算分离效果。
3. 工业废气净化实验:- 将工业废气通过有机-无机复合膜材料进行净化。
- 分析净化前后废气中污染物的含量,评估净化效果。
四、实验结果与分析1. 赖氨酸分离实验:- 经无机陶瓷膜处理后,赖氨酸提取率可达80%以上。
- 滤液悬浮物小于0.5%,浊度在10 NTU以内,过滤效果稳定。
2. 气体分离实验:- N2/CF4的理想选择性为88,N2/C3F6的理想选择性为71。
- 聚四氟乙烯层对沸石层的密封作用是获得较高选择性的原因。
3. 工业废气净化实验:- 有机-无机复合膜材料对工业废气中的SO2、NOx等污染物具有较好的净化效果。
- 净化后废气中污染物含量显著降低,净化效果明显。
五、实验结论1. 无机陶瓷膜在赖氨酸分离提取过程中具有稳定、高效、操作简便等优点,是赖氨酸分离提取的理想膜材料。
实验十 膜分离试验
实验十 膜分离实验一、实验目的1.了解不同膜分离工艺的原理、设备及流程。
2.掌握EM 、UF 、RO 和NF 的适用范围和对象。
二、实验原理1.微滤(EM )微滤米的微孔直径为0.22μm ,当膜的一面遇到具有一定压力、含有一定悬浮颗粒物质的液体时,粒径>0.22μm 的悬浮颗粒物质就被截流在膜的一面,粒径小于0.22μm 的悬浮颗粒物质与水分子一起透过微滤膜排除出。
从而达到分离水体的部分悬浮颗粒物质的目的。
实验采用含有少量悬浮颗粒物质的水进行实验,通过测定进水和出水的浊度来表示微滤膜的处理效果。
2.超滤(UF )超滤膜的微孔直径在10nm —0.1μm ,截流分子量在2—5万,范围根据需要进行选择。
当膜的一面遇到具有一定压力、含有一定悬浮颗粒物质的液体时,粒径>膜孔径的颗粒物质被截流在膜的一面。
为了防止被截流下来的颗粒物质越来越多而堵塞滤膜,往往采用动态过滤的方法进行超滤,即将进行超滤的同时,利用一股液体连续冲刷膜的表面的截流物,以保持超滤表面始终具有良好的通透性。
因此,超滤膜设备出水与两股,一股为透过水(淡水),一股为截流物液(浓水)。
参见下面的图示:超滤液 浓缩液 原液 (图一)超滤膜示意图静态过程 (图二) 动态过程 图10-1超滤(UF )示意图超滤膜可以截流溶液中的细菌病毒、热源、蛋白质、胶体、大分子有机物等等。
实验采用含有少量染料物质的水进行实验,通过测定水、“淡水”和“浓水”的色度变化表示超滤膜的处理效果。
3.反渗透(RO)反渗透膜的孔径在0.1-1nm 之间。
反渗透技术是利用高压液体的高压作用,库夫渗透膜的渗透压,使溶液中的分子逆向渗透过渗透膜到达离子浓度较低的一端,从而到达去除溶液只能够大部分例子的目的。
为了防止被截流下来的其他例子越积越多儿堵塞RO 膜,同样采用动态的方法来进行反渗透,即将进行反渗透的同时,利用一股液体连续冲刷膜的表面的截流物,以保持反渗透表面始终具有良好的通透性。
膜分离实验
实验三膜分离实验装置一、实验目的1.了解超滤膜分离的主要工艺设计参数。
2.了解液相膜分离技术的特点。
3.训练并掌握超滤膜分离的实验操作技术。
4.熟悉浓差极化、截流率、膜通量、膜污染等概念。
二、实验原理膜分离是近数十年发展起来的一种新型分离技术。
常规的膜分离是采用天然或人工合成的选择性透过膜作为分离介质,在浓度差、压力差或电位差等推动力的作用下,使原料中的溶质或溶剂选择性地透过膜而进行分离、分级、提纯或富集。
通常原料一侧称为膜上游,透过一侧称为膜下游。
膜分离法可以用于液- 固(液体中的超细微粒)分离、液-液分离、气-气分离以及膜反应分离耦合和集成分离技术等方面。
其中液- 液分离包括水溶液体系、非水溶液体系、水溶胶体系以及含有微粒的液相体系的分离。
不同的膜分离过程所使用的膜不同,而相应的推动力也不同。
目前已经工业化的膜分离过程包括微滤(MF)、反渗透(RO)、纳滤(NF)、超滤(UF)、渗析(D)、电渗析(ED)、气体分离(GS)和渗透汽化(PV)等,而膜蒸馏(MD)、膜基萃取、膜基吸收、液膜、膜反应器和无机膜的应用等则是目前膜分离技术研究的热点。
膜分离技术具有操作方便、设备紧凑、工作环境安全、节约能量和化学试剂等优点,因此在20 世纪60 年代,膜分离方法自出现后不久就很快在海水淡化工程中得到大规模的商业应用。
目前除海水、苦咸水的大规模淡化以及纯水、超纯水的生产外,膜分离技术还在食品工业、医药工业、生物工程、石油、化学工业、环保工程等领域得到推广应用。
超虑膜分离基本原理是在压力差推动下, 利用膜孔的渗透和截留性质, 使得不同组分得 到分级或分离。
超虑膜分离的工作效率以膜通量和物料截流率为衡量指标,两者与膜结构、 体系性质以及操作条件等密切相关。
影响膜分离的主要因素有:R f 为膜污染阻力。
过滤时, 由于筛分作用, 料液中的部分大分子溶质会被膜截留, 溶剂及小分子溶质则能 自由的透过膜, 从而表现出超虑膜的选择性。
膜分离的实验报告
膜分离的实验报告1. 引言膜分离是一种将混合物中的组分通过膜进行分离的方法,广泛应用于化工、生物工程、环保等领域。
本实验旨在通过膜分离技术研究某种混合物中的组分分离效果,并探究影响膜分离效果的因素。
2. 实验材料与方法2.1 实验材料- 膜分离装置:包括膜分离膜、膜分离模块等。
- 混合物:包含A、B两种组分的溶液。
2.2 实验方法1. 将混合物注入膜分离装置中,并施加适当的压力。
2. 收集透过膜的溶液,并分别用适当的方法对溶液中的A、B两种组分进行定量分析。
3. 改变压力、膜材料等条件,多次进行实验,探究对膜分离效果的影响。
3. 实验结果与分析经过多次实验,得到了不同条件下的膜分离效果。
下表为部分实验结果:实验次数压力(MPa) A组分透过量(mg) B组分透过量(mg)1 1 10 202 1.5 15 183 2 18 154 1 8 255 2 16 17分析以上数据可知,压力对膜分离效果有影响,压力越大,组分透过量越大。
但压力过大也可能导致膜的破损或堵塞,影响膜的使用寿命。
另外,由于不同组分的性质不同,可能对膜具有不同的透过性,从而导致透过量的差异。
4. 结论通过实验我们得到了膜分离的实际效果,分析结果表明,在一定范围内,增加压力可以提高膜分离的效果。
但需要注意,过高的压力可能会损坏膜的结构,影响使用寿命。
此外,混合物中各组分的性质也会影响膜的透过性,因此选择合适的膜材料也是膜分离的关键因素。
5. 实验总结本次实验通过膜分离技术的应用,探究了膜分离效果和影响因素。
实验结果表明,在适当的压力下,膜分离可以有效地将混合物中的组分分离,达到预期的效果。
同时,由于膜分离涉及到膜的选择和应用条件的调整,需要综合考虑多个因素。
因此,在实际应用中,需要根据具体情况进行膜材料的选择和操作条件的优化,以达到最佳的分离效果。
通过这次实验,我们不仅对膜分离的原理和应用有了更深入的了解,也获得了一定的实验操作技能和数据分析能力。
膜分离实验报告
膜分离实验报告
院(系)生化系年级10级专业制药工程姓名学号
课程名称专业实验实验日期2013年 5 月日实验地点3L216 指导老师胡建明、周群贵一、实验目的
(1).熟悉超滤、纳滤和反渗透的基本原理,微滤、超滤及纳滤系统的结构及基本操作。
(2).了解超滤、纳滤和反渗透操作的影响因素。
如温度、压力、流量等对脱盐效果的影响。
(3).学会测量水渗透通量和水渗透系数;测定纯水渗透通量与操作压力的变化关系;测定盐的脱除率与操作压力的变化关系。
二、实验原理
膜分离系统的工作原理:利用一种高分子聚合物的薄膜来选择过滤进料而达到分离的目的。
(1).脱盐率(截留率)R表示膜脱除(截留)盐的性能
CF:被分离的主体溶液浓度
CP:透过液浓度
(2).分离系统
三、实验装置与设备材料
纳滤、超滤、反渗透膜选用美国陶氏化学公司生产的TW、NF型膜,采用不锈钢压力容器。
实验装置为湘潭祺润公司和胡大实验仪器长生产。
四、实验步骤
1、试机接上220V电源,启动观察判断泵的转向是否正常
2、开机准备检查所有阀门是否正常。
3、向原水中加入足够量的硫酸钠的水溶液,浓度为0.5g/L左右。
4、启动水泵,缓慢将操作压力升至指定值以保护膜延长膜的使用寿命。
5、通过调节水回收率,实现在不同操作压力下工作,记录各个操作压力下的出水电导率和流量。
6、实验完毕,按停机按钮,最后关闭电源。
五、数据记录与整理
见下图。
膜分离实验报告
膜分离实验报告————————————————————————————————作者:————————————————————————————————日期:膜分离实验一.实验目的1.了解膜的结构和影响膜分离效果的因素,包括膜材质、压力和流量等。
2.了解膜分离的主要工艺参数,掌握膜组件性能的表征方法。
3. 了解和熟悉超滤膜分离的工艺过程。
二.基本原理膜分离技术是最近几十年迅速发展起来的一类新型分离技术。
膜分离是以对组分具有选择性透过功能的人工合成的或天然的高分子薄膜(或无机膜)为分离介质,通过在膜两侧施加(或存在)一种或多种推动力,使原料中的某组分选择性地优先透过膜,从而达到混合物的分离,并实现产物的提取、浓缩、纯化等目的的一种新型分离过程。
其推动力可以为压力差(也称跨膜压差)、浓度差、电位差、温度差等。
膜分离过程有多种,不同的过程所采用的膜及施加的推动力不同,通常称进料液流侧为膜上游、透过液流侧为膜下游。
微滤(MF)、超滤(UF)、纳滤(NF)与反渗透(RO)都是以压力差为推动力的膜分离过程,当膜两侧施加一定的压差时,可使一部分溶剂及小于膜孔径的组分透过膜,而微粒、大分子、盐等被膜截留下来,从而达到分离的目的。
四个过程的主要区别在于被分离物粒子或分子的大小和所采用膜的结构与性能。
微滤膜的孔径范围为0.05~10μm,所施加的压力差为0.015~0.2MPa;超滤分离的组分是大分子或直径不大于0.1μm的微粒,其压差范围约为0.1~0.5MPa;反渗透常被用于截留溶液中的盐或其他小分子物质,所施加的压差与溶液中溶质的相对分子质量及浓度有关,通常的压差在2MPa左右,也有高达10MPa的;介于反渗透与超滤之间的为纳滤过程,膜的脱盐率及操作压力通常比反渗透低,一般用于分离溶液中相对分子质量为几百至几千的物质。
2.1微滤与超滤微滤过程中,被膜所截留的通常是颗粒性杂质,可将沉积在膜表明上的颗粒层视为滤饼层,则其实质与常规过滤过程近似。
膜分离技术处理电镀废水的实验研究
膜分离技术处理电镀废水的实验研究膜分离过程是以选择性透过膜为分离介质,借助于外界能量或膜两侧存在的某种推动力(如压力差、浓度差、电位差等),原料侧组分选择性地透过膜,从而达到分离、浓缩或提纯的目的。
膜分离过程是物理过程,不会发生相变,其实质是两种不同物质的分离。
目前,膜分离技术受到广泛的注意且发展迅速,已发展成为一种重要的分离方法,在水处理、化工、环保等方面得到了广泛的应用[1]。
电镀废水一直是工业生产领域的一个重要污染源。
电镀废水中污染物种类多,毒性大,危害严重;其中含有重金属离子或氰化物等,有些属于致癌、致畸或致突变的剧毒物质,对人类危害极大。
另外,电镀废水含有大量的有价值金属,如果处理不得当,排入自然体系既污染环境,又浪费资源。
一般含电镀铜漂洗废水的含铜量在30~200mg/L左右,本文拟采用纳滤(NF)+反渗透(RO)的组合工艺对该废水进行浓缩,使浓缩液的铜离子浓度达到镀液的回用要求。
2.实验部分2.1 实验设备实验所用膜分离设备为自制设备,设备简图如图1所示1:50L不锈钢料液桶 2:进水球阀 3:柱塞泵头(美国CAT泵头)4:电机(美国 ABB电机) 5:压力表(0~4MPa) 6:2540不锈钢膜壳7:浓水出口针阀调节此针阀可以调节系统的运行压力8:玻璃转子流量计(0~10GPM)9:变频器调节变频器可以调节电机转速,从而调节进水压力和流量10:排空球阀 11:循环冷却水出入口图1 实验装置简图2.2 实验用膜纳滤膜 GE公司DK4040F型抗污染纳滤膜反渗透膜 GE公司SE4040F型抗污染反渗透膜2.3 实验料液实验料液参照苏州某台湾电路板(PCB)生产商提供的料液组分自行配制。
料液配方为Cu2+:甲醛:次亚磷酸钠=1:2:4(摩尔比)。
料液主要参数如下:Cu离子浓度:109.8mg/LCOD:356.7mg/LpH:5.41配置料液所用的为RO产水,电导率小于3us/cm。
2.4 分析方法铜离子的测定采用二乙氨基二硫代甲酸钠分光光度法。
第六章膜分离
3、膜的结构
根据膜的断面结构及制备过程可分为对称膜、不对成膜和复合膜。 对称膜:亦称各向同性膜(isotropic membrane) ,其化学结构、
物理结构在各个方向上是一致的,在所有方向上的孔隙率 都相似。膜的各部分具有相同的特性,其孔结构 、不随深 度而变化的膜。 不对称膜:指膜的化学结构或物理结构随膜的部位而异,即 各 向异性的膜。 复合膜:属于表层与支撑层不为同一材质的不对称膜,也是目前发 展最快、研究最多的膜。是以微孔膜或超滤膜作支称层, 在其表面覆盖以厚度仅为0.1~0.25μm的致密的均质膜作 壁障层构成的分离膜。复合膜的材料包括任何可能的材料 结合,如在金属氧化物上覆以陶瓷膜或是在聚砜微孔膜上 覆以芳 香聚酰胺薄膜,其平板膜或卷式膜都要用非织造物 增强以支撑微孔膜的耐压。 极薄的的表面活性层(选择渗透)+下部的多孔支撑层(传质)
纳滤膜传质机理和模型
纳滤多为荷电膜,分离行为不仅受化学势控制,同时也受电势梯 度的影响,传质机理比较复杂。
它具有几个基本特征:
(1)具有纳米级孔径,分离对象主要为粒径1nm左右的物 质,特别适于分子量为数百至2000的物质分离;
(2)操作压力低,一般低于1MPa,远小于反渗透所需操 作压力(几个到几十个MPa);
膜分离过程
的形式
料液中的某些溶质或 离子在浓度差、电位差 的推动下,透过膜进入 接受液中,从而被分离--渗析和电渗析;
由于组分分子的大小和 性质有别,它们透过膜的 速率有差别,透过部分和 留下部分的组成不同,实 现组分分离---超滤、微滤 、反渗透,各组分在通 过膜的同时发生气化,且各组分的透过速 率不同。
程,而这在原理上并没有本质的区别。即均为在一定的 压力作用下,当含有高分子溶质和低分子溶质的混合溶 液流过膜表面时,溶剂和小于膜孔的低分子溶质透过膜, 成为渗透液被收集。大于膜孔的高分子溶质(如有机胶 体)则被膜截留而作为浓缩液被回收。 2)纳滤有所不同,除了截留筛分之外,由于纳滤膜的表面 分离层由聚电介质构成,对离子有静电相互作用,因此 对无机盐有一定的截留率。
实验五-膜分离实验
五、实验结果整理
1. 预处理系统实验结果
原水浊度: NTU,原水电导率: μS/cm。 μS/cm。 预处理出水浊度: NTU,预处理出水电导率:
2. 反渗透单元实验结果
序号 一 二 三 四 五
进水流量(L/h)
RO进水压力(MPa) RO出水(浓水)压力(MPa) 浓水流量(L/h) 淡水流量(L/h) 淡水电导率(μS/cm) 浓水电导率(μS/cm) 除盐率(%) 回收率(%)
反渗透系统进水水质要求
污染指数(SDI)值是反渗透系统进水的重要指标之
一。是检验处理系统出水是否达到反渗透进水要求的主要 手段。它的大小对反渗透运行寿命至关重要。在纯水系统, 特别是反渗透(RO)系统中,SDI被广泛用于预测水中胶 体以及颗粒物质对RO膜的堵塞速度。 由于水源的水质经常变化,所以常常需要每周或每月 进行SDI值的检测。
1. 一体化反渗透实验装置; 2. 浊度仪; 3. 电导率仪。
四、实验内容及参考步骤
1. 测定原水水质指标:浊度,电导率。 2. 开启预处理装置进水阀并运行一段时间(流量 30L/h ),
测预处理出水水质指标:浊度,电导率。
3. 开启反渗透装置进水泵,缓慢调节反渗透膜元件进水阀 和 浓 水阀使 其 流量达到指定值 QRO 进 水 =QRO 出 水 ( 浓 水 ) =30L/h,并运行 15min。观察 RO进水压力表和 RO浓水 压力表读数。
成不同的形式,称为膜组件( module)。膜组件有四种形
式:板框式、管式、卷式和中空纤维。
板 框 式 反 渗 透 装 置 结 构 图
管 式 反 渗 透 装 置 组 件 结 构 图
卷 式 反 渗 透 装 置 组 件 结 构 图
中 空 纤 维 式 组 件 结 构 图
膜分离(实例)
膜分离应用实例
渗透汽化VS渗透蒸发
2015-2-16
膜分离
上一页
下一页
材料科学与化学工程学院 渗透汽化基本原理及特点
• 是一种以混合物中组分渗透压差为推动力,依靠各组分在膜中的溶解与 扩散速率差异来实现混合物分离的新型膜分离技术过程。 • 具有致密皮层的渗透汽化膜将料液和渗透物分离为两股独立的物流,料 液侧 ( 膜上游侧或膜前侧 ) 一般维持常压,渗透物侧 ( 膜下游侧或膜后 侧 ) 则通过抽真空或载气吹扫的方式维持较低的组分分压。在膜两侧组 分分压差 ( 化学位梯度 ) 的推动下,料液中各组分扩散通过膜,并在膜 后侧汽化为渗透物蒸汽。由于料液中各组分的物理化学性质不同,它们 在膜中的热力学性质 ( 溶解度 ) 和动力学性质 ( 扩散速度 ) 存在差异, 因而料液中各组分渗透通过膜的速度不同,易渗透组分在渗透物蒸汽中 的份额增加,难渗透组分在料液中的浓度则得以提高。 • 渗透汽化膜分离过程主要是利用料液中各组分和膜之间化学物理作用的 不同来实现分离的。渗透汽化过程中组分有相变发生,相变所需的潜热 由原料的显热来提供。
上一页 下一页
材料科学与化学工程学院
2015-2-16
膜分离
上一页
下一页
材料科学与化学工程学院
膜分离应用实例
国家海洋局 天津海水淡化与综合利用研究所
2015-2-16
膜分离
上一页
下一页
材料科学与化学工程学院
• 国家海洋局天津海水淡化与综合利用研究所1984年 经国务院批准成立,是目前我国唯一专门从事海水 资源开发利用发展战略、公用基础和产业化关键技 术研究的国家级公益类非营利研究机构。 • 其主要研究领域为:海水(苦咸水)淡化、海水直 接利用、海洋环境工程、海水化学资源综合利用、 膜技术与水处理、海洋防腐等,具有国家专项工程 设计甲级证书,全面实施ISO-9001质量体系管理。
南大化工膜分离实验报告
膜分离实验报告一、实验目的1.了解不同膜分离工艺的原理、设备及流程。
2.掌握RO、NF的适用范围和对象。
二、实验原理1.反渗透(RO)反渗透膜的孔径在0.1-1nm之间。
反渗透技术是利用高压液体的高压作用,克服渗透膜的渗透压,使溶液中水分子逆方向渗透过渗透膜到达离子浓度较低的一端,从而达到去除溶液中大部分离子的目的。
为了防止被截留下来的其他离子越积越多而堵塞RO膜,往往采用动态的方法来进行反渗透,即在进行反渗透的同时,利用一股液体流连续冲刷膜表面的截留物,以保持反渗透膜表面始终具有良好的通透性。
因此,反渗透设备的出水有两股,一股为透过液(淡水),一股为截留液(浓水)。
实验采用NaCl、MgSO4溶液进行实验,用在线电导仪测定进水、“淡水”和“浓水”的电导率变化,表示反渗透膜的处理效果。
图1 反渗透(RO)示意图2.纳滤(NF)纳滤膜的孔径范围介于反渗透膜和超滤膜之间。
纳滤技术是从反渗透中派生出来的一种膜分离技术,是超低压反渗透技术的延续和发展分支。
一般认为,纳滤膜存在纳米级的细孔,可以截留95%的最小分子约为1nm的物质。
纳滤膜的特点在于:较低的渗透压和较高的膜通透性,因此,可以节能;通过纳滤膜的渗透作用,可以去除多价的离子,保留部分低价的对人体有益的矿物离子。
为了防止被截留下来的其他离子越积越多而堵塞NF膜,同样采用动态的方法来进行纳滤,即在进行纳滤的同时,利用一股液体流连续冲刷膜表面的截留物,以保持纳滤膜表面始终具有良好的通透性。
因此,纳滤设备的出水也有两股,一股为透过液(淡水),一股为截留液(浓水)。
实验采用NaCl、MgSO4溶液进行实验,用在线电导仪测定进水、“淡水”和“浓水”的电导率变化,表示纳滤膜的处理效果。
同时将纳滤和反渗透对一价和二价离子的截留效果进行比较,可以知道纳滤膜出水中保留了比反渗透出水中更多的有益矿物离子。
三、实验流程与设备整套膜分离装置的四个单元共同安装在一个支架上,由微滤单元和反渗透单元组成设备的1/2,超滤单元和纳滤单元组成设备另外的1/2。
膜分离实验吧
膜分离实验吧膜分离实验(Membrane Separation Experiment)是一种利用膜技术实现物质分离的实验。
膜分离技术是一种非常常见的分离技术,它通过膜作为分离介质,将混合物中的不同成分分离,实现纯化和浓缩的目的。
膜分离技术广泛应用于化工、食品、医药、环保等领域。
膜分离实验主要包括以下步骤:1. 膜的准备选择适当的膜材料,并将其剪成适当的大小。
对于新的膜,需要在实验前进行预处理,使其达到最佳性能。
2. 水的处理用去离子水或反渗透水清洗膜表面,去除悬浮颗粒和有机污染物质,保证实验的准确性。
3. 实验前的调试在实验前,需要进行一些调试,如设定压力、进出口流量等参数,保证实验的精度和稳定性。
4. 实验过程将混合物注入进样口,通过压力差使不同成分的物质经过膜而得到分离。
同时要注意监测压力差、流量等参数,以保证实验过程正常进行。
5. 实验结果分析通过实验结果,可以计算出不同物质的分离效率、透过率等性能参数,评估膜的性能,为进一步的应用提供依据。
膜分离实验的实际应用非常广泛。
在制药生产中,可以使用膜分离技术纯化药品;在环保领域,可以利用膜分离技术处理污水和废水;在食品加工中,可以通过膜分离技术实现乳品、果汁等液体的浓缩和分离等。
在实验室中,膜分离实验也有非常重要的应用,可以用来研究新材料的性能、优化膜的结构、评估新膜的性能等。
总之,膜分离实验是一种重要的实验技术,具有广泛的应用前景。
通过膜分离技术,能够实现混合物中不同成分的分离,具有高效、节能、环保等优点,是当前研究的热点之一。
物理化学处理方法——膜分离
物理化学处理方法——膜分离(一)概述膜分离法是利用特殊的薄膜对液体中的某些成分进行选择性透过的方法的统称。
溶剂透过膜的过程称为渗透,溶质透过膜的过程称为渗析。
常用的膜分离方法有电渗析、反渗透、超滤。
其次是自然渗析和液膜技术。
近年来,膜分离技术发展很快,在水和废水处理、化工、医疗、轻工、生化等领域得到大量应用。
膜分离的作用机理往往用膜孔径的大小为模型来解释,实质上,它是由分离物质间的作用引起的,同膜传质过程的物理化学条件以及膜与分离物质间的作用有关。
①膜分离过程不发生相变,因此能量转化的效率高。
例如在现在的各种海水淡化方法中,反渗透法能耗最低。
②膜分离过程在常温下进行,因而特别适于对热敏性物料,如对果汁、酶、药物等的分离、分级和浓缩。
③装置简单,操作容易,易控制、维修,且分离效率高。
作为一种新型的水处理方法,与常规水处理方法相比.具有占地面积小、适用范围广、处理效率高等特点。
膜分离技术由于具有常温下操作、无相态变化、高效节能、在生产过程中不产生污染等特点,因此在饮用水净化、工业用水处理,食品、饮料用水净化、除菌,生物活性物质回收、精制等方面得到广泛应用,并迅速推广到纺织、化工、电力、食品、冶金、石油、机械、生物、制药、发酵等各个领域。
分离膜因其独特的结构和性能,在环境保护和水资源再生方面异军突起,在环境工程,特别是废水处理和中水回用方面有着广泛的应用前景。
膜分离是在20世纪初出现,20世纪60年代后迅膜分离技术在中药分离纯化、浓缩中的应用速崛起的一门分离新技术。
膜分离技术由于兼有分离、浓缩、纯化和精制的功能,又有高效、节能、环保、分子级过滤及过滤过程简单、易于控制等特征,因此,目前已广泛应用于食品、医药、生物、环保、化工、冶金、能源、石油、水处理、电子、仿生等领域,产生了巨大的经济效益和社会效益,已成为当今分离科学中最重要的手段之一。
膜是具有选择性分离功能的材料。
利用膜的选择性分离实现料液的不同组分的分离、纯化、浓缩的过程称作膜分离。
第3章 膜分离
筛分机理: 根据被分离物之间物理性质的不同,
主要是质量、体积大小和几何形态的差异,用 过筛的办法将其分离。 溶解-扩散机理:根据混合物化学性质的不同。
主要分两个步骤,一是溶解,二是扩散。
2.3.1 微孔模型
对于微孔过滤,膜的孔径往往比溶
质分子的平均只有程大得多,在这种情况
下,溶质在膜孔中以对流形式传递,因此 可用孔流模型描述。当在以压力差为推动 力的传递情况下,溶剂的渗透通景主要取 决于膜的孔径、孔隙率、孔的曲折因子,
反渗透
原理:在静压差推动力 作用下进行的分离过程 透过组分:溶剂 截留组分:1~10Å 小分 子溶质 传递机理:溶解-扩散 膜类型:非对称膜 推动力:压力差 1000~10000kPa
溶质
进料
溶剂
渗析
原理:在浓度差推动力作用下进 行的筛孔扩散分离过程 透过组分:小分子溶质或较小的 溶质 截留组分:>0.02 µm 血液渗析中>0.005 µm 传质机理:筛分微孔膜内的受阻 扩散 膜类型:非对称膜或离子交换膜 推动力:浓度差 渗析液 溶剂或水 水
分离膜分类
按膜的材料分类
1、天然膜(生命膜) 天然物质改性或再生而制成的膜。 2、合成膜 无机膜; 高聚物膜。
按膜的形态结构分类 1、按形态分 均质膜(对称膜); 非对称膜。
2. 按膜 的作用机理分类
a. 吸附性膜 多孔膜 等; 反应膜 质。 多孔石英玻璃,活性炭,硅胶和压缩粉末 膜内含有能与渗透过来的组分起反应的物
纳滤
原理:在静压力差推动 力作用下进行的分离过 程 透过组分:溶液、低价小 分子溶 质 截留组分:>1nm 传递机理:溶解扩散 膜类型:非对称膜 推动力:压力差 500-1500kPa 高价离子 溶质
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目:膜分离实验
0 前言
(一)实验目的
1.了解膜的结构和影响膜分离效果的因素,包括膜材质、压力和流量等。
2.了解膜分离的主要工艺参数,掌握膜组件性能的表征方法。
3.掌握膜分离流程,比较各膜分离过程的异同。
4.掌握电导率仪、紫外分光光度计等检测方法。
(二).基本原理
膜分离是以对组分具有选择性透过功能的膜为分离介质,通过在膜两侧施加(或存在)一种或多种推动力,使原料中的某组分选择性地优先透过膜,从而达到混合物的分离,并实现产物的提取、浓缩、纯化等目的的一种新型分离过程。
其推动力可以为压力差(也称跨膜压差)、浓度差、电位差、温度差等。
膜分离过程有多种,不同的过程所采用的膜及施加的推动力不同,通常称进料液流侧为膜上游、透过液流侧为膜下游。
微滤(MF )、超滤(UF )、纳滤(NF )与反渗透(RO )都是以压力差为推动力的膜分离过程,当膜两侧施加一定的压差时,可使一部分溶剂及小于膜孔径的组分透过膜,而微粒、大分子、盐等被膜截留下来,从而达到分离的目的。
四个过程的主要区别在于被分离物粒子或分子的大小和所采用膜的结构与性能。
微滤膜的孔径围为0.05~10μm ,所施加的压力差为0.015~0.2MPa ;超滤分离的组分是大分子或直径不大于0.1μm 的微粒,其压差围约为0.1~0.5MPa ;反渗透常被用于截留溶液中的盐或其他小分子物质,所施加的压差与溶液中溶质的相对分子质量及浓度有关,通常的压差在2MPa 左右,也有高达10MPa 的;介于反渗透与超滤之间的为纳滤过程,膜的脱盐率及操作压力通常比反渗透低,一般用于分离溶液中相对分子质量为几百至几千的物质。
1微滤与超滤
微滤过程中,被膜所截留的通常是颗粒性杂质,可将沉积在膜表明上的颗粒层视为滤饼层,则其实质与常规过滤过程近似。
本实验中,以含颗粒的混浊液或悬浮液,经压差推动通过微滤膜组件,改变不同的料液流量,观察透过液测清液情况。
对于超滤,筛分理论被广泛用来分析其分离机理。
该理论认为,膜表面具有无数个微孔,这些实际存在的不同孔径的孔眼像筛子一样,截留住分子直径大于孔径的溶质和颗粒,从而达到分离的目的。
应当指出的是,在有些情况下,孔径大小是物料分离的决定因数;但对另一些情况,膜材料表面的化学特性却起到了决定性的截留作用。
如有些膜的孔径既比溶剂分子大,又比溶质分子大,本不应具有截留功能,但令人意外的是,它却仍具有明显的分离效果。
由此可见,膜的孔径大小和膜表面的化学性质将分别起着不同的截留作用。
2膜性能的表征
一般而言,膜组件的性能可用截留率(R )、透过液通量(J )和溶质浓缩倍数(N )来表示。
(1—1)
式中, R -截流率;
Co -原料液的浓度,kmol/m3; Cp -透过液的浓度,kmol/m3。
对于不同溶质成分,在膜的正常工作压力和工作温度下,截留率不尽相同,因此这也是工业上选择膜组件的基本参数之一。
100R =⨯0P
c -c %
c
(1—2)
式中, J -透过液通量,L/(m2h) Vp -透过液的体积,L ; S -膜面积,m2; t -分离时间,h 。
其中, ,即透过液的体积流量,在把透过液作为产品侧的某些膜分离过程中(如污水净化、海水淡化等),该值用来表征膜组件的工作能力。
一般膜组件出厂,均有纯水通量这个参数,即用日常自来水(显然钙离子、镁离子等成为溶质成分)通过膜组件而得出的透过液通量。
(1—3)
式中, N---溶质浓缩倍数;
C R ---浓缩液的浓度,kmol/m3; C P ---透过液的浓度,kmol/m3。
该值比较了浓缩液和透过液的分离程度,在某些以获取浓缩液为产品的膜分离过程中(如大分子提纯、生物酶浓缩等),是重要的表征参数。
1 实验方案
1.1 实验流程
图1-1膜分离流程示意图
1.2实验步骤
()
2P V
S t
J L m h =
⋅⋅t V Q p
=P R c c N =
以自来水为原料,考察料液通过超滤膜后,膜的渗透通量随时间的衰减情况,并考察操作压力和膜表面流速对渗透通量的影响。
操作步骤如下:
(1)放出超滤组件中的保护液。
(2)用去离子水清洗加热50度后清洗超滤组件2~3次,时间30分钟。
(3)在原料液储槽中加入一定量的自来水后,打开低压料液泵回流阀和低压料液泵出口阀,打开超滤料液进口阀、超滤清液出口阀和浓液出口阀,则整个超滤单元回路已畅通。
(4)启动泵至稳定运转后,通过泵出口阀门和超滤馏液出口阀门调节所需要的流量和压力,待稳定后每隔5分钟测定一定试验时间的渗透液体积,做好记录(共12次)。
(5)调节膜后压力位0.02Mpa,稳定后,测量渗透液的体积,做好记录。
(6)依次增加膜后压力分别为0.04 Mpa、0.06 Mpa、0.08 Mpa、0.10 Mpa分别测量渗透液的体积,做好记录。
(7)利用去离子水清洗超滤组件2~3次,时间间隔30分钟。
(8)加入保护液甲醛溶液于超滤组件中,然后密闭系统,避免保护液的流失。
2 实验数据处理
2.1 原始数据
表1.渗透液中浓液和清液的流量关系表
表2.不同膜后压力下取出的浓液与清液体积关系
2.2数据处理
表3.膜的渗透量随时间变化数据记录
表4.膜后压力的改变对渗透通量的影响数据记录表
图1.液体体积随时间变化关系图
图2.膜的渗透通量随时间的变化关系图
图3.膜的渗透通量随压力的变化关系图
3 结果分析与讨论
由图1、图2可知:随着时间的增加,在相同的时间间隔,浓液和清液的取出量逐渐偏低。
这主要是超滤过程中,随着大分子物质的增加,浓度极差增加,导致形成第二层膜,从而影响了膜的通量,导致了膜的通量越来越低。
由图3可知:随着膜后操作压力的增加,刚开始在压力升到0.06Mpa之前,浓液的流
出量增加速度较快,膜的通量也较大。
但是随着压力的增加,导致了浓度极差的增大,使得膜的通量降低,在压力继续增加的情况下,管中的料液形成湍流,使得浓度极差降低,因此在更高的压力下,膜的通量又再次加大。
误差分析:由于实验中人为操作的误差,包括间隔时间的计算不是很精确,取液时造成一定量的溶液丢失等,从而导致了如上表格中第二组数据的一些偏差。
4 对本实验的建议
通过本实验,可以进一步加大操作压力,改变操作流量等方式,从而考察压力,流量等对浓度极差产生的影响。
5、思考题
1.膜组件中加保护液有何意义?
答:为了防止灰尘或者微生物进入膜组件,造成堵塞或者破坏,从而起到膜的保护作用。
2.查阅文献,回答什么是浓度极差?有什么危害?有哪些消除方法?
答:在超滤过程中,待浓缩循环液加压于膜面,由于小分一子物质的透过,以及每根膜管壁边界层的存在,膜表面形成高浓区,其高浓度区呈圆筒状,以膜管中心为对称轴,均梯度地分布于膜表面。
在高浓度区附着于膜壁形成一个新的“皮”,使小分子物质透过膜的阻力大大增加,因此产生了浓度极差。
危害:小分子物质透过后,高浓度区产生的浓度极差化是影响小分子物质透过速率的最主要因素。
消除方法:选择更大流量,使流体流动状态处于或者接近于湍流,扩大分子对流,以破坏浓度极差的形成。
3.为什么随着分离时间的进行,膜的通量越来越低?
答:随着小分子物质的透过,在膜表面上形成一个高浓度区,浓度达一定程度时,形成膜表面的二次薄膜,这层膜极大增加了小分子物质的透过阻力,也使膜的有效管径变小,使之更易堵塞,因此膜的通量也越来越低。
4.试验中如果操作压力过高或流量过大会有什么结果?
答:压力虽然是超滤的推动力,但压力也增加了浓度极差化的程度,所以超滤时,不能无限制增加压力。
流量越小,流体在膜管的流动状态就越接近于层流,边界层就越厚。
这显然增加了浓度极差化。