运筹学课件第三章运输问题
第三章 运输问题 运筹学 课件
B1
B2
B3
B4
产量
6 4 2 1
5
3
4
3
4 7
1
5 3
4 6
A3 销量 2
7
3
4
6
3
5
4
8
3 13
x23检验数为 7-3+4-5=3
销地 产地 A1
A2
B1
B2
B3
B4
产量
6 4 2 1
5
3
4
3
4 7
1
5 3
4 6
A3 销量 2
7
3
4
6
3
5
4
8
3 13
x31检验数为 7-4+4-5=1
销地 产地 A1
销地 产地 A1
A2
B1
B2
B3
B4
产量
6
5 3
3 1
4
4
4
2 1
4 6
3
4 3
7
3
5
6
A3
销量 2
7
5
4
8
3 13
σ11=-3, σ12=-2,σ23=-4, σ31=-1,σ33=1, σ34=-1
销地 产地 A1
A2
B1
B2
B3
B4
产量
6
5 0
3 4
4
4
4
2 4
4 6
3
4 3
7
0
5
6
A3
销量 2
2、位势法 当运输问题变量的格数较多时,用闭 回路法计算检验数比较麻烦,而位势法比 较简便。 对于运输问题 minf=CX AX=b X≥0 设B为其一个可行基,则xij的检验数为 σ ij=CBB-1Pij-Cij
运筹08(第三章运输问题)运筹学第五版课件(历史上最好的,最全面的课件)
B2
11 9
B3
B4
3 2 10
产量
10 8
4 1
3
7
3
0
A2 A3
销量
3
1 7
4 9
1 3
0 0 20
6
6 0
4
3
6 3 0
5
3 0
5 4 0
20
12
2012-8-18
表中填有数字的格对应于基变量(取值即为格中数字),而空格对应
的是非基变量(取值为零).
在求初始基本可行解时要注意的一个问题: 当我们取定xij的值之后,会出现Ai的产量与Bj的销量都改为零的情 况,这时只能划去Ai行或Bj列,但不能同时划去Ai行与Bj列。 (或者在同时划去Ai行与Bj列时,在该行或该列的任意空格处填加一 个0。)
这样可以保证填过数或零的格为m+n-1个,即保证基变量的个数为
m+n-1个。
2012-8-18
13
2.Vogel法
Vogel法的思想是:一地的产品如果不能按照最小运
费就近供应,就考虑次小运费,这就有差额,差额越大, 说明不能按最小运费调运时,运费增加得越多。因而差 额越大处,就应当采用最小运费调运。
,各产地的产量,各销地的销量,及各产地往各销
地的运费单价如表所示。应如何调运可使运费最小?
销地 运费单价 产地
B1
3 1
B2
11 9
B3
3 2
B4
10 8
产量 (吨) 7 4
A1 A2
A3
销量(吨)
2012-8-18
7
3
4
6
10
5
5
运筹学教学课件-第三章 运输问题
2021/8/17
2
1.运输问题模型及有关概念
例4.1:某公司从两个产地A1、A2将物 品运往三个销地B1、B2、B3,各产地的产量、
各销地的销量和各产地运往各销地每件物 品的运费如下表所示,问:应如何调运可 使总运输费用最小?
A1
A2 销 量
B1 6 6 150
B2 4 5 150
B3 6 5 200
充分必要条件是这个变量组中不包含闭回路。
推论 产销平衡运输问题的 m + n -1 个变量
构成基变量的充分必要条件是它不含闭回路。
这个推论给出了运输问题基本解的重要性质, 也为寻求基本可行解提供了依据。
这个推论告诉了一个求基变量的简单方法,同时也 可以判断一组变量是否可以作为某个运输问题的基 变量。这种方法是直接在运价表中进行的,不需要 在系数矩阵A中去寻找,从而给运输问题求初始基 可行解带来极大的方便。
C x i 1 j 1 ,x i 1 j2 , ,x is j 1 ,则B中
【证】由线性代数知,向量组中部分向量组线性相关则该向量组线
性相关,显然,将C中列向量分别乘以正负号线性组合后等于零,
即
P i 1 j 1 P i 1 j2 P i2 j2 - p isj 1 0
因而C中的列向量线性相关,所以B中列向量线性相关。
(1)有时目标函数求最大,如求利润最 大或营业额最大等;
(2)当某些运输线路上的能力有限制时, 模型中可直接加入(等式或不等式)约束;
2021/8/17
13
1.运输问题模型及有关概念
(3)产销不平衡的情况。当销量大于产 量时可加入一个虚设的产地去生产不足的 物资,这相当于在式(4-2)每一式中加上
A3
运筹学教学课件 第三章 运输问题
7 4 9 3 6 5 6
2.1 确定初始基可行解
• 这与一般线性规划问题不同,产 销平衡的运输问题总是存在可行解。 因有
b a
i 1 j i 1
m
m
i
d
必存在 0≤ xij,i=1,…,m,j=1,…,n 是可行解。又因 0≤xij≤min(a1,bj) • 故运输问题的可行解和最优解必存在。 • 确定初始可行解的方法有很多,一般 希望的方法即简便又尽可能接近最优解。 下面介绍两种方法:最小元素法和伏格 尔(Vogel)法。(其它如西北角法等)
例1
• 某公司经销甲产品,它下设三个加工厂。每 日的产量分别为: • A1——7吨,A2——4吨,A3——9吨。该公 司把这些产品分别运往四个销售点。各销售 点每日的销量为:B1——3吨,B2——6吨, • B3——5吨,B4——6吨。已知从各工厂到各 销售点的单位产品的运价为表3-3所示,问该 公司应如何调运产品,在满足各销点的需要 量的前提下,使总运费为最少。
运价表与行差和 列差的计算
表3-10 伏格尔法
伏格尔法基可行解, 总运费为85,恰好得 到最优解
销地 B1 B2 B3 B4 行 产 差 量 产地
销地 B1 B2 B3 B4 产地 A1 A2
A1
A2 A3
3
1 7
11 3
9 4 5 6 2 1 5
10 0
8 3 6 1 1
7
4 9
10 5
列差 2 销量 3
A3
表3-13
B1 销地 加工厂 A1 A2 A3 销量 ห้องสมุดไป่ตู้2 B3 B4 产量
5 3 6 3 6 5
2 1 3 6
7 4 9
运筹学运输问题-图文
销地 B1
B2
...
Bn
产量
产地
A1
X11 X12
...
X1n
a1
A2
X21 X22
...
X2n
a2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Am
Xm1 Xm2
...
Xmn
am
销量
b1
b2
...
bn
则运输问题的数学模型如下:
产销平衡表
销地 B1
B2
...
Bn
产量
产地
A1
a1
A2
a2
.
.
.
.
.
.
Am
am
销量
b1
b2
...
bn
单位运价表
销地
B1
B2
...
Bn
产地
A1
c11
c12
...
c1n
A2
c21
c22
...
c2n
.
.
.
.
.
.
.
.
.
.
.
.
Am
cm1
cm2
...
cmn
❖ 若总产量等于总销量(产销平衡),试确定总运费最省 的调运方案。
Table14 检验数表
销地
B1
B2
B3
B4
产地
A1
运筹学课件 第三章 运输问题----数学模型及其解法
销地 1 运费 产地 1 2 3 销量 bj 产量 2 3 4
ai
20 11 3 6 5 5 9 10 2 10 18 7 4 1 15 3 3 12 12
4
例3.2.1 西北角法
销地 运量
产量 1 2 3 4
ai
产地 1 2 3 销量 b j
mn 7
3
3Байду номын сангаас
x2 5 12 x1 x9 10 22 23 x3 x 33 15 33 12 3 12 12
©管理与人文学院
1999,4
忻展红
第三章 运输问题 — 数学模型及其解法
顺风而呼,声非加疾也,而闻者彰。 假舆马者,非利足也,而致千里;假舟 楫者,非能水也,而绝江河。君子生非 异也,善假于物也。 荀子《劝学》
3.1 运输问题的一般数学模型
• 有m个产地生产某种物资,有n个地区需要该类物资 • 令a1, a2, …, am表示各产地产量, b1, b2, …, bn表示各销 地的销量,ai=bj 称为产销平衡 • 设xij表示产地 i 运往销地 j 的物资量,wij表示对应的单 位运费,则我们有运输问题的数学模型如下:
2 1 2
0/6
2 0 1
ui
分配表{x ij }
5 3 3 4+ 3 x 32 7 8 3 12 12
分配表{x ij }
5 10 15
OBJ=101
运费表{ z ij / w ij }
3 / 20 6 / 11
5
4 / 18
8 / 9 5 / 10
4
7 7
2 1 1
1 1 0
5 3 3 3 3 7 7 5 12 12
运筹学-3运输问题92页PPT
谢谢!
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
运筹学-3运输Biblioteka 题16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
《运筹学》第三章:运输问题培训课件
确定初始可行解方法一:西北角 法
门市部 工厂
1
2
3
4 供应总计
9
12
9
6
1
50
7
3
7
7
2
60
6
5
9
11
3
50
需求总计 40 40 60 20
确定初始可行解方法一:西北角 法
门市部 工厂
1
2
3
4 供应总计
9
12
9
6
1
50
40 10
7
3
7
7
2
30 30
60
6
5
9
11
3
30 20
50
需求总计 40 40 60 20
2
34
9 12 9 6
1
40
10
U1
7
3
7
7
2
★
40
20
U2
3
6
5
9
11
40
10
U3
V1 V2 V3 V4
21 (7 6 9) (9 11 7) 5
继续求检验数
门市部
工厂
1
2
3
4
供应总 计
9 12 9 6
1
40 (12) (5)
10
50
7
3
7
7
2
(-5) 40
20 (-2) 60
3
6
计算检验数方法一:闭合回 路法
门市部 工厂
1
9 1
40
7 2
6 3
需求总计 40
2
3
运筹学课件运输问题
线性规划的数学模型
线性规划的数学模型由决策变量、约 束条件和目标函数组成,用于描述问 题的数学关系。
VS
数学模型的一般形式为: $text{maximize} quad f(x)$$text{subject to} quad a_1x_1 + a_2x_2 + ldots + a_nx_n leq b$ 或$a_1x_1 + a_2x_2 + ldots + a_nx_n = b$,其中$x_1, x_2, ldots, x_n$是决策变量,$a_1, a_2, ldots, a_n$和$b$是常数,$f(x)$是目标函 数。
运输问题的分类
按产地和目的地数量
单对多、多对单、多对多运 输问题。
按运输方式
陆运、空运、水运等运输问 题。
按优化目标
最小化运输成本、最小化运 输时间、最小化运输量等运 输问题。
运输问题的应用场景
物流配送
如何将货物从多个仓库运送到 多个零售店,以最小化总运输
成本。
车辆路径规划
如何规划车辆行驶路径,以最 小化总行驶时间和成本。
详细描述
在实际的货物运输过程中,可能会遇到各种不确定性和 风险,如天气变化、交通拥堵、意外事故等。这些因素 可能会对运输计划产生影响,甚至导致运输计划的失败 。因此,在制定运输计划时,需要考虑这些不确定性和 风险,并制定相应的应对措施。
实际案例二:城市物流配送优化
总结词
优化城市物流配送路径和策略
VS
运筹学课件运输问题
目录
• 运输问题概述 • 线性规划与运输问题 • 运输问题的解决方案 • 运输问题的扩展与优化 • 案例分析
01
运输问题概述
运筹学课件第三章运输问题
运筹学课件第三章运输问题第三章运输问题⼀、学习⽬的与要求1、掌握表上作业法及其在产销平衡运输问题求解中的应⽤2、掌握产销不平衡运输问题求解⽅法⼆、课时 6学时第⼀节运输问题及其数学模型⼀、运输问题的数学模型单⼀品种运输问题的典型情况:设某种物品有m 个产地A 1,A 2,…,A m ,各产地的产量分别是a 1,a 2,…,a m ;有N 个销地B 1,B 2,…,B n ,各销地地销量分别为b 1,b 2,…,b n 。
假定从产地A i (i =1,2, …,m )向销地B j (j =1,2,…,n )运输单位物品的运价是c ij ,问怎样调运这些物品才能使总运费最⼩为直观清楚起见,列出运输表:表中x ij i j ij i j如果运输问题的总产量等于其总销量,即有∑∑===nj jm i i ba 11则称该运输问题为产销平衡运输问题;反之,称为产销不平衡运输问题。
产销平衡运输问题的数学模型如下:≥=====∑∑∑∑===+=0,...,2,1,...,2,1..min 11111ij m i jij nj iij m i n j ijij x nj b x mi a x t s x c z这就是运输问题的数学模型,它包含m ×n 个变量,(n ⼗m)个约束⽅程.其系数矩阵的结构⽐较松散,且特殊。
⼆、运输问题数学模型的特点1、运输问题有有限最优解,即必有最优基本可⾏解2、运输问题约束条件的系数矩阵A 的秩为(m+n-1)该系数矩陈中对应于变量x ij 的系数向量p ij ,其分量中除第i 个和第m ⼗j 个为1以外,其余的都为零.即 A ij =(0…1…1…0)’=e i +e m+j对产销平衡的运输问题具有以下特点: (1)约束条件系数矩阵的元素等于0或1(2)约束条件系数矩阵的每⼀列有两个⾮零元素,对应于每⼀个变量在前m 个约束⽅程中出现⼀次,在后n 个约束⽅程中也出现⼀次。
运筹学(第三章)PPT课件
B1 4
8
2
8
8
B2
12
8
10
6
5
14
B3
4
3
4
11
8
12
B4
产量
11
16 ②
9
10 ④
6
14
22 ⑥
14
48
①
③
⑤
⑥
8×4+8×12 +6×10+4×3+8×11+14×6= 372(元)
-
14
最小元素法——每次找最小元素
销地 产地 A1
A2
A3 销量
B1 4
2
8
8
8
B2 12
10
5
14
14
B3
i =1
xij 0
-
31
此时增加一个假想的产地m+1,该产地的产量
为n
bj
m
ai,而假想产地到各销地的单位运价定为
j =1
i =1
0,就转化成产销平衡的运输问题。
销地 产地 A1
A2
B1
C 11 x 11
C 21 x 21
Am
A m+1 (虚产地)
销量
x m1
x m+1,1 b1
C m1 0
B2
-
37
销地 产地 A1
A2
A3 销量
B1 2 1 3
10
B2 4 5 2
4
B3 3 6 4
6
产量 6≤a1≤11
a2=7 a3≥4
A3最多可能送出的产品数量:(10+4+6)-(6+7)=7
苏州大学运筹学课件第三章运输问题ppt-第三章运输问题
12
13
z31-c31=(c21-c23+ c33)-c31=(8-2+10)-5=+11
第三章 运输问题
闭回路法(6)
1
2
3
6
7
5
1
14
-5
-5
8
4
2
2
8
13
6
5
9
10
3
+11
+3
6
22
13
12
z32-c32=(c22-c23+ c33)-c32=(4-2+10)-9=+3
第三章 运输问题
4
3
-7 14
34
利用西北角法给出初始解
1
2
3
4
8
5
6
0
1
15
10
5
-2
-5
7
10
9
0
2
+6
25
5
10
10
10
10
10
10
第三章 运输问题
35
X21进基,x22离基
1
2
3
4
8
5
6
0
1
15
5
10
+4
+1
7
10
9
0
2
5
25
-6
10
10
10
10
10
10
第三章 运输问题
36
X13进基,x11离基
1
2
3
4
8
1
-4
5
6
运筹学课件 第三章 运输问题
2、确定初始方案的步骤: (1)选择一个xij,令xij= min{ai,bj}=
a 第 i 个产地的产量全部运到 i b 满足第 j 个销地需求 j 第 j 个销地
将具体数值填入xij在表中的位置;
运筹学教程
(2)调整产销剩余数量:从ai 和bj 中分别减去xij 的值, 若ai-xij=0,则划去产地Ai 所在的行,即该产地产量已 全部运出无剩余,而销地Bj尚有需求缺口bj-ai;若bj-xij =0,则划去销地Bj 所在的列,说明该销地需求已得到 满足,而产地Ai尚有存余量ai-bj; (3)当作业表中所有的行或列均被划去,说明所有的 产量均已运到各个销地,需求全部满足,xij 的取值构 成初始方案。否则,在作业表剩余的格子中选择下一 个决策变量,返回步骤(2)。
作业3的截止日期:第9周
前m行相加之和减去后n行相加之和结果是零向量,说明m+n 个行向量线性相关,因此
的秩小于m+n; ?
由 的第二至m+n行和前n列及 x 21 , x 31 , , x m对 A 1 应的列交叉处元素构成m+n-1阶方阵D 非奇 异; ?
因此 A 的秩恰好等于m+n-1,又D本身就含于 A中,故A的秩也等于m+n-1
作业2的截止日期:第8周
运筹学教程
作业3:将作业2做成ppt,数量不小于15幅,将形成的文件以附 件形式发到下列邮箱: 1+0501:yunchouxue1_0501@ 1+0502: yunchouxue1_0502@
要求: 1、数学模型用数学公式编辑器写。 2、主题:学号姓名3(052820528刘学菊3) 3、附件文件名称:学号姓名3 (052820528刘学菊3)
运筹学ch3运输问题ppt课件
Transportation Problem
运输问题的表示 网络图、线性规划模型、运输表 初始基础可行解 西北角法、最小元素法 非基变量的检验数 闭回路法、位势法 确定进基变量,调整运量,确定离基变量
08.10.2020
1
一.运输问题的一般提法
人们在从事生产活动中,不可避免地要进行物资调运工作。如 某时期内将生产基地的煤、钢铁、粮食等各类物资,分别运到 需要这些物资的地区,根据各地的生产量和需要量及各地之间 的运输费用,如何制定一个运输方案,使总的运输费用最小。
n
供过于求:即产量大于销量时有ai bj
1
1
这两种情形都 a可 i 以 bj的 化形 为式来
求解
08.10.2020
8
二.运输问题的模型
产销平衡问题模型
m
n
M i n z a i j x i j
1
1
n
x ij a i
i 1,......m
j1
m
x ij b j j 1 , . . . . . . n
1.变量多(mn
1 1
个),但结构
简单。
11
技术系数矩阵
A
=
1
1
1 1 1
08.10.2020
11
1 11
系数矩阵的特点: (1)约束条件的系数矩阵的元素只有两个:0,1. (2)元素 xij 对应于每一个变量在前m个约束方程中(第i个 方程中)出现一次,在后n个约束方程中(第m+j 个方程中) 也出现一次. (3)产销平衡问题为等式约束. (4)产销平衡问题中各产地产量之和与各销售地点的销量 之和相等.
i1
j 1
运筹学课件 3-运输问题
运输• 规例3划.1 某问公题司从的两个数产学地A模1、型A2将物品运往三个销 地B1, B2, B3,各产地的产量、各销地的销量和各产 地运往各销地每件物品的运费如下表所示,问: 应如何调运可使总运输费用最小?
B1
B2
B3
产量
A1
6
6
200
A2
6
5
5
300
销量
150
150
200
• 其分量中除第i个和第m+j个为1以外,其余的都为零。即 P对ij产=(销0,平…衡,的1,运0,输…问,0题,1,,0由,…于,有0)以T=下ei+关em系+j 式存在:
n
bj
j 1
m
i 1
n
xij
j 1
n
m
xij
j1 i1
m
ai
i 1
2020/4/6
第1节 运输问题的数学模型
n
bj
表上作业法 方法一:闭回路法 闭回路的概念 为了求某个空格(非基变量)的检验数,先要找出它在 运输表上的闭回路,这个闭回路的顶点,除这个空格外, 其它均为填有数字的格(基变量格),它是由水平线段和竖 直线段依次联接这些顶点构成的一封闭多边形。每个空格 都唯一存在这样的一条闭回路。
2020/4/6
表上作业法 • 例下表中闭回路的变量集合是{x11,x12,x42,x43,x23,x25,x35, x31}共有8个顶点,这8个顶点间用水平或垂直线段连 接起来,组成一条封闭的回路。
2020/4/6
运输规划问题的数学模型
2020/4/6
• 解:产销平衡问题:总产量 = 总销量=500 • 设 xij 为从产地Ai运往销地Bj的运输量,得到下列运输量表:
运筹学第三章运输问题课件
30
20
70
30
10
50
需求地区 化工厂
Ⅰ’ 16 14 19 M
Ⅰ’’ 16 14 19 0
Ⅱ 13 13 20 M
Ⅲ 22 19 23 0
Ⅳ’ 17 15 M M
Ⅳ’’ 17 15 M 0
12
A B C D
2015年6月10日星期三
第二步见表3-6,3-7
需求地区 化工厂
Ⅰ’ Ⅰ’’
Ⅱ
Ⅲ
Ⅳ’
cij xij
i 1 j 1
2015年6月10日星期三
5
满足:
n 1 xij ai j 1 m xij b j i 1 xij 0
m n n 1 j 1
由于这个模型中
i 1
ai b j bn 1 b j
0
0
5
-18
2015年6月10日星期三
20
3.表中还有负检验数。说明未得最优解,利用闭回路调 整法,见表3-21
需求地区 化工厂
Ⅰ’ Ⅰ’’
Ⅱ
Ⅲ
Ⅳ’
Ⅳ’’
A B C D 销量(万吨)
(-10) 30 10 10 (+10)
50 20 30 (-10) 0 (+10) 70 30 10 10
30
20
' cij cij,
' cij 0,
当 i=1,…,m,j=1,…,n时 当 i=1,„,m,j=n+1时
将其分别代入,得到
' ' min z ' cij xij cij xij ci' , n 1 i 1 j 1 m n i 1 j 1 i 1 m n 1 m n m
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章运输问题一、学习目的与要求1、掌握表上作业法及其在产销平衡运输问题求解中的应用2、掌握产销不平衡运输问题求解方法 二、课时 6学时第一节 运输问题及其数学模型一、运输问题的数学模型单一品种运输问题的典型情况:设某种物品有m 个产地A 1,A 2,…,A m ,各产地的产量分别是a 1,a 2,…,a m ;有N 个销地B 1,B 2,…,B n ,各销地地销量分别为b 1,b 2,…,b n 。
假定从产地A i (i =1,2, …,m )向销地B j (j =1,2,…,n )运输单位物品的运价是c ij ,问怎样调运这些物品才能使总运费最小?表中x ij i j ij i j如果运输问题的总产量等于其总销量,即有∑∑===nj jm i i ba 11则称该运输问题为产销平衡运输问题;反之,称为产销不平衡运输问题。
产销平衡运输问题的数学模型如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥=====∑∑∑∑===+=0,...,2,1,...,2,1..min 11111ij m i jij nj iij m i n j ijij x nj b x mi a x t s x c z这就是运输问题的数学模型,它包含m ×n 个变量,(n 十m)个约束方程.其系数矩阵的结构比较松散,且特殊。
二、运输问题数学模型的特点1、运输问题有有限最优解,即必有最优基本可行解2、运输问题约束条件的系数矩阵A 的秩为(m+n-1)该系数矩陈中对应于变量x ij 的系数向量p ij ,其分量中除第i 个和第m 十j 个为1以外,其余的都为零.即 A ij =(0…1…1…0)’=e i +e m+j对产销平衡的运输问题具有以下特点: (1)约束条件系数矩阵的元素等于0或1(2)约束条件系数矩阵的每一列有两个非零元素,对应于每一个变量在前m 个约束方程中出现一次,在后n 个约束方程中也出现一次。
此外,对于产销平衡问题,还有以下特点 (3)所有结构约束条件都是等式约束 (4)各产地产量之和等于各销地销量之和第二节 用表上作业法求解运输问题解题步骤第1步:确定初始基本可行解。
第2步:最优性判别,若最优准则σij ≥0,则当前解最优,计算停止,否则转第3步。
第3步:取一个检验数最小的非基变量做进基变量。
第4步:调整当前基本可行解,转第2步一、确定初始基本可行解(初始调运方案) 以实例介绍:例 某部门有3个生产同类产品的工厂(产地),生产的产品由4个销售点(销地)出售,各工厂的生产量、各销点的销售量(假定产位均为t )以及各工厂到各销售点的单位运价(元/t )于下表中,要求研究产品A 最小元素法总运费(目标函数):24611==∑∑==i j ij ijx cz 这个解满足约束条件,其非零变量的个数为6(等于m+n-1=3+4-1=6)。
B 西北角法总运费(目标函数):37211==∑∑==i j ij ijx cz 这个解满足约束条件,其非零变量的个数为6(等于m+n-1=3+4-1=6)。
C总运费(目标函数):24411==∑∑==i j ij ijx cz二、解的最优性检验 1、闭回路法检验数表由于024<σ,故知解不是最优解。
2、对偶变量法(也称位势法)对产销平衡问题,若用n m v v v u u u ,,,,,2121分别表示前m 个约束条件与后n 个约束条件的对偶变量,即有对偶变量),,,,,(2121n m v v v u u u Y =这时对偶问题的对偶规划写成⎪⎪⎩⎪⎪⎨⎧==≤++='∑∑==的符号不限j i ij j i jnj j i m i i v u nj m i c v u t s u b u a z ,,,2,1,,2,1..max 11由上一章知道,线性规划问题变量x j 的检验数可表示为j j j B j j j j YP c P B C c z c -=-=-=-1σ由此可写出运输问题某变量x ij 的检验数如下:)(),,,,,,,(2121j i ij ij n m ij ij ij ij ij ij v u c P v v v u u u c YP c z c +-=-=-=-= σ现设我们已得到解到了运输问题的一个基可行解,其基变量是1,,,21121-+=n m s x x x s j i j i j i s由于基变量的检验数等于零,故对这组基变量可写出方程组⎪⎪⎩⎪⎪⎨⎧=+=+=+js s i s j is j i j i j i j i cv u c v u c v u ,2,221,11111112这个方程组有m+n-1个方程。
解以上方程组,可得解(上方程组解不唯一),此方程组解称为位势。
由上章知当每个0)(≥+-=j i ij ij v u c σ达到最优解。
例⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+=+=+=+=+=+6532114432332124131v u v u v u v u v u v u 令02=u 得方程组的解:9,4,10,1,3,2234131=-=====v u v u v v 计算检验数由于σ24<0三、解的改进(用闭回路法调整当前基可行解)解的改进步骤:(1)以x ij 为换入变量,找出运输表中的闭回路; (2)对顶点进行编号;(3)确定换出变量:在闭回路上的所有偶数顶点中找出运输量量小的顶点,以该格中的变量为换出变量;(4)以换出变量值为奇数顶点处的运输量增加值,得新的运输方案; (5)检验新的方案是否为最优,如否则重复以上步骤。
⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+=+=+=+=+=+6592114432342124131v u v u v u v u v u v u 令02=u 得方程组的解:2,8,3,2,9,2==-====v v u u v v四、表上作业法计算中的几个问题1、某个基本可行解有几个非基变量的检验数为负若运输问题的某个基可行解有几个非基变量的检验数均为负,在继续进行迭代时,取它们中的任一变量均可使目标函数值得到改善,但通常取σij <0中最小者对应的变量为换入变量。
2、无穷多个最优解当迭代到运输问题的最优解时,如果有某非基变量的检验数=0,则说明该运输问题有无穷多最优解。
(如上例,为得到另一个最优解,只需让σij =0的非基变量进基) 3、退化问题当运输问题某部分产地的产量和与另一部分销地的销量和相等时,在迭代过程中有可能在某个格填入一个运量时需同时划去运输表的一行和一列,这时就出现了退化。
在运输问题中,退化解是时常发生的,为了使表上作业法的迭代工作进行下去,退化解应在同时划去的一行或一列中的某个空格中填入数字0,表示这个格中的变量是取值为0的基变量,使迭代过程中基可行解的分量恰好为m+n-1个。
b.在用闭回路法调整当前基本可行解时,调整量θ的取值应为θ=min{x ij /( i,j )为闭回路上所有偶数号格点}。
这时可能出现有两个(或以上)偶数号格点的xij 都相等且都为极小值,只能取其中一个为离基格,其余的仍作为基格,而在作运输量调整时,运输量与θ相等的那些偶数号格点的x ij 都将调整为0,因此得到的也是一个退化了的基可行解。
第三节运输问题的进一步讨论一、产销不平衡的运输问题1、如果总产量大于总销量,即∑∑==>nj jm i i ba 11此时运输问题的数学模型为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥===≤=∑∑∑∑====0,...,2,1,...,2,1..min 1111ij m i jij nj iij m i nj ijij x nj b x mi a x t s x c z为借助产销平衡时表上作业法求解,可增加一个假想销地B n+1,由于实际上它不存在,因而由产地A i (i =1,2,…,m )调运到这个假想销地的物品数量x i,n+1(相当于松驰变量),实际上是就地存贮在A i 的物品数量。
就地存贮的物品数量不经运输,故可令其运价c i,n+1=0(i =1,2,…,m )。
若令假想销地的销量为b n+1,且∑∑==+-=nj j m i i n b a b 111则模型变为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥+=====∑∑∑∑=+==+=01,...,2,1,...,2,1min 111111ij m i j ij n j iij m i n j ijij x n j b x mi a x x c z运输表2、总销量大于总产量可假想增加一个产地A m+1,它的产量等于∑∑==+-=mi i n j j m a b a 111由于这个产地并不存在,求出由它发往各销地的物品数量x m+1,j (j =1,2,…,n ),实际上各销地所需物品的欠缺额,显然有c m+1,j =0(j=1,2,…,n )。
因此数学模型为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥==+===∑∑∑∑==+==0,...,2,11,...,2,1min 11111ij m i j ij nj iij m i nj ijij x nj b x m i a x x c z例 某市有三个造纸厂A 1,A 2,A 3,其纸产量分别为8,5,9个单位,有4个集中用户B 1,B 2,B 3,B 4,其需用量为4,3,5,6解略:Min z= 49二、有转运的运输问题假定某一产品有m 个产地A 1,A 2,…,A m 和n 个销地B 1,B 2,…,B n ,都可作为中间站使用,从而发送物品的地点和接收物品的地点都有m+n 个。
这样一来,我们就得到一个扩大了的运输问题。
令a i :表示第 i 个产地的产量(净供应量);b j :表示第 j 个销地的销量(净需要量);x i j :表示第 i 个发送地运到第 j 个接收地的物品数量; c i j :表示第 i 个发送地运到第 j 个接收地的单位运价; c i :表示第 i 个地点转运单位物品的费用。
若将产地与销地统一编号,并把产地排在前,销地排在后,则有02121======+++m n m m m b b b a a a假定为产销平衡问题,即有Q ba nm j jm i i ==∑∑+==11运输表:运价表:例:如下图示出了一个运输系统,它包括两个产地、两个销地及一个中转站,各产地产量和各销地销量用相应节点处箭线旁的数字表示,节点连线上的数字表示其间的运输单价,节点旁的数字为该地的转运单价,试确定最优运输方案。
解:第四节 应用问题举例由于在变量个数相等的情况下,表上作业法的计算远比单纯形法简单得多.所以在解决实际问题时,人们常常尽可能把某些线性规划的问题化为运输问题的数学模型.下面介绍几个典型的例子.例1 某厂按合同规定须于当年每个季度末分别提供10,15,25,20台同一规格的柴油机.已知该厂各季度的生产能力及生产每台柴油机的成本如表所示.又如果生产出来的柴油机当季不交货的,每台每积压一个季度需储存、维护等费用0.15万元.要求在完成合同的情况下,做出使该厂全年生产(包括储存、维护)费用最小的决策.解: 由于每个季度生产出来的柴油机不一定当季交货,所以设x ij 为第i 季度生产的用于第j 季度交货的柴油机数.根据合同要求,必须满足:⎪⎪⎩⎪⎪⎨⎧=+++=++=+=2025151044342414332313221211x x x x x x x x x x 又每季度生产的用于当季和以后各季交货的柴油机数不可能超过该季度的生产能力,故又有:⎪⎪⎩⎪⎪⎨⎧≤≤+≤++≤+++10303525443433242322214131211x x x x x x x x x x 第i 季度生产的用于j 季度交货的每台柴油机的实际成本c ij 应该是该季度单位成本加上储存、维护等费用.c ij 的具体数值见表设用a i 表示该厂第i 季度的生产能力,b j 表示第j 季度的合同供应量,则问题可写成:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥=≤=∑∑∑∑====0min 41414141ij i j ij j iij i j ijij x b x a x x c z因为当j<i 时,x ij =0所以当j<i 时,取c ij =M,M 为一个充分大的正数。