中考数学 第三章 第十三讲 二次函数复习 新人教版
中考数学复习 第三单元 函数及其图象 第13课时 二次函数的图象及其性质(一)课件
9 解得
2
++2= ,
= 2,
2
第十八页,共二十五页。
课堂考点探究
例 2[2019·原创] 根据下列条件求解析式.
(2)已知二次函数的图象以 A(-1,4)为顶点,且过点 B(2,-5).求二次函数解析式;
(2)由顶点 A(-1,4),可设二次函数关系式为 y=a(x+1)2+4(a≠0).∵二次函数的图象过点 B(2,-5),
口向
,对称轴是直线
,顶点坐标是
.
第七页,共二十五页。
1
1
4
4
-1 (2)
x=2 (2,9)
课前双基巩固
3.[九上 P47 习题 22.2 第 4 题改编] 抛物线 y=ax2+bx+c 与 x 轴的公共点是(-1,0),(3,0),这条抛物线的对称轴是直
线
.
[答案]x=1
[解析] 方法一:∵抛物线 y=ax2+bx+c 与 x 轴的公共点是(-1,0),(3,0),
象上,则 y1,y2,y3 的大小关系是
(
A.y3>y2>y1
B.y3>y1=2
C.y1>y2>y3
D.y1=y2>y3
)
第十四页,共二十五页。
[答案] D
课堂考点探究
3.[2017·菏泽] 一次函数 y=ax+b 和反比例函数 y= 在同一平
[答案] A
面直角坐标系中的图象如图 13-1 所示,则二次函数
图13-1
第十五页,共二十五页。
课堂考点探究
4.[2017·枣庄] 已知函数 y=ax2-2ax-1(a 是常数,a≠0),下列结论正确的是 (
中考数学复习 第3章 函数 第13讲 二次函数的应用课件_1
(2)如图2,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地 面积最大,小敏说:“只要饲养室长比(1)中的长多2m就行了.”请 你通过计算,判断小敏的说法是否(shì fǒu)正确.
【思路分析】根据(gēnjù)题意,用含x的代数式表示出饲养室的宽,由矩形的
第七页,共十八页。
解:(1)根据题意,得w=(x-30)·y=(-x+60)(x-30)=-x2+ 30x+60x-1800=-x2+90x-1800. 故w与x之间的函数(hánshù)解析式为w=-x2+90x- 1800(30≤x≤60).
(2)根据题意,得w=-x2+90x-1800
=-(x-45)2+225. ∵-1<0,
(4)四检:检验结果的合理性,特别检验是否符合题意. 提示►二次函数在实际问题中的应用通常是在一定的取值范围内, 一定要注意是否包含顶点坐标,如果顶点坐标不在取值范围内,应 按照对称轴一侧的增减性探讨问题结论.
考点2 一次函数、反比例函数与二次函数的综合应用
反比例函数、一次函数作为实际问题的基础,在此可以延伸已知条件, 得到与一次函数自变量相关的二次函数,随后运用二次函数的性质去解决 问题.
第十三页,共十八页。
解:(1)设W=k1x2+k2nx, ∴ Q=k1x2+k2nx+100. 由表中数据,得
∴ Q=- 1 x2+6nx+100.
10
(2)由题意(tí yì),得450=1 - ×702+6×70n+100.
解得n=2.
10
(3)当n=3时,Q=- x21 +18x+100.
10
(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大 利润是多少元? (3)如果物价部门规定(guīdìng)这种双肩包的销售单价不高于48元, 该商店销售这种双肩包每天要获得200元的销售利润,销售单价应 定为多少元?
九年级数学上册(人教版)《二次函数》复习参考课件
c>0
c=0 c<0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
1/4/2023
(1)a确定抛物线的开口方向:
a>0
a<0
y
(2)c确定抛物线与y轴的交点位置:
•0 (0,c)
c>0
c=0 c<0
x
(3)a、b确定对称轴
(2)
a>0时,ymin=
4ac-b2 4a
a<0时,ymax=44aca-b2
1/4/2023
一、定义
使用
二、图象的特点 和性质
一般式
解析式
范围
y=ax2+bx+c
已知任意 三个点
三、解析式的求法
已知顶点
四、图象位置与a、顶点式 b、c、 的正负 关系
y=a(x-h)2+k
(h,k)及 另一点
已知与x
3
• •C(0,-2–) • M(-1,-2)
例(5:1)求已抛知物二线次开函口数方y=向—12,x2对+x称-—32轴和顶点M的坐标。
(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,
A,B的坐标。
(3)画出函数图象的示意图。
(4)求ΔMAB的周长及面积。
(5)x为何值时,y随的增大而减小,x为何值时,y有最大
1/4/2023
本章知识结构图
实际问题
归纳 性质
实际问题 的答案
1/4/2023
利用二次函数的图像 和性质求解
中考数学复习讲义课件 中考考点全攻略 第三单元 函数 第13讲 二次函数的图象与性质
提升数学核心素 养
1.(2020·岳阳)对于一个函数,自变量x取c时,函
数值y等于0,则称c为这个函数的零点.若关于x的
二次函数y=-x2-10x+m(m≠0)有两个不相等的
零点x1,x2(x1<x2),关于x的方程x2+10x-m-2
=0有A两个不相等的非零实数根x3,x4(x3<x4),
则下A列.关0<系xx31式<1一定正确B的.xx是13>(1)
(1)解:乙求得的结果不正确,理由如下: 根据题意,知图象经过点(0,0),(1,0), 所以y=x(x-1), 当x=1/2时,y=1/2×(1/2-1)=-1/4≠-1/2, 所以乙求得的结果不正确.
(2)解:函数图象的对称轴为 x=x1+2 x2, 当 x=x1+2 x2时,函数有最小值 M, ∴M=(x1+2 x2-x1)(x1+2 x2-x2)=-(x1-4x2)2. (3)证明:因为 y=(x-x1)(x-x2),
延伸训 练
4.(2020·自贡)函数y=k/x与y=ax2+bx+c的图象
如图所示,则函数Dy=kx-b的大致图象为()
5.如图是函数y=x2-2x-3(0≤x≤4)的图象,直线
l∥x轴且过点(0,m),将该函数在直线l上方的图象
沿直线l向下翻折,在直线l下方的图象保持不变,
得到一个新图象.若新图象对应C的函数的最大值与
所以 m=x1x2,n=(1-x1)(1-x2),
所以 mn=x1x2(1-x1)(1-x2)=(x1-x12)(x2-x22)=
-(x1-12)2+14·-(x2-12)2+14.
因为 0<x1<x2<1,结合函数 y=x(1-x)的图象,可得 0<-(x1-12)2+14≤14,
2022年中考数学人教版一轮复习课件:第13课 二次函数(1)
A.a>0
B.a>1
C.a≠1
D.a<1
14.(2021·上海)将函数 y=ax2+bx+c(a≠0)的图象向下平移两个
单位,以下说法错误的是
( D)
A.开口方向不变
B.对称轴不变
C.y 随 x 的变化情况不变
D.与 y 轴的交点不变
15.(2020·温州)已知(-3,y1),(-2,y2),(1,y3)是抛物线 y=-
(2)连接 BC,
由(1)可得 y=x2-2x-3,∴C(0,-3).
∴S△ABC=21×4×3=6, ∵S△ABD=2S△ABC,设点 D(m,m2-2m-3), ∴21×AB×yD=2×6,即21×4×m2-2m-3=2×6, 解得 m=1+ 10或 1- 10,代入 y=x2-2x-3, 可得 y 值都为 6, ∴D(1+ 10,6)或(1- 10,6).
解:(1)当 t=3 时,h=20t-5t2=20×3-5×9=15(米), ∴t=3 时,足球距离地面的高度为 15 米;
(2)∵h=10, ∴20t-5t2=10,即 t2-4t+2=0, 解得 t=2+ 2或 t=2- 2, 故经过 2+ 2或 2- 2时,足球距离地面的高度为 10 米.
(3)∵h=20t-5t2=-5(t-2)2+20, ∴hmax=20,即足球离地面的最大高度是 20 米.
解:(1)当 m=0 时,抛物线为 y=x2-x+3, 将 x=2 代入得 y=4-2+3=5, ∴点(2,4)不在抛物线上.
(2)抛物线 y=x2-(m+1)x+2m+3 的顶点为
m+1,4(2m 2
+3)-[-(m+1)]2 4
,
化简得m+2 1,-m2+46m+11, 顶点移动到最高处,即是顶点纵坐标最大,
中考数学一轮复习第3单元第13讲二次函数的图象与性质课件(共40张)
7.(2021·益阳)已知 y 是 x 的二次函数,如表给出了 y 与 x 的几对对应值. x … -2 -1 0 1 2 3 4 … y … 11 a 3 2 3 6 11 …
由此判断,表中 a= 6 .
给定自变量取值范围的二次函数值的大小比较,其本质是比较自变量与对 称轴的位置关系. 1.当抛物线开口向上时,自变量对应横坐标的点到对称轴的距离越远,函 数值越大(如图 1). 2.当抛物线开口向下时,自变量对应横坐标的点到对称轴的距离越远,函 数值越小(如图 2).
(3)记关于 x 的二次函数 y2=2x2+x+m,若在(1)的条件下,当 0≤x≤1 时,总 有 y2≥y1,求实数 m 的最小值. 解:由(1)知,二次函数的表达式为 y1=x2-2x+4,对称轴为直线 x=1. ∵1>0,∴当 0≤x≤1 时,y 随 x 的增大而减小,且最大值为 4. ∵二次函数 y2=2x2+x+m 图象的对称轴为直线 x=-14,且 2>0,∴当 0≤x≤1 时,y 随 x 的增大而增大,且最小值为 m. ∵当 0≤x≤1 时,总有 y2≥y1, ∴m≥4,即 m 的最小值为 4.
解:∵二次函数的图象经过点(0,4),∴c=4. ∵对称轴为直线 x=-b2=1,∴b=-2. ∴此二次函数的表达式为 y1=x2-2x+4.
(2)若 b2-c=0,当 b-3≤x≤b 时,二次函数的最小值为 21,求 b 的值;
解:由 b2-c=0,得 b2=c,此时二次函数的表达式为 y1=x2+bx+b2. 根据题意,需要分三种情况: ①当 b<-b2,即 b<0 时,二次函数的最小值在 x=b 处取得. ∴b2+b2+b2=21. 解得 b1= 7(舍去),b2=- 7;
轴交于两点(m,0),(n,0),且过 A(0,b),B(3,a)两点(b,a 是实数),若
中考数学复习 第三单元 函数及其图象 第13课时 二次函数的图象与性质课件
解得a=-1.
∴ 抛物线的函数解析式为
y=-(x-1)2+4,
即y=-x2+2x+3.
3.[2019·威海]在画二次函数y=ax2+bx+c(a≠0)的图象时,甲写错了一次项的系数,
列表如下:
x
…
-1
0
1
2
3
…
y甲
…
6
3
2
3
6
…
乙写错了常数项,列表如下:
x
…
-1
0
1
2
3
…
y乙
…
-2
-1
2
7
14
…
通过上述信息,解决以下问题:
A.3
B.4
C.5
( C )
D.6
4.在抛物线y=-x2+2x-3中,若y随x的增大而增大,则x的取值范围是 ( B )
A.x<-1
B.x<1
C.x>1
D.x>-1
5.二次函数y=x2+b的图象经过点(1,4),则b的值是
经过点(-1,m),则m的值是
4
3
;若该二次函数图象还
.
6.写出抛物线y=2(x-1)2上一对对称点的坐标,这对对称点的坐标可以是
解得 a=1 是正确的.
根据乙同学提供的数据,选择 x=-1,y=-2;x=1,y=2 代入 y=x2+bx+c,
条件
设法
顶点在原点
y=ax2(a≠0)
顶点在y轴上
y=ax2+c(a≠0,y轴为对称轴)
顶点在x轴上
y=a(x-h)2(a≠0,直线x=h是对称轴)
人教版初三数学下册中考知识点梳理:第13讲二次函数的应用
第13讲二次函数的应用一、知识清单梳理中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-3【答案】B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B.点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.2.在同一直角坐标系中,函数y=kx-k与kyx=(k≠0)的图象大致是()A.B.C.D.【答案】D【解析】根据k值的正负性分别判断一次函数y=kx-k与反比例函数kyx=(k≠0)所经过象限,即可得出答案.【详解】解:有两种情况,当k>0是时,一次函数y=kx-k的图象经过一、三、四象限,反比例函数kyx=(k≠0)的图象经过一、三象限;当k<0时,一次函数y=kx-k的图象经过一、二、四象限,反比例函数kyx=(k≠0)的图象经过二、四象限;根据选项可知,D选项满足条件. 故选D.【点睛】本题考查了一次函数、反比例函数的图象.正确这两种图象所经过的象限是解题的关键. 3.若分式有意义,则x的取值范围是()A.x>3 B.x<3 C.x≠3D.x=3【答案】C【解析】试题分析:∵分式13x有意义,∴x﹣3≠0,∴x≠3;故选C.考点:分式有意义的条件.4.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )A.B.C.D.【答案】C【解析】根据全等三角形的判定定理进行判断.【详解】解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;B、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;C、如图1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其对应边应该是BE和CF,而已知给的是BD=FC=3,所以不能判定两个小三角形全等,故本选项符合题意;D、如图2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定两个小三角形全等,故本选项不符合题意;由于本题选择可能得不到全等三角形纸片的图形,故选C.【点睛】本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.5.下列说法中,错误的是()A.两个全等三角形一定是相似形B.两个等腰三角形一定相似C.两个等边三角形一定相似D.两个等腰直角三角形一定相似【答案】B【解析】根据相似图形的定义,结合选项中提到的图形,对选项一一分析,选出正确答案.【详解】解:A、两个全等的三角形一定相似,正确;B、两个等腰三角形一定相似,错误,等腰三角形的形状不一定相同;C、两个等边三角形一定相似;正确,等边三角形形状相同,只是大小不同;D、两个等腰直角三角形一定相似,正确,等腰直角三角形形状相同,只是大小不同.故选B.【点睛】本题考查的是相似形的定义,联系图形,即图形的形状相同,但大小不一定相同的变换是相似变换.特别注意,本题是选择错误的,一定要看清楚题.6.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为().A.60 °B.75°C.85°D.90°【答案】C【解析】试题分析:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD⊥BC于点F.则∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度数为85°.故选C.考点: 旋转的性质.7.如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A.在A的左边B.介于A、B之间C.介于B、C之间D.在C的右边【答案】C【解析】分析:由A、B、C三点表示的数之间的关系结合三点在数轴上的位置即可得出b=a+3,c=b+5,再根据原点O与A、B的距离分别为1、1,即可得出a=±1、b=±1,结合a、b、c间的关系即可求出a、b、c的值,由此即可得出结论.解析:∵|a﹣b|=3,|b﹣c|=5,∴b=a+3,c=b+5,∵原点O与A、B的距离分别为1、1,∴a=±1,b=±1,∵b=a+3,∴a=﹣1,b=﹣1,∴c=1.∴点O介于B、C点之间.故选C.点睛:本题考查了数值以及绝对值,解题的关键是确定a、b、c的值.本题属于基础题,难度不大,解决该题型题目时,根据数轴上点的位置关系分别找出各点代表的数是关键.8.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(32,0)B.(2,0)C.(52,0)D.(3,0)【答案】C【解析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【详解】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,OAC BCDAOC BDC AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=kx,将B(3,1)代入y=kx,∴y=3x,∴把y=2代入y=3x,∴x=32,当顶点A恰好落在该双曲线上时,此时点A移动了32个单位长度,∴C也移动了32个单位长度,此时点C的对应点C′的坐标为(52,0)故选:C.【点睛】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.9.已知函数()()()()22113{513x xyx x--≤=-->,则使y=k成立的x值恰好有三个,则k的值为()A.0 B.1 C.2 D.3 【答案】D【解析】解:如图:利用顶点式及取值范围,可画出函数图象会发现:当x=3时,y=k成立的x值恰好有三个.故选:D.10.第24 届冬奥会将于2022 年在北京和张家口举行,冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有 5 张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的图案,背面完全相同.现将这 5 张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是()A.15B.25C.12D.35【答案】B【解析】先找出滑雪项目图案的张数,结合5 张形状、大小、质地均相同的卡片,再根据概率公式即可求解.【详解】∵有5 张形状、大小、质地均相同的卡片,滑雪项目图案的有高山滑雪和单板滑雪2张,∴从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是2 5 .故选B.【点睛】本题考查了简单事件的概率.用到的知识点为:概率=所求情况数与总情况数之比.二、填空题(本题包括8个小题)11.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_____条.【答案】20000【解析】试题分析:1000÷10200=20000(条).考点:用样本估计总体.12.如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为_____.【答案】8 5【解析】试题分析:根据网格,利用勾股定理求出AC的长,AB的长,以及AB边上的高,利用三角形面积公式求出三角形ABC 面积,而三角形ABC 面积可以由AC 与BD 乘积的一半来求,利用面积法即可求出BD 的长:根据勾股定理得:22345AC =+=,由网格得:S △ABC =12×2×4=4,且S △ABC =12AC•BD=12×5BD , ∴12×5BD=4,解得:BD=85. 考点:1.网格型问题;2.勾股定理;3.三角形的面积.13.如图,正方形ABCD 的边长为6,E ,F 是对角线BD 上的两个动点,且EF =12x x ,连接CE ,CF ,则△CEF 周长的最小值为_____.【答案】25【解析】如图作CH ∥BD ,使得CH =EF =2AH 交BD 由F ,则△CEF 的周长最小. 【详解】如图作CH ∥BD ,使得CH =EF =2AH 交BD 由F ,则△CEF 的周长最小. ∵CH =EF ,CH ∥EF , ∴四边形EFHC 是平行四边形, ∴EC =FH , ∵FA =FC ,∴EC+CF =FH+AF =AH , ∵四边形ABCD 是正方形, ∴AC ⊥BD ,∵CH ∥DB , ∴AC ⊥CH , ∴∠ACH =90°, 在Rt △ACH 中,AH 22AC CH +5∴△EFC 的周长的最小值=25 故答案为:25【点睛】本题考查轴对称﹣最短问题,正方形的性质、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题.14.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B 落在点B'处,当△CEB'为直角三角形时,BE的长为.【答案】1或32.【解析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=1,BC=4,∴AC=2243+=5,∵∠B 沿AE 折叠,使点B 落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A 、B′、C 共线,即∠B 沿AE 折叠,使点B 落在对角线AC 上的点B′处,∴EB=EB′,AB=AB′=1,∴CB′=5-1=2,设BE=x ,则EB′=x ,CE=4-x ,在Rt △CEB′中,∵EB′2+CB′2=CE 2,∴x 2+22=(4-x )2,解得3x 2=, ∴BE=32; ②当点B′落在AD 边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=1.综上所述,BE 的长为32或1. 故答案为:32或1. 15.如图,直线l 1∥l 2∥l 3,等边△ABC 的顶点B 、C 分别在直线l 2、l 3上,若边BC 与直线l 3的夹角∠1=25°,则边AB 与直线l 1的夹角∠2=________.【答案】【解析】试题分析:如图:∵△ABC 是等边三角形,∴∠ABC=60°,又∵直线l 1∥l 2∥l 3,∠1=25°,∴∠1=∠3=25°.∴∠4=60°-25°=35°,∴∠2=∠4=35°.考点:1.平行线的性质;2.等边三角形的性质.16.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m ,他在不弯腰的情况下,在棚内的横向活动范围是__m .【答案】1【解析】设抛物线的解析式为:y=ax 2+b ,由图得知点(0,2.4),(1,0)在抛物线上,列方程组得到抛物线的解析式为:y=﹣x 2+2.4,根据题意求出y=1.8时x 的值,进而求出答案;【详解】设抛物线的解析式为:y=ax 2+b ,由图得知:点(0,2.4),(1,0)在抛物线上, ∴,解得:,∴抛物线的解析式为:y=﹣x 2+2.4,∵菜农的身高为1.8m ,即y=1.8,则1.8=﹣x 2+2.4,解得:x=(负值舍去)故他在不弯腰的情况下,横向活动范围是:1米,故答案为1.17.因式分解:223x 6xy 3y -+- =【答案】﹣3(x ﹣y )1【解析】解:﹣3x 1+6xy ﹣3y 1=﹣3(x 1+y 1﹣1xy )=﹣3(x ﹣y )1.故答案为:﹣3(x ﹣y )1.点睛:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.18.在一次摸球实验中,摸球箱内放有白色、黄色乒乓球共50个,这两种乒乓球的大小、材质都相同.小明发现,摸到白色乒乓球的频率稳定在60%左右,则箱内黄色乒乓球的个数很可能是________.【答案】20【解析】先设出白球的个数,根据白球的频率求出白球的个数,再用总的个数减去白球的个数即可.【详解】设黄球的个数为x个,∵共有黄色、白色的乒乓球50个,黄球的频率稳定在60%,∴x50=60%,解得x=30,∴布袋中白色球的个数很可能是50-30=20(个).故答案为:20.【点睛】本题考查了利用频率估计概率,熟练掌握该知识点是本题解题的关键.三、解答题(本题包括8个小题)19.一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)【答案】54小时【解析】过点C作CD⊥AB交AB延长线于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD 中,得出BC=≈50,然后根据时间=路程÷速度即可求出海警船到大事故船C处所需的时间.【详解】解:如图,过点C作CD⊥AB交AB延长线于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴CD=AC=40海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50(海里),∴海警船到大事故船C处所需的时间大约为:50÷40=(小时).考点:解直角三角形的应用-方向角问题20.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2).请根据统计图解答下列问题:本次调查中,王老师一共调查了名学生;将条形统计图补充完整;为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.【答案】(1)20;(2)作图见试题解析;(3)12.【解析】(1)由A类的学生数以及所占的百分比即可求得答案;(2)先求出C类的女生数、D类的男生数,继而可补全条形统计图;(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案.【详解】(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);故答案为20;(2)∵C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如图:(3)列表如下:A类中的两名男生分别记为A1和A2,男A1男A2女A男D 男A1男D 男A2男D 女A男D女D 男A1女D 男A2女D 女A女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:31 62 .21.如图,在△ABC 中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点E.求证:DE=CE.若∠CDE=35°,求∠A 的度数.【答案】(1)见解析;(2) 40°.【解析】(1)根据角平分线的性质可得出∠BCD=∠ECD,由DE∥BC可得出∠EDC=∠BCD,进而可得出∠EDC=∠ECD,再利用等角对等边即可证出DE=CE;(2)由(1)可得出∠ECD=∠EDC=35°,进而可得出∠ACB=2∠ECD=70°,再根据等腰三角形的性质结合三角形内角和定理即可求出∠A的度数.【详解】(1)∵CD是∠ACB的平分线,∴∠BCD=∠ECD.∵DE∥BC,∴∠EDC=∠BCD,∴∠EDC=∠ECD,∴DE=CE.(2)∵∠ECD=∠EDC=35°,∴∠ACB=2∠ECD=70°.∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°.【点睛】本题考查了等腰三角形的判定与性质、平行线的性质以及角平分线.解题的关键是:(1)根据平行线的性质结合角平分线的性质找出∠EDC=∠ECD ;(2)利用角平分线的性质结合等腰三角形的性质求出∠ACB=∠ABC=70°.22.某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元 求甲、乙型号手机每部进价为多少元? 该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案 售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m 元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m 的值【答案】 (1) 甲种型号手机每部进价为1000元,乙种型号手机每部进价为800元;(2) 共有四种方案;(3) 当m =80时,w 始终等于8000,取值与a 无关【解析】(1)设甲种型号手机每部进价为x 元,乙种型号手机每部进价为y 元根据题意列方程组求出x 、y 的值即可;(2)设购进甲种型号手机a 部,这购进乙种型号手机(20-a)部,根据题意列不等式组求出a 的取值范围,根据a 为整数求出a 的值即可明确方案(3)利用利润=单个利润⨯数量,用a 表示出利润W ,当利润与a 无关时,(2)中的方案利润相同,求出m 值即可;【详解】(1) 设甲种型号手机每部进价为x 元,乙种型号手机每部进价为y 元,22800324600x y x y +=⎧⎨+=⎩,解得1000800x y =⎧⎨=⎩, (2) 设购进甲种型号手机a 部,这购进乙种型号手机(20-a)部,17400≤1000a +800(20-a)≤18000,解得7≤a≤10,∵a 为自然数,∴有a 为7、8、9、10共四种方案,(3) 甲种型号手机每部利润为1000×40%=400,w =400a +(1280-800-m)(20-a)=(m -80)a +9600-20m ,当m =80时,w 始终等于8000,取值与a 无关.【点睛】本题考查了列二元一次方程组解实际问题的运用,根据题意找出等量关系列出方程是解题关键. 23.在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C 处(如图),然后沿BC 方向走到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.【答案】这种测量方法可行,旗杆的高为21.1米.【解析】分析:根据已知得出过F作FG⊥AB于G,交CE于H,利用相似三角形的判定得出△AGF∽△EHF,再利用相似三角形的性质得出即可.详解:这种测量方法可行.理由如下:设旗杆高AB=x.过F作FG⊥AB于G,交CE于H(如图).所以△AGF∽△EHF.因为FD=1.1,GF=27+3=30,HF=3,所以EH=3.1﹣1.1=2,AG=x﹣1.1.由△AGF∽△EHF,得AG GF EH HF=,即1.530 23x-=,所以x﹣1.1=20,解得x=21.1(米)答:旗杆的高为21.1米.点睛:此题主要考查了相似三角形的判定与性质,根据已知得出△AGF∽△EHF是解题关键.24.先化简代数式22321(1)24a aa a-+-÷+-,再从-2,2,0三个数中选一个恰当的数作为a的值代入求值.【答案】21aa--,2【解析】试题分析:首先将括号里面的进行通分,然后将除法改成乘法进行分式的化简,选择a的值时,不能使原分式没有意义,即a不能取2和-2.试题解析:原式=232aa+-+·2(2)(2)(1)a aa+--=21aa--当a=0时,原式=21a a --=2. 考点:分式的化简求值.25.先化简,再求值:()()()2111x x xx +-+-,其中2x =-.【答案】3x -1, -9.【解析】先去括号,再合并同类项;最后把x=-2代入即可.【详解】原式=323211x x x x --=-+,当x=-2时,原式=-8-1=-9.【点睛】本题考查了整式的混合运算及化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值.26.关于x 的一元二次方程()23220x k x k -+++=.求证:方程总有两个实数根;若方程有一根小于1,求k 的取值范围.【答案】(2)见解析;(2)k<2.【解析】(2)根据方程的系数结合根的判别式,可得△=(k-2)2≥2,由此可证出方程总有两个实数根; (2)利用分解因式法解一元二次方程,可得出x 1=2、x 2=k+2,根据方程有一根小于2,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.【详解】(2)证明:∵在方程()23220x k x k -+++=中,△=[-(k+3)]2-4×2×(2k+2)=k 2-2k+2=(k-2)2≥2,∴方程总有两个实数根.(2) ∵x 2-(k+3)x+2k+2=(x-2)(x-k-2)=2,∴x 1=2,x 2=k+2.∵方程有一根小于2,∴k+2<2,解得:k<2,∴k 的取值范围为k<2.【点睛】此题考查根的判别式,解题关键在于掌握运算公式.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,抛物线y=-x 2+mx 的对称轴为直线x=2,若关于x 的-元二次方程-x 2+mx-t=0 (t 为实数)在l<x<3的范围内有解,则t 的取值范围是( )A .-5<t≤4B .3<t≤4C .-5<t<3D .t>-5 【答案】B 【解析】先利用抛物线的对称轴方程求出m 得到抛物线解析式为y=-x 2+4x ,配方得到抛物线的顶点坐标为(2,4),再计算出当x=1或3时,y=3,结合函数图象,利用抛物线y=-x 2+4x 与直线y=t 在1<x <3的范围内有公共点可确定t 的范围.【详解】∵ 抛物线y=-x 2+mx 的对称轴为直线x=2,∴222(1)b m a -=-=⨯-, 解之:m=4,∴y=-x 2+4x ,当x=2时,y=-4+8=4,∴顶点坐标为(2,4),∵ 关于x 的-元二次方程-x 2+mx-t=0 (t 为实数)在l<x<3的范围内有解,当x=1时,y=-1+4=3,当x=2时,y=-4+8=4,∴ 3<t≤4,故选:B【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.2.如图是某个几何体的展开图,该几何体是( )A.三棱柱B.圆锥C.四棱柱D.圆柱【答案】A【解析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱.故选A.【点睛】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..3.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸【答案】C【解析】分析:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解方程即可.详解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解得r=13,∴⊙O的直径为26寸,故选C.点睛:本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题4.如果一组数据6,7,x,9,5的平均数是2x,那么这组数据的中位数为()A.5 B.6 C.7 D.9【解析】直接利用平均数的求法进而得出x 的值,再利用中位数的定义求出答案.【详解】∵一组数据1,7,x ,9,5的平均数是2x ,∴679525x x ++++=⨯,解得:3x =,则从大到小排列为:3,5,1,7,9,故这组数据的中位数为:1.故选B .【点睛】此题主要考查了中位数以及平均数,正确得出x 的值是解题关键.5.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,AE =AF ,AC 与EF 相交于点G ,下列结论:①AC 垂直平分EF ;②BE+DF =EF ;③当∠DAF =15°时,△AEF 为等边三角形;④当∠EAF =60°时,S △ABE =12S △CEF ,其中正确的是( )A .①③B .②④C .①③④D .②③④【答案】C 【解析】①通过条件可以得出△ABE ≌△ADF ,从而得出∠BAE=∠DAF ,BE=DF ,由正方形的性质就可以得出EC=FC ,就可以得出AC 垂直平分EF ,②设BC=a ,CE=y ,由勾股定理就可以得出EF 与x 、y 的关系,表示出BE 与EF ,即可判断BE+DF 与EF 关系不确定;③当∠DAF=15°时,可计算出∠EAF=60°,即可判断△EAF 为等边三角形,④当∠EAF=60°时,设EC=x ,BE=y ,由勾股定理就可以得出x 与y 的关系,表示出BE 与EF ,利用三角形的面积公式分别表示出S △CEF 和S △ABE ,再通过比较大小就可以得出结论.【详解】①四边形ABCD 是正方形,∴AB═AD ,∠B=∠D=90°.在Rt △ABE 和Rt △ADF 中,AE AF AB AD =⎧⎨=⎩, ∴Rt △ABE ≌Rt △ADF (HL ),∵BC=CD,∴BC-BE=CD-DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故①正确).②设BC=a,CE=y,∴BE+DF=2(a-y)EF=2y,∴BE+DF与EF关系不确定,只有当y=(2−2)a时成立,(故②错误).③当∠DAF=15°时,∵Rt△ABE≌Rt△ADF,∴∠DAF=∠BAE=15°,∴∠EAF=90°-2×15°=60°,又∵AE=AF∴△AEF为等边三角形.(故③正确).④当∠EAF=60°时,设EC=x,BE=y,由勾股定理就可以得出:(x+y)2+y2=(2x)2∴x2=2y(x+y)∵S△CEF=12x2,S△ABE=12y(x+y),∴S△ABE=12S△CEF.(故④正确).综上所述,正确的有①③④,故选C.【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.6.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π【答案】D【解析】根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.【详解】该几何体的表面积为2×12•π•22+4×4+12×2π•2×4=12π+16, 故选:D .【点睛】本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算. 7.若一次函数y =(2m ﹣3)x ﹣1+m 的图象不经过第三象限,则m 的取值范图是( )A .1<m <32 B .1≤m <32 C .1<m≤32 D .1≤m≤32【答案】B【解析】根据一次函数的性质,根据不等式组即可解决问题;【详解】∵一次函数y=(2m-3)x-1+m 的图象不经过第三象限, ∴23010m m <-⎧⎨-+≥⎩, 解得1≤m <32. 故选:B .【点睛】本题考查一次函数的图象与系数的关系等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.8.如图,折叠矩形纸片ABCD 的一边AD,使点D 落在BC 边上的点F 处,若AB=8,BC=10,则△CEF 的周长为( )A .12B .16C .18D .24【答案】A 【解析】解:∵四边形ABCD 为矩形,∴AD=BC=10,AB=CD=8,∵矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上的F 处,∴AF=AD=10,EF=DE ,在Rt △ABF 中,∵22AF AB -,∴CF=BC-BF=10-6=4,∴△CEF 的周长为:CE+EF+CF=CE+DE+CF=CD+CF=8+4=1.故选A.9.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为( )A.45︒B.50︒C.60︒D.75︒【答案】C【解析】根据平行四边形的性质和圆周角定理可得出答案.【详解】根据平行四边形的性质可知∠B=∠AOC,根据圆内接四边形的对角互补可知∠B+∠D=180°,根据圆周角定理可知∠D=12∠AOC,因此∠B+∠D=∠AOC+12∠AOC=180°,解得∠AOC=120°,因此∠ADC=60°.故选C【点睛】该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.10.如图,∠AOB=45°,OC是∠AOB的角平分线,PM⊥OB,垂足为点M,PN∥OB,PN与OA相交于点N,那么PMPN的值等于()A.12B.22C.32D.33【答案】B【解析】过点P作PE⊥OA于点E,根据角平分线上的点到角的两边的距离相等可得PE=PM,再根据两直线平行,内错角相等可得∠POM=∠OPN,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠PNE=∠AOB,再根据直角三角形解答.【详解】如图,过点P作PE⊥OA于点E,∵OP是∠AOB的平分线,∴PE=PM,∵PN∥OB,∴∠POM=∠OPN,∴∠PNE=∠PON+∠OPN=∠PON+∠POM=∠AOB=45°,∴PMPN=22.故选:B.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造直角三角形是解题的关键.二、填空题(本题包括8个小题)11.如图,D、E分别为△ABC的边BA、CA延长线上的点,且DE∥BC.如果35DEBC=,CE=16,那么AE的长为_______ 【答案】1【解析】根据DE∥BC,得到35DE EABC AC==,再代入AC=11-AE,则可求AE长.【详解】∵DE∥BC,∴DE EA BC AC=.∵35DEBC=,CE=11,∴3165AEAE-=,解得AE=1.故答案为1.【点睛】本题主要考查相似三角形的判定和性质,正确写出比例式是解题的关键.12.若|a|=20160,则a=___________.【答案】±1【解析】试题分析:根据零指数幂的性质(01(0)a a =≠),可知|a|=1,座椅可知a=±1. 13.2-的相反数是______,2-的倒数是______.【答案】2,12- 【解析】试题分析:根据相反数和倒数的定义分别进行求解,﹣2的相反数是2, ﹣2的倒数是12-. 考点:倒数;相反数.14.我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x 人,则可列方程为__________.【答案】8374x x -=+【解析】根据每人出8钱,则剩余3钱;如果每人出7钱,则差4钱,可以列出相应的方程,本题得以解决【详解】解:由题意可设有x 人,列出方程:8374xx +﹣=, 故答案为8374xx +﹣=. 【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.15.△ABC 的顶点都在方格纸的格点上,则sinA =_ ▲ .【答案】55【解析】在直角△ABD 中利用勾股定理求得AD 的长,然后利用正弦的定义求解.【详解】在直角△ABD 中,BD=1,AB=2,则22AB BD +2221+5则sinA=BD AD55. 5.。
人教版九年级下册数学中考综合复习:第13讲《二次函数的图象及其性质》
第 13讲二次函数的图象及其性质知识点1:定义1.定义:形如函数______________叫做二次函数(其中a,b,c 是常数,且a ≠0).2.利用配方,可以把二次函数c bx ax y ++=2表示成 ___________________.知识点2:图像和性质a>0a<0大致图象开口方向性质 顶点坐标增减性最值知识点3:图像的平移(上加下减,左加右减) 知识点4:抛物线c bx ax y 2++=与系数a,b,c 的关系字母的符号图象的特征abcb 2-4ac1.二次函数的三种解析式(1)一般式c bx ax y ++=2(a ,b ,c 是常数,a ≠0);(2)交点式)0,,((2121≠--=a x x a x x x x a y 是常数,))(; (3)顶点式k h x a y ++=2)((a ,h ,k 是常数,a ≠0).2.抛物线的顶点常见的三种变动方式(1)两抛物线关于x 轴对称,此时顶点关于x 轴对称,a 的符号相反; (2)两抛物线关于y 轴对称,此时顶点关于y 轴对称,a 的符号不变; (3)开口反向(或旋转1800),此时顶点坐标不变,只是a 的符号相反.3.二次函数与二次方程间的关系已知二次函数c bx ax y ++=2的函数值为k ,求自变量x 的值,就是解一元二次方程k c bx ax =++2反过来,解一元二次方程k c bx ax =++2,就是把二次函数y =k c bx ax -2++的函数值看作0,求自变量x 的值.4.二次函数与二次不等式间的关系“一元二次不等式”实际上是指二次函数的函数值“y >0,y <0或y ≥0,y ≤0”,从图象上看是指抛物线在x 轴上方或x 轴下方的情况.1.(金华)对于二次函数y =-(x -1)2+2的图象与性质,下列说法正确的是( ) A .对称轴是直线x =1,最小值是2 B .对称轴是直线x =1,最大值是2 C .对称轴是直线x =-1,最小值是2 D .对称轴是直线x =-1,最大值是2 2.(兰州)抛物线y =3x 2-3向右平移3个单位长度,得到新抛物线的解析式为( ) A.y =3(x -3)2-3 B.y =3x 2C.y =3(x +3)2-3 D.y =3x 2-6 3.(六盘水)已知二次函数y =ax 2+bx +c 的图象如图所示,则( ) A.b >0,c >0 B.b >0,c <0 C.b <0,c <0 D.b <0,c >0 4.(百色)经过A(4,0),B(-2,0),C(0,3)三点的抛物线解析式是 。
人教版中考数学一轮复习--二次函数的应用(精品课件)
∵A(1,0),即二次函数图象的对称轴为直线x=1,
∴x=-2×b-14=1,∴b=12,
∴二次函数的解析式为 y=-14x2+12x+3.
(2)若点C与点B重合,求tan∠CDA的值.
解:过点D作x轴的垂线,垂足为E.
∵∠CAD=90°,∴∠BAO+∠DAE=90°.
解:当m=-2时,直线l2:y=-2x+n(n≠10), ∴直线l2:y=-2x+n(n≠10)与直线l1:y=-2x+10不重合, 假设l1与l2不平行,则l1与l2必相交,设交点为P(xP,yP), ∴ yyPP= =- -22xxPP+ +n10,,解得n=10. ∵n=10与已知n≠10矛盾,∴l1与l2不相交,∴l2∥l1.
综上所述,当a≥50时,矩形菜园ABCD面积的最大值为1 250 m2; 当0<a<50时,矩形菜园ABCD面积的最大值为 50a-12a2 m2.
考点3 销售问题 例4 某药店选购了一批消毒液,进价为每瓶10元,在销售过
程中发现,每天销售量y(瓶)与每瓶售价x(元)之间存在 一次函数关系(其中10≤x≤21,且x为整数).当每瓶消毒 液售价为12元时,每天销售量为90瓶;当每瓶消毒液售 价为15元时,每天销售量为75瓶. (1)求y与x之间的函数关系式;
∴直线MN的解析式为y=-x+4,
由-x2+2x+3=-x+4 得,x=3±2 5,
∴M 点横坐标为3+2
5或3-2
5 .
例2 【2020福建节选14分】已知直线l1:y=-2x+10交y轴 于点A,交x轴于点B,二次函数的图象过A,B两点,交 x轴于另一点C,BC=4,且对于该二次函数图象上的任 意两点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.
中考数学总复习 第三单元 函数及其图象 第13课时 二次函数的综合与应用(考点突破)课件
2021/12/9
第二页,共十六页。
考点 聚焦 (kǎo diǎn)
考点二 二次函数的实际(shíjì)应用
1.在商品经营活动中,经常会遇到求最大利润、 最大销量等问题. 解此类题的关键是根据题意确 定出二次函数的解析式,然后确定其最大值,实 际问题中自变量x的取值要使实际问题有意义,因 此(yīncǐ)在求二次函数的最值时,一定要注意自变量 x的取值范围.
No 当每件的销售(xiāoshòu)价x为多少时,销售(xiāoshòu)该纪念品每天获得的利润y最大。单个商
品的利润×商品总件数=商品总获利。考点四:构建二次函数模型解决实际问题
Image
12/9/2021
第十六页,共十六页。
2021/12/9
第三页,共十六页。
考点 聚焦 (kǎo diǎn)
考点二 二次函数(hánshù)的实际应用
2.利用二次函数解决抛物线形的隧道、大桥和拱门等实际 问题时,要恰当地把这些实际问题中的数据落实到平面 直角坐标系中的抛物线上,从而确定抛物线的解析(jiě xī) 式,通过抛物线的解析(jiě xī)式可解决一些测量等问题.
4、有关二次函数综合性问题中一般作为中考压轴题出现,解决此类问题时要将题目 (tímù)分解开来,讨论过程中要思考全面.
2021/12/9
第五页,共十六页。
强化训练
考点(kǎo diǎn)一:二次函数的最值
D
2021/12/9
第六页,共十六页。
归纳(guīnà)拓展
中考数学专题复习 第十三讲二次函数的应用(共69张PPT)
t01 2 3 4 5 6 7…
h08
1 4
1 8
2 0
2 0
1 8
1 4
…
下列结论:①足球距离地面的最大高度为20m;②足球
飞行路线的对称轴是直线t= 9 ;③足球被踢出9s时落
2
地;④足球被踢出1.5s时,距离地面的高度是11m.其中
正确结论的个数是 ( )
A.1
B.2
C.3
D.4
【解析】选B.由表格可知抛物线过点(0,0),(1,8), (2,14),设该抛物线的解析式为h=at2+bt,将点(1,8), (2,14)分别代入,得:a+b=8,4a+2b=14, 即 a4ab2b8解,1得4. :a=-1,b=9.
3
3
(2)由(1)知抛物线解析式为y=- 2 (x-1)2+ 8
3
3
(0≤x≤3).
当x=1时,y=8 .
3
所以抛物线水柱的最大高度为 8 米.
3
【答题关键指导】 利用二次函数解决实际问题的步骤 (1)根据题意,列出抛物线表达式,或建立恰当的坐标 系,设出抛物线的表达式,将实际问题转化为数学模型. (2)列出函数表达式后,要标明自变量的取值范围.
5
考点二 利用二次函数解决最优化问题 【示范题2】(2017·济宁中考)某商店经销一种学生 用双肩包,已知这种双肩包的成本价为每个30元.市场 调查发现,这种双肩包每天的销售量y(个)与销售单价 x(元)有如下关系:y=-x+60(30≤x≤60).设这种双肩 包每天的销售利润为w元.
(1)求w与x之间的函数关系式. (2)这种双肩包销售单价定为多少元时,每天的销售利 润最大?最大利润是多少元? (3)如பைடு நூலகம்物价部门规定这种双肩包的销售单价不高于 42元,该商店销售这种双肩包每天要获得200元的销售 利润,销售单价应定为多少元?
人教版九年级数学《二次函数》总复习课件(公开课)
若抛物线y=ax2+bx+c与x轴有交点,则
b2 – 4ac ≥0
判别式: b2-4ac
b2-4ac>0
b2-4ac=0
二次函数
y=ax2+bx+ c
与x(轴有a≠两0个)不
同的交点 (x1,0) (x2,0)
与x轴有唯一个
交点 ( b ,0) 2a
b2-4ac<0
与x轴没有 交点
图象
y
O
x y
O
二次函数复习课
1、二次函数的定义
• 定义: y=ax² + bx + c ( a 、 b 、 c 是常数, a ≠ 0 )
• 定义要点:①a ≠ 0 ②最高次数为2
•
③代数式一定是整式
• 练习:1、y=-x²,y=2x²-2/x,y=100-5 x²,
• y=3 x²-2x³+5,其中是二次函数的有____个。
解:∵二次函数的最大值是2 ∴抛物线的顶点纵坐标为2 又∵抛物线的顶点在直线y=x+1上 ∴当y=2时,x=1 ∴顶点坐标为( 1 , 2) ∴设二次函数的解析式为y=a(x-1)2+2 又∵图象经过点(3,-6) ∴-6=a (3-1)2+2 ∴a=-2 ∴二次函数的解析式为y=-2(x-1)2+2
当x b 时, y最小值为 4ac b2
2a
4a
y=ax2+bx+c(a<0)
b 2a
,
4ac 4a
b2
直线x b
2a
由a,b和c的符号确定
a<0,开口向下
在对称轴的左侧,y随着x的增大而增大. 在对称 轴的右侧, y随着x的增大而减小.
【人教版】2018-2019学年九年级数学下册:全册中考知识点梳理-第13讲 二次函数的应用
③根据图象,结合所求解析式解决问题.
实际问题中
求最值
1分析问题中的数量关系,列出函数关系式;
2量的取值范围内,并求相关的值;
⑤解决提出的实际问题.
解决最值应用题要注意两点:
①设未知数,在“当某某为何值时,什么最大(最小)”的设问中,“某某”要设为自变量,“什么”要设为函数;
第13讲二次函数的应用
一、知识清单梳理
知识点一:二次函数的应用
关键点拨
实物抛物线
一般步骤
若题目中未给出坐标系,则需要建立坐标系求解,建立的原则:①所建立的坐标系要使求出的二次函数表达式比较简单;②使已知点所在的位置适当(如在x轴,y轴、原点、抛物线上等),方便求二次函数丶表达式和之后的计算求解.
1据题意,结合函数图象求出函数解析式;
②求解最值时,一定要考虑顶点(横、纵坐标)的取值是否在自变量的取值范围内.
结合几何图形
1根据几何图形的性质,探求图形中的关系式;
2根据几何图形的关系式确定二次函数解析式;
3利用配方法等确定二次函数的最值,解决问题
由于面积等于两条边的乘积,所以几何问题的面积的最值问题通常会通过二次函数来解决.同样需注意自变量的取值范围.
中考数学 第一轮 系统复习 夯实基础 第三章 函数及其图象 第13讲 二次函数课件
1.一般地,形如y=____________(a,b,c是常数,a≠0)的函数,叫做二 次函数. 2.二次函数图象和性质
答案:1.ax2+bx+c
2.(2017·预测)对于二次函数 y=-14x2+x-4,下列说法正确的是( B ) A.当 x>0,y 随 x 的增大而增大 B.当 x=2 时,y 有最大值-3 C.图象的顶点坐标为(-2,-7) D.图象与 x 轴有两个交点
第13讲 二次函数
1.理解二次函数的有关概念,知道给定不共线三点的坐标可以确定一 个二次函数. 2.会用描点法画出二次函数的图象,了解二次函数的性质. 3.会用配方法将数字系数的二次函数的表达式化为y=a(x-h)2+k的 形式,掌握二次函数图象的顶点坐标,说出图象的开口方向,画出图 象的对称轴,并能解决简单实际问题. 4.利用二次函数的图象求一元二次方程的近似解.
二次函数的图象性质
1.(2017·预测)二次函数y=2x2-3的图象是一条抛物线,下列关于该抛 物线的说法,正确的是( D ) A.抛物线开口向下 B.抛物线经过点(2,3) C.抛物线的对称轴是直线x=1 D.抛物线与x轴有两个交点 【解析】根据二次函数的性质对A,C进行判断;根据二次函数图象上点 的坐标特征对B进行判断;利用方程2x2-3=0解的情况对D进行判断.
利用图象判断a,b,c的符号
3.(2017·预测)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且 关于x的一元二次方程ax2+bx+c-m=0有两个不相等的实数根,下列 结论: ①b2-4ac<0;②abc>0;③a-b+c<0;④m>-2. 其中正确的个数有( B ) A.1个 B.2个 C.3个 D.4个
4.二次函数y=ax2+bx+c(a≠0)的图象如右图所示,下列说法正确的 个数是( B) ①a>0;②b>0;③c<0; ④b2-4ac>0. A.1个 B.2个 C.3个 D.4个 解析:第3题直接利用抛物线与x轴交点个数以及抛物线与方程之间 的关系、函数图象与各系数之间关系分析得出答案;第4题根据图象 特征进行判断.
人教版中考数学复习:第13讲 二次函数的应用
(3)结合(2)及函数 z=-2x2+136x-1800 的图象(如图所示)可知,当 25≤x≤43 时,z≥350. 又由限价 32 元,得 25≤x≤32. 根据一次函数的性质,得 y=-2x+100 中 y 随 x 的增大而减小, ∴当 x=32 时,每月制造成本最低. 最低成本是 18×(-2×32+100)=648(万元). ∴所求每月最低制造成本为 648 万元.
第13讲 二次函数的应用
【问题】(2018·武汉)飞机着陆后滑行的距离 y(单
位:m)关于滑行时间 t(单位:s)的函数解析式是 y= 60t-32t2.在飞机着陆滑行中,最后 4s 滑行的距离是 ________m.
【解析】当 y 取得最大值时,飞机停下来, 则 y=60t-1.5t2=-1.5(t-20)2+600, 此时 t=20,飞机着陆后滑行 600 米才能停下来. 因此 t 的取值范围是 0≤t≤20; 即当 t=16 时,y=576, 所以 600-576=24(米), 故答案是:24.
≤130 时,W≤2160,因此当该产品产量为 75kg 时,获得的利润
最大,最大利润为 2250 元.
5.(2019·贵港)如图,已知抛物线 y=ax2+bx+c 的顶点为 A(4,3),与 y 轴相交于点 B(0,-5),对 称轴为直线 l,点 M 是线段 AB 的中点. (1)求抛物线的表达式; (2)写出点 M 的坐标并求直线 AB 的表达式; (3)设动点 P,Q 分别在抛物线和对称轴 l 上,当以 A, P,Q,M 为顶点的四边形是平行四边形时,求 P,Q 两点的坐标.
②当 AM 是平行四边形的对角线时, 由中点定理得:4+2=m+4,3-1=-12m2+4m-5+s, 解得:m=2,s=1, 故点 P、Q 的坐标分别为(2,1)、(4,1); ③当 AM 是平行四边形的一条边且点 Q 在点 A 上方时, AQ=MP=2, 同理可得点 Q 的坐标为(4,5), 故点 P、Q 的坐标分别为(6,1)、(4,-3)或(2,1)、
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点1:二次函数的平移 考点2:二次函数的顶点 考点3:二次函数的性质 考点4:二次函数的图象 考点5:二次函数的应用
考点1:二次函数的平移
1.(2014 上海)如果将抛物线 y=x2 向右平移 1 个单位,那么所
得的抛物线的表达式是( C )
A. y=x2﹣1
B. y=x2+1
C. y=(x﹣1)2 D. y=(x+1)2
∴直线 PM 的解析式为 y= x+3.
由
,解得 , ,
∴点 M 的坐标为( , ).
+c.∵抛物线经过点(2,0),∴当x=2时,y=0,即
4a+2b+c=0.故③错误.④∵(0,y1)关于直线x= 的对称点的坐标是(1,y1),∴y1=y2.故④正确.综
上所述,正确的结论是①②④.故选A.
考点4:二次函数的图象
6.(2015深圳)二次函数y=ax2+bx+c(a≠0)的图
象如图所示,下列说法正确的个数是( B )
(4)在OA上方的抛物线上存在一点M(M与P不重 合),△MOA的面积等于△POA的面积.请直接写出 (点4)M过的P 坐作 O标A.的平行线,交抛物线于点 M,连结 OM、AM,则△MOA 的面积等 于△POA 的面积.
设直线 PM 的解析式为 y= x+b,∵P 的坐标为(2,4),∴4= ×2+b,解得 b=3,
A.①②④
B.③④
C.①③④
D.①②
考点3:二次函数的性质
解析:①∵二次函数的图象开口向下,∴a<0.∵二次
函数的图象交y轴的正半轴于一点,∴c>0.∵对称轴
是直线x=
,∴b 1
2a 2
,∴b=12 -a>0,∴abc<0.故
①正确.②∵由①中知b=-a,∴a+b=0,故②正
确.③把x=2代入y=ax2+bx+c得:y=4a+2b
应用
7.(2015佛山)如图,一小球从斜坡O点处抛出,球的抛出路线
可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数1 y= x刻
画.
2
(1)请用配方法求二次函数图象的最高点P的坐标; 解:(1)由题意得,y=﹣2x +4x=﹣(x﹣2 2)
+4,故二次函数图象的最高点P的坐标为(2,
4).
(2)小球的落点是A,求点A的坐标;
①a>0;②b>0;③c<0;④b2-4ac>0.
A.1
B.2 C.3
D.4
b 2a
解析:开口向下,所以a<0,①错误; 对称轴在y轴右侧,∴ >0.∵a<0, ∴b>0,②正确;与y轴交点在y轴正半 轴上,所以c>0,③错误;与x轴有两 个不同的交点,所以b2-4ac>0.所以
②④正确.
考点5:二次函数的
选C.
考点3:二次函数的性质
5.(2015枣庄)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,
对称轴为直线x= ,且1 经过点(2,0),有下列说法:①abc<0;② a+b=0;③4a+2b+2 c<0;④若(0,y1),(1,y2)是抛物线上的
两点,则y1=y2.上述说法正确的是( A )
2.(2015绥化)把二次函数y=2x2的图象向左平移1
个单位长度,再向下平移2个单位长度,平移后抛物
线的解析式为_y__=_2_(__x_+_1__)__2﹣__2_____.
解析:由“左加右减”的原则可知,将二次函数
y=2x2的图象向左平移1个单位长度所得抛物线 的解析式为y=2(x+1)2;由“上加下减”的原 则可知,将抛物线y=2(x+1)2向下平移2个单位 长度所得抛物线的解析式为y=2(x+1)2-2,即 y=2(x+1)2-2.
y=-x2 +4x
(2)联立两解析式可得:
得:
x=
7 2
,
y=
1 2
x
或 y= 7 .
4
77
故可得点A的坐标为(2 4, ).
x=0
,解
y=0
(3)连接抛物线的最高点P与点O、A得△POA,求 △POA的面积;
(3)如图,作 PQ⊥x 轴于点 Q,AB⊥x 轴于点 B. S△POA=S△POQ+S△梯形 PQBA﹣S△BOA= ×2×4+ ×( +4)×( ﹣2) ﹣ × × =4+ ﹣ = ;
考点2:二次函数的 顶点
3. (2015常州)二次函数y=2-x +2x-3图像的顶 点坐标是_____(1__,-_2__)__.
4.(2015乐山)二次函数y=2 -x +2x=4的最大值为 ( C)
A解.析3:y=B.-4x2+2Cx.+54=-D(x.-61)2+5.∵a=- 1<0,∴当x=1时,y有最大值,最大值为5.故