MCC和SMCC物理化学性质的比较

合集下载

adc偶联药物生产工艺

adc偶联药物生产工艺

ADC偶联药物生产工艺一、介绍ADC(Antibody Drug Conjugates)是一种新型的药物形式,将抗体与化学药物偶联在一起,以提高药物的靶向性和疗效。

本文将对ADC偶联药物的生产工艺进行全面、详细、完整且深入的探讨。

二、ADC的工作原理1.抗体选择:选择适合的抗体作为药物载体,确保其能够与靶标特异性结合。

2.链接技术:通过化学手段将抗体与化学药物偶联,常用的链接技术包括带硫醇的链接剂、带酐的链接剂、海因斯结构和光敏感结构等。

3.稳定性改进:针对ADC在体内易发生的非特异性结合和降解等问题进行改进,提高ADC的稳定性和血浆半衰期。

三、ADC生产工艺步骤1. 抗体生产1.细胞培养:培养表达产生特定抗体的细胞株,如CHO细胞、NS0细胞等。

2.抗体纯化:采用亲和层析、离子交换层析、凝胶过滤等技术将抗体从培养物中纯化出来。

2. 化学药物合成1.药物设计:选择合适的化学药物,根据靶标特异性进行药物设计。

2.合成路线设计:设计合理的合成路线,选择适当的合成方法和反应条件。

3.化学合成:根据设计合成路线进行化学合成,得到所需的化学药物。

3. 抗体与化学药物的偶联1.偶联试剂选择:根据化学药物的特性选择合适的偶联试剂,如SMCC、MCC-DM1等。

2.偶联反应:将抗体与化学药物进行偶联反应,形成ADC。

3.副反应去除:去除偶联反应中产生的副产物和未反应物。

4. ADC的质量控制1.纯化:采用亲和层析、凝胶过滤等技术对ADC进行纯化。

2.结构鉴定:采用质谱和核磁共振等技术对ADC的结构进行鉴定。

3.稳定性测试:通过离子交换层析、动态光散射等技术测试ADC的稳定性。

4.生物活性测试:通过细胞毒性实验等测试手段评价ADC的生物活性。

四、ADC生产中的关键问题和挑战1.抗体选择:选择合适的抗体具有重要意义,需考虑抗体的特异性、亲和力和内化效率等。

2.偶联稳定性:偶联反应后产生的ADC需要具有一定的稳定性,避免在体内发生非特异性结合和降解。

常见制冷剂的热力性质

常见制冷剂的热力性质

常见制冷剂的热力性质目录R-134a 四氟乙烷制冷剂 (2)R-404A(Suva HP62) 制冷剂 (4)R-407C 制冷剂 (5)R-410A 制冷剂 (7)R-417A(ISCEON MO59)环保制冷剂 (9)F-11 一氟三氯甲烷制冷剂/发泡剂 (13)R-12 二氟二氯甲烷制冷剂 (14)R-13 三氟一氯甲烷制冷剂 (15)R-13 三氟一氯甲烷制冷剂 (16)R-23 三氟甲烷制冷剂 (17)R-22 二氟一氯甲烷制冷剂 (19)R-123 三氟二氯乙烷制冷剂 (20)R-124一氯四氟乙烷制冷剂 (22)HCFC-142b 二氟一氯乙烷制冷剂 (23)R-502 制冷剂 (24)R-503 制冷剂 (25)R-507 制冷剂 (26)R-508A 制冷剂 (27)杜邦DuPontTM 制冷剂—ISCEON? MO89 制冷剂 (29)R-134a 四氟乙烷制冷剂HFC-134a 化学名:1,1,1,2-- 四氟乙烷,分子组成:CH2FCF3,CAS 注册号:811-97-2,分子量:102.0,HFC 型制冷剂,ODP 值为零。

HFC-134a 可用在目前使用CFC-12( 二氯二氟甲烷) 的许多领域,包括:制冷,聚合物发泡和气雾剂产品。

但是,为使HFC-134a 在这些领域达到最佳性能,有时需要设备设计改变。

由于HFC-134a 的低毒和不易燃性,它被研制用于药物吸入剂的载体。

HFC-134a 也可用于那些对毒性和可燃性要求严格的气雾剂中。

HFC-134a 的热力和物理性质,以及其低毒性,使之成为一种非常有效和安全的替代品,用以替代制冷工业中使用的CFC-12 。

HFC-134a 主要用在汽车空调、家用电器、小型固定制冷设备、超级市场的中温制冷、工商业的制冷机。

压缩机生产商通常建议使用POE (Polyol Ester)多元醇酯和PAG (Polyalkylene Glycol)聚二醇(汽车空调)冷冻机油。

scbccfcchcp结构特征参数

scbccfcchcp结构特征参数

scbccfcchcp结构特征参数SC、BCC、FCC和HCP是晶格结构类型的表示方式,它们是指晶体中原子的排列方式。

下面将分别介绍这四种结构的特征参数。

1.简单立方结构(SC):简单立方结构是最简单的晶格结构,每个原子都位于晶体的角点上。

它具有以下特征参数:-原子数密度:SC结构中,每个晶胞只含有一个原子,因此原子数密度为1- 离子半径比(ionic radius ratio):SC结构中,离子半径比为0.155-空间群:SC结构的空间群为P1,表示没有对称元素。

- 展散度(ductility):SC结构的展散度较低,即不容易被拉伸成细丝。

2.体心立方结构(BCC):体心立方结构每个晶胞的角点处有一个原子,同时在晶体的中心位置也存在一个原子。

它具有以下特征参数:-原子数密度:BCC结构中,每个晶胞含有两个原子,因此原子数密度为2-离子半径比:BCC结构中,离子半径比为0.414-空间群:BCC结构的空间群为Im-3m,表示存在三个相互垂直的镜面对称面。

-变形度:BCC结构的变形度较低,即在压力作用下不容易发生变形。

-展散度:BCC结构的展散度较高,即容易被拉伸成细丝。

3.面心立方结构(FCC):面心立方结构每个晶胞的角点处有一个原子,同时每个晶胞的面心位置也存在一个原子。

它具有以下特征参数:-原子数密度:FCC结构中,每个晶胞含有四个原子,因此原子数密度为4-离子半径比:FCC结构中,离子半径比为0.732-空间群:FCC结构的空间群为Fm-3m,表示存在四个三重轴的对称性。

-变形度:FCC结构的变形度中等,即在压力作用下不易发生变形。

-展散度:FCC结构的展散度较高,即容易被拉伸成细丝。

4.六方最密堆积结构(HCP):六方最密堆积结构中,每个晶胞的角点和边上都有一个原子,同时每个晶胞的中心位置也存在一个原子。

它具有以下特征参数:-原子数密度:HCP结构中,每个晶胞含有六个原子,因此原子数密度为6-离子半径比:HCP结构中,离子半径比为0.225- 空间群:HCP结构的空间群为P6/mmc,表示存在六重旋转对称性和一条镜面对称面。

常用化学试剂物理化学性质

常用化学试剂物理化学性质

氨三乙酸化学式CH6N9O6,分子量191.14,结构式N(CH2COOH)3,白色棱形结晶粉末,熔点246~249℃(分解),能溶于氨水、氢氧化钠,微溶于水,饱和水溶液pH为2.3,不溶于多数有机溶剂,溶于热乙醇中可生成水溶性一、二、三碱性盐。

属于金属络合剂,用于金属的分离及稀土元素的洗涤,电镀中可以代替氰化钠,但稳定性不如EDTA。

丙酮最简单的酮。

化学式CH3COCH3。

分子式C3H6O。

分子量58.08。

无色有微香液体。

易着火。

比重0.788(25/25℃)。

沸点56.5℃。

与水、乙醇、乙醚、氯仿、DMF、油类互溶。

与空气形成爆炸性混和物,爆炸极限2.89~12.8%(体积)。

化学性质活泼,能发生卤化、加成、缩合等反应。

广泛用作油脂、树脂、化学纤维、赛璐珞等的溶剂。

为合成药物(碘化)、树脂(环氧树脂、有机玻璃)及合成橡胶等的重要原料。

冰乙酸化学式CH3COOH。

分子量60.05。

醋的重要成份。

一种典型的脂肪酸,无色液体。

有刺激性酸味。

比重1.049。

沸点118℃,可溶于水,其水溶液呈酸性。

纯品在冻结时呈冰状晶体(熔点16.7℃),故称“冰醋酸”,能参与较多化学反应。

可用作溶剂及制造醋酸盐、醋酸酯(醋酸乙酯、醋酸乙烯)、维尼纶纤维的原料。

苯酚简称“酚”,俗称“石炭酸”,化学式C6H5OH,分子量94.11,最简单的酚。

无色晶体,有特殊气味,露在空气中因被氧化变为粉红,有毒!并有腐蚀性,密度1.071(25℃),熔点42~43℃,沸点182℃,在室温稍溶于水,在65℃以上能与任何比与水混溶,易溶于酒精、乙醚、氯仿、丙三醇、二硫化碳中,有弱酸性,与碱成盐。

水溶液与氯化铁溶液显紫色。

可用以制备水杨酸、苦味酸、二四滴等,也是合成染料、农药、合成树脂(酚醛树脂)等的原料,医学上用作消毒防腐剂,低浓度能止痒,可用于皮肤瘙痒和中耳炎等。

高浓度则产生腐蚀作用。

1,2-丙二醇化学式CH3CHOHCH2OH,分子量76.10,分子中有一个手征性碳原子。

合金中常见的组织总结

合金中常见的组织总结

合金中常见的组织总结:1铁素体(F):碳溶于a-Fe所形成的固溶体,具有体立方结构,也称a固溶体。

由于aFe 的晶格间隙较小,故溶C能力较差,727度时,wc=0.021%(最大),温度降低溶碳量较小,室温时,C溶量几乎为0.性能几乎和fe 一样。

特点:铁素体的含C量不同,性质和微观组织几乎与Fe相同。

强度和硬度不高,但具有良好的塑性和韧性。

F在770度以下具有Fe磁性,在770度以上则失去铁磁性2渗碳体(Fe3C)铁碳合金按亚稳定平衡系统凝固和冷却转变时析出的Fe3c型碳化物。

Fe 和C形成的金属化合物。

特点:含碳量很高6.69%。

熔点1227度。

无同素异晶转变,230度以下有弱铁磁性。

230度以上无铁磁性。

硬度很高,而塑性和冲击韧性几乎等于0,脆性极大,不易受腐蚀,属于钢的强化相。

起硬化和强化作用。

Fe3C---3Fe+C (石墨),铸铁和石墨钢分类,:1 一次Fe3C:从液相中直接析出2二次Fe3C:从奥氏体中析出,沿奥氏体晶界网状分布当奥氏体转变成珠光体后,Fe3C便呈连续网状分布在珠光体边界上。

3三次Fe3C:从F中析出,分布在F 晶界上,最少分散一般看不到3莱氏体(Ld):液相的铁碳合金在1147度时共晶转变,转变成1:1的奥氏体和渗碳体(Fe3C)的两相共晶混合物注意:温度降至727度时。

Ld中的A发生共析转变,生成F种Fe3C层状分布的珠光体,所以727充以下时Ld是P和Fe3C的机械混合物特点:纯莱氏体中含有的Fe3C较多,故性能与Fe3C相近,即极为硬脆4马氏体(M)是C溶于a Fe的过饱和的固溶体,是A通过无扩散型相变转变成的亚稳定相,比容大于AP是产生淬火应力导致变形开裂的主要原因形成:将中高碳钢加热到一定温度,形成奥氏体后迅速冷却,即淬火,得到M (使钢变硬,增强的一各占淬火组织)注意:M是体立方结构,故A (面六方)转变成M公需很少能量,仅仅是迅速和微小的原子重排,即无扩散位移型相恋。

SMC材料介绍

SMC材料介绍

SMC材料介绍SMC复合材料(片状模塑料)经高温一次模压成型,具有机械强度高、材料重量轻、耐腐蚀、使用寿命长,绝缘强度高、耐电弧、阻燃、密封性能好,且产品设计灵活,易规模化生产,并有安全美观的优点,具有全天候防护功能,能够满足室外工程项目中各种恶劣环境和场所的需要,克服了室外金属设备箱体的易锈蚀、寿命短和隔热保温性能差等缺陷,广泛应用于电信、电力和铁路等领域。

一、SMC绝缘板(不饱和聚酯玻璃纤维增强模塑料)SMC绝缘板采用不饱和聚酯片状模塑塑料压制而成,具有色泽均匀、耐电弧、FV0阻燃,吸水率低、耐漏电性好、尺寸公差稳定、翘曲小、介电强度及耐电压高。

用于高低压开关柜的各种绝缘板及结构件。

SMC 板材为1000mm*2000mmSMC绝缘板材料已通过ROHS环保检测和桂林高压所检测,目前我公司已与西门子,施耐德,东芝白云,森源电气等开关厂合作,为电气行业提供合格的产品。

二、SMC的应用领域电工电气行业:各种开关柜的隔板、衬板、绝缘支座、支架、灭弧罩、灭弧筒及各类型的绝缘子、灭弧片、触头座、母线夹板及电机出线端子盒、电表箱等。

汽车行业:汽车保险杠、挡泥板、备胎仓、坐椅、仪表盘、防眩板等。

建筑行业:各种建筑物高层水箱、卫生间洁具、装饰板和其它产品。

铁路行业:信号灯、车厢窗框、信号盒外壳等。

SMC系列模塑料性能指标(JB7770-1995标准)BMC系列模塑料性能指标(JB7770-1995标准)SMC材料在模压汽车配件行业特点及优势一、重量轻对于相同的部件,使用SMC复合材料制作后重量较之钢材轻20-30%,满足了汽车领域要求在保证部件强度的情况下减轻部件重量的要求,是汽车工业节能的理想产品。

另采用SMC部件不仅节省汕耗、节省能源,也有利于环境的改善。

二、物理性能优异其物理性能指标最能与金属材料抗衡,而且在高温条件下仍能保持机械性能,是一般热塑性塑料不可比拟的,是以塑代钢的理想材料。

三、集成化程度高设计自由度大SMC材料的流动特性及成型工艺决定了诸多零部件(如定位件、连接件、加强筋、凸缘及孔洞等)可实现一次性成型,可减少模具、工装的数量及焊接、组装等工序,从而显著降低成本,可实现低产量部件的低成本动作。

微晶纤维素的研究进展

微晶纤维素的研究进展

微晶纤维素的研究进展高分子材料2班刘卓君 20080402B020摘要:微晶纤维素是可自由流动的纤维素晶体组成的天然聚合物,它是天然纤维素经稀酸水解并经一系列处理后得到的极限聚合度的产物。

广泛用于食品、医药及其他工业领域,本文综述了微晶纤维素的特性、理化性质、制备方法以及国内外微晶纤维素的研究进展。

关键词:微晶纤维素;结晶度;聚合度;可压性;流动性;制备;研究进展正文:微晶纤维素(MCC)是由天然纤维素经稀无机酸水解达到极限聚合度的极细微的白色短棒状或无定形结晶粉末,无臭、无味。

颗粒大小一般在20-80微米,极限聚合度(L0DP)在15~375;不具纤维性而流动性极强。

不溶于水、稀酸、有机溶剂和油脂,在稀碱溶液中部分溶解、润涨,在羧甲基化、乙酰化、酯化过程中具有较高的反应性能。

由于具有较低聚合度和较大的比表面积等特殊性质,微晶纤维素被广泛应用于医药、食品、化妆品以及轻化工行业。

微晶纤维素有两种主要形式:细粉末和胶体状。

前者用于吸附剂或粘合剂,后者作为液体中的分散剂。

粉末状微晶纤维素的应用范围是作为抗结块剂,它有防结块和帮助流动的作用。

另外,微晶纤维素还是食品中非营养部分,用作健康食品中的食用纤维。

作为功能食用纤维,微晶纤维素可起到诸多保健作用。

微晶纤维素有吸油特性,所以粉末化的微晶纤维素还被用作香精和香料油的载体。

另外,它常被用于某些挤出食品的助流剂。

胶体状微晶纤维素的多功能性表现在:乳化和泡沫稳定性;高温下稳定性;非营养性填充物和增稠剂;液体的稳定和胶化剂;改善食品结构;悬浮剂;冷冻甜食中控制冰晶形成。

随着科技的发展,为了更大程度降低成本,有效利用资源和加强环保,人们也在不断研究采用更好的原料和更好的方法来生产微晶纤维素,并进一步探究其可能的用途。

1.微晶纤维素的理化性质MCC 的用途广泛,用以描述的指标很多,主要有聚合度、结晶度、粒度、吸水值、润湿热、比表面积、填积密度、过滤指数和特性粘数等。

吸附式制冷物理化学工质对分类及特点

吸附式制冷物理化学工质对分类及特点

1、吸附式制冷的吸附剂--制冷剂工质对有哪些?1。

1理想工质对:吸附制冷工质对应该满足以下的几点要求:(1)吸附容量大;(2)制冷剂的蒸发潜热大,工质对的吸附热小;(3)吸附剂的吸附对温度的变化敏感;(4)吸附等温线比较平坦;(5)具有良好的导热性和扩散性;(6)整个系统能够处于正压的操作;(7)工质对要有良好的化学稳定性以及热稳定性;(8)制冷剂要求无毒性、无腐蚀性、无污染;(9)来源容易,价廉易得、1。

2现有工质对吸附剂一般为固体介质,物理吸附常使用分子筛-水、活性炭-甲醇、活性炭-氨等制冷工质对,(分子间范德华力)化学吸附常使用氯化钙-氨、氯化镍—氨、金属氢化物等制冷工质对.(化学键作用)①以活性炭为吸附剂活性炭一甲醇、活性炭一氨、活性炭-—乙醇、活性炭——水、活性炭——R11、活性炭—R12、活性炭一R22、活性炭--R113、活性炭——R114、活性炭一R318等;②以沸石分子筛为吸附剂沸石分子筛一水、沸石分子筛一氨、沸石分子筛一甲醇、沸石分子筛—-R11、沸石分子筛—R12、沸石分子筛-R22、沸石分子筛-R114等;③以硅胶为吸附剂硅胶—水、硅胶—-甲醇、硅胶一二氧化硫、硅胶一丙酮、硅胶—乙醇、硅胶-二乙基胺;④以无机盐为吸附剂氯化钙一氨、氯化锶一氨、硫氰酸钠——氨、氯化银一氨、氯化锰一氨等。

(化学吸附)2、物理式吸附的特点是什么,在暖通空调行业的应用有哪些?物理吸附是借助分子间力,吸附力弱,吸附热小(8~20kJ/mol),接近于气体的液化热,且是可逆的,无选择性,分子量越大越容易发生,吸附稳定性不高,吸附与解吸速率都很快,可单分子层或多分子层吸附,不需要活化能。

制冷工质对:分子筛-水、活性炭-甲醇、活性炭—氨等2。

1以活性炭为吸附剂的工质对优点:活性炭具有非极性的表面,为疏水性和亲有机物的吸附剂,具有高度多孔结构,大比表面积。

它的吸附容量大,解吸容易,化学稳定性和热稳定性好,长期操作后仍能基本保持原有的吸附性能,已被广泛应用。

mccp 化学式 氯化石蜡 分子式

mccp 化学式 氯化石蜡 分子式

mccp 化学式氯化石蜡分子式MCCP 化学式:氯化石蜡分子式氯化石蜡(MCCP),即氯化石蜡,是一种常见的有机化合物,化学式为C_nH_(2n+2-m)Cl_m,其中n表示碳链长度,m表示氯原子数目。

它是通过将石蜡(一种含有直链烷烃的混合物)与氯气反应而制得的。

MCCP广泛应用于工业和消费品领域,具有多种优良性能。

1. MCCP的结构与物理性质MCCP分子主要由碳链和氯原子构成,通过氯化反应将氯原子引入石蜡中。

其分子结构可以分为直链和支链两种形式,直链MCCP的碳链长度可以从C10到C40不等。

氯化石蜡的物理性质随着碳链长度和氯原子数的变化而改变,包括熔点、沸点、密度、溶解性等。

2. MCCP在工业中的应用MCCP在工业领域中有多种用途。

首先,它是一种优良的阻燃剂,能够提高材料的防火性能,被广泛应用于电线电缆、建筑材料、塑料制品等领域。

其次,MCCP还具有良好的润滑性能,广泛用于润滑油、润滑脂等制品中,提高机械设备的工作效率和使用寿命。

此外,MCCP 还可用于制备柔软剂、增塑剂、抗氧化剂等。

3. MCCP在消费品中的应用MCCP也在消费品领域中得到广泛应用。

在家居用品中,MCCP可以用于制备油漆、涂料、粘合剂等,提供优异的耐候性和附着力。

此外,在洗涤剂和护肤品中,MCCP可以作为乳化剂、增稠剂等添加剂,改善产品的质地和稳定性。

MCCP还被用于香水、香精等制品,赋予其持久的香气。

4. MCCP的环境和健康问题尽管MCCP在工业和消费品中有广泛的应用,但它的使用也引起了环境和健康方面的担忧。

MCCP属于氯化有机物,它的部分成分可能对环境和生物产生毒性影响。

因此,对于MCCP的生产、储存、使用和处理需要进行合理管理,避免对环境和人体健康造成潜在风险。

总结:MCCP(氯化石蜡)是一种常见的有机化合物,具有广泛的应用领域。

它在工业中可以作为阻燃剂、润滑剂等,提供多重功能。

在消费品领域,MCCP可以用于家居用品、洗涤剂、护肤品等,为产品提供稳定性和改善质地。

SMC的主要性能

SMC的主要性能
SMC的物理性能
单位
低收缩性着色SMC
汽车用油漆涂装低收缩性SMC
玻璃纤维含量

22
30
22
30
抗弯强度
Kgf/mm2
16.2
20.4
14.8
17.6
抗拉强度
Kgf/mm2
6.3
9.8
7.0
8.8
抗压强度
Kgf/mm2
18.3
21.1
16.9
19.7
吸水率(23℃,24h)①
%
0.2
0.2
0.5
0.5
汽车用SMC的主要物理性能
单位
汽车用R-30
(聚合物毡133D)
高强度R-65
(HMX-301)
高强度R32.5/C32.5
(HMX-501)
顺向
横向
抗弯强度
Kgf/mm2
弯曲弹性模量
Kgf/mm2
1050
1600
2400
1040
拉伸强度
Kgf/mm2
9.9
24.3
51.3
热变形温度②

≥150
≥150
≥200
≥200
密度
g/cm3
1.85
1.85
1.80
1.85
收缩率
%
0.1
0.1
0.02
0.02
氧指数
-
-
-
21.5
21.5
耐电弧性
s
≥120
≥120
-
-
1根据ASTM D-570
2246psi(1psi≈7Kpa)
注:羊秋林,李尹熙,吕莉雯,李子卿编译.汽车用轻量化材料.北京:机械工业出版社,1991

直接压片辅料技术参数在简单直压处方布洛芬的比较研究

直接压片辅料技术参数在简单直压处方布洛芬的比较研究
该组中使用cellacose共处理乳糖得到的片重差异小硬度和脆碎度小060片厚45mm但是崩解时间长180秒溶出速度ph200由于粒径大0180mm而有较好的流变性由于有较好的塑性形变可压性也好所以使用该辅料所得到的片剂片重差异小硬度高接近60n脆碎度低070
直接压片辅料技术参数在简单直压处方布洛芬的比较研究
Emcompress® Flow-Lac®100 Microcelac®100 Pharmatose® DCL11 Pharmatose® DCL15 Pharmatose® DCL21 Tablettose® DCL21 Tri-Tab®
DCP Lactose MCC/ Lactose Lactose Lactose Lactose Lactose
该组最后一种粘合剂/稀释剂PROSOLV® SMCCTM即使粒径只有 0.090mm, 有很好的流变性。,堆密度相对较小。经过硅化共处理后,这种物料的流动性大
大提高了。使用PROSOLV® SMCCTM得到的片剂片重差异小(S.D.3.5),硬度接 近 50N,脆碎度为 0.47%,片剂厚度为 4.70mm,崩解时间为 40 秒钟,溶出时间 为 2 分钟。
在布洛芬直接压片处方中,堆密度低于 0.5g/ml 的粘合剂/稀释剂在处方中的 堆密度增加。堆密度高于 0.5g/ml 的辅料在处方中的堆密度减少。见表 1。 使用很多粘合剂/稀释剂的布洛芬处方的流动性测不出。磷酸二钙、Microcelac®和 PROSOLV®将自身的良好的流动性传递给了整个处方。流动性指数见表 2。使用
Emcocel®90M,虽然粒径接近 0.100mm,堆密度也较低,仍然有较好的流动 性。当该产品用于布洛芬处方中时,能吧自身良好的流动性传递给直压处方中, 使片重差异小(S.D.3.4),硬度大(接近 60N),脆碎度低(<1%),厚度为 4.65mm, 崩解速度快(36 秒钟),溶出速度快(1.16 分钟)。

SPCCSECCSGCC的差异性

SPCCSECCSGCC的差异性

SPCCSECCSGCC的差异性我们通常所说的板材,是指薄钢板(带);而所谓的薄钢板,是指板材厚度小于4mm的钢板,它分为热轧板与冷轧板。

众所周知,在家电制造领域里,冷轧板与以冷轧板为原板的镀锌板的用途十分广泛,冰箱、空调、洗衣机、微波炉、燃气热水器等等的零件材料的选用都与它紧密相连。

近年来,国外牌号钢材的大量涌入,丰富了国内钢材市场,使板材选用范围逐步扩大了,这对提高家电产品的制造质量,提供更丰富的款式与外观,起到了显而易见的作用;然而,由于国外的板材型号与我国板材牌号及标记不一致,再加上目前市面上很少有这方面专门介绍的资料与技术书籍,这给如何选用比较恰当的钢板带来了一定的困惑。

本文针对上述情况,介绍了在我国经常用到与使用最多的几个国家(日本、德国、俄罗斯)的冷轧薄钢板与以冷轧板为原板的镀锌板的基本资料,并归纳出与我们国家钢板牌号的相互对应关系,借此提高我们对国外板材的识别与认知度,并能熟练选用之。

1 板材牌号及标记的识别1.1 冷轧普通薄钢板冷轧薄钢板是普通碳素结构钢冷轧板的简称,俗称冷板。

它是由普通碳素结构钢热轧钢带,通过进一步冷轧制成厚度小于4mm的钢板。

由于在常温下轧制,不产生氧化铁皮,因此,冷板表面质量好,尺寸精度高,再加之退火处理,其机械性能与工艺性能都优于热轧薄钢板,在许多领域里,特别是家电制造领域,已逐步用它取代热轧薄钢板。

适用牌号:Q195、Q215、Q235、Q275;符号:Q—普通碳素结构钢屈服点(极限)的代号,它是“屈”的第一个汉语拼音字母的大小写;195、215、235、255、275—分别表示它们屈服点(极限)的数值,单位:兆帕MPa(N/mm2);由于Q235钢的强度、塑性、韧性与焊接性等综合机械性能在普通碳素结构钢中属最了,能较好地满足通常的使用要求,因此应用范围十分广泛。

标记:尺寸精度—尺寸—钢板品种标准冷轧钢板:钢号—技术条件标准标记示例:B-0.5×750×1500-GB708-88 冷轧钢板:Q225-GB912-89 产地:鞍钢、武钢、宝钢等1.2 冷轧优质薄钢板同冷轧普通薄钢析一样,冷轧优质碳素结构钢薄钢板也是冷板中使用最广泛的薄钢板。

SMCC-结构反应解释

SMCC-结构反应解释

SMCC是一类含有N-羟基琥珀酰亚胺(NHS)活性酯和马来酰亚胺的双功能偶联剂.可以将分别含有巯基和氨基的化合物键接在一起。

NHS活性酯与伯胺在PH7-9的环境形成酰胺键。

马来酰胺与巯基在PH6.5-7.5的环境下形成稳定的硫醚键。

在水溶液中,NHS活性酯的水解是(与氨基的反应)个竞争反应。

马来酰胺比NHS稳定,但是在PH大于7.5时,马来酰胺会慢慢水解,失去与巯基反应的特异性。

因而,在使用SMCC时通常是在PH7.2-7.5的环境下进行,并且先让NHS发生反应。

SMCC结构里的环己烷环可以降低马来酰胺的水解速率。

这使得蛋白质在用SMCC修饰之后可以冻干存放一段时间。

很多蛋白质都选用该试剂来进行马来酰亚胺修饰。

用SMCC来制备抗体-酶或者半抗原作载体的蛋白质,经常采用两步合成法。

首先,含有氨基的蛋白质与几倍的偶联剂反应,反应结束后通过脱盐柱或者透析的方法除掉没有反应玩的SMCC。

然后,再与含有巯基的蛋白质反应。

在实际操作中要注意的是,SMCC怕潮湿,存放时要和干燥剂一起存放。

并且使用中从冰箱拿出来时要先在室外放置一段时间平衡温度,以免立刻开启,空气中水分遇冷凝结,破坏SMCC结构。

INSTRUCTIONSSMCC(succinimidyl4-[N-maleimidomethyl]cyclohexane-1-carboxylate),50mgMolecular Weight:334.32Spacer Arm:8.3ÅNet Mass Added:219.09Storage:Upon receipt store desiccated at4°C.Product is shipped at ambient temperature.Sulfo-SMCC(sulfosuccinimidyl4-[N-maleimidomethyl]cyclohexane-1-carboxylate),1g Sulfo-SMCC,50mgSulfo-SMCC,No-Weigh™Format,8×2mg microtubesMolecular Weight:436.37Spacer Arm:8.3ÅNet Mass Added:219.09CAS#:92921-24-9Storage:Upon receipt store desiccated at-20°C.Product is shipped at ambient temperature.IntroductionSMCC and its water-soluble analog Sulfo-SMCC are heterobifunctional crosslinkers that contain N-hydroxysuccinimide(NHS)ester and maleimide groups that allow covalent conjugati on of amine-and sulfhydryl-containing molecules.NHS esters react with primary amines at pH7-9to form amide bonds,while maleimides react with sulfhydryl groups at pH6.5-7.5to form stable thioether bonds.In aqueous solutions,NHS ester hydrolytic degrad ation is a competing reaction whose rate increases with pH.The maleimide group is m ore stable than the NHS-ester group but will slowly hydrolyze and loses its reaction specificity for sulfhydryls at pH values>7.5.For these reasons,conjugations with these crosslinkers are usually performed at pH7.2-7.5,with the NHS-ester(amine-targeted)reacted before or simultaneous with the maleimide(sulfhydryl-targeted)reaction.The cyclohexane ring in the spacer arm of these reagents decreases the rate of hy drolysis of the maleimide group compared to similar reagents that do not contain this r ing.1This feature enables proteins that have been maleimide-activated with SMCC or Sulfo-SMCC to be lyophilized and stored for later conjugation to a sulfhydryl-containing molecule.Many maleimide-activated protein products are produced in this manner(see Related Products).SMCC and Sulfo-SMCC are often used to prepare antibody-enzyme and hapten-carrier protein conjugates in a two-step reaction scheme.First,the amine-containing protein is reacted with a several-fold molar excess of the crosslinker,followed by removal of excess(nonreacted)reag ent by desalting or dialysis;finally,the sulfhydryl-containing molecule is added to react with the maleimide groups already attached to t he first protein.Sulfo-SMCC is soluble in water and many other aqueous buffers to approximately10mM,a lthough solubility decreases with increasing salt concentration.SMCC is not directly water-soluble and must be dissolved in an organic solvent such as dimethylsulfoxide(DMS O)or dimethylformamide(DMF);subsequent dilution into aqueous reaction buffer is generally possible,and most protein reactants will remain soluble if the final concentr ation of organic solvent is less than10%.SMCC and Sulfo-SMCCImportant Product Information•SMCC and Sulfo-SMCC are moisture-sensitive.Store reagent vial in desiccant.Equilibrate vial to room temperature before opening to avoid moisture condensation inside the container.Dissolve needed amount of reagent and use it immediately before hydrolysis occurs.Discard any unused recon stituted reagent.Do not store reagent in solution.•No-Weigh Microtube Handling:Immediately before use,puncture the microtube foil witha pipette tip,add200µl of50mM sodium phosphate buffer(pH7.0-7.5)or ultrapure water and pipette up and down to mix.After use,cut the used microt ube from the microtube strip and discard.Store the unused microtubes in the foil pouc h provided.Note:Do not use phosphate-buffered saline(PBS)for initial dissolution of Sulfo-SMCC;the reagent does not dissolve well in buffers exceeding50mM total salts.Ho wever,once dissolved,the solution can be further diluted in PBS or other non-amine buffers.•Avoid buffers containing primary amines(e.g.,Tris or glycine)and sulfhydryls d uring conjugation,because they will compete with the intended reaction.If necessary, dialyze or desalt samples into an appropriate buffer such as phosphate-buffered saline (PBS).•Molecules to be reacted with the maleimide moiety must have free(reduced)sulf hydryls.Reduce peptide disulfide bonds with Immobilized TCEP Disulfide Reducing Gel(Product No.77712).For proteins,reduce disulfide bonds using5mM TCEP(1:1 00dilution of Bond-Breaker®TCEP Solution,Product No.77720)for30minutes at room temperature, followed by two passes through a suitable desalting column(e.g.,Zeba™Desalt Spin Columns).Be aware that proteins(e.g.,antibodies)may be inactivated by compl ete reduction of their disulfide bonds.Selective reduction of hinge-region disulfide bonds in IgG can be accomplished with2-Mercaptoethylamine•HCl(2-MEA,Product No.20408).Sulfhydryls can be added to molecules using N-succinimidyl S-acetylthioacetate(SATA,Product No.26102)or2-iminothiolane•HCl(Traut’s Reagent,Product No.26101),which modify primary ami nes.Procedure for Two-step Protein CrosslinkingGenerally,a10-to50-fold molar excess of crosslinker over the amount of amine-containing protein results in sufficient maleimide activation to enable several sulfhydryl-containing proteins to be conjugated to each amine-containing protein.More dilute protein solutions require greater fold molar excess of r eagent to achieve the same activation level.Empirical testing is necessary to determin e optimal activation levels and final conjugation ratios for the intended application.A. Material Preparation•Conjugation Buffer:phosphate-buffered saline(PBS=100mM sodium phosphate,150mM sodium chloride,pH7.2;e.g.,Product No.28372)or other amine-and sulfhydryl-free buffer at pH6.5-7.5(see Important Product Information)–adding EDTA to1-5mM helps to chelate divalent metals,thereby reducing disulfide formation in the sul fhydryl-containing protein•Desalting column to separate modified protein from excess crosslinker and reac tion byproducts(e.g.,Zeba Desalt Spin Columns)•Amine-containing(Protein-NH2)and sulfhydryl-containing proteins(Protein-SH)to be conjugatedB.ProtocolNote:For best results,ensure that Protein-SH is prepared and ready to combine with Protein-NH2in step5.1.Prepare Protein-NH2in Conjugation Buffer.2.Add the appropriate amount of crosslinker to the protein solution.The concent ration of the Protein-NH2determines thecrosslinker molar excess to use.Suggested crosslinker molar excesses are as foll ows(also see Table1):•Protein samples<1mg/ml use40-80-fold molar excess.•Protein samples of1-4mg/ml use20-fold molar excess.•Protein samples of5-10mg/ml use5-to10-fold molar excess.Table1.Crosslinker preparation and molar excess to use for1ml of sample.Im mediately before use,dissolve crosslinker in the appropriate solvent at the concentrati on denoted in parentheses;then add the listed volume to a1ml protein sample.For ex ample,to use the No-Weigh Sulfo-SMCC,dissolve the2mg contents of the microtube in200µl of buffer and then add t he prescribed volume to per1ml sample.For the other products,the appropriate amo unt of dry reagent must be weighed on a balance(e.g.,2.4mg Sulfo-SMCC for dissolution in500µl buffer).Protein-NH2Concentration(based on a50kDa protein)10mg/ml1mg/ml0.5mg/mlCrosslinker Molar Excess5X20X50X Sulfo-SMCC(in50mM sodium phosphate or water)100µl(4.8mg/ml*)40µl(4.8mg/ml*)50µl(4.8mg/ml*)No-Weigh Sulfo-SMCC(in50mM sodium phosphate or water)50µl(10mg/ml*)20µl(10mg/ml*)25µl(10mg/ml*)SMCC(in DMSO or DMF)100µl(3.7mg/ml*)100µl(1.5mg/ml*)100µl(1.8mg/ml*)*Concentration of each crosslinker before adding to protein sample.Note:If the Sulfo-SMCC solution does not completely dissolve,place the tube under hot running water or incubate for several minutes in a50°C water bath.3.Incubate reaction mixture for30minutes at room temperature or2hours at4°C.4.Remove excess crosslinker using a desalting column equilibrated with Conjug ation Buffer.bine and mix Protein-SH and desalted Protein-NH2in a molar ratio corresponding to that desired for the finalconjugate and consistent with the relative number of sulfhydryl and activated am ines that exist on the two proteins.6.Incubate the reaction mixture at room temperatur e for30minutes or2hours at4°C.Note:Generally,there is no harm in allowing the reaction to proceed for several hours or overnight,although usually the reaction will be complete in the specified tim e.To stop the conjugation reaction before completion,add buffer containing reduced c ysteine at a concentration several times greater than the sulfhydryls of Protein-SH.Note:Conjugation efficiency can be estimated by electrophoresis separation and s ubsequent protein staining.Additional InformationA.Please visit the Pierce website for additional information including the followi ng item:•Tech Tip:Attach an antibody onto glass,silica or quartz surface B.Two-step reaction schemeMaleimide-activated AntibodyAntibody-enzyme ConjugateSulfo-SMCCAntibodyAntibodyAntibodyEnzymeEnzymeFigure1.Two-step reaction scheme for conjugating antibody and enzyme proteins with Sulfo-SMCC.In this example,the crosslinker is first reacted with the antibody to produce a maleimide-activated protein.After excess non-reacted crosslinker and by-products are removed,the maleimide-activated antibody is reacted with the appropriate molar ratio of enzyme having sulfhy dryl ually,several or multiple maleimide-activations occur per antibody molecule,enabling several enzyme molecules to be con jugated to each antibody molecule.MBS/BDB/SMCC/sulfo-SMCC1、SMCC琥珀酰亚胺-4-(N-马来酰亚胺)环已烷-1-1羟酸酯分子一端的NHS酯基团与某一蛋白质分子的伯氨反应形成稳定的酰胺键,另一端(马来酰亚胺基团一端)可与另一蛋白质分子的巯基交联。

药用辅料—微晶纤维素(MCC)在药剂上的应用

药用辅料—微晶纤维素(MCC)在药剂上的应用

企业名称:山东阿华生物药业有限公司该企业的母公司为上市公司,有着雄厚的资金实力。

公司主导产业基因工程药物纳入山东省高新技术产业发展规划,享受上市公司、省级技术开发中心、GMP认证厂家、山东省高新技术企业等优惠政策。

公司所在地占地面积大,周围无污染,适宜基因工程药物的生产,而且人力、生产成本低,发展空间广阔。

公司在济南与山东省医学科学院基础医学研究所联合建立了负责基因工程药物上游技术开发的山东阿华生物技术研究所,该所共有研究人员20人,其中研究员、副研究员10人,硕士、博士8人,留美、英、日人员5人,在基因工程药物的开发、肿瘤生物治疗技术应用研究方面处于国内领先水平,留美归国博士、所长田志刚先后主持完成了19项国家、省、部级科研项目。

公司在上海与华东理工大学联合建立了负责基因工程药物下游技术研究的上海阿华生物工程研究所,该所共有研究人员15人,其中硕士以上的8人,该所在EPO工业生产工艺、大规模培养杂交瘤细胞生产体内治疗用单抗、细胞培养用生物反应器的研制和应用等方面处于国际领先和先进水平。

所长张元兴教授为博士生导师、国家863专家组成员,多次主持国家863计划、国家科技攻关项目。

公司法人代表章安为全国优秀科技工作者,享受国务院专家津贴,在中成药、基因工程药物的研究与开发和企业管理方面颇有建树。

母公司驰名中外,有着极高的企业及品牌信誉,在全国设有40多个营销分公司,其中具有医学专业学历的高级营销人员68人,形成了功能齐全、覆盖全国的营销网络。

两所、一基地、一网形成了符合科研和市场规律的基因工程产业链。

药用辅料—微晶纤维素(MCC)在药剂上的应用1山东阿华制药有限公司,山东聊城252000一、前言药用辅料(pharmaceutical excipients)广义上指的是能将药理活性物质制备成药物制剂的各种添加剂。

国际药用辅料协会(IPEC)的定义是:药用辅料是药品制剂成型时,以保持稳定性、安全性或均质性,或为适应制剂的特性以促进溶解、缓释等为目的而添加的物质。

纤维素的分类介绍

纤维素的分类介绍

主要分为甲基纤维素(MC),羟丙基甲基纤维素(HPMC),羟乙基纤维素(HEC),羧甲基纤维素(CMC)附:HPMC与MC、HEC、CMC的应用区别HPMC和MC是两种不同的产品。

1、甲基纤维素(MC)分子式将精制棉经碱处理后,以氯化甲烷作为醚化剂,经过一系列反应而制成纤维素醚。

一般取代度为 1.6~2.0,取代度不同溶解性也有不同。

属于非离子型纤维素醚。

(1)甲基纤维素可溶于冷水,热水溶解会遇到困难,其水溶液在pH=3~12范围内非常稳定。

与淀粉、胍尔胶等以及许多表面活性剂相容性较好。

当温度达到凝胶化温度时,会出现凝胶现象。

(2)甲基纤维素的保水性取决于其添加量、粘度、颗粒细度及溶解速度。

一般添加量大,细度小,粘度大,则保水率高。

其中添加量对保水率影响最大,粘度的高低与保水率的高低不成正比关系。

溶解速度主要取决于纤维素颗粒表面改性程度和颗粒细度。

在以上几种纤维素醚中,甲基纤维素和羟丙基甲基纤维素保水率较高。

(3)温度的变化会严重影响甲基纤维素的保水率。

一般温度越高,保水性越差。

如果砂浆温度超过40℃,甲基纤维素的保水性会明显变差,严重影响砂浆的施工性。

(4)甲基纤维素对砂浆的施工性和粘着性有明显影响。

这里的“粘着性”是指工人涂抹工具与墙体基材之间感到的粘着力,即砂浆的剪切阻力。

粘着性大,砂浆的剪切阻力大,工人在使用过程中所需要的力量也大,砂浆的施工性就差。

在纤维素醚产品中甲基纤维素粘着力处于中等水平。

2、羟丙基甲基纤维素(HPMC)分子式为羟丙基甲基纤维素是近年来产量、用量都在迅速增加的纤维素品种。

是由精制棉经碱化处理后,用环氧丙烷和氯甲烷作为醚化剂,通过一系列反应而制成的非离子型纤维素混合醚。

取代度一般为 1.2~2.0。

其性质受甲氧基含量和羟丙基含量的比例不同,而有差别。

(1)羟丙基甲基纤维素易溶于冷水,热水溶解会遇到困难。

但它在热水中的凝胶化温度要明显高于甲基纤维素。

在冷水中的溶解情况,较甲基纤维素也有大的改善。

SMC简介

SMC简介

SMC简介片状模塑料(sheet molding Compound),是一种干法制造不饱和聚脂玻璃钢制品的模塑料。

SMC模压片材的组成:中间芯材是由经树脂糊充分浸渍的短切纤维(或毡)组成,上下两面用薄膜覆盖。

树脂糊里含有不饱和聚脂树脂、引发剂、化学增稠剂、低收缩添加剂、填料、脱模剂、着色剂等各种组份。

其生产与成型过程大致如下:短切原纱毡或玻纤粗纤铺放于预先均匀涂敷了树脂的薄膜上,然后在其上覆盖另一层涂敷了树脂糊的薄膜,形成了一种“夹芯”结构。

它通过浸渍区时树脂糊与玻璃纤维(或毡)充分揉捏,然后集成收卷,进行必要的熟化处理。

SMC具有良好的机械性能与简易加工性,使其成为众所瞩目的材料。

SMC成型一般只需3~6min,具有节省人力与能源,便于大量生产,提高产品质量等优点。

在与各种材料进行对比中,SMC不仅优于钢铁、铝等传统金属材料,而且可与一般热塑性塑料及其它增强材料一争高低。

(1)与金属材料相比,SMC具有优越的电气性能,耐腐蚀性能、质轻以及工程设计容易、灵活等特点;(2)与增强热塑性塑料相比,SMC的成型周期短,成型设备投资低,SMC制品不易变形,机械性能与热变形温度较高,耐化学药品性优,且价格较低;(3)与一般热塑性塑料相比,SMC的物理性能是后者不可比拟的。

SMC特点1、质轻高强:可实现轻量化目标,且具有良好的抗冲吸能性;2、产品设计自由度大:实现产品的流线型设计,通过后粘接技术实现中空结构的成型,减轻产品重量;3、材料流动性好,可实现复杂结构的成型:筋、台结构的一次成型,预埋件的成型,抽芯结构的实现;4、可实现轿车级表面质量水平,可实现SMC部件之间或SMC部件和金属件之间的粘接,可实现随车身进行高温烤漆,线胀系数非常低。

5、低的热导率和良好耐腐性:隔热-隔音-减震-耐腐蚀SMC的基本组成1、树脂不饱和聚酯树脂(UP)是SMC的最基本配方材料。

它通常由不饱和二元羧酸(或酸酐)、饱和二元羧酸(或酸酐)与多元醇缩聚而成,并在缩聚结束后加入一定量的乙烯基体(如苯乙烯)配成粘稠状液态树脂。

smc与dmc的区别

smc与dmc的区别

SMC与DMC的区别SMC--片状模塑料: SMC 是Sheet molding compound的缩写,即片状模塑料。

主要原料由SMC专用纱、不饱和树脂、低收缩添加剂,填料及各种助剂组成。

它在二十世纪六十年代初首先出现在欧洲,在1965年左右,美、日相继发展了这种工艺。

我国于80年代末,引进了国外先进的SMC生产线和生产工艺。

SMC具有优越的电气性能,耐腐蚀性能,质轻及工程设计容易、灵活等优点,其机械性能可以与部分金属材料相媲美,因而广泛应用于运输车辆、建筑、电子/电气等行业中。

BMC(DMC)--团状模塑料: BMC(DMC)材料是Bulk(Dough) molding compounds的缩写,即团状模塑料。

国内常称作不饱和聚酯团状模塑料。

其主要原料由GF(短切玻璃纤维)、UP(不饱和树脂)、MD(填料)以及各种添加剂经充分混合而成的料团状预浸料。

DMC材料于二十世纪60年代在前西德和英国,首先得以应用,而后在70年代和80年代分别在美国和日本得到了较大的发展。

因BMC团状模塑料具有优良的电气性能,机械性能,耐热性,耐化学腐蚀性,又适应各种成型工艺,即可满足各种产品对性能的要求,因此越来越受到广大用户的喜爱。

FRP--玻璃钢,是一种塑料,是用玻璃纤维增强的塑料;不饱和聚酯树脂属于热固性树脂。

是由不饱和二元酸,饱和多元醇、多元酸聚合物与含不和键单体混合后,制成的粘稠的液态树脂。

在加入固化剂和促进剂经混合,常温下交联固化或者只加入固化剂经过加热或紫外线照射后固化成为不溶不融的塑料。

树脂在固化前与玻璃纤维材料充分浸渍,有规则地层层重叠或无规则混合即成为玻璃纤维增强复合材料-FRP,俗称玻璃不饱和聚酯树脂根据不饱和聚酯树脂的结构可分为邻苯型、间苯型、对苯型、双酚A 型、乙烯基酯型等;根据其性能可分为通用型、防腐型、自熄型、耐热型、低收缩型等;根据其主要用途可分为玻璃钢(FRP)用树脂与非玻璃钢用树脂两大类,所谓玻璃钢制品是指树脂以玻璃纤维及其制品为增强材料制成的各种产品,也称为玻璃纤维增强塑料(简称FRP或玻璃钢);非玻璃钢制品是树脂与无机填料相混合或其本身单独使用制成的各种制品,也称为非增强型玻璃钢制品。

MCC对贵州西部暴雨的影响

MCC对贵州西部暴雨的影响

MCC对贵州西部暴雨的影响王兴菊;罗喜平;吴哲红;王明欢;周文钰【摘要】利用自动站观测资料、探空资料及NCEP再分析资料,对2010年6月、2012年5月、2014年6月3次贵州西部的暴雨天气过程进行对比分析.结果表明,贵州西部地区出现的MCC,主要发生在副高外围的槽前西南气流中.副高比较强盛,在500~ 850 hPa有明显的高压体存在,降水发生后次日没有显著负变温,属于局地锋生.MCC对流云团产生的降雨强度与云团的偏心率和冷云顶面积有很好的对应关系,强降雨时段发生在对流云团发展旺盛的阶段.与周围环境明显的海拔高度差和温度差造成的热力差异,造成了贵州西部地区的中尺度风场辐合线.使得影响贵州的MCC总是在这里触发并发展增强,并带来强降水.3次暴雨过程中贵州中西部的θse 等值线都非常密集,上升气流非常明显,中层θse分布呈漏斗状分布,有利于对流性天气发生.3次暴雨过程中,贵州中西部地区都有水汽通量辐合中心存在,充足的水汽输送为MCC发生、发展提供了良好的水汽条件.【期刊名称】《贵州气象》【年(卷),期】2015(039)005【总页数】7页(P1-7)【关键词】特大暴雨;高空槽;MCC;TBB;假相当位温【作者】王兴菊;罗喜平;吴哲红;王明欢;周文钰【作者单位】贵州省安顺市气象局,贵州安顺561000;贵州省气象台,贵州贵阳550002;贵州省安顺市气象局,贵州安顺561000;华中区域数值预报中心,湖北武汉430074;贵州省安顺市气象局,贵州安顺561000【正文语种】中文【中图分类】P458.1+21.1自1980年Maddox[1]发现中尺度对流复合体(MCC)以来,MCC的研究得到了气象工作者的极大关注。

Maddox发现美国中西部许多地区暖季中的大量降水,是由这种长生命史的对流系统产生的,Maddox 提出[2],MCC常在弱的地面锋附近有明显的南风低空急流输送暖湿空气的区域生成,往往与对流层中层向东移动的短波槽相联系,这个短波槽东南方相当大的区域中大气呈条件不稳定状态,主要的强迫因子是对流层低层的暖湿平流,高层则位于西风急流的反气旋一侧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

International Journal of Pharmaceutics169(1998)183–194 Physicochemical comparison between microcrystalline cellulose and silicified microcrystalline celluloseMichael J.Tobyn*,Gerard P.McCarthy1,John N.Staniforth,Stephen Edge Pharmaceutical Technology Research Group,Department of Pharmacy,Uni6ersity of Bath,Cla6erton Down,Bath,BA27AY,UK Received5January1998;received in revised form9March1998;accepted11March1998AbstractSilicified microcrystalline cellulose(SMCC)has been compared with a standard grade of microcrystalline cellulose (MCC)using several physicochemical techniques in order to elucidate any chemical or polymorphic changes in the material that could be attributed to the silicification process.Samples of SMCC,MCC and dry and wet mixes of MCC and silicon dioxide were analysed using FT-IR,13C NMR,powder X-ray diffraction,mercury porosimetry, helium pycnometry and scanning electron microscopy together with particle size analysis and deaggregation studies. Analysis of the data obtained from these methods suggested that there were no discernible chemical or polymorphic differences between the samples,indicating that the‘silicification’process produces a material which is chemically and physically very similar to standard MCC.©1998Elsevier Science B.V.All rights reserved.Keywords:Microcrystalline cellulose;Silicified microcrystalline cellulose1.IntroductionMicrocrystalline cellulose(MCC)is widely used as afiller and binder for wet granulation,direct compression tableting and as afiller for hard gelatin capsules.It has low chemical reactivity combined with excellent compactibility at low pressures.In a survey carried out by Shangraw and Demarest(1993)relevant workers rated MCC the most usefulfiller for direct compression tableting.However,a recent review of the direct compres-sion properties of MCC with respect to its use as a primary excipient nevertheless pointed out a number of limitations to the use of MCC(Bolhuis and Chowhan,1996),the most important of which were considered to be its low bulk density, high lubricant sensitivity,poorflow characteristics and the influence of moisture on the compression characteristics.*Corresponding author.Fax:+441225826114;e-mail:prsmjt@1Present address:Carr’s Paper,Cranmore Boulevard,Shir-ley,Solihull,W.Midlands,UK.0378-5173/98/$19.00©1998Elsevier Science B.V.All rights reserved. PII S0378-5173(98)00127-6M.J.Tobyn et al./International Journal of Pharmaceutics169(1998)183–194 184In an attempt to reduce some of these prob-lems some manufacturers of MCCs have intro-duced a number of new grades of MCC which improve some of the properties mentioned above.Most notable amongst these are high density and large particle size grades of the ma-terials,which have been introduced by more than one company.Although these grades may have some advantages in terms of greater plas-ticity(Mun˜oz-Ruiz et al.,1994)they form weaker compacts than the base material,which may reflect a reduced surface area for bonding during compression.(Khan and Pilpel,1986; Zeleznik et al.,1996).In addition,the reduced surface area of large particle size grades makes them more susceptible to the effects of lubri-cants and they can form poor ordered blends with low particle size drugs(Staniforth and Tralhao,1996).More recently,a low bulk den-sity grade of microcrystalline cellulose has been produced,with the aim of improving compacti-bility.To address some of the functional problems outlined above it has been suggested that co-processing of MCC with other excipients may improve the performance of materials in direct compression.Included amongst these additives are starch,calcium sulphate(Bavitz and Schwartz,1974),calcium carbonate(Mehra et al.,1987),dibasic calcium phosphate and i-cy-clodextrin.However none of the co-processed materials produced by these methods has found wide commercial use or technical success al-though cellulose,combined with lactose(Cellac-tose™),is available commercially(Armstrong et al.,1996;Belda and Mielck,1996).Some workers have reported the beneficial properties of surface modification of MCC with silicon dioxide or silicic acid(Nu¨rnberg and Wunderlich,1995,1996a,b).This process pro-duces a material with beneficial characteristics with respect to disintegration and mechanical resistance.A material produced by a process of‘silicifi-cation’has recently been described.Electron probe microanalysis of silicified MCC(SMCC) suggests that the process of silicification leads to the deposition of silicon,presumably in the form of silicon dioxide,both on the outer en-velope surface of the particle and on exposed surfaces within the particle(Staniforth and To-byn,1996).In addition,SMCC has been shown to possess a number of pharmaceutical advan-tages in terms of powderflow(Khalaf et al., 1997),tablet strength(Sherwood et al.,1996), lubricant sensitivity and wet granulation(Stani-forth and Chatrath,1996).Preliminary data also suggests that the material performs well in direct compression formulations(Riba et al., 1997)and roller compaction(Sheskey et al., 1997).The aim of this study was to elucidate whether any chemical or polymorphic changes were observable in microcrystalline cellulose fol-lowing the silicification process.2.Materials and methods2.1.MaterialsMicrocrystalline cellulose(Emcocel90M™) and silicified microcrystalline cellulose(Prosolv SMCC™90)were obtained from Penwest Phar-maceuticals,Patterson,NY.Colloidal silica(a 15%w/w aqueous dispersion,Cab-O-Sperse,ex Cabot Corporation,USA),similar to the grade used during the silicification process,was used as a source of silicon dioxide.To prepare sili-con dioxide samples a quantity of the colloidal silicon dispersion was tray-dried using a convec-tive oven(Gallenkamp)at60°C and milled us-ing laboratory mill(type Glen Creston DFH 48).2.2.Preparation of samplesSamples of MCC and SMCC90used throughout this study were used as received. Silicified microcrystalline cellulose SMCC90 has a2%w/w silicon dioxide target concentra-tion following silicification.A‘dry’mix consisting of10.00g Emcocel90 M and0.20g dried silica was prepared by trit-uration in a mortar and pestle;a‘wet’mix was prepared by mixing10.00g Emcocel90M withM.J.Tobyn et al./International Journal of Pharmaceutics169(1998)183–194185 Fig.1.SEM micrographs of MCC90.1.34g colloidal silica dispersion(equivalent to 0.20g dry solids)which had previously been diluted in25ml distilled water.This latter sample was also tray-dried at60°C and milled.2.3.Scanning electron microscopyScanning electron microscopy(gold coating, Edwards Sputter Coater,UK)was performed us-ing a Jeol6310(Jeol Instruments,Tokyo,Japan) system running at5–10KeV.2.4.Density measurementsTrue density measurements for the samples were acquired using a helium pycnometer(type Accupyc1330,Micromeritics,Dunstable,UK). Approximately3.0g of the sample powder wasM.J.Tobyn et al./International Journal of Pharmaceutics169(1998)183–194 186Fig.1.(Continued)accurately weighed into a sample cell.The average density for each was determined from ten consec-utive measurements within the cell.The results from three runs are reported.2.5.Particle sizeRepresentative20mg samples were prepared by spin riffling into a test tube followed by the removal,at random locations from the bulk of the material,using a sample thief.Particle size data was obtained using a low-an-gle laser light scattering(LALLS)system(type Mastersizer X,Malvern Systems,Malvern,UK) equipped with a dry powder feeder.Three sepa-rate samples were used to determine a mean parti-cle diameter for each material.2.6.Deaggregation studyAerodynamic particle diameters were deter-mined using a laser time-of-flight system(type Aerosizer Mach2,Amherst Process Instruments, Tewkesbury,UK).The Aerosizer was equipped with the API Aerodisperser device.Samples were analysed over a300-s period,using a medium shear force as default.Each bulk sample was subjected tofive separate determinations,and the average aerodynamic particle diameter was calcu-lated.‘Deagglomeration’was set to‘high’,this is equivalent to a pressure drop across the orifice of 5psi(Hindle and Byron,1995).2.7.Porosity measurementsTotal intra-particle porosity,pore area and pore size distribution were determined using a mercury porosimeter(type Autopore II, Micromeritics,Dunstable,UK).A representative sample of0.3–0.5g was accurately weighed.A penetrometer was selected to ensure that25–90% of the stem volume was employed during mea-surement.Mercury intrusion data was collected up to an applied pressure of7500psi.2.8.Attenuated total reflectance Fourier-transform infrared spectraThe surface of each sample was characterized using attenuated total reflectance Fourier trans-form infrared(ATR-IR)spectroscopy.Spectra were obtained using a Nicolet Magna IR550 Series II spectrometer(Nicolet Instruments,War-wick,UK)equipped with an ATR cell(‘GoldenM.J.Tobyn et al./International Journal of Pharmaceutics169(1998)183–194187 Fig.2.SEM micrographs of SMCC90.Gate’model,Greaseby Specac,Orpington,Kent). Each sample was scanned64times at a resolution of4cm−1between4000and600cm−1.2.9.X-ray powder diffraction studiesDiffraction patterns were obtained using an X-ray powder diffraction system(Phillips X-ray analytical,Cambridge,UK)with the following components:4kW X-ray generator(a PW1730/ 00);longfine-focus2kW copper target X-ray tube(a PW2273/20),operated at40kV and25 mA;computer-controlled vertical diffractometer goniometer(PW1820/00);xenon proportional counter(PW1711/10)with graphite monochro-mator(PW1752/00)and automatic divergence slit assembly PW1368/55);microprocessor diffrac-tometer control(PW1710/00)and diffractionM.J.Tobyn et al./International Journal of Pharmaceutics169(1998)183–194 188Fig.2.(Continued)software(PW1877PC-APD,version3.5b).Each sample was analysed by a single sweep,step size 0.02°(2q),13s dwell time.The percentage crys-tallinity of powder samples was estimated from X-ray diffractograms using the technique of Nel-son and O’Connor(1964).2.10.13C nuclear magnetic resonanceThe Bruker DMX-400instrument(Bruker In-struments,Coventry,UK)was equipped with a 9.4-T magnet and4mm variable temperature probe.A sample(100–150mg)was packed into a zirconia rotor with a Kel-F end cap,and spun at the magic angle,set using kBr,of33°with N2. Spin rates of2.5–15KHz with a sample tempera-ture of29892K were used in all measurements.A single-contact cross polarisation pulse sequence was used to acquire all Magic Angle Spinning (MAS)13C spectra.High-power1H decoupling was used throughout.For13C-1H cross-polarisa-tion experiments,a contact time of3ms was employed,the proton pulse width being calibrated to3.9ms.Pre-scan delays of5–7s were used and spectral widths were typically80–140kHz.Ap-proximately1024–4096complex data points were acquired.Carbon chemical shifts were referenced to the high frequency CH2peak of adamantane. Table2Aerodynamic particle size as measured by the Aerosizer equipped with an AerodisperserVol.AverageSampleParticle Diam.(v m;Aerosizer)51.4890.62MCC9053.8392.93SMCC90MCC+SiO231.1096.29(Dry mix)24.0291.13MCC+SiO2(Wet mix)Table1True density measurements and particle sizes of MCC samplesParticle equivalentDensity aSample(g cm−3)diameters(v m;Malvern Mastersizer)12292.521.56890.003MCC9012692.65SMCC90 1.57690.0031.57690.00210592.52MCC+SiO2(Dry mix)14693.06MCC+SiO2 1.58190.001(Wet mix)a Determined by helium pycnometry.M.J.Tobyn et al./International Journal of Pharmaceutics169(1998)183–194189Fig.3.Aerosizer particle size distributions of MCC(a)SMCC90(b)and dry mixed system(c).M.J.Tobyn et al./International Journal of Pharmaceutics169(1998)183–194190Table3Porosity data relating to MCC samplesPorosity(%) Sample Total pore area(m2g−1)Median pore diam.(v m)MCC 2.12 2.3930.22 SMCC90 2.14 2.4630.15MCC+SiO2(Dry mix) 2.7934.282.6028.65MCC+SiO2(Wet mix) 2.44 2.293.Results3.1.Scanning electron microscopyFigs.1and2show typical images of MCC and SMCC,respectively.At these resolutions no sub-stantial morphological differences between the two samples could be detected,although the sur-face of the particle in Fig.2b does appear to contain additional features.However examination of smaller areas of specimen surfaces using high resolution,high definition scanning electron mi-croscopy(Fig.1c and Fig.2c)shows distinct differences between the morphological characteri-sation of MCC in comparison with SMCC.Fig. 2c clearly shows an extensive surface texturisation of SMCC that we conjecture,from the dimensions and shape of these textural features,to be individ-ual or agglomerated colloidal silica particles. Nonetheless,the fact that such textural differences are only apparent in high resolution images leads us to conclude that silicification does not induce gross changes in the shape and texture of micro-crystalline cellulose particles.3.2.Density measurements and particle size analysisTrue density measurements and the average particle diameters for all the samples are dis-played in Table1.There is little difference between the density measurements of the cellulose samples,with typi-cal values being around 1.57g/cm3,which isFig.4.X-ray diffractograms of MCC(a)and SMCC90(b).Table4Percentage crystallinities of cellulose samples equated from X-ray diffractograms%CrystallinitySampleMCC9086SMCC9085MCC+SiO2(Dry mix)8586MCC+SiO2(Wet mix)M.J.Tobyn et al./International Journal of Pharmaceutics169(1998)183–194191typical of many organic materials and is appar-ently minimally influenced by the presence ofsilicon dioxide,whether added by silicification,wet mixing or simply added by blending.Median equivalent volume diameter determinedby LALLS for SMCC was found to be compara-ble with regular MCC90M and within the nor-mal batch to batch variation of such materials.The dry mixed sample does show a reduced parti-cle size.This may be due to attrition during thedry mixing phase of sample manufacture.Thepossible contribution of deagglomeration to theapparent decrease in particle size is discussed inmore detail below.Wet granulation also has anappreciable influence on the observed particle size.3.3.Deagglomeration studyThe Aerosizer,although primarily a particle sizeanalysis equipment,has been demonstrated to bea system capable of deagglomerating particles andparticle assemblies(Hindle and Byron,1995)whenused downstream of a so-called Aerodisperserdevice.The aerodisperser is a high-shear environ-ment in which particles are subjected to a turbulentairstream.It is the exposure of particles to this highshear environment prior to feeding into the Aero-sizer that can create some size reduction throughde-agglomeration or friabilation of weaker com-posite materials.Particle size data obtained using this method werefound to be low(Table2)for the grade of MCCtested,previous measurements(Table1)and liter-ature results normally giving values consistentlyabove100v m.This discrepancy in size analysis dataobtained using two different methods was consid-ered to be a sign of the deagglomeration of primaryparticles of MCC,i.e.defibrillation.Electron mi-croscopy suggests that MCC90grade and theequivalently sized Avicel PH102consist of multiplefibrils each of a similar fundamental size to the50 v m grade material.Defibrillation of MCC90is considered the most likely cause of the reductionin particle size found in Aerosizer analysis.Howeversince the Aerosizer determines particle size by anaerodynamic‘time offlight’system,with particleshape influencing the observed result,this effectmay be an instrument dependent phenomenon.The results for SMCC are very similar to those obtained for the equivalent MCC grade.This was taken as an indication that the silicification process does not influence the particle shape or size,or deagglomeration characteristics of the modified material,when compared with standard grades.By contrast,for the particle size distributions for MCC simply blended with silicon dioxide(Fig.3c)there is a noticeable downfield shoulder on the particle size distribution,one that is absent from the other two distributions.This,once again,could be an effect due to attrition in processing.However as a substantial proportion of this shoulder is in the sub-10v m range,this shoulder could consist of silicon dioxide. This supposition is supported by semi-quantitative X-ray energy dispersible analysis of particle surfaces (Edge et al.,1998).3.4.Porosity measurementsThe values obtained relating to the total pore areas,the median pore diameters and the porosities of the samples are shown in Table3.These data for MCC90and SMCC90pore size characteristics were found to be very similar.The similarity in envelope surface area is a reflection of their similar particle sizes,shape and surface textures.It is interesting that there is no apparent increase in accessible surface area with the SMCC90sample, whereas there is with dry mixes of silicon dioxide with MCC.Previous studies have demonstrated internal deposition of silicon dioxide in silicified MCC samples(Staniforth and Tobyn,1996). 3.5.Fourier-transform attenuated total reflectance infrared spectraIt has been demonstrated previously that ATR FT-IR is a powerful technique for the elucidation of structural change in MCC samples,with the ability to predict failure of MCC samples in com-pression by discovering differences not seen by other physicochemical analyses(Chatrath,1992). The ATR-IR spectra of the unmodified micro-crystalline cellulose exhibited the following absorp-tion bands:2870cm−1(C–H symmetric stretching),1595cm−1(O–H symmetric stretch-M.J.Tobyn et al./International Journal of Pharmaceutics169(1998)183–194 192Fig.5.Solid-state NMR spectra of MCC(a)and SMCC90(b).M.J.Tobyn et al./International Journal of Pharmaceutics169(1998)183–194193ing),1330cm−1(O–C–O symmetric bending) and four bands between1200–1000cm−1(C–C and C–O stretching).The spectrum of silicon dioxide showed a strong band at1070cm−1that is typical for silicon-oxygen bonds.The corre-sponding spectra of SMCC90,the‘dry’mix of MCC90(not shown)with silica and the‘wet’mix of MCC90(not shown)with silica were very similar to those that obtained for the pure MCC 90.Any substantial chemical change within the cellulose structure should have resulted in shifts of the bands occurring at2870,1070and1200–1000 cm−1where hydrogen bonding in samples is ap-parent.However,no evidence of spectral differ-ence in these regions was found with the modified samples,whether following silicification or blend-ing.It would appear that the silicification process does not cause gross changes in the chemical bonding within the structure,and that the physi-cal processes(dry blending and wet granulation) also appear to have little influence.The lack of substantial differences between the silicified and standard materials is further supported by sub-tractions of spectra,where the spectra for the modified materials were taken away from that of the base MCC material.These showed very small differences due to the physical presence of silicon dioxide,confirming its presence in the SMCC sample,but aflat baseline in all other relevant areas.3.6.X-ray diffraction studiesSeveral previous studies have shown that the crystallinity of MCC samples from different com-mercial sources can be variable(Soltys et al., 1984;Rowe et al.,1994)and that such changes may result in different functional performance. Furthermore the presence of the polymorphic form of cellulose II in the sample can be shown to have substantial deleterious effects on the func-tionality of the material(Chatrath,1992;Landin et al.,1993).The X-ray diffractograms relating to the MCC samples are shown in Fig.4.The percentage of crystalline material was estimated from the data according to a relationship described by Nelson and O’Connor(1964)and are shown in Table4.The diffractograms clearly show that the cellulose is present in the form of cellulose I and not cellulose II(shown by the absence of the doublet in the main peak intensity),and all are in contrast to the diffractogram of amorphous cellulose. There are no significant differences between any of the samples tested,once again demonstrating that there are no gross physical or chemical changes induced by silicification.3.7.13C nuclear magnetic resonanceThis technique was employed to confirm the findings from ATR-IR and X-ray diffraction as any chemical shift for a particular carbon within the cellulose is evidence of differing bond angles or differing degrees of bonding.The spectra ob-tained are shown in Fig.5.In the case of MCC 90,the presence of a sharp peak at91ppm, corresponding to C4,is evidence of high degrees of crystallinity and confirm the data obtained by X-ray diffraction.The peak occurring at67ppm corresponds to C6and is indicative of the cellulose being present as cellulose I(again confirming X-ray diffraction).The shoulder associated with this peak,at64ppm,may be evidence of amorphous material.The13C NMR spectra for all of the samples are very similar,indicating that no sub-stantial polymorphic or chemical changes are ap-parent in the modified materials.4.ConclusionThus,in conclusion,it is evident from these characterisation techniques that when microcrys-talline cellulose is silicified in the preparation of SMCC90,no bulk chemical change in the MCC is observed at the resolutions tested and no ob-servable polymorphic changes are induced.The fundamental chemical properties of the novel material are very similar to those of the parent material.Thus the improved functionality of SMCC90,in terms of improved bulk physical properties and mechanical characteristics,is con-sidered to be due to some other intrinsic property rather than as a change in the base chemical parameters of the novel material.M.J.Tobyn et al./International Journal of Pharmaceutics169(1998)183–194 194AcknowledgementsWe are grateful to Penwest Pharmaceuticals for the support of this project(G.P.McCarthy,M.J. Tobyn,S.Edge).We thank Barry Chapman for help in XRD studies and Louise Kelly for aiding with porosimetry.The helpful comments of Andy Thompson in analysing the solid state13C NMR results are appreciated.ReferencesArmstrong,N.A.,Roscheisen,G.,Alaghbar,M.R.A.K.,1996.Cellactose as tableting diluent.Manufacturing Chemist67(10),25–26.Bavitz,J.F.,Schwartz,J.B.,1974.Direct compression vehicles.Drug Cosmet.Ind.114,44–72.Belda,P.M.,Mielck,J.B.,1996.The tabletting behaviour of cellactose compared with mixtures of celluloses with lac-toses.Eur.J.Pharm.Biopharm.42(5),325–330. Bolhuis,G.K.,Chowhan,Z.T.,1996.Materials for direct compaction.In:Alderborn,G.,Nystro¨m,C.(Eds.),Phar-maceutical Powder Compaction Technology.Marcel Dekker,pp.419–501.Chatrath,M.,1992.PhD Thesis.The Effect of Wet Granula-tion on the Physico-Mechanical Characteristics of Micro-crystalline Cellulose.University of Bath.Edge,S.,Potter,U.J.,Steele,D.F.,Staniforth,J.N.,Tobyn, M.J.,1998.The use of scanning electron microscopy and electron probe microanalysis for studying silicified micro-crystalline cellulose.Proceedings of the17th International Conference on Pharmaceutical Technology,March1998. Hindle,M.,Byron,P.,1995.Size distribution control of raw materials for dry-powder inhalers using the Aerosizer with the Aero-disperser.Pharm.Tech.64–78.Khalaf,A.S.,Tobyn,M.J.,Staniforth,J.N.,1997.Measure-ment of theflow properties of silicified microcrystalline cellulose.Proceedings of the AAPS conference,PT2583. Khan, F.,Pilpel,N.,1986.The effect of particle size and moisture of the tensile strength of microcrystalline cellulose powder.Powder Technol.48(2),145–150.Landin,M.,Martinez-Pachecho,R.,Gomez-Amoza,J.L., Souto,C.,Concheiro,A.,Rowe,R.C.,parison of batch variation and source of pulp on the properties of microcrystalline cellulose.Int.J.Pharm.91(2–3),123–131.Mehra,D.K.,West,K.P.,Wiggins,J.D.,1987.Coprocessed microcrystalline cellulose and calcium carbonate composi-tion and its Patent No:4744987.Mun˜oz-Ruiz,A.,Antequera,V.V.,Parales,C.M.,Ballesteros, R.J.-C.,1994.Tabletting properties of new granular micro-crystalline celluloses.Eur.J.Pharm.Biopharm.40(1), 36–40.Nelson,M.L.,O’Connor,R.T.,1964.Relation of certain Infrared bands to cellulose crystallinity and crystal lattice type.Part II.A new infrared ratio for estimation of crystallinity in cellulose I and II.J.Appl.Polym.Sci.8, 1325–1341.Nu¨rnberg,E.,Wunderlich,J.,1995.Coating of cellulose prod-ucts with highly dispersed silicic acid:investigations on the improvement of tabletting properties demonstrated in low-dose tablets.Pharm.Ind.57(3),252–256.Nu¨rnberg,E.,Wunderlich,J.,1996a.Simple formulation opti-mization for extrusion-influence of particle size,source and preprocessing of microcrystalline celluloses.Pharm.Ind.58(7),653–658.Nu¨rnberg, E.,Wunderlich,J.,1996b.Coating of cellulose products with colloidal silicon dioxide.Investigations to improve the tabletting behaviour using low dose tablets as an example.Drugs Made Ger.39(3),104–107.Riba,M.D.,Segado,X.,Ferrer,F.,1997.Silicified microcrys-talline cellulose:A comparative evaluation of this new high functionality direct compression excipient.Proceedings of the AAPS conference,PT1038.Rowe,C.R.,McKillop,A.G.,Bray,D.,1994.The effect of batch and source variation on the crystallinity of micro-crystalline cellulose.Int.J.Pharm.101(1–2),169–172. Shangraw,R.F.,Demarest,D.A.,1993.A survey of current industrial practices in the formulation and manufacture of tablets and capsules.Pharm.Tech.17(1).Sherwood,B.E.,Hunter,E.A.,Staniforth,J.N.,1996.Silicified microcrystalline cellulose(SMCC):a new class of high functionality binders for direct compression tableting.Pro-ceedings of the AAPS conference,PT6164.Sheskey,P.J.,Davidson,J.E.,Figtner,S.N.Moore R.D., 1997.Investigation into the mechanical behavior of se-lected pharmaceutical polymer excipients in roller com-paction,Proceedings of the AAPS Conference,PT2624. Soltys,J.,Lisowski,Z.,Knapczyk,J.,1984.X-ray diffraction study of the crystallinity index and the structure of the microcrystalline cellulose.Acta Pharm.Tech.30(2),74–180.Staniforth,J.N.,Chatrath,M.,1996.Towards a new class of high functionality tablet binders.I:Quasi hornification of microcrystalline cellulose and loss of functionality.Pro-ceedings of the AAPS conference,PT6206. Staniforth,J.N.,Tobyn,M.J.,1996.Towards a new class of high cunctionality tablet binders.III:Physical characteris-tics and particle morphology of silicified microcrystalline cellulose(SMCC)Proceedings of the AAPS conference,PT 6162.Staniforth,J.N.,Tralhao,M.,1996.Blending characteristics of large particle size microcrystalline cellulose for direct com-pression.Proceedings of the AAPS conference,PT6168. Zeleznik,J.A.,Virtanen,J.,Sherwood,B.E.,1996.Emcocel HD90,An enhanced high density grade of microcrystalline cellulose(MCC)exhibiting improvedflow and greaater compactibility.Proceedings of the AAPS conference,PT 6167..。

相关文档
最新文档