盾构隧道施工中盾构机的姿态控制
盾构机的姿态控制及纠偏讲解
这将受到设备状况,地质条件和施工操作等 方面原因的影响。当开挖面图提交均匀或软 硬上下相差不大时,保持盾构机轴线与隧道 设计轴线平行较容易。方向偏角应控制在 5mm/m以内,特殊情况下不宜超过10mm/m; 否则,会因盾构急转弯过急造成盾尾间隙过 小破坏盾尾刷和管片错台破裂漏水。
2、当盾构机遇到上硬下软土层时,为防止盾 构机机头下垂,要保持上仰姿态;反之保持 下俯状态。掘进时要注意上下两段及左右两 侧的千斤顶形程差不能相差太大,一般控制 在20mm以内, 特殊情况下不能超过60.mm。
机不能保持正确的姿态,影响管片的拼装质 量。可通过反转刀盘来减小刀盘的滚动角 2)通过应用盾构千斤顶逐步纠正 如果盾构机向右偏,可提高右侧千斤顶的推 力;反之亦然,如果盾构机向下偏,则提高 下部千斤顶的推力;反之亦然。
三、盾构机姿态控制一般细则
1、在一般情况下,盾构机的方向偏差应控制 在20mm/m之内,在缓和曲线段及园曲线段, 盾构机的方向偏差量应控制在30mm/m以内, 曲线半径越小,控制难度越大。
一定量。根据曲线半径不同,偏移量通常取 10-30mm。即盾构机进入缓和曲线和曲线前, 应将盾构机水平位置调整至0mm,右转弯掘 进逐步增加至+20mm,左转弯则调整至20mm。以保证隧道成型后与设计曲线基本 一致。
5、在盾构机姿态控制中,推进油缸的形程控 制是重点。对于1.5米宽的管片,原则上推进 油缸的形程在1700-1800mm之间,形程差控 制在0~50mm之间。形程过大,则盾尾刷容
8、纠偏时要注意盾构机姿态,控制住设计轴 线中心±20mm以内,间隙要均匀平衡。
盾构姿态蛇行变化,主要是通过调整盾构分 区推力来实现的。盾构姿态调整,要在各种 地质情况下推力参数基础上,加大局部推力 或把另外两个或者三个方向的推力降低,来 调整姿态。。
如何控制盾构机姿态
机 在 推 进 中偏 阳 。 ( 2 ) 机 械 没 备 的 素 。盾 构 机 械 本 身 的 能 与姿 念 没 有 直 接 关 系 . 只 足 它 的 机 械 能 所 具 箭 的搽 控 与 训 整 盾构 姿态 彳 f “接 关 系 。 比 如 1 f斤顶 T 作1 川 步 .[ t j 加 工 精 度 惹 造 成 伸 阻 力 小 一致 。 , j 外 .f 构 外 壳 肜 状 误 差 、 设 衔 在 盾 构 内 安 偏 匝 ] 某 ・ 侧、 装 后 轴 线 斤 顶 安
行 等 , 电 会 敛 盾 构 偏 向 。 盾 构施 I 过
程 中 ,盾 构 姿 态 变 化 不 宜 过 人 、过 频 , 盾 构 姿 态 控 制 的 好坏 直接 影 响竣I l [ 隧道 的质 { l } 币 ¨ 埘 土 层 的 扰 动 度 。 ( 3 )盾 尾 隙 因 素 。影 响 厢 尾 间 隙 的 安 素 有 : 使 用 楔 形 环 管 ; 管 片 的 方 他 角 ( 或俯 仰 角 ) ’ j 盾 构 机 的 方位 角 ( 或 俯 仰 角 )不 ・ 致 ;盾 构 机 r 竹 片 中 心 合理
的雏形 及施 j 方法 。1 8 2 s年 , 他 第 ・ 次 红 伦 敦 泰 晤 十河 下川 ・ 个高 6 . 8 I T I 、觉 l 1 . 4 m 的 矩 形 断 面 盾 构 修建 r ・ 条隧道 。r } I _ j : 仞 始 未 能 掌 握 抵 制 泥 水 涌 入
隧 道 的 法 . 隧 道 施 ] I } | 次被 淹 。后米 ‘ j 东 伦 敦
不 均 匀 的 十 层 中 ,两 种 _ 卜 的 缩 性 、抗 强 度 、 抗 强 度等 指标 不¨ .盾构 机 姿态必 定受 到 符 { 物 质 性 质
盾构机姿态精度控制技术
[ 4 】籍 国 东 , 铁 珩 , 士俊 , . 由表 面 流 人 工 湿 地 处 理 超稠 孙 常 等 自
油废 水 [ . 境科 学 , 0 1 2 ( ) 9 — 9 J环 】 2 0 ,2 4 : 5 9 . 【】 ig F n Ln e a. u i t e o a f m a u c l r at - 5 Y n — e g i ,t 1 N t e m v lr q a u ue s w r nr o t w e 收稿 日期 : 0 2 0 — 2 2 1— 2 2 作 者 简介 : 林文周 , , 男 工程师 , 主要从事 市政工程给排水设计工作。
( 接 第 1 7页 ) 上 0
参考 文献 :
[ 1 】陕 西 省 公 路 局 .T 12 0 J GHI- 04公 路 桥 涵 养 护 规 范 [】北 京 : S.
人 民交 通 出版 社 .0 4 20.
7 结 论
1 在地 铁施 工 对桥 梁结 构 的影 响前 评 估工 作 中 , ) 桥 梁现状 的检测 评估按 照 桥梁结 构定 期检 测 的要 求进 行 , 对桥 梁 的材 质进 行 检测 , 括 混凝 土 强度 、 筋 并 包 钢 锈蚀 程度 、 混凝 土碳 化深 度 、 筋保 护层厚 度 等 。 钢 2 桥 梁 剩余 抗 力 的计 算 按 照 文 献 f] ) 4 中相 关 内 容 进行。 3 确定简支梁桥 的变形控制值 时 , ) 应重点 考虑基础 水 平变形对 横梁 和盖 梁 、 墩柱 的影 响 : 确定 连续 梁桥 的
进 展 ,9 9 1 ( )4 9 4 3 1 9 ,0 4 :3 — , 俞穆 清 , . 工 湿 地 生 态 系统 污 水 净 化 研 究 [1 等 人 1 ]张 荣 社 , 琪 , 建 , . 流 构 造 湿 地 去 除 农 田 排 水 中氮 周 张 等 潜 进 展 『. 境 污 染 治理 技 术 与 设 备 ,0 4 5 2 :1 1. J环 ] 2 0 , () 1- 5 的 研 究 [. 境 科 学 ,0 3 2 ( ) l3 16 J环 ] 2 0 ,4 1 :1— 1 .
盾构法施工过程中土压平衡盾构机姿态控制技术
盾构法施工过程中土压平衡盾构机姿态控制技术摘要:盾构法主要是利用盾构机进行隧道修建的一种方法,在实际施工过程中,借助盾构机在地下进行掘进,不仅能够避免开挖面发生坍塌,还能够最大限度保证掘进过程中开挖面的稳定,促使相关人员能够在盾构机内相对安全地开展隧道开挖以及衬砌等作业,以更好完成隧道施工。
在盾构法的具体应用过程中,盾构机姿态控制是整个施工的核心与关键,因此应该加大对盾构机姿态控制技术的重视,保证隧道施工的顺利开展。
鉴于此,文章将首先分析盾构机姿态控制的主要影响因素,然后具体探究盾构法施工过程中土压平衡盾构机姿态控制技术。
关键词:盾构法;土压平衡盾构机;姿态控制技术;影响因素引言盾构是隧道施工过程中的一种常用机械,在具体施工过程中,盾构机能够在盾壳的掩护作用下让隧道能够一次成型,同时完成土体的开挖,同时还能够对土渣进行排运,对管片进行安装等,以更好实现整机的推进。
依据盾构法的开挖以及结构特性,可以具体划分为敞开式和闭胸式盾构,其中闭胸式盾构主要采用的就是土压平衡式的开挖方式,借助泥土进行加压或者利用泥水进行加压的方式更好抵抗来自开挖面的水和土的压力,最大限度保证开挖面稳定。
由此可以看出,在土压平衡盾构隧道施工中,保持开挖面的稳定是整体施工的关键,这就促使土压平衡盾构机姿态控制技术在盾构法的应用过程中显得非常重要。
一、盾构机姿态控制的主要影响因素(一)土质因素在盾构机的具体推进过程中,如果切口环附近的体质在硬度方面差距较大,并且在松软土层的施工过程中如果不能合理对推力进行设置,就可能导致盾构机深陷土体,出现载头现象。
如果这种现象不能得到及时改进,那么盾构机的姿态就会逐渐偏离既定施工轴线。
(二)盾构机始发托架与反力架的定位在利用盾构机进行施工的过程中,在初始阶段,这一设备通常会被放置在始发托架,在这个过程中受托架高程、始发托架以及反力架固定性以及定位准确性等多方面因素的影响,促使与之相对应的始发盾架在姿态上存在一定差异。
盾构机姿态控制总结
盾构机姿态控制总结始发前的盾构姿态主要是靠盾体始发托架和反力架的的安装精度来控制的,同时反力架的安装精度还直接影响到环片的拼装姿态,因此对于盾体始发托架及反力架的控制尤为重要。
在进行完始发定向联系测量后,根据底板平面及高程控制点对始发托架进行定位。
在盾体组装完成前,开始进行反力架的定位。
始发托架及反力架的安装过程全过程进行监控,保证始发托架和反力架的左右偏差控制在±10mm之内,高程偏差控制在±5mm之内,反力架的与隧道设计轴线法平面偏差<2‰。
盾构机已经从始发井到天府广场,前一段盾构机的姿态控制的很好。
但是在68环后盾构机的姿态就不是很理想了。
在成都这种砂卵石地层,不同于粘土和岩石地层,在砂卵石地层,掘进过程中盾构机的盾体与砂卵石是紧密接触的,这使盾构机在偏移隧道中心线的时候很难快速的纠正过来,这就要求盾构机司机在掘进过成中,一定要掌握好掘进的路线,出现小的偏移要及时进行纠偏。
盾构导向系统是隧道质量保证的重要因素之一,在掘进过程中对导向系统的监控及维护尤为重要。
对VMT导向系统运行的可靠性进行定期检查,即盾构姿态的人工检测。
盾构姿态人工检测工作一周进行一次,同时利用环片检测的方法每天对导向系统运行的可靠性进行检测。
在前200m掘进过程中,VMT导向系统运行正常。
VMT工程师每次的移站都要快速准确完成,隧道中心线要经过多次测量并达到准确。
在68环的时候由于VMT出现事故盾构机出现忙掘的情况,使盾构机的方向与隧道中心先有了较大的偏差,在这种情况下,应当选择好纠偏曲线慢慢的使盾构机的姿态慢慢的纠正过来,我们却选择了强行快速纠偏,使得管片出现了大错台的情况,在一个就是由于管片的选型不是很完美,使得盾构机的姿态越来越差。
除了定期对盾构姿态进行人工检测,同时还对TCA激光站及定向棱镜的稳定性进行检查。
在始发前,导向系统的激光站及定向棱镜安装在始发井内,不会轻易发生碰动。
在盾构掘进了30环后,进行了第一次激光站的移站,激光站固定在环片顶部,定向棱镜仍旧安装在始发井内,由于环片不稳定使得TCA激光站不稳定。
浅谈盾构机姿态的控制方法
浅谈盾构机姿态的控制方法
一、简介
盾构机为沉管全封闭式施工机械,具有自动化程度高、施工质量可控、施工速度快和管片拼装精度高等优势,深受广大施工企业的青睐,用于水
利工程、市政工程、油气工程等城市基础设施的管线施工,不仅可以大大
减少施工难度,节省施工时间,还可以提高施工质量和提升施工效率。
但是,控制盾构机姿态是盾构钻机施工中的关键,盾构机控制姿态不准确,
既会影响施工质量,又会严重延误施工进度,甚至出现施工安全事故,因此,控制盾构机姿态是施工质量的重要保障。
1、建立坐标系:首先,应建立一个轨道工程坐标系,可以通过在地
形上标准点测量来建立。
2、采用传感器测量方法:在盾头前设置激光传感器,可以利用它来
测量盾头的垂直位置,并定时发送信号,通过接收系统转换后可以获得盾
头的三维坐标信息,从而可以准确控制盾头的姿态。
3、采用水平仪测量法:在盾头前方设置水平仪,可以实时水平测量,通过控制盾头的角度,从而准确控制盾头的姿态。
4、采用视觉控制方法:同样,可以在盾头前方设置一台摄像头,通
过视觉控制,可以准确控制盾头的姿态。
盾构机姿态控制与纠偏
土压平衡盾构机姿态控制与纠偏目录一、姿态控制 (3)1 、姿态控制基本原则 (3)2、盾构方向控制 (3)3、影响盾构机姿态及隧道轴线的主要因素 (6)二、姿态控制技术 (10)1 、滚动控制 (10)2 、盾构上下倾斜与水平倾斜 (11)三、具体情况下的姿态控制 (12)1 、直线段的姿态控制 (12)2 、圆曲线段的姿态控制 (13)3 、竖曲线上的姿态控制 (14)4 、均一地质情况下的姿态控制 (15)5 、上下软硬不均的地质且存在园曲线段的线路 (15)6 、左右软硬不均且存在园曲线段的线路 (15)7 、始发段掘进调向 (16)8 、掘进100m 至贯通前50m 的调向 (17)9 、贯通前50米的调向 (17)10 、盾构机的纠偏 (17)11 、纠偏的方法 (18)四、异常情况下的纠偏 (20)1 、绞接力增大,行程增大 (20)2、油缸行程差过大 (20)3、特殊质中推力增加仍无法调向 (21)4 、蛇形纠偏 (22)5 、管片上浮与旋转对方向的影响 (22)五、大方位偏移情况下的纠偏 (23)一、姿态控制1 、姿态控制基本原则盾构机的姿态控制简言之就是,通过调整推进油缸的几个分组区的推进油压的差值,并结合绞接油缸的调整,使盾构机形成向着轴线方向的趋势,使盾构机三个关键节,是(切口、绞接、盾尾)尽量保持在轴线附近。
以隧道轴线为目标,根据自动测量系统显示的轴线偏差和偏差趋势把偏差控制在设计范围内,同时在掘进过程中进行盾构姿态调整,确保管片不破损及错台量较小。
通常的说就是保头护尾。
测量系统主要的几个参数:盾首(刀盘切口)偏差:刀盘中心与设计轴线间的垂足距离。
盾尾偏差:盾尾中心与设计轴线间的垂足距离。
趋势:指按照当前盾构偏差掘进,每掘进1m产生的偏差,单位mm/m 。
滚动角:指盾构绕其轴线发生的转动角度。
仰俯角:盾构轴线与水平面间的夫角。
2、盾构方向控制通过调节分组油缸的推进力与油缸行程从而实现盾构的水平调向和垂直调向。
盾构技术姿态控制要点
盾构技术姿态控制要点
随着社会的发展,城市的逐步建设,力学模拟技术越来越受到社会的重视,尤其是城市桥梁建设,为保证施工质量,提高建筑物的使用寿命,模拟、校核均有重要的作用。
其中,盾构技术已经成为城市桥梁建设中不可缺少的重要技术。
盾构施工技术在保证施工质量的前提下,有效降低施工成本,缩短施工工期,同时也可以有效保护环境,满足当今技术的发展需求。
盾构施工过程中,姿态控制技术是一项比较重要的技术,它能够确保盾构施工的安全性和质量。
需要特别注意的是,在盾构施工过程中,盾构机的姿态是极其重要的,如果盾构机的姿态不合理,往往会影响到施工质量,甚至会对作业安全形成严重的逆反作用。
因此,在盾构施工过程中,如何正确控制盾构机的姿态,就显得尤为重要。
首先,要正确安装盾构机,确保其安全可靠,同时要根据设计施工画图,确定好每个施工阶段的目标姿态,以确保施工质量。
其次,要加强对盾构机姿态的实时监测,及时发现和纠正姿态异常。
最后,要通过不断的研究,提高盾构机姿态控制技术,使其在施工过程中能够更好地发挥作用。
总之,盾构技术施工过程中,姿态控制技术是非常重要的。
探析地铁施工中的盾构机姿态控制
探析地铁施工中的盾构机姿态控制前言:近几年,工业的发展速度越来越快,人们对生活质量的要求也越来越高,尤其是对交通工具的要求。
在这种背景下,地铁应运而生。
在今天,地铁已经成为了一种非常普遍,也非常受广大民众欢迎的交通工具。
由于盾构机在地铁工程中占有非常重要的位置,盾构机姿态控制也就受到了人们的广泛关注。
本研究就将针对“地铁施工中的盾构机姿态控制研究”这一主题进行阐述,使广大民众对这方面的内容有一个更加深入、全面的了解。
1. 盾构姿态盾构姿态常常出现在以盾构法为主要施工方法的隧道工程中,盾构姿态其实就是通过机械测量或人工测量得到的盾构机与设计轴线的偏离状态。
我国也有与隧道轴线偏差有关的规定:在隧道轴线平面位置中,地铁隧道允许的偏差为±50毫米,在这种情况下,检查人员一般会选择经纬仪测量中线;在隧道轴线高程中,地铁隧道的允许偏差为±50毫米,在这种情况下,检查人员一般会选择水准仪测量高程。
2. 影响盾构机姿态控制的因素影响盾构机姿态控制的因素具体有以下几个:第一个因素,土质因素。
盾构机切口环两边的土质不一定是同种土质,可能一边的土质较为松软,另一边的土质较为硬实,在这种情况下,就需要调整土质较为松软的那边的千斤顶,如果没有调整,或者调整的不到位的化,盾构机就会向土质较松的那一边倾斜,自然而然,盾构机就会偏离设计轴线。
第二个因素,始发基座的定位是否准确。
盾构机在工作之初,是处在始发基座上的,也就是说,始发基座的初始位置与盾构机工作之初的盾构姿态有着密切的关系。
所以,在正式施工前,一定要精确的定下始发基座的初始位置,这样,才能保证盾构机的中心线不会偏离设计轴线,才能控制盾构姿态。
除此之外,在施工前,相关工作人员还需要仔细检查一下始发基座,确保始发基座是坚实稳固的。
第三个因素,盾构机操作人员的技术水平。
盾构机操作人员的技术水平的高低决定着操作人员能否将盾构机姿态控制好,他们的操作决定了盾构机的走向。
浅谈盾构机各施工参数对姿态控制的影响
浅谈盾构机各施工参数对姿态控制的影响由于盾构机本身为直线形刚体,在曲线段掘进时,不能与曲线完全拟和,以致盾构机操纵及纠偏受更多技术参数的制约,而怎样合理地把这些参数科学的统一起来,是影响盾构机顺利通过曲线段的关键,下面就这些参数对盾构机操作与纠偏的影响进行阐述。
1、推力对盾构姿态的影响掌握好左右两侧油缸的推力差,尽量地减小整体推力,实现慢速急转,如果推进过程中出现一侧推力比另一侧推力大,但推进油缸的行程显示却是推力小的一侧变化快(这种现象多出现在小半径施工),那么增加推力,使得压差变大,以满足转弯的需要,并用降低掘进速度的办法来保证掘进的连续性,同时也避免刀盘被卡死。
在小转弯半径掘进时由于推力越大管片侧向位移越大,从而更难纠偏,所以要充分挖掘盾构机的有效推力,要避免不必要的推力损失。
2、铰接对盾构姿态的影响在纠偏过程中一侧的铰接拉得太长是件很头痛的事情,收铰接会加大不利的趋势,严重时这环的纠偏可能前功尽弃,一定要做到收铰接时间不可太长,压力不要太高,尽量把趋势从正值纠到负值(或负值到正值),并使之过2个趋势点再收铰接,这样就会把姿态调到了有利的一侧,这时收铰接才会对姿态纠偏起到事半功倍的效果。
另外在小半径掘进过程中铰接的伸长量基本达到了铰接的最大限值(150mm),故在操作中铰接的伸长量严格控制在145mm以内,当超出这个界限时必须由被动式收铰接改为主动式手铰接,才能解决了小半径转弯铰接收力不足的问题。
3、推进速度对盾构姿态的影响过快的掘进速度不利于盾构机在小区率段的掘进,盾构机的姿态和纠偏都难以控制,总的来说,盾构机在小曲线半径掘进时,掘进速度要控制在25~40mm/min范围内,太快和太慢都不利于盾构机的姿态控制,尤其盾构机在推进过程中要做到连续推进,缓慢连续纠偏。
4、土仓压力对盾构姿态的影响土仓压力是盾构掘进过程中最重要的参数之一,当土仓压力低于设定压力时,可能会造成盾构机“栽头”;若土仓压力大于设定压力时,则会引起刀盘扭矩和推力的增加、掘进速度下降、增加泥饼形成的几率等问题,所以,设定合理的土仓压力对于盾构掘进的顺利进行时相当关键的。
浅析盾构机姿态控制
算 模式 的监 测方 法虽 然难 度较 大 ,但精 度较 好 。
这 一监测 方 法将作 为 今后致 力研 究 的方 向。
27
浅析盾构机 姿态控制
梁 涛
要 求都 比较高 。 比较适 合于对 盾构 工程 比较熟 悉 的操 作人 员 ,对 于 比较 全面 系统地 掌握盾 构机掘 进 过程 的操 作理念 有很 高的要求 。
1 盾构机型式及 参数
( )盾 构 机概述 1
的操 作 主要 为 “ 计算 机 监 控 ,手 动 操 作 ” ,即通 过 盾 构 机 上 的 P C及 计 算 机 系 统进 行 盾 构 机 掘 L
天 津地 铁工 程 中所使 用 的盾 构机 为土 压平 衡 式盾构 机 ,根据 天津 市 区地 层土 质情 况进 行 设计 生产 ,适用 于含 有 大量粘 土 、粉 砂或 低含 水量 粉
值。
的,它们 使得 维 护桥 梁 的安全 也成 为 了非常 复 杂 的工作 。影 响桥 梁 的环 境 因素 主要 包括 :( )高 1
速 的潮 汐 以及 风 力 ;( )行驶 船只 可 能的撞 击 ; 2 ( ) 由于 空 气 的湿 度 和 含 盐 度 引起 的桥 梁腐 蚀 3 破坏 ;( )靠 近地 震 区边 缘 ;( )高密 度 的交通 4 5
数 据 自动传 输 、 自动 解算 处理 、准 实 时测 量结 果 和 测量 结果 图形 演示 。利 用控 制 中心 实 时统一解
度变 化等 因素 引起 的徐 缓 的位移 以及 大风 影 响下 的大 位移 无 能为 力 ;激 光干 涉仪 、全 站 仪和 精密 水准 仪受 气候 的影 响较 为严 重而 且采 样 率也 很难
及 相关 技术 等 。 22 影 响桥 梁 的环 境 因 素及 GP . S检 测 系统 的 重
浅谈盾构机姿态的控制方法
浅谈盾构机姿态的控制方法摘要南水北调中线穿黄一期工程以德国VMT公司的盾构机为例,介绍盾构机的组成、工作原理和激光导向系统的组成,探讨盾构隧道施工中盾构机姿态控制的原理。
分析盾构施工过程中不同地质条件下姿态控制技术,并提出一些盾构机的纠编措施。
关键词:盾构施工; 盾构机; 姿态控制目录第1章绪论 (1)1.1前言 (1)第2章盾构机姿态控制的组成与功能 (2)2.1推进系统 (2)2.2导向系统 (3)2.3数据采集系统 (4)第3章定位的基本原理 (4)第4章盾构掘进方向的控制与调整 (5)4.1穿黄隧洞II-A标盾构施工地质条件 (5)4.2盾构姿态偏差 (6)4.3盾构机的纠偏措施 (7)4.4不同地质环境中盾构机掘进姿态的控制方法 (7)第5章盾构机姿态位置的测量及检测 (8)5.1盾构机始发定位测量 (8)5.2盾构推进中姿态测量和计算 (9)5.4环片成环现状测量 (10)5.5隧洞沉降测量 (11)5.6盾构机推进中导向控制点的复测 (11)5.7贯通测量 (12)5.8贯通测量误差估算 (13)结论 (14)致谢 (15)第1章绪论1.1前言20世纪70年代以来,盾构掘进机施工技术有了新的飞跃。
伴随着激光、计算机以及自动控制等技术的发展成熟,激光导向系统在盾构机中逐渐得到成功运用、发展和完善。
激光导向系统,使得盾构法施工极大地提高了准确性、可靠性和自动化程度,从而被广泛应用于铁路、公路、市政、油气等专业领域。
1.2 盾构机的基本工作原理盾构机主要依靠千斤顶的推力向前推进的,盾构机千斤顶分置上下左右四个区,各区千斤顶相对独立,同一分区的千斤顶的动作是一致的,对盾构机的位置和姿态的线形管理是靠设定盾构机各区千斤顶的压力调节来实现的。
穿黄隧洞盾构受地质条件影响,盾构机在推进过程中开挖面上土压力的不均衡性、地下土层变化及其他方面的影响,盾构机的实际推进轴线无法与理论轴线保持一致(如下图)。
浅谈盾构机掘进过程中的姿态控制
浅谈盾构机掘进过程中的姿态控制摘要:随着地铁项目的大力发展,越来越多的盾构机投入到隧道工程施工中,在各项目施工过程中经常出现盾构机偏离设计线路等问题,影响施工质量和进度,本文就影响盾构机姿态的因素、盾构机穿越不同地层的姿态控制和发生偏离后的纠偏措施等几个方面进行论述,使盾构机应用技术更加成熟的在不同环境中发挥作用,为社会创造更大的价值。
关键词:盾构机;姿态控制;纠偏中国北京自从在1969年10月1日开通了首条地铁以来,正在以令人咋舌的发展速度一步一步的迈入世界领先水平,从一无所有到走向海外,中国地铁不但促进了中国城市的发展,更赢得了全世界对中国制造的尊重,在这一历史进程中盾构机的应用和发展无疑起到了至关重要的决定性作用,社会在发展,盾构机的种类也日渐繁多,因此对盾构机的应用技术便有了更高的要求。
1 盾构姿态的影响因素笔者根据目前所在武汉蔡甸线地铁工程的实践经验,经过总结后得出影响盾构水平偏差及垂直偏差的因素有多个方面,主要有:① 现场地质方面;② 工程设计方面;③ 始发基座偏差;④ 操作手的操作水平和操作经验;⑤ 管片姿态;⑥ 注浆压力;⑦ 旋转角。
2盾构机姿态控制2.1盾构曲线段出洞的姿态控制⑴以洞门中心作为起始点,以加固区外边缘与隧道轴线间的交点作为终点,并且通过计算保证盾构及管片报表不会超标的前提下,采取以直线推进来代替盾构出洞段曲线推进。
⑵采用超挖刀调整盾构推进的趋势在推进时,可以通过超挖盾构小曲率半径内侧加固土体来达到盾构纠偏的目的。
超挖量的多少根据实际的纠偏效果,伸长或缩短超挖刀的伸出长度,并根据超挖刀的伸出长度调整刀盘转速。
2.2 盾构正常段姿态的控制正常推进段推进轴线控制主要有平面直线段推进轴线控制、平面曲线段推进轴线控制、纵坡推进轴线控制等,平面直线段推进姿态的控制,控制比较简单,只要考虑千斤顶行程差与盾构姿态的关系,平面曲线段推进姿态主要控制盾尾与管片间的间隙、左右油压差值及左右千斤顶长度差值。
盾构姿态的模糊控制方法
盾构姿态的模糊控制方法随着城市化进程的加速,地下基础设施建设的需求逐年增长,盾构机作为一种重要的基础设施建设机械,其工作效率和成本优势受到了广泛的关注。
而盾构姿态的模糊控制方法是提高盾构机工作稳定性和满足建设要求的关键技术之一。
一、盾构姿态的模糊控制方法概述盾构机在行进过程中,随着地质情况的变化,姿态会发生变化,如果姿态发生偏差且无法控制,会导致盾构机的运行不稳定性和安全性,因此需要对盾构姿态进行控制。
而模糊控制方法可以适应复杂多变的地质情况,提高控制效率和精度。
二、盾构姿态的模糊控制方法具体步骤1、建立姿态控制系统模型为有效地控制盾构姿态,需要建立姿态控制系统的数学模型,包括系统的输入量、输出量和控制量等关键参数。
2、设计模糊控制器通过姿态控制系统模型,可以设计出适用于盾构机姿态控制的模糊控制器。
其中,需考虑输入变量和输出变量之间的逻辑关系,设计出合理的规则库和模糊成员函数。
3、参数调整和优化在设计好模糊控制器后,需要对其进行参数调整和优化,以保证其可以在实际控制系统中稳定工作和满足控制要求。
优化参数的方法包括模拟实验和实际试验,根据实验数据反复调整参数,直到达到最优状态。
4、系统实现和测试验证经过以上步骤,盾构姿态的模糊控制器可以进行系统实现和测试验证。
在实际工程中,需要根据具体的盾构机类型和地质情况进行合理配置和调整控制参数,以保证盾构机可以稳定、高效地运行。
三、盾构姿态的模糊控制方法应用前景盾构姿态的模糊控制方法在城市化建设中具有广泛应用前景。
通过模糊控制方法,可以提高盾构机的稳定性和工作效率,同时减少人工干预和机械故障风险,从而降低基础设施建设成本和优化建设时间。
总之,盾构姿态的模糊控制方法是一种重要的现代化建设技术,其在城市化基础设施建设中具有广泛应用价值和发展前景。
盾构隧道施工中盾构机姿态控制
环球市场/施工技术盾构隧道施工中盾构机姿态控制王 鹏中铁隧道股份有限公司摘要:我国科学技术的迅猛发展,让交通地铁建设也进入了高速发展的过程中,地铁施工技术的安全性是公众关注度的重点话题。
在近期,因为地铁施工项目增多,很多大盾构隧道施工中会出现各类施工问题,如果不能及时的处理,就会给施工带来诸多的问题,增加了施工的复杂性。
而这些问题的出现很大部分是由于盾构隧道施工中盾构机姿态的控制问题所造成的,对此,本文笔者将着重分析探讨盾构隧道施工中对盾构机姿态的有效控制。
关键词:隧道;盾构机;姿态1 盾构隧道施工中盾构机自动导向盾构机自动导向系统的姿态定位主要是依据地下控制导线点来精确确定盾构机掘进的方向和位置。
首先在控制点上安置好全站仪,输人测站坐标和后视点坐标,瞄准后视点进行定向,再利用全站仪自动测出ELS棱镜的坐标(即X,Y,Z)。
激光束射向ELS就可以测定激光相对于ELS平面的偏角,在ELS人射点之间测得的折射角及入射角用于测定盾构机相对于隧道设计轴线(DTA)的偏角。
坡度和旋转直接用安装在ELS内的倾斜仪测量。
通过全站仪测出的与ELS之间的距离可以提供沿着DTA掘进的盾构机的里程长度。
所有测得的数据由通信电缆传输至计算机,通过软件组合起来用于计算盾构机轴线上前后两个参考点的精确的空间位置,并与隧道设计轴线(DTA)比较,得出的偏差值显示在屏幕上,这就是盾构机的姿态。
在推进时只要控制好姿态,盾构机就能精确地沿着隧道设计轴线掘进,保证隧道顺利准确地贯通。
现在的盾构机都装备有先进的自动导向系统,本区间盾构机上的自动导向系统为德国VMT公司的SLS-T系统,主要由以下四部分组成:1)具有自动照准目标的全站仪。
2)ELS(电子激光系统),亦称为激光靶板。
这是一台智能型传感器,接收全站仪发出的激光束,测定水平方向和垂直方向的人射点。
3)计算机及隧道掘进软件。
SLS-T软件是自动导向系统的核心,它从全站仪和ELS等通信设备接收数据,盾构机的位置在该软件中计算,并以数字和图形的形式显示在计算机的屏幕上。
地铁盾构施工中盾构姿态的控制方法
地铁盾构施工中盾构姿态的控制方法作者:章俊凯来源:《城市建设理论研究》2013年第14期摘要:通常情况下,采用盾构法施工是在施工条件较差、影响因素多的环境中,因此,盾构姿态不容易控制,本文主要分析盾构施工中盾构机工作原理以及盾构机姿态控制的一般原则及其具体的控制方法。
关键词:盾构姿态;控制;原则;技术中图分类号:TU74 文献标识码:A 文章编号:近年来,随着建筑业的发展,盾构施工技术有了很大提高,其中对盾构姿态的控制属于工程施工中的难点。
虽然一些专家学者对此进行了相关的研究,但是一直都不是很完善,本文对此作一下探讨。
一、盾构姿态控制原则及标准1、盾构姿态控制原则在盾构姿态满足隧道设计轴线要求的基础上,应遵循“频纠偏、小纠偏、不超限”的原则,避免“急纠偏、大纠偏、屡超限”的现象存在,保证地铁隧道的工程质量。
2、盾构姿态控制标准(1)根据盾构法隧道施工与验收规范(GB50446—2008),地铁隧道轴线平面位置最大允许偏差为±100mm;地铁隧道轴线高程位置最大允许偏差为±100mm。
(2)根据地铁隧道盾构工程设计图纸要求,一般情况下,地铁隧道轴线平面位置最大允许偏差为±50mm;地铁隧道轴线高程位置最大允许偏差为±50mm。
(3)综合规范和设计图纸要求,并考虑可能存在的其他各种误差,盾构姿态控制标准从严确定:地铁隧道轴线平面位置最大允许偏差为±40mm;地铁隧道轴线高程位置最大允许偏差为±40mm。
二、盾构姿态控制技术根据施工所处的不同阶段,姿态控制技术可分为始发前、始发、掘进和到达4个阶段。
1、盾构始发前姿态控制技术(1)盾构施工所处地层分类目前盾构施工所处地层大概可分为以下4类:第1类为卵(碎)石层、圆(角)砾层、砾砂层、粗砂层、中砂层、细砂层、粉砂层、粉土层、黏性土层中的某一种地层或某几土层的混合层;第2类为岩石层;第3类为淤泥质土层;第4类为以上3类的混合层。
盾构技术 姿态控制要点
2
目录
盾构姿态控制目标 直线掘进姿态控制 曲线掘进姿态控制
3
4
姿态控制目标
验收规范规定最大偏差目标: 水平:±50mm 高程:±50mm
5
姿态控制目标
• 纠偏原则:
(1)偏离量增加之前及早修正。 (2)勤纠、量小。 (3)遵循偏离量的管理值和允许值。 (4)确保管片质量和盾尾间隙。
• ⑵ 控制管片水平移动和侵限 • ①进入缓和曲线段时,将盾构机姿态往曲
线内侧(靠圆心侧)偏移20~40mm,形 成反向预偏移,这样可以抵消之后管片的 往曲线外侧(背圆心侧)的偏移。
40
盾构曲线掘进姿态控制
小半径曲线段盾构推进轴线预偏示意图
41
盾构曲线掘进姿态控制
• ②减小油缸推力。 • 在砂质地层中要加强渣土改良,总推力
33
盾构曲线掘进姿态控制
图中箭头为盾尾及千 斤顶对管片的作用力
34
盾构曲线掘进姿态控制
管片形成轴线与设计轴线模拟
直线管片
楔形管片 直线管片
短直线
允许误差
施工轴线 设计轴线
35
盾构曲线掘进姿态控制
• ⑶ 管片之间易发生错台。管片易产生开 裂和破损,严重者漏水。
• 管片存在一个水平方向的受力,不但会使 整段隧道衬砌管片发生水平偏移(即前面 所叙的侵限现象),还会导致管片之间发 生相对位移,形成错台。由于管片的特殊 受力状态,管片与管片之间存在着斜向应 力,使得前方管片内侧角和后方管片外侧 角形成两个薄弱点如下图,使得相当多的 管片因此破裂。还有一个破裂原因就是因 为相邻两环管片产生了相对位移,使得管 片螺栓对其附近的混凝土产生剪切作用, 使该处的混凝土开裂。
,线性最佳。 • ⑶ 趋势调节:趋势调节不能变化太大,不
盾构技术-姿态控制要点
22
盾构直线掘进姿态控制
• 4、在盾构机姿态控制中,推进油缸的行程控 制是重点。对于1.5米宽的管片,原则上推进 油缸的行程在1850mm左右,行程差控制在0~ 50mm之间。
• 5、铰接油缸的伸出长度直接影响掘进时盾 构机的姿态,故减小铰接油缸的长度差,尽 量控制在30mm以内,将铰接油缸的行程控 制在40-80mm之间为宜。
用; • ⑺ 防止相邻管片纵缝两侧受力不同
12
盾构直线掘进姿态控制
推
21 22 1
20
2
进
19
3
油
18
46
6
示
15
7
意
14
8
图
13
9
12 11 10
13
盾构直线掘进姿态控制
• 方向控制要点: • ⑴ 控制基点:以盾尾位置为控制基点 • ⑵ 调节量控制:一环掘进调节6mm较为合理
• ⑤根据曲线的特点做好管片选型; • ⑥为防止盾构机抬头以及管片上浮及
向圆曲线外侧移动,通过自动测量系 统调整盾构机姿态为:垂直方向控制 在-30~-40mm之间,水平方向应控制 在曲线内侧20~40mm之间。
39
盾构曲线掘进姿态控制
• 根据管片监测情况,如管片上浮量较大, 则垂直偏差可调整为-40~-50mm之间。 同时应加密自动测量移站频率,减少移站 后出现的轴向偏差。
步纠偏。 8、纠偏时要注意盾构机姿态,控制住设计轴
线中心±50mm以内,盾尾间隙要均匀平衡。
26
盾构直线掘进姿态控制
• 盾构姿态蛇行变化,主要是通过调整盾构 分区推力来实现的。盾构姿态调整,要在 各种地质情况下推进参数基础上,加大局 部推力或把另外两个或者三个方向的推力 降低,来调整盾构姿态。 除了通过推力调整盾构机姿态外,还可以 调整盾尾间隙,如盾尾上半部间隙小就适 当加大盾尾上半部推力,推进油缸行程和盾 尾间隙相应跟着变大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
盾构隧道施工中盾构机的姿态控制
盾构隧道施工中盾构机的姿态控制包括机体滚转控制和前进方
向的控制, 在掘进过程中, 盾构机操作人员根据激光自动导向系统
在电脑屏幕上显示的数据, 通过合理选择各分区千斤顶及刀盘转向
等来调整盾构机的姿态。
盾构机姿态控制操作原则有两条:
(1)机体滚角值应适宜, 盾构机滚角值太大, 盾构机不能保持
正确的姿态, 影响管片的拼装质量, 此时, 可以通过反转刀盘来减
少滚角值。
(2) 盾构机的前进方向水平向右偏, 则需要提高右侧千斤顶分
区的推力; 反之, 则需要提高左侧千斤顶分区的推力。
如果盾构机机头向下偏, 则需要提高下部千斤顶分区的推力; 反之亦然。
盾构机姿态控制的一般细则
一般情况下, 盾构机的方向纠偏应控制在±20mm 以内, 在缓和
曲线及圆曲线段, 盾构机的方向纠偏应控制在±30mm 以内。
尽量保
持盾构机轴线与隧道设计轴线平行, 否则, 可能会因为姿态不好而
造成盾尾间隙过小和管片错台裂缝。
当开挖面土体较均匀时, 盾构机姿态控制比较容易, 一般情况下方向偏角控制在±5mmöm 以内。
当开挖面内的地层左、右软硬不均而且又是处在曲线段时,盾构机姿态控
制比较困难。
此时, 可降低掘进速度, 合理调节各分区的千斤顶推力, 有必要时可考虑在硬岩区使用超挖刀(备有超挖刀的盾构机) 进行超挖。
当盾构机遇到上软下硬土层时, 为防止盾构机“抬头”, 要保持下俯姿态; 反之, 则要保持上仰姿态。
掘进时要注意上下两端和左右两侧的千斤顶行程差不能相差太大, 一般控制在±20mm 以内。
在曲
线段掘进时, 一般情况下根据曲线半径的不同让盾构机向曲线内侧
偏移一定量, 偏移量一般取10~ 30mm。
在盾构机姿态控制中, 推进油缸的行程控制是重点。
对于1.5m 宽的管片, 原则上行程控制在1700~ 1800mm 之间, 行程差控制在0~ 40mm 内, 行程过大, 则盾尾刷容易露出, 管片脱离盾尾较多, 变形较大; 行程差过大, 易使
盾体与管片之间的夹角增大, 易造成管片的破损、错台。
不同地质环境中盾构机掘进姿态的控制技术
1. 淤泥质土层中盾构机掘进姿态的控制盾构机在软弱土层中掘进时, 由于地层自稳性能极差, 为控制盾构机水平和垂直偏差在允
许范围内, 避免盾构机蛇形量过大造成对地层的过量扰动, 宜将盾
构机掘进速度控制在30~40mmöm in 之间, 刀盘转速控制在1. 5röm in 左右。
在该段地层中掘进时, 四组千斤顶推力应较为均衡, 避免掘进过程中千斤顶行程差过大, 否则, 可能会造成推力轴线与管片
中心轴线不在同一直线上。
在掘进过程中应根据实际情况加注一定量的添加剂,以保持出土顺畅, 尽量保持盾构机的连续掘进, 同时, 要严格控制同步注浆量, 以保证管背间隙被有效填充。
2.砂层中盾构机掘进姿态的控制盾构机在全断面富水砂层中掘进, 由于含水砂层的自稳性极差, 含水量大, 极易出现盾构机“磕头”现象, 同时, 在含水砂层中盾构机也易出现上浮现象。
为避免盾构机在含水砂层中掘进出现“磕头”现象, 在推进过程中盾构机应保持向上抬头的趋势, 如果发现有“磕头”趋势,应立即调节上下部压力, 维持盾构机向上的趋势。
为避免盾构机在含水砂层中掘进出现上浮现象, 在盾构机掘进时应减小刀盘转速, 减小对周围砂层的扰动。
若隧道埋深小于2ö3 倍的盾构机硐体直径, 应对含水砂层进行地质改良、地面堆载等措施。
3.岩层层面起伏大的地层中盾构机掘进姿态的控制岩层层面起伏大会导致隧道开挖面内的岩层出现软硬不均。
盾构机在这种地层中掘进, 其盾构机的姿态控制难度大, 易产生盾构机垂直方向上的过量蛇行, 造成管片错台及开裂。
以上软下硬地层为例, 在这类地质条件下掘进, 盾构机刀盘受力不均, 掘进速度不均衡, 这就要求在掘进过程中, 必须时刻观察测量系统提供的盾构机姿态数据, 结合推进千斤顶和铰接千斤顶的行程差值, 不断地调整各分区千斤顶的推力及总推力, 以保持盾构机姿态的平稳。
如果不注意调整推进千斤顶的行程差, 就会造成管片选型变化大, 甚至造成过小的盾尾间隙使管片不能顺利脱出盾尾。
因此, 在推进过程中不能单一的只注意测量系统所提供的盾构机姿态来指导掘进, 还应兼顾各分区千斤顶的行程差。
4.全断面硬岩地层中盾构机掘进姿态的控制全断面硬岩地层属于均一岩层, 盾构机在该类地层中掘进,其轴线姿态能较好地控制, 在掘进时保持各分区千斤顶推力均匀, 总推力和掘进速度均匀, 即可保持盾构机较好的姿态。
盾构机的纠偏措施
盾构机在掘进过程中总会偏离设计轴线, 进行纠偏时必须有计划有步骤地进行。
纠偏措施如下:
(1)在掘进过程中随时注意滚角的变化, 及时根据盾构机的滚角值调整刀盘的转动方向。
(2)应根据各段地质情况对各项掘进参数进行调整。
(3)在纠偏过程中, 掘进速度要放慢, 并且要注意避免纠偏时由于单侧千斤顶受力过大对管片造成的破损。
(4)尽量选择合理的管片类型, 避免认为因素对盾构机姿态造成过大的影响, 严格管片拼装质量, 避免因此而引起的对盾构机姿态的调整。
(5)在纠偏时, 要密切注意盾构机的姿态、管片的选型及盾尾的间隙等, 盾尾与管片四周的间隙要均匀。
(6)当盾构机偏离设计轴线较大时, 不得猛纠猛调, 避免往相反方向纠偏过大。