经济数学微积分吴传生45页PPT

合集下载

微积分-经济数学-吴传生第四章-(4)专题市公开课获奖课件省名师示范课获奖课件

微积分-经济数学-吴传生第四章-(4)专题市公开课获奖课件省名师示范课获奖课件

R(P0 )
ab c
ba
/
( a bc )2
ab c
c
例 6 设某厂家打算生产一批商品投放市场,已知
该商品的需求函数为
P
P(
X
)
x
10e 2
,且
最大需求量为 6,其中 x 表示需求量,P 为价
格:
(1)求该商品的收益函数和边际收益函数;
(2)求使收益最大时的产量,最大收益和相应
的价格;
产多少台,才能使利润最大?
解:设利润为L( X ),则 L( X ) R( X ) C( X ) 5X 0.01X 2 200 L( X ) 5 0.02X
令L( X ) 0,解得X 250(台),由于 L( X ) 0.02 0
所以L(250) 425(万元)为极大值,也就是最大 值.
dQ
dQ
显然,为使总利润到达最大,还应有
d
2
R(Q)
dQ 2
C
(Q
)
0,
(
R(Q
)
C
(Q
)
0)

d
2
( R(Q )) dQ 2
d
2
C (Q
dQ 2
)
,
(
R(Q)
C (Q ))
例 1 某厂每批生产 A 商品 X 台的费用为C( X ) 5X 200(万 元),得到的收入为 R( X ) 10X 0.01X 2(万元),问每批生
1 40
由C ( x) 0,得x1 1000, x2 1000(舍), 因C (1000) 50 105 0, 故当x 103时,C ( x)取最小值. 因此,要使平均成本最 小,应生产1000件产品.

微积分(第二版吴传生)第二章 第7节 函数的连续性教案.ppt知识课件

微积分(第二版吴传生)第二章 第7节 函数的连续性教案.ppt知识课件

二、函数的间断点(points of discontinuity)
如果 x0不 点是f(函 x)的 数 连 , 则 续点 称x 点 0为 f(x)的间 . 断点
x0为f(x)的间,断 有点 以下三 :种
(1) f(x)在点 x0处没有; 定义 (2)limf(x)不存;在
xx0
(3) f(x)在x点 0处有,定 x l ixm 0 义 f(x)存在 但x l ixm 0 f(x)f(x0).
lim f(x)lim f(x)
x x0
x x0
( 3 ) l x x 0 f i ( x ) m f ( x 0 ) .
即:函数在某点连续等价于函数在该点的极
限存在且等于该点的函数值.
例1 试证函 f(x数 )xsin1x, x0, 在x0 0, x0,
处连. 续
证 limxsin10,
x0
例6 讨论f函 (x) 数 1 x, x0,在 x0处的连 . 续
x, x0,
y
解 f(00)0, f(00),
x1为函数的第二类间. 断点 o x
这时也称其为无穷断间点.
例7 讨论f(函 x)s数 i1 n在 x0处的连 . 续 x
解 在 x0处没有 , 定义
且limsin1不存.在 x0 x
2
1x, x1,
1
在x1处连.续
o1
x
例5
讨论f(函 x) 1 数 x x ,,
x0,在 x0处的.连 x0,
解 f(00)0, f(00)1,
y
f ( 0 0 ) f ( 0 0 ),
x0为函数的间断 . 点 o
x
2.跳跃间断点 如果 f(x)在点 x0处,左 右极限

吴传生 经济数学 微积分 第二版 第三章 习题课PPT

吴传生 经济数学 微积分 第二版 第三章 习题课PPT

f (e ) e 1
(9) 设f ( x ) x( x 1)( x 2)( x 1000), f (0) 1000 !
解: f (0) lim f ( x ) f (0)
x 0
x
lim( x 1)( x 2) ( x 1000)
x0
且:f (0) f (0)
f ( x )在x 0点可导
sin x x 0 例7 设f ( x ) , 求 f ( x ) x0 x 解: 0时,f ( x ) (sin x ) cos x x
x 0时,f ( x ) ( x ) 1
x 0
f ( x )在x 0处左连续,
x0
lim f ( x ) lim x 1 1 x )( 1 1 ) 0 f (0) (
x0
f f ( x )在x 0处右连续,( x )在x 0处连续;
1 x 0 ln( x 1) [设 f ( x ) , 讨 论f ( x )在 x 1 1 x 0 x 1 x 0处的 连续性和 可导性 ]
第三章 习 题 课
一 教学要求
二 内容提要
三 教材习题选解
P113,T3
四 典型例题分析
例1 填空:
x (1) 设f ( x0 ) 1, 则 lim x 0 f ( x 2 x ) f ( x x ) 0 0
1
解: lim f ( x0 2 x ) f ( x0 x ) x 0 x [ f ( x0 2 x ) f ( x0 )] [ f ( x0 x ) f ( x0 )] lim x 0 x f ( x0 2 x ) f ( x0 ) f ( x0 x ) f ( x0 ) lim lim x 0 x 0 x x f ( x0 2 x ) f ( x0 ) f ( x0 x ) f ( x0 ) 2 lim lim 2 x 0 x 0 2x x 2 f ( x0 ) f ( x0 ) f ( x0 ) 1 原式 1

微积分 经济数学 吴传生第四章 (3)

微积分 经济数学 吴传生第四章 (3)

定理3(第二充分条件) 设 f ( x ) 在x0 处具有二阶导
证 (1) f ( x0 ) lim f ( x0 x ) f ( x0 ) 0, x 0
x 故f ( x0 x ) f ( x0 )与x异号,
当x 0时,有f ( x0 x ) f ( x0 ) 0, 当x 0时,有f ( x0 x ) f ( x0 ) 0,
(等号仅在个别点成立!!!!!)
所以f x x sinx在x ,单调增加
3.利用单调性证明不等式
例4 当x 0时, 试证x ln(1 x )成立.
x . 证 设f ( x ) x ln(1 x ), 则 f ( x ) 1 x
f ( x )在[0,)上连续, 且(0,)可导,f ( x ) 0,
2.单调区间(monotonical interval)求法
问题: 如上例,函数在定义区间上不是单调的, 但在一些部分区间上单调. 定义: 若函数在其定义域的某个区间内是单调 的,则该区间称为函数的单调区间. 导数等于零的点和不可导点,可能是单调 区间的分界点.
方法: 用 方 程 f ( x ) 0 的 根 及 f ( x ) 不 存 在 的
解方程f ( x ) 0 得, x1 1, x2 2.
当 x 1时, f ( x ) 0, 在(,1]上单调增加; 当1 x 2时,
f ( x ) 0, 在[1,2]上单调减少;
当2 x 时, f ( x ) 0, 在[2,)上单调增加;
例1 判断曲线 y x 3 的凹凸性.
解 y 3 x 2 ,
点 注意: 可导函数 f ( x ) 的极值点必定是它的驻 , 但函数的驻点却不一定 是极值点.

吴传生 经济数学 微积分 第一章1.6 PPT

吴传生 经济数学 微积分 第一章1.6 PPT

四、成本函数
成本是生产一定数量产品所需要的
各种生产要素投入的价格或费用总额,
它由固定成本与可变成本两部分组成.
C 总 C 固 C 可变
支付固定生产 要素的费用 支付可变生产 要素的费用
平均成本

总成本 产量

固定成本
可变成本 产量
即 C AC

C (Q ) Q

C
1
Q

C
2
(Q )
3 Q + 4 P = 1 0 0 ,求 总 收
益和平均收益.

价格函数为
P
100 3 Q 4
,
100 Q 3 Q 4
100 3Q 4 .
2
所以总收益为
R (Q ) P Q
,
平均收益为
A P (Q ) P (Q )
六、利润函数
利润是生产中获得的总收益与投入的总成
q 2

在时间 T 内的总费用 E 为
E 1 2 C 1 Tq C Q
2
q
其中 ,
1 2
C 1 Tq 为贮存费,
C2
Q q
为进货费用
.
八、戈珀兹 (Gompertz) 曲线
戈珀兹 曲线是指数函数 y ka
在经济预测中,经常使用该曲线.
k
b
t
初始期 发展期
饱和期
当 lg a 0 , 0 b 1 时,图形如上页所示
1 .4
2.某 工 厂 对 棉 花 的 需 求 函 数 由
PQ
=0.11 给
出 ,( 1) 求 其 总 收 益 函 数 R;( 2) P(12),R(10), R(12),R(15),P(15),P(20)。 3.若 工 厂 生 产 某 种 商 品 , 固 定 成 本 200,000 元 , 每 生 产 一 单 位 产 品 , 成 本 增 加 1000 元 , 求总成本函数。

经济数学微积分吴传生共45页PPT

经济数学微积分吴传生共45页PPT
经济数学微积分吴传生
46、法律有权打破平静。——马·格林 47、在一千磅法律里,没有一盎司仁 爱。— —英国
48、法律一多,公正就少。——托·富 勒 49、犯罪总是以惩罚相补偿;只有处 罚才能 使犯罪 得到偿 还。— —达雷 尔
50、弱者比强者更能得到法律的保护 。—— 威·厄尔
பைடு நூலகம்
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you

微积分吴传生版高等数学课件ppt课件

微积分吴传生版高等数学课件ppt课件

练习题
1.在空间直角坐标系中,指出下列 各点在哪个卦限?
A(1,2,3), B(2,3,4), C(2,3,4), D(2,3,1) .
E(2,3,1). F(1, 2, 3).
解答 A:Ⅳ; B:Ⅴ; C:Ⅷ; D:Ⅲ; E:Ⅱ;F:Ⅵ
2、点 p (3 , 2 , 1) 关于平面 xoy 的对称点是 ________,关于平面 yoz 的对称点是 ______, 关于平面 zox 的对称点是 ________,关于 x 轴 的对称点是 _________,关于 y 轴的对称点是 _________,关于 z 轴的对称点是 _________;
空间两点间距离公式
特殊地:若两点分别为 M( x, y, z) , O(0,0,0)
d OM x2 y2 z2 .
例 1 求证以M1(4,3,1)、M 2 (7,1,2)、M 3 (5,2,3)
三点为顶点的三角形是一个等腰三角形.
解 M1M2 2 (7 4)2 (1 3)2 (2 1)2 14, M2M3 2 (5 7)2 (2 1)2 (3 2)2 6, M3M1 2 (4 5)2 (3 2)2 (1 3)2 6,
化简得 2x 6 y 2z 7 0
说明: 动点轨迹为线段 AB 的垂直平分面. 显然在此平面上的点的坐标都满足此方程, 不在此平面上的点的坐标不满足此方程.
定义1. 如果曲面 S 与方程 F( x, y, z ) = 0 有下述关系:
(1) 曲面 S 上的任意点的坐标都满足此方程
(2) 不在曲面 S 上的点的坐标不满足此方程
M2M3 M3M1 , 原结论成立.
例 2 设P 在x 轴上,它到P1(0, 2,3) 的距离为 到点P2 (0,1,1)的距离的两倍,求点P 的坐标.

微积分_经济数学_吴传生第五章_(4)

微积分_经济数学_吴传生第五章_(4)

练习题答案
一、1. 3.
1 , 1 , 2;
2u 2du , ; 2 2 1 u 1 u
1 1 2. -1, , ; 2 2
4. 初等函数 .
1 ( x 2) 4 二、1. ln C; 3 2 ( x 1)( x 3) 1 x4 1 arctan x C ; 2. ln 2 2 4 (1 x ) (1 x ) 2 2 x 2 2x 1 2 3. ln 2 arctan( 2 x 1) 8 x 2x 1 4 2 arctan( 2 1) C ; 4
( n 2) 可用递推法求出
5.
6.
※二、待定系数法举例
有理函数化为部分分式之和的一般规律: k (1)分母中若有因式 ( x a ) ,则分解后为
A1 A2 Ak , k k 1 ( x a) ( x a) xa
其中 A1 , A2 , , Ak 都是常数.
A ; 特殊地: k 1, 分解后为 xa
x x 3 x 3 ln(1 e ) ln(1 e 3 ) 3 arctan( e 6 ) C . 2 x 6
三、小结
有理式分解成部分分式之和的积分. (注意:必须化成真分式)
思考题
任何有理函数都有原函数吗? 任何初等函数都有原函数吗?
都能求出其原函数吗?
思考题解答
1 x x 1 例 x 2 . 2 x 1 x 1
3
难点 将有理函数化为部分分式之和.
理论上,任何一个有理函数(真分式)都可分为 以下六个类型的基本积分的代数和: 1.
dx ln x a c xa
dx 1 c n n 1 ( x a ) (1 n)( x a )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档