最新修订人教版八年级下册数学解题技巧专题练习:共顶点的等腰三角形
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解题技巧专题:共顶点的等腰三角形
——形成精准思维模式,快速解题
◆类型一共顶点的等腰直角三角形
1.如图,已知△ABC和△DBE均为等腰直角三角形.
(1)求证:AD=CE;
(2)猜想:AD和CE是否垂直?若垂直,请说明理由;若不垂直,则只要写出结论,不用写理由.
2.如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD,延长CA至点E,使AE=AC,延长CB至点F,使BF=BC.连接BD,AD,AF,DF,EF.延长DB交EF于点N.求证:
(1)AF=AD;
(2)EF=BD.
◆类型二共顶点的等边三角形
3.如图,△APB与△CDP是两个全等的等边三角形,且P A⊥PD,有下列四个结论:①∠PBC =15°;②AD∥BC;③直线PC与AB垂直.其中正确的有()
A.0个B.1个C.2个D.3个
第3题图第4题图
4.如图,在△ABC中,分别以AC,BC为边作等边三角形ACD和等边三角形BCE,连接AE,BD,交于点O,则∠AOB的度数为________.
5.如图①,等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE.
(1)△DBC和△EAC全等吗?请说明理由;
(2)试说明AE∥BC的理由;
(3)如图②,将(1)中动点D运动到边BA的延长线上,其他条件不变,请问是否仍有AE∥BC?证明你的猜想.
参考答案与解析
1.(1)证明:∵△ABC和△DBE均为等腰直角三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=90°,∴∠ABC-∠DBC=∠DBE-∠DBC,即∠ABD=∠CBE,∴△ABD≌△CBE,∴AD=CE.
(2)解:垂直.理由如下:延长AD分别交BC和CE于G和F.由(1)知△ABD≌△CBE,∴∠BAD =∠BCE.∵∠BAD+∠ABC+∠BGA=∠BCE+∠AFC+∠CGF=180°,∠BGA=∠CGF,∴∠AFC =∠ABC=90°,∴AD⊥CE.
2.证明:(1)∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠ABF=180°-∠ABC=135°,∠ACD=∠ACB+∠BCD=135°,∴∠ABF=∠ACD.∵CB=CD,CB=BF,∴BF=CD,∴△ABF≌△ACD(SAS),∴AF=AD.
(2)由(1)知△ABF≌△ACD,AF=AD,∴∠F AB=∠DAC.∵∠BAC=∠BAD+∠DAC=90°,∠EAB =∠EAF+∠F AB=90°,∴∠EAF=∠BAD.∵AE=AC,AB=AC,∴AE=AB,∴△AEF≌△ABD(SAS),∴EF=BD.
3.D
4.120°解析:设AC与BD交于点H.∵△ACD,△BCE都是等边三角形,∴CD=CA,CB=
CE ,∠ACD =∠BCE =60°,∴∠ACD +∠ACB =∠BCE +∠ACB ,即∠DCB =∠ACE ,∴△DCB ≌△ACE ,∴∠CDB =∠CAE .∵∠DCH +∠CHD +∠BDC =180°,∠AOH +∠AHO +∠CAE =180°,∠DHC =∠OHA ,∴∠AOH =∠DCH =60°,∴∠AOB =180°-∠AOH =120°.
5.解:(1)△DBC 和△EAC 全等.理由如下:∵△ABC 和△EDC 都是等边三角形,∴AC =BC ,DC =EC ,∠ACB =60°,∠DCE =60°,∴∠BCD =60°-∠ACD ,∠ACE =60°-∠ACD ,∴∠BCD =
∠ACE .在△DBC 和△EAC 中,∵⎩⎪⎨⎪⎧BC =AC ,∠BCD =∠ACE ,DC =EC ,
∴△DBC ≌△EAC (SAS).
(2)由(1)知△DBC ≌△EAC ,∴∠EAC =∠B =60°.又∵∠ACB =60°,∴∠EAC =∠ACB ,∴AE ∥BC .
(3)仍有AE ∥BC .证明如下:∵△ABC ,△EDC 为等边三角形,∴BC =AC ,DC =CE ,∠BCA =∠DCE =60°,∴∠BCA +∠ACD =∠DCE +∠ACD ,即∠BCD =∠ACE .在△DBC 和△EAC 中,
∵⎩⎪⎨⎪⎧BC =AC ,∠BCD =∠ACE ,CD =CE ,
∴△DBC ≌△EAC (SAS),∴∠EAC =∠B =60°.又∵∠ACB =60°,∴∠EAC =∠ACB ,∴AE ∥BC .。