整式的除法单元测试

合集下载

北师大版七年级下《第一章整式的乘除》单元测试题(含答案)

北师大版七年级下《第一章整式的乘除》单元测试题(含答案)

第一章第Ⅰ卷 (选择题 共36分)一、选择题(每小题3分,共36分) 1.计算(2019-π)0的结果是( ) A .0 B .1C .2019-πD .π-2019 2.下列运算结果正确的是( ) A .2+3=5 B .3·2=6 C .(-22y )2=-44y 2 D .6÷=5 3.计算3·(-3)2的结果是( ) A .65 B .-65 C .95 D .-954.生物学家发现了一种病毒,其长度约为0.00000032 mm ,数据0.00000032用科学记数法表示正确的是( )A .3.2×107B .3.2×108C .3.2×10-7D .3.2×10-85.若3=18,3y =6,则3-y 的值为( ) A .6 B .3 C .9 D .126.对于任意正整数,按下列程序计算下去,得到的结果( )图1A .随n 的变化而变化B .不变,定值为0C .不变,定值为1D .不变,定值为27.若2--m =(-m )(+1),且≠0,则m 的值为( ) A .-1 B .0 C .1 D .2 8.若a -1a =2,则a 2+1a2的值为( )A .0B .2C .4D .6 9.下列计算正确的是( ) A .(2--1)=3--1 B .ab (a +b )=a 2+b 2C.3(2-2-1)=33-62-3D.-2(2--1)=-23-22+2)10.如图2,已知a=10,b=4,那么这个图形的面积是(A.64 B.32 C.40 D.4211.对于任意有理数a,b,现用“☆”定义一种运算:a☆b=a2-b2,根据这个定义,代数式(+y)☆y可以化简为( )A.y+y2B.y-y2C.2+2y D.212.如图3①,在边长为a的正方形中剪去一个边长为b(b<a)的小正方形,把剩下部)分拼成一个梯形(如图3②),利用这两个图形的面积,可以验证的等式是(A.a2+b2=(a+b)(a-b)B.(a-b)2=a2-2ab+b2C.(a+b)2=a2+2ab+b2D.a2-b2=(a+b)(a-b)请将选择题答案填入下表:二、填空题(每小题3分,共12分)13.计算:16×2-4=________.14.计算:(3a-2b)·(2b+3a)=________.15.若a2+b2=5,ab=2,则(a+b)2=________.16.如图4,有两个正方形A ,B ,现将B 放在A 的内部得图甲,将A ,B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A ,B 的面积之和为________.图4三、解答题(共52分) 17.(8分)计算:(1)b 2·(b 3)2÷b 5; (2)-3+20-(12)-1.18.(8分)计算: (1)·4+2(3-1)-23(+1)2;(2)[(-3y)(+3y)+(3y -)2]÷(-2).19.(8分)运用乘法公式简便计算: (1)9982; (2)197×203.20.(8分)先化简,再求值:(-y 2)-(-y)(+y)+(+y)2,其中=3,y =-13.21.(10分)某银行去年新增加居民存款10亿元人民币.(1)经测量,100张面值为100元的新版人民币大约厚0.9厘米,如果将10亿元面值为100元的新版人民币摞起,大约有多高?(2)一台激光点钞机的点钞速度是8×104张/时,按每天点钞5小时计算,如果让点钞机点一遍10亿元面值为100元的新版人民币,点钞机大约要点多少天?图522.(10分)某学校分为初中部和小学部,初中部的学生人数比小学部多.做广播操时,初中部排成的是一个规范的长方形方阵,每排(3a-b)人,站有(3a+2b)排;小学部站的方阵,排数和每排人数都是2(a+b).(1)试求该学校初中部比小学部多多少名学生;(2)当a=10,b=2时,试求该学校一共有多少名学生.详解详析1.B2.D3.[解析] C 3·(-3)2=3·92=95.4.C 5.B 6.C 7.D 8.D 9.C10.[解析] A 图形的面积=ab+b(a-b)=2ab-b2=2×10×4-42=64.故选A. 11.[解析] C (+y)☆y=(+y)2-y2=2+2y+y2-y2=2+2y.故选C.12.D13.114.9a2-4b215.[答案] 9[解析] 由完全平方公式知(a+b)2=a2+b2+2ab,把a2+b2与ab的值代入,得(a+b)2=5+2×2=9.16.[答案] 13[解析] 设正方形A的边长为a,正方形B的边长为b,由图甲得a2-b2-2(a-b)b=1,即a2+b2-2ab=1,由图乙得(a+b)2-a2-b2=12,即2ab=12,所以a2+b2=13.17.解:(1)原式=b2·b6÷b5=b2+6-5=b3.(2)原式=-3+1-2=-4.18.解:(1)原式=5+5-2-23(2+2+1)=5+5-2-25-44-23=-44-23-2. (2)原式=(2-9y2+9y2-6y+2)÷(-2)=(22-6y)÷(-2)=-+3y.19.解:(1)9982=(1000-2)2=1000000-4000+4=996004.(2)197×203=(200-3)×(200+3)=2002-32 =40000-9 =39991.20.解:原式=-y 2-2+y 2+2+2y +y 2=+2y +y 2. 当=3,y =-13时,原式=3-2+19=109.21.解: (1)10亿=1000000000=109, 所以10亿元的总张数为109÷100=107(张), 107÷100×0.9=9×104(厘米)=900(米). (2)107÷(5×8×104) =(1÷40)×(107÷104) =0.025×103 =25(天).22.解: (1)因为该学校初中部学生人数为(3a -b )(3a +2b )=9a 2+6ab -3ab -2b 2=9a 2+3ab -2b 2,小学部学生人数为2(a +b )·2(a +b )=4(a +b )2=4(a 2+2ab +b 2)=4a 2+8ab +4b 2, 所以该学校初中部比小学部多的学生数为(9a 2+3ab -2b 2)-(4a 2+8ab +4b 2)=(5a 2-5ab -6b 2)名.答:该学校初中部比小学部多(5a 2-5ab -6b 2)名学生.(2)该学校初中部和小学部一共的学生数为(9a 2+3ab -2b 2)+(4a 2+8ab +4b 2)=(13a 2+11ab +2b 2)名.当a =10,b =2时,原式=13×102+11×10×2+2×22=1528. 答:该学校一共有1528名学生.。

整式乘除单元测试题及答案

整式乘除单元测试题及答案

整式乘除单元测试题及答案一、选择题:1. 已知 \( a^2 - 4 \) 可以分解为 \( (a+2)(a-2) \),那么下列哪个表达式不能被 \( a^2 - 4 \) 整除?A. \( a^3 - 4a \)B. \( a^3 - 8 \)C. \( a^3 - 4a + 4 \)D. 提供的选项都是错误的2. 如果 \( x - 1 \) 是多项式 \( x^3 - 2x^2 + x - 2 \) 的一个因子,那么 \( x \) 的值是多少?A. 1B. 2C. 0D. 3二、填空题:1. 计算 \( (3x^2 - 2x + 1) \div (x - 1) \) 的结果为__________。

2. 将多项式 \( 2x^3 - 5x^2 + 3x - 6 \) 除以 \( x - 2 \) 的商是 __________。

三、简答题:1. 证明 \( (x - 1)^3 = x^3 - 3x^2 + 3x - 1 \)。

2. 给定多项式 \( P(x) = x^4 - 2x^3 + x^2 - 2x + 1 \),求\( P(1) \) 的值。

四、解答题:1. 已知 \( (x + y)^2 = 9 \) 和 \( (x - y)^2 = 1 \),求 \( x^2 + y^2 \) 的值。

2. 计算 \( \frac{2x^3 - 8x^2 + 6x}{2x - 4} \) 的简化形式。

五、应用题:1. 一个长方形的长是宽的两倍,如果长和宽的乘积是 24,求长方形的长和宽。

2. 某工厂生产一种零件,每个零件的成本是 \( c \) 元,售价是\( 2c \) 元。

如果工厂卖出了 \( n \) 个零件,求工厂的总利润。

答案:一、选择题:1. 答案:D. 提供的选项都是错误的。

2. 答案:A. 1二、填空题:1. 答案:\( 3x - 1 \)2. 答案:\( 2x^2 - 7x + 3 \)三、简答题:1. 证明:\( (x - 1)^3 = x^3 - 3x^2 + 3x - 1 \) 可以通过展开\( (x - 1) \) 的三次幂来验证。

七年级数学下册《整式的乘除》单元测试卷(附答案)

七年级数学下册《整式的乘除》单元测试卷(附答案)

七年级数学下册《整式的乘除》单元测试卷(附答案)一.选择题(共8小题,满分40分)1.已知a+b﹣2=0,则3a•3b的值是()A.6 B.9 C.D.﹣92.若8x=21,2y=3,则23x﹣y的值是()A.7 B.18 C.24 D.633.如果2(5﹣a)(6+a)=100,那么a2+a+1的值为()A.19 B.﹣19 C.69 D.﹣694.已知25a•52b=56,4b÷4c=4,则代数式a2+ab+3c值是()A.3 B.6 C.7 D.85.已知4x2+mx+9是完全平方式,则m的值是()A.8 B.±6 C.±12 D.±166.若x+y=3,xy=1,则(1﹣2x)(1﹣2y)的值是()A.1 B.﹣1 C.2 D.﹣27.已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是()A.ab=c B.a+b=cC.a:b:c=1:2:10 D.a2b2=c28.若(mx+3)(x2﹣x﹣n)的运算结果中不含x2项和常数项,则m,n的值分别为()A.m=0,n=0 B.m=0,n=3 C.m=3,n=1 D.m=3,n=0二.填空题(共8小题,满分40分)9.若(x+m)(x﹣3)=x2+nx﹣12,则n=.10.直接写出计算结果:(﹣3x2y3)4(﹣xy2)2=.11.当a=时,多项式x2﹣2(a﹣1)x+25是一个完全平方式.12.已知(x+y)2=2,(x﹣y)2=8,则x2+y2=.13.计算:(﹣)2022×(﹣1)2021=.14.(1)已知x+y=4,xy=3,则x2+y2的值为.(2)已知(x+y)2=25,x2+y2=17,则(x﹣y)2的值为.(3)已知x满足(x﹣2020)2+(2022﹣x)2=12,则(x﹣2021)2的值为.15.已知(x+3)2﹣x=1,则x的值可能是.16.如图,小颖用4张长为a、宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2.若a=2b,则S1、S2之间存在的数量关系是.三.解答题(共5小题,满分40分)17.计算:(x﹣2y+3)(x+2y﹣3).18.计算(1)(﹣5x)2﹣(3x+5)(5x﹣3);(2)(2x﹣3y)2﹣(﹣x+3y)(3y+x);(3)先化简,再求值:[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy),其中,y=3.19.规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(4,64)=,(﹣2,4)=,(,﹣8)=;(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4);他给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n;∴3x=4,即(3,4)=x.∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,5)+(4,6)=(4,30).(3)拓展应用:计算(3,9)×(3,20)﹣(3,5).20.数学活动课上,老师准备了图1中三种不同大小的正方形与长方形,拼成了一个如图2所示的正方形.(1)请用两种不同的方法表示图2中阴影部分的面积和.方法1:;方法2:.(2)请你直接写出三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知m+n=5,m2+n2=20,求mn和(m﹣n)2的值;②已知(x﹣2021)2+(x﹣2023)2=34,求(x﹣2022)2的值.21.阅读、理解、应用.例:计算:20223﹣2021×2022×2023.解:设2022=x,则原式=x3﹣(x﹣1)•x•(x+1)=x3﹣x(x2﹣1)=x=2022.请你利用上述方法解答下列问题:(1)计算:1232﹣124×122;(2)若M=123456789×123456786,N=123456788×123456787,请比较M,N的大小;(3)计算:.参考答案与解析一.选择题(共8小题,满分40分)1.【答案】解:∵a+b﹣2=0;∴a+b=2;∴3a•3b=3a+b=32=9.故选:B.2.【答案】解:∵8x=21,2y=3;∴23x=21;∴23x﹣y=23x÷2y=21÷3=7.故选:A.3.【答案】解:∵2(5﹣a)(6+a)=100;∴﹣a2+5a﹣6a+30=50;∴a2+a=﹣20;∴a2+a+1=﹣20+1=﹣19.故选:B.4.【答案】解:∵25a•52b=56,4b÷4c=4;∴52a•52b=56,4b﹣c=4;∴2a+2b=6,b﹣c=1;即a+b=3,b﹣1=c;∴a2+ab+3c=a(a+b)+3(b﹣1)=3a+3b﹣3=3(a+b)﹣3=3×3﹣3=9﹣3=6.故选:B.5.【答案】解:∵(2x±3)2=4x2±12x+9;∴m=±12;故选:C.6.【答案】解:原式=1﹣2y﹣2x+4xy =1﹣2(x+y)+4xy;当x+y=3,xy=1时;原式=1﹣2×3+4=1﹣6+4=﹣1;故选:B.7.【答案】解:∵5×10=50;∴2a•2b=2c;∴2a+b=2c;∴a+b=c;故选:B.8.【答案】解:(mx+3)(x2﹣x﹣n)=mx3﹣mx2﹣nmx+3x2﹣3x﹣3n=mx3+(﹣m+3)x2+(﹣nm﹣3)x﹣3n;∵(mx+3)(x2﹣x﹣n)的乘积中不含x2项和常数项;∴﹣m+3=0,﹣3n=0;解得:m=3,n=0;故选:D.二.填空题(共8小题,满分40分)9.【答案】解:(x+m)(x﹣3)=x2﹣3x+mx﹣3m=x2+(m﹣3)x﹣3m;∴m﹣3=n,3m=12;解得:m=4,n=1;故答案为:1.10.【答案】解:原式=81x8y12•x2y4=81x10y16.故答案为:81x10y16.11.【答案】解:因为x2﹣2(a﹣1)x+25=x2﹣2(a﹣1)x+52是完全平方式;属于﹣2(a﹣1)x=±2•x•5;解得:a=﹣4或6.故答案为:﹣4或6.12.【答案】解:∵(x+y)2=2,(x﹣y)2=8;∴x2+2xy+y2=2①,x2﹣2xy+y2=8②;①+②得:2(x2+y2)=10;∴x2+y2=5.故答案为:5.13.【答案】解:原式=[(﹣)×(﹣)]2021×(﹣)=12021×(﹣)=1×(﹣)=﹣;故答案为:﹣.14.【答案】解:(1)∵x+y=4,xy=3;∴x2+y2=(x+y)2﹣2xy=16﹣6=10.故答案为:10;(2)∵(x+y)2=25,x2+y2=17;∴x2+y2+2xy﹣(x2+y2)=8;∴xy=4;∴(x﹣y)2=x2+y2﹣2xy=17﹣8=9.故答案为:9;(3)∵(x﹣2020)2+(x﹣2022)2=12;∴[(x﹣2021)+1]2+[(x﹣2021)﹣1]2=12;∴(x﹣2021)2+2(x﹣2021)+1+(x﹣2021)2﹣2(x﹣2021)+1=12;∴(x﹣2021)2=5.故答案为:5.15.【答案】解:当x+3=1时;解得:x=﹣2;故(x+3)2﹣x=(﹣2+3)2﹣(﹣2)=14=1;当x+3=﹣1时;解得:x=﹣4;故(x+3)2﹣x=(﹣4+3)6=1;当2﹣x=0时;解得:x=2;故(x+3)2﹣x=(2+3)0=1;综上所述,x的值可能是﹣2或﹣4或2.故答案为:﹣2或﹣4或2.16.【答案】解:S1=b(a+b)×2+ab×2+(a﹣b)2=a2+2b2;S2=(a+b)2﹣S1=(a+b)2﹣(a2+2b2)=2ab﹣b2;∵a=2b;∴S1=a2+2b2=6b2,S2=2ab﹣b2=3b2∴S1=2S2.故答案为:S1=2S2.三.解答题(共5小题,满分40分)17.【答案】解:原式=x2﹣(2y﹣3)2=x2﹣(4y2﹣12y+9)=x2﹣4y2+12y﹣9.18.【答案】解:(1)原式=25x2﹣(15x2﹣9x+25x﹣15)=25x2﹣15x2+9x﹣25x+15=10x2﹣16x+15;(2)原式=4x2﹣12xy+9y2﹣(9y2﹣x2)=4x2﹣12xy+9y2﹣9y2+x2=5x2﹣12xy;(3)[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy)=(x2y2﹣4xy+4﹣2x2y+4xy﹣4)÷(﹣2xy)=(x2y2﹣2x2y)÷(﹣2xy)=﹣xy+x;把,y=3代入得:﹣xy+x=﹣×(﹣)×3+(﹣)=﹣=.19.【答案】解:(1)∵43=64,(﹣2)2=4,(﹣)﹣3=﹣8;∴(4,64)=3,(﹣2,4)=2,(﹣,﹣8)=﹣3.故答案为:3,2,﹣3.(2)设(4,5)=x,(4,6)=y,(4,30)=z;则4x=5,4y=6,4z=30;∴4x×4y=5×6=30;∴4x×4y=4z;∴x+y=z,即(4,5)+(4,6)=(4,30).(3)设(3,20)=a,(3,5)=b;∴3a=20,3b=5;∵(3,9)=2;∴(3,9)×(3,20)﹣(3,5)=2a﹣b;∵32a﹣b=(3a)2÷3b=202÷5=80;∴2a﹣b=(3,80),即(3,9)×(3,20)﹣(3,5)=(3,80).20.【答案】解:(1)阴影两部分求和为a2+b2,用总面积减去空白部分面积为(a+b)2﹣2ab;故答案为:a2+b2,(a+b)2﹣2ab;(2)由题意得,a2+b2=(a+b)2﹣2ab;(3)①由(2)题结论a2+b2=(a+b)2﹣2ab可得ab=;∴m+n=5,m2+n2=20时;mn===;(m﹣n)2=m2﹣2mn+n2;=20﹣2×=20﹣5=15;②设a=x﹣2021,b=x﹣2023;可得a+b=(x﹣2021)+(x﹣2023)=x﹣2021+x﹣2023=2x﹣4044=2(x﹣2022);由(2)题结论a2+b2=(a+b)2﹣2ab可得;(a+b)2=a2+2ab+b2;又∵(a﹣b)2=[(x﹣2021)﹣(x﹣2023)]2=22=4;且由(a﹣b)2=a2﹣2ab+b2,可得2ab=(a2+b2)﹣(a﹣b)2=(x﹣2021)2+(x﹣2023)2﹣[(x﹣2021)﹣(x﹣2023)]2=34﹣4=30;∴(x﹣2022)2=()2====16.21.【答案】解:(1)设123=x;∴1232﹣124×122=x2﹣(x+1)(x﹣1)=x2﹣x2+1=1;(2)设123456786=x;∴M=123456789×123456786=(x+3)•x=x2+3x;N=123456788×123456787=(x+2)(x+1)=x2+3x+2;∴M<N;(3)设++...+=x;∴=(x+)(1+x)﹣(1+x+)•x=x+x2++x﹣x﹣x2﹣x =.。

整式的乘除和因式分解单元测试题

整式的乘除和因式分解单元测试题

整式的乘除与因式分解复习试题(一)姓名得分1219.已知a3,贝V a 2的值是 ___________________ 。

a a10 .如果 2a+3b=1,那么 3-4a-6b= _____________ 。

二、选择题(每题3分,共30分) 11、下列计算错误的个数是()①(x 4-y 4) —(x'-y 2) =x -y 2 ;②(-2a )3=-8a 5;③(ax+by)十(a+b)=x+y; 2mm2④ 6x 十 2x =3xA. 4 B3 C. 2 D. 112. 已知被除式是 x 3+2x 2— 1,商式是 x ,余式是— 1,则除式是()A 、 2 2 x +3x — 1B 、x +2xC 、x 2— 1D 2 、x — 3x+1 13. 若 3x =a , 3y =b ,则 3x y等于( )A 、 aB 、 abC 、 b 2abD 1、a+b14.如(x+m)与(x+3)的乘积中不含 x 的一次项,贝U m 的值为( )A. - 3B. 3C. 0D. 115. 一个正方形的边长增加了2cm ,面积相应增加了32 cm 2,则这个正方形的边长为()A 、6cmB 、5cmC 、8cmD 、7cm20、已知多项式2x 2 bx c 分解因式为2(x-3)(x ,1),则b,c 的值为( )A 、b=3,c~-1B 、b--6,c=2C 、b--6,c--4D 、b~-4,c--6 三、解答题:(共60分) 1.计算题、填空(每题3分,共30分)m n m+n a =4,a =3, a = __ _2 2 (_—m 十n)(—一n _n) =_ 33 — 2 2 3若 A - 5ab =-7ab c ,则 1.3. 5. (2x — 1)( — 3x+2)= 2 3 2.( x y)=3 22 3 6.右(ax ■ b)( x • 2) = x— [[. 2&右 a —2 +bA= ________ ,若 4x yz 十 B=-8x,贝V B=_ -4,则 a b = _2b 1 =0,贝U a =16. 一个多项式分解因式的结果是 A 、b 6-4 B 4-b 17. 下列各式是完全平方式的是(21 2A 、 x —XB 1 x43 3(b 2)(2 —b ),C 、b 6 4) 那么这个多项式是( )c 、2x 2x -118. 19. 把多项式m 2 (a 「2) ■ m (2 —a )分解因式等于(2A 、(a —2)( m ' m )B 、 下列多项式中,含有因式2 2y — 2xy —3x22(y -1) -(y -1)2(a -2)(m -m) C 、m(a-2)(m-1) D 、m(a-2)(m+1)(y - 1)的多项式是( )2 2B 、(y -1) -(y -1)2D (y ■ 1) - 2(y -1)11⑴(-1) 2+ (-2 ) -1 — 5 +( 3.14 - n ) 0(4 分)1⑵ X 2 -(x - 2)(x 「2)—( x )2 (4 分)x⑶[(x+y ) 2 —( x — y ) 2] +(2xy) (4 分)2 2⑷ 简便方法计算①98 X 102 — 99 (4分)②99 198 1 (4分)ab = 2,求—a 3b ■ a 2 b 2 ■ — ab 3 的值。

第一章 整式的乘除 单元测试

第一章 整式的乘除 单元测试

第一章整式的乘除单元测试(基础过关)一、单选题1.下列计算正确的是()A.2a+3b=5ab B.x8÷x2=x6C.(ab3)2=ab6D.(x+2)2=x2+4【答案】B【分析】由相关运算法则计算判断即可.【解析】2a和3b不是同类项,无法计算,与题意不符,故错误;x8÷x2=x6,与题意相符,故正确;(ab3)2=a2b6,与题意不符,故错误;(x+2)2=x2+2x+4,与题意不符,故错误.故选:B.【点睛】本题考查了合并同类项、同底数幂的除法、幂的乘方运算、完全平方公式,熟练掌握运算法则是解题的关键.2.下列计算正确的是( )A.(﹣p2q)3=﹣p5q3B.12a2b3c÷6ab2=2abC.(x2﹣4x)÷x=x﹣4D.(a+3b)2=a2+9b2【答案】C根据积的乘方运算,整式除法运算以及完全平方公式分别求解验证即可.【解析】解:A、原式=﹣p6q3,原计算错误,不符合题意;B、原式=2abc,原计算错误,不符合题意;C、原式=x﹣4,原计算正确,符合题意;D、原式=a2+6ab+9b2,原计算错误,不符合题意;故选:C.【点睛】本题考查积的乘方运算,整式的除法运算以及完全平方公式,熟记和熟练运用基本公式和法则是解题关键.3.郑州市“旧城改造”中,计划在市内一块长方形空地上种植草皮,以美化环境.已知长方形空地的面积为(3ab+b)平方米,宽为b米,则这块空地的长为( )A.3a米B.(3a+1)米C.(3a+2b)米D.(3ab2+b2)米【答案】B【分析】直接利用整式的除法运算法则计算得出答案.【解析】解:∵长方形空地的面积为(3ab+b)平方米,宽为b米,∴这块空地的长为:(3ab+b)÷b=(3a+1)米.【点睛】此题主要考查了整式的除法运算,正确掌握相关运算法则是解题关键.4.计算2202120192023-´的结果为()A .4B .3C .2D .1【答案】A【分析】根据2019=2021-2,2023=2021+2可把原式变形,然后根据平方差公式进行计算即可.【解析】解:2202120192023-´=()()220212*********-´+-=22202120214-+=4;故选A .【点睛】本题主要考查平方差公式,熟练掌握平方差公式是解题的关键.5.小明在做作业的时候,不小心把墨水滴到了作业本上,▄×2ab =4a 2b +2ab 3,阴影部分即为被墨汁弄污的部分,那么被墨汁遮住的一项是( )A .(2a +b 2)B .(a +2b )C .(3ab +2b 2)D .(2ab +b 2)【答案】A【分析】根据多项式除单项式的运算法则计算即可.【解析】∵(4a 2b +2ab 3)÷2ab =2a +b 2,∴被墨汁遮住的一项是2a +b 2.故选:A .【点睛】本题考查了多项式除以单项式,一般地,多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.6.已知2m +3n =4,则48m n ´的值为()A .8B .12C .16D .20【答案】C【分析】根据()()2323234822222m n m n m n m n +´=´=´=进行求解即可.【解析】解:∵234m n +=,∴()()23232344822222216m n m n m n m n +´=´=´===,故选C .【点睛】本题主要考查了同底数幂乘法的逆运算,幂的乘方的逆运算,熟知相关计算法则是解题的关键.7.若2223a b -=,12a b +=,则-a b 的值为( )A .12-B .43C .32D .2【答案】B【分析】根据平方差公式计算即可得到答案【解析】解:∵()()22a b a b a b +-=-,∴()1223a b ´-=,∴()43a b -=.故选B .【点睛】此题考查平方差公式,熟记公式并熟练应用是解题的关键.8.如图所示,有三种卡片,其中边长为a 的正方形卡片有1张,长为a 、宽为b 的矩形卡片有4张,边长为b 的正方形卡片有4张,用这9张卡片刚好能拼成一个大正方形,则这个大正方形的边长为( )A .2+a bB .22a b +C .2a b +D .a b+【答案】A 【分析】可根据拼前与拼后面积不变,求出正方形的边长.【解析】解:设拼成后大正方形的边长为x,则a2+4ab+4b2=x2,则(a+2b)2=x2,∴x=a+2b,故选A.【点睛】本题考查了完全平方公式的几何背景以及整式的混合运算,解题的关键是依据面积相等列方程.9.从边长为a的正方形中剪掉一个边长为b的正方形(如图1所示),然后将剩余部分拼成一个长方形(如图2所示).根据图形的变化过程,写出的一个正确的等式是( )A.(a-b)2=a2-2ab+b2B.a(a-b)=a2-abC.b(a-b)=ab-b2D.a2-b2=(a+b)(a-b)【答案】D【分析】观察图1与图2,根据两图形阴影部分面积相等,即可写出一个正确的等式.【解析】解:根据图形得:图1中阴影部分面积=a2-b2,图2中阴影部分面积=(a+b)(a-b),∴a2-b2=(a+b)(a-b),故选D.【点睛】此题考查了平方差公式的几何背景,熟练掌握平方差公式是解本题的关键.10.我国宋代数学家杨辉发现了()nn=,1,2,3,…)展开式系数的规律:a b+(0以上系数三角表称为“杨辉三角”,根据上述规律,()8+展开式的系数和是()a bA.64B.128C.256D.612【答案】C【分析】由“杨辉三角”的规律可知,(a+b)8所有项的系数和为28,即可得出答案.【解析】解:由“杨辉三角”的规律可知,()0+展开式中所有项的系数和为1,a b()1+展开式中所有项的系数和为2,a b()2+展开式中所有项的系数和为4,a b()3a b +展开式中所有项的系数和为8,……()n a b +展开式中所有项的系数和为2n ,()8a b +展开式中所有项的系数和为82256=.故选:C .【点睛】本题考查了“杨辉三角”展开式中所有项的系数和的求法,解题关键是通过观察得出系数和的规律.二、填空题11.计算22-的结果是______.【答案】14【分析】根据负整数指数幂的运算法则计算即可.【解析】解:2211224-==,故答案为:14.【点睛】本题考查了负整数指数幂,熟知运算法则是解题的关键.12.计算:(xy )2=_____.(﹣m 2)3=_____.2a •(﹣3b )=_____.(a 6﹣2a 3)÷a 3=_____.【答案】x2y2﹣m6-6ab a3﹣2a3【分析】根据单项式的乘法,积的乘方、幂的乘方的性质,多项式除以单项式分别计算求解即可.【解析】解:(xy)2=x2y2;(﹣m2)3=﹣m6;2a•(﹣3b)=-6ab;(a6﹣2a3)÷a3=a6÷a3﹣2a3÷a3= a3﹣2.故答案为:x2y2;﹣m6;-6ab;a3﹣2.【点睛】本题考查了单项式的乘法,积的乘方、幂的乘方,多项式除以单项式,熟练掌握运算法则和性质是解题的关键.13.用科学记数法表示0.00000012为________.【答案】71.210-´【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解析】解:0.00000012=1.2×10-7.故答案为:1.2×10-7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.若式子x2+16x+k是一个完全平方式,则k=______.【答案】64【分析】根据完全平方公式解答即可.【解析】解:∵(x+8)2=x2+16x+64=x2+16x+k,∴k=64.故填64.【点睛】本题主要考查了完全平方公式,掌握完全平方公式的结构特点成为解答本题的关键.15.(8x2+4x)(-8x2+4x)=_______.【答案】16x2 - 64x4x4+16x2【分析】利用平方差公式进行计算.【解析】解:原式=(4x)2-(8x2)2=16x2 - 64x4,故答案为:16x2 - 64x4.【点睛】本题考查平方差公式,掌握平方差公式(a +b )(a -b )=a 2-b 2的结构是解题关键.16.(23)(23)a b c a b c -++-=______.【答案】2224129a b bc c -+-【分析】根据整式的乘法运算法则,平方差公式以及完全平方公式计算求解即可.【解析】解:(23)(23)a b c a b c -++-,[(23)][(23)]a b c a b c =--+-,22(23)a b c =--,()2224129a b bc c =--+,2224129a b bc c =-+-.故答案为:2224129a b bc c -+-.【点睛】此题考查了整式的乘法运算和平方差公式,解题的关键是熟练掌握整式的乘法运算法则,平方差公式和完全平方公式.17.若x m -与23x +的乘积中不含一次项,则m 的值为____________.【答案】32【分析】先计算()()()2232323x m x x m x m -+=+--,再由乘积中不含x 的一次项,可得320m -=从而可得答案.【解析】解:∵()()()222322332323x m x x mx x m x m x m -+=-+-=+--且2x m +与2x +的乘积中不含x 的一次项,∴320m -= ∴32m = 故答案为:32.【点睛】本题考查的是多项式的乘法运算,多项式中不含某项,掌握以上知识是解题的关键.18.对a ,b ,c ,d 定义一种新运算:a c ad bcb d =-,如232413514=´-´=,计算2x y x x y=+_________.【答案】22x xy+【分析】根据新定义规则把行列式化为常规乘法,利用多项式乘法法则展开,合并同类项即可.【解析】解:()2222222xy x x y xy x xy xy x xy x x y=+-=+-=++.故答案为:22x xy +.【点睛】本题考查新定义,整式的乘法混合运算,掌握新定义规则,整式的乘法混合运算法则是解题关键.19.1921年伟大的中国共产党成立,2021年中国共产党迎来了百年华诞,若()()19212021520a a ++=,则()()2219212021a a +++的值为 _____.【答案】11040【分析】利用完全平方公式列出关系式,把各自的值代入计算即可求出所求.【解析】解:∵()()19212021520a a ++=,()()2021192120211921100a a a a +-+=+--=,∴()()()()()()2222021192119212021219212021a a a a a a +-++++++éëû=-ù,∴()()2210000192120211040a a +-=++,则()()221921202111040a a =+++.故答案为:11040.【点睛】本题考查完全平方公式的变形运用,理解并熟练运用完全平方公式,运用整体思想是解题关键.20.已知23,32a b ==,则1111a b +=++_______.【答案】1.【分析】利用幂的乘方与同底数幂相乘,得到2a +1=2a ×2=6,3b +1=3b ×3=6,进而得到111111116666a b a b +++++×==,求出答案即可.【解析】解:∵2a +1=2a ×2=3×2=6,3b +1=3b ×3=2×3=6,∴11111(2)62a a a +++==,11111(3)63b b b +++==,∴11111111666236a b a b +++++×==´=,∴11111a b +=++.故答案为:1.【点睛】本题考查幂的乘方与同底数幂相乘,掌握幂的乘方与同底数幂相乘的运算法则是解题关键.三、解答题21.计算:(1)()()22012011 3.142p -æö-+---ç÷èø(2)32332(2)(2)(2)(2)x y xy x y x ×-+-¸(3)()()222226633m n m n m m --¸-【答案】(1)4;(2)7312x y -;(3)2221-++n n 【分析】(1)利用-1的偶次幂的法则、负指数幂法则、零指数幂法则即可得到答案;(2)根据乘方法则再利用单项式乘除单项式法则即可得到答案;(3)根据多项式除以单项式法则计算即可得到答案;【解析】解:(1)()()22012011 3.142p -æö-+---ç÷èø1414=+-=;(2)32332(2)(2)(2)(2)x y xy x y x ×-+-¸629324(2)(8)2x y xy x y x =×-+-¸7373(8)(4)x y x y -+-=7312x y =-;(3)()()222226633m n m n m m --¸-=()()222221(3)3n n m m -++-¸-2221n n =-++;【点睛】本题考查了整式的混合运算,知识点有:-1的偶次幂的法则、负指数幂法则、零指数幂法则、单项式乘除单项式、多项式除以单项式,熟练掌握公式及法则是做题的关键.22.先化简,再求值.()()()()25222232m n n m n m n n n m éùæö--+++-¸ç÷êúèøëû,其中2m =,1n =-.【答案】−2n−m ;0【分析】先根据整式的混合运算的法则化简,再把2m =,1n =-代入即可【解析】解:()()()()25222232m n n m n m n n m m éùæö--+++-¸ç÷êúèøëû()22222442543m mn n mn n n m m éù=-+--+-¸ëû()26332mn m m n méù=--¸=--ëû当2m =,1n =-时,原式=2-2=0【点睛】本题考查了整式的化简求值,熟练掌握相关的法则是解题的关键23.①先化简,再求值:(4x +3)(x -2)-2(x -1)(2x -3),x =-2;②若(x 2+px +q )(x 2-3x +2)的结果中不含x 3和x 2项,求p 和q 的值.【答案】①512x -,22-;②p =3,q =7.【分析】①先去括号再合并同类项,将x=-2代入化简后的结果计算;②先按照多项式乘以多项式将括号打开,再根据不含项的系数为0得到方程,解方程即可得到答案.【解析】①(4x +3)(x -2)-2(x -1)(2x -3),=2248362(2323)x x x x x x -+----+ ,=224564106x x x x ---+-,=512x -∵x =-2,∴原式=-10-12=-22;②(x 2+px +q )(x 2-3x +2),=432322323232x x x px px px qx qx q -++-++-+,=432(3)(23)(2)2x p x p q x p q x q +-+-++-+,∵结果中不含x 3和x 2项,∴30-=p ,230p q -+=,∴p=3,∴q=7.【点睛】此题考查整式的混合运算,整式的不含某项的化简求值,将整式正确化简计算是解题的关键.24.若m n a a =(0a >且1a ¹,m 、n 是正整数),则m n =.你能利用上面的结论解决下面两个问题吗?试试看,相信你一定行!(1)若228x ´=,求x 的值;(2)若()2893x =,求x 的值.【答案】(1)2;(2)2【分析】(1)根据a m =a n (a >0且a≠1,m 、n 是正整数),则m=n ,对方程变形可得答案;(2)根据a m =a n (a >0且a≠1,m 、n 是正整数),则m=n ,对方程变形可得答案.【解析】解:(1)原方程等价于2x+1=23,∴x+1=3,解得x=2;(2)原方程等价于34x =38,∴4x=8,解得x=2.【点睛】此题考查了同底数幂乘法与幂的乘方,利用相关运算法则化成底数相同的幂是解题关键.25.如图1,在一个边长为a 的正方形木板上锯掉一个边长为b 的正方形, 并把余下的部分沿虚线剪开拼成图2的形状.(1)请用两种方法表示阴影部分的面积图1得: ; 图2得 ;(2)由图1与图2 面积关系,可以得到一个等式: ;(3)利用(2)中的等式,已知2216a b -=,且a+b=8,则a-b= .【答案】(1)22a b -,()()a b a b +-;(2)()()22a b a b a b -=+-;(3)2.【分析】(1)图1用大正方形的面积减去小正方形的面积表示阴影部分的面积;图2根据梯形的面积公式表示阴影部分的面积;(2)根据阴影部分的面积相等,可直接得出等式;(3)利用(2)中的等式,代入数据求解即可【解析】解:(1)图1得:22a b -;图2得:()()()()222b a a b a b a b +×-=+-;故答案为:22a b -,()()a b a b +-;(2)由图1与图2阴影部分的面积相等可得:()()22a b a b a b -=+-;故答案为:()()22a b a b a b -=+-;(3)∵2216a b -=,8a b +=,()()22a b a b a b -=+-,∴()168a b =-,∴2a b -=,故答案为:2.【点睛】本题考查了平方差公式的几何意义,正确的表示出阴影部分的面积是解题关键.26.如图①,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分如图剪开,拼成图②的长方形(1)比较两图的阴影部分面积,可以得到乘法公式: (用字母表示)(2)请应用这个公式完成下列各题①计算:(2)a b c +- (2)a b c -+②计算:222222221009998974321-+-+¼¼+-+-【答案】(1)22()()a b a b a b -=-+;(2)①22242a b bc c -+-;②5050.【分析】(1)分别由图①、②求出阴影部分的面积,即可得出结论;(2)①利用添括号法则将b-c 看成一个整体,然后利用平方差公式和完全平方公式计算即可;②利用平方差公式计算即可.【解析】解:(1)由图①可知:阴影部分的面积为22a b -;由图②可知:阴影部分的面积为()()a b a b -+∴22()()a b a b a b -=-+故答案为:22()()a b a b a b -=-+;(2)①(2)(2)a b c a b c +--+22(2)()a b c =--22242a b bc c =-+-;②原式(10099)(10099)(9897)(9897)(21)(21)=+-++-+¼¼++-1009998974321=++++¼¼++++5050=.【点睛】此题考查的是平方差公式的几何意义和平方差公式的应用,掌握平方差公式和完全平方公式是解决此题的关键.27.如图,将边长为x 的正方形分割成两个正方形和两个长方形.两个正方形的面积分别为y 和25,仔细观察图形.(1)用x 的代数式表示y(2)若(1)得到的算式中,x 、y 表示任何非负数,求满足下列条件的x 、y 的值:①用x 、y 、5、6组成4个连续的整数;②当x 为何值时,y 有最小值?【答案】(1)()()255y x x =-³;(2)①3x =,4y =或7x =,4y =.②当5x =时,y 最小值是0【分析】(1)根据图形中的面积关系,即可得到答案;(2)①对“6”分3类讨论:“当6为最大的数”或“当6为较大的数”或“当6为较小的数”分别求出满足条件的x ,y 的值,即可.②根据()250y x =-³,即可求出y 的最小值和对应的x 的值.【解析】(1)()()255y x x =-³(2)①当6为最大的数时,3x =,4y =,符合21025y x x =-+;当6为较大的数时,7x =,4y =,21025y x x =-+;当6为较小的数时,8x =,7y =,不符合21025y x x =-+;3x \=,4y =或7x =,4y =.②()2210255y x x x =-+=-Q ,\当5x =时,y 最小值是0.【点睛】本题主要考查根据图形列等式,用代数式表示图形各个相关的量,是解题的关键.28.探索题:()()2111x x x -+=-;()()23111x x x x -++=-;()()324111x x x x x -+++=-;()()4325111x x x x x x -++++=-…根据前面的规律,回答下列问题:(1)()()4123211n n x x x x x x x ---+++++++=L ______.(2)当3x =时,()()20192018201732313333331-+++++++=L ______.(3)求:202020192018322222221+++++++L 的值(请写出解题过程).【答案】(1)11x x +-;(2)202031-;(3)见解析,202121-.【分析】(1)根据所给的四个等式归纳规律解答即可;(2)把x=3,n=20119代入(1)中的等式求值即可;(3)根据(1)中得到的规律,在所求的代数式前添加(2-1),然后再计算即可.【解析】解:(1)由所给的四个等式,可归纳出:()()12321111n n n n x x x x x x x x --+-+++++++=-L ;故答案为:11x x +-;(2)当3x =时,()()20152018201732202031333333131-+++++++=-L ;故答案为:202031-;(3)当2x =时,()()20202019201832202121222222121-+++++++=-L ,∴202020192018322021222222121+++++++=-L .【点睛】本题考查了平方差公式,乘方的末位数字的规律,根据所给等式归纳出规律是解答本题的关键.29.(探究)如图①,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分沿虚线剪开,拼成图②的长方形.(1)请你分别表示出这两个图形中阴影部分的面积:图① 图② ;(2)比较两图的阴影部分面积,可以得到乘法公式: (用字母a 、b 表示);(应用)请应用这个公式完成下列各题:①已知2m ﹣n =3,2m +n =4,则4m 2﹣n 2的值为 ;②计算:(x ﹣3)(x +3)(x 2+9).(拓展)计算()()()()()248322121212121+++++L 的结果为 .【答案】探究:(1)22a b -,()()a b a b +-;(2)22()()a b a b a b +-=-;应用:①12;②481x -;拓展:6421-.【分析】探究:(1)图①阴影部分的面积等于两个正方形的面积差,图②阴影部分的面积等于一个大长方形的面积;(2)根据图①与图②的面积相等即可得;应用:①根据上述得到的乘法公式(平方差公式)即可得;②利用两次平方差公式即可得;拓展:将原式改写成()()()()()()24832212121221211+++-++L ,再多次利用平方差公式即可得.【解析】探究:(1)图①阴影部分的面积为两个正方形的面积差,即22a b -,图②的阴影部分为长为()a b +,宽为()-a b 的矩形,则其面积为()()a b a b +-,故答案为:22a b -,()()a b a b +-;(2)由图①与图②的面积相等可得到乘法公式:22()()a b a b a b +-=-,故答案为:22()()a b a b a b +-=-;应用:①22()(422342)1m n m n m n -+=´=-=,故答案为:12;②原式22(9)(9)x x =-+,222()9x =-,481x =-;拓展:原式()()()()()()24832212121212211+++=-++L ,()()()()()2248322121212121++=-++L ,()()()()4348221212121=++-+L ,()()()8328212121=-++L ,()()32322121=-+,6421=-.【点睛】本题考查了平方差公式与几何图形、以及应用,熟练掌握平方差公式是解题关键.。

第12章《整式的乘除》单元测试(含答案解析)

第12章《整式的乘除》单元测试(含答案解析)

<第12章整式的乘除>一、选择题1.假设3×9m×27m =321 ,那么m的值为 ( )A.3 B.4 C.5 D.62.要使多项式 (x2 +px +2 ) (x﹣q )不含关于x的二次项 ,那么p与q的关系是 ( ) A.相等 B.互为相反数C.互为倒数 D.乘积为﹣13.假设|x +y +1|与 (x﹣y﹣2 )2互为相反数 ,那么 (3x﹣y )3的值为 ( )A.1 B.9 C.﹣9 D.274.假设x2﹣kxy +9y2是一个两数和 (差 )的平方公式 ,那么k的值为 ( )A.3 B.6 C.±6 D.±815.多项式 (17x2﹣3x +4 )﹣ (ax2 +bx +c )能被5x整除 ,且商式为2x +1 ,那么a﹣b +c = ( )A.12 B.13 C.14 D.196.以下运算正确的选项是 ( )A.a +b =ab B.a2•a3 =a5C.a2 +2ab﹣b2 = (a﹣b )2D.3a﹣2a =17.假设a4 +b4 +a2b2 =5 ,ab =2 ,那么a2 +b2的值是 ( )A.﹣2 B.3 C.±3 D.28.以下因式分解中 ,正确的选项是 ( )A.x2y2﹣z2 =x2 (y +z ) (y﹣z ) B.﹣x2y +4xy﹣5y =﹣y (x2 +4x +5 )C. (x +2 )2﹣9 = (x +5 ) (x﹣1 ) D.9﹣12a +4a2 =﹣ (3﹣2a )29.设一个正方形的边长为1cm ,假设边长增加2cm ,那么新正方形的面积增加了 ( )A.6cm2B.5cm2C.8cm2D.7cm210.在边长为a的正方形中挖去一个边长为b的小正方形 (a>b ) (如图甲 ) ,把余下的局部拼成一个矩形 (如图乙 ) ,根据两个图形中阴影局部的面积相等 ,可以验证 ( )A. (a +b )2 =a2 +2ab +b2B. (a﹣b )2 =a2﹣2ab +b2C.a2﹣b2 = (a +b ) (a﹣b ) D. (a +2b ) (a﹣b ) =a2 +ab﹣2b2二、填空题11.假设把代数式x2﹣2x﹣3化为 (x﹣m )2 +k的形式 ,其中m ,k为常数 ,那么m +k = .12.现在有一种运算:a※b =n ,可以使: (a +c )※b =n +c ,a※ (b +c ) =n﹣2c ,如果1※1 =2 ,那么2021※2021 =.13.如果x +y =﹣4 ,x﹣y =8 ,那么代数式x2﹣y2的值是.14.假设 (x﹣m )2 =x2 +x +a ,那么m = .15.假设x3 =﹣8a9b6 ,那么x .16.计算: (3m﹣n +p ) (3m +n﹣p ) = .17.阅读以下文字与例题将一个多项式分组后 ,可提公因式或运用公式继续分解的方法是分组分解法.例如: (1 )am +an +bm +bn = (am +bm ) + (an +bn )=m (a +b ) +n (a +b )= (a +b ) (m +n )(2 )x2﹣y2﹣2y﹣1 =x2﹣ (y2 +2y +1 )=x2﹣ (y +1 )2= (x +y +1 ) (x﹣y﹣1 )试用上述方法分解因式a2 +2ab +ac +bc +b2 = .18.观察 ,分析 ,猜想:1×2×3×4 +1 =52;2×3×4×5 +1 =112;3×4×5×6 +1 =192;4×5×6×7 +1 =292;n (n +1 ) (n +2 ) (n +3 ) +1 = . (n为整数 )三、解答题 (共46分 )19.通过对代数式的适当变形 ,求出代数式的值.(1 )假设x +y =4 ,xy =3 ,求 (x﹣y )2 ,x2y +xy2的值.(2 )假设x = ,y = ,求x2﹣xy +y2的值.(3 )假设x2﹣5x =3 ,求 (x﹣1 ) (2x﹣1 )﹣ (x +1 )2 +1的值.(4 )假设m2 +m﹣1 =0 ,求m3 +2m2 +2021的值.20.2a =5 ,2b =3 ,求2a +b +3的值.21.利用因式分解计算:1﹣22 +32﹣42 +52﹣62 +… +992﹣1002 +1012.22.先化简 ,再求值:x (x﹣2 )﹣ (x +1 ) (x﹣1 ) ,其中x =10.23.利用分解因式说明: (n +5 )2﹣ (n﹣1 )2能被12整除.24.观察以下等式:1× =1﹣ ,2× =2﹣ ,3× =3﹣,…(1 )猜想并写出第n个等式;(2 )证明你写出的等式的正确性.<第12章整式的乘除>参考答案与试题解析一、选择题1.假设3×9m×27m =321 ,那么m的值为 ( )A.3 B.4 C.5 D.6【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】先逆用幂的乘方的性质转化为以3为底数的幂相乘 ,再利用同底数幂的乘法的性质计算后根据指数相等列出方程求解即可.【解答】解:3•9m•27m =3•32m•33m =31 +2m +3m =321 ,∴1 +2m +3m =21 ,解得m =4.应选B.【点评】此题考查了幂的乘方的性质的逆用 ,同底数幂的乘法 ,转化为同底数幂的乘法 ,理清指数的变化是解题的关键.2.要使多项式 (x2 +px +2 ) (x﹣q )不含关于x的二次项 ,那么p与q的关系是 ( ) A.相等 B.互为相反数C.互为倒数 D.乘积为﹣1【考点】多项式乘多项式.【分析】把式子展开 ,找到所有x2项的所有系数 ,令其为0 ,可求出p、q的关系.【解答】解:∵ (x2 +px +2 ) (x﹣q ) =x3﹣qx2 +px2﹣pqx +2x﹣2q =﹣2q + (2﹣pq )x + (p﹣q )x2 +x3.又∵结果中不含x2的项 ,∴p﹣q =0 ,解得p =q.应选A.【点评】此题主要考查了多项式乘多项式的运算 ,注意当要求多项式中不含有哪一项时 ,应让这一项的系数为0.3.假设|x +y +1|与 (x﹣y﹣2 )2互为相反数 ,那么 (3x﹣y )3的值为 ( )A.1 B.9 C.﹣9 D.27【考点】解二元一次方程组;非负数的性质:绝||对值;非负数的性质:偶次方.【专题】方程思想.【分析】先根据相反数的定义列出等式|x +y +1| + (x﹣y﹣2 )2 =0 ,再由非负数的性质求得x、y的值 ,然后将其代入所求的代数式 (3x﹣y )3并求值.【解答】解:∵|x +y +1|与 (x﹣y﹣2 )2互为相反数 ,∴|x +y +1| + (x﹣y﹣2 )2 =0 ,∴ ,解得 , ,∴ (3x﹣y )3 = (3× + )3 =27.应选D.【点评】此题主要考查了二元一次方程组的解法、非负数的性质﹣﹣绝||对值、非负数的性质﹣﹣偶次方.解题的关键是利用互为相反数的性质列出方程 ,再由非负数是性质列出二元一次方程组.4.假设x2﹣kxy +9y2是一个两数和 (差 )的平方公式 ,那么k的值为 ( )A.3 B.6 C.±6 D.±81【考点】完全平方式.【专题】计算题.【分析】利用完全平方公式的结构判断即可确定出k的值.【解答】解:∵x2﹣kxy +9y2是一个两数和 (差 )的平方公式 ,∴﹣k =±6 ,那么k =±6.应选C.【点评】此题考查了完全平方式 ,熟练掌握完全平方公式是解此题的关键.5.多项式 (17x2﹣3x +4 )﹣ (ax2 +bx +c )能被5x整除 ,且商式为2x +1 ,那么a﹣b +c = ( )A.12 B.13 C.14 D.19【考点】整式的除法.【专题】计算题.【分析】根据商乘以除数等于被除数列出关系式 ,整理后利用多项式相等的条件确定出a ,b ,c的值 ,即可求出a﹣b +c的值.【解答】解:依题意 ,得 (17x2﹣3x +4 )﹣ (ax2 +bx +c ) =5x (2x +1 ) ,∴ (17﹣a )x2 + (﹣3﹣b )x + (4﹣c ) =10x2 +5x ,∴17﹣a =10 ,﹣3﹣b =5 ,4﹣c =0 ,解得:a =7 ,b =﹣8 ,c =4 ,那么a﹣b +c =7 +8 +4 =19.应选D.【点评】此题考查了整式的除法 ,熟练掌握运算法那么是解此题的关键.6.以下运算正确的选项是 ( )A.a +b =ab B.a2•a3 =a5C.a2 +2ab﹣b2 = (a﹣b )2D.3a﹣2a =1【考点】同底数幂的乘法;合并同类项.【专题】存在型.【分析】分别根据合并同类项、同底数幂的乘法及完全平方公式对各选项进行解答即可.【解答】解:A、a与b不是同类项 ,不能合并 ,故本选项错误;B、由同底数幂的乘法法那么可知 ,a2•a3 =a5 ,故本选项正确;C、a2 +2ab﹣b2不符合完全平方公式 ,故本选项错误;D、由合并同类项的法那么可知 ,3a﹣2a =a ,故本选项错误.应选B.【点评】此题考查的是合并同类项、同底数幂的乘法及完全平方公式 ,熟知以上知识是解答此题的关键.7.假设a4 +b4 +a2b2 =5 ,ab =2 ,那么a2 +b2的值是 ( )A.﹣2 B.3 C.±3 D.2【考点】因式分解 -运用公式法.【分析】利用完全平方公式分解因式进而求出即可.【解答】解:由题意得 (a2 +b2 )2 =5 +a2b2 ,因为ab =2 ,所以a2 +b2 = =3.应选:B.【点评】此题主要考查了公式法分解因式 ,熟练利用完全平方公式是解题关键.8.以下因式分解中 ,正确的选项是 ( )A.x2y2﹣z2 =x2 (y +z ) (y﹣z ) B.﹣x2y +4xy﹣5y =﹣y (x2 +4x +5 )C. (x +2 )2﹣9 = (x +5 ) (x﹣1 ) D.9﹣12a +4a2 =﹣ (3﹣2a )2【考点】提公因式法与公式法的综合运用.【分析】根据分解因式就是把一个多项式化为几个整式的积的形式的定义 ,利用排除法求解.【解答】解:A、用平方差公式 ,应为x2y2﹣z2 = (xy +z ) (xy﹣z ) ,故本选项错误;B、提公因式法 ,符号不对 ,应为﹣x2y +4xy﹣5y =﹣y (x2﹣4x +5 ) ,故本选项错误;C、用平方差公式 , (x +2 )2﹣9 = (x +2 +3 ) (x +2﹣3 ) = (x +5 ) (x﹣1 ) ,正确;D、完全平方公式 ,不用提取负号 ,应为9﹣12a +4a2 = (3﹣2a )2 ,故本选项错误.应选C.【点评】此题考查了提公因式法 ,公式法分解因式 ,熟练掌握公式的结构特征是解题的关键.9.设一个正方形的边长为1cm ,假设边长增加2cm ,那么新正方形的面积增加了 ( )A.6cm2B.5cm2C.8cm2D.7cm2【考点】完全平方公式.【专题】计算题.【分析】根据题意列出算式 ,计算即可得到结果.【解答】解:根据题意得: (1 +2 )2﹣12 =9﹣1 =8 ,即新正方形的面积增加了8cm2 ,应选C.【点评】此题考查了完全平方公式 ,熟练掌握完全平方公式是解此题的关键.10.在边长为a的正方形中挖去一个边长为b的小正方形 (a>b ) (如图甲 ) ,把余下的局部拼成一个矩形 (如图乙 ) ,根据两个图形中阴影局部的面积相等 ,可以验证 ( )A. (a +b )2 =a2 +2ab +b2B. (a﹣b )2 =a2﹣2ab +b2C.a2﹣b2 = (a +b ) (a﹣b ) D. (a +2b ) (a﹣b ) =a2 +ab﹣2b2【考点】平方差公式的几何背景.【分析】第|一个图形中阴影局部的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积 ,等于a2﹣b2;第二个图形阴影局部是一个长是 (a +b ) ,宽是 (a﹣b )的长方形 ,面积是 (a +b ) (a﹣b );这两个图形的阴影局部的面积相等.【解答】解:∵图甲中阴影局部的面积 =a2﹣b2 ,图乙中阴影局部的面积 = (a +b ) (a﹣b ) , 而两个图形中阴影局部的面积相等 ,∴阴影局部的面积 =a2﹣b2 = (a +b ) (a﹣b ).应选:C.【点评】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差 ,这个公式就叫做平方差公式.二、填空题11.假设把代数式x2﹣2x﹣3化为 (x﹣m )2 +k的形式 ,其中m ,k为常数 ,那么m +k = .【考点】完全平方公式.【专题】配方法.【分析】根据完全平方公式的结构 ,按照要求x2﹣2x﹣3 =x2﹣2x +1﹣4 = (x﹣1 )2﹣4 ,可知m =1.k =﹣4 ,那么m +k =﹣3.【解答】解:∵x2﹣2x﹣3 =x2﹣2x +1﹣4 = (x﹣1 )2﹣4 ,∴m =1 ,k =﹣4 ,∴m +k =﹣3.故答案为:﹣3.【点评】此题主要考查完全平方公式的变形 ,熟记公式结构是解题的关键.完全平方公式: (a±b )2 =a2±2ab +b2.12.现在有一种运算:a※b =n ,可以使: (a +c )※b =n +c ,a※ (b +c ) =n﹣2c ,如果1※1 =2 ,那么2021※2021 =.【考点】整式的除法.【专题】新定义.【分析】先设出2021※2021 =m ,再根据新运算进行计算 ,求出m的值即可.【解答】解:设2021※2021 =m ,由得 , (1 +2021 )※1 =2 +2021 ,2021※ (2021﹣2021 ) =m +2×2021 ,那么2 +2021 =m +2×2021 ,解得,m =2021※2021 = (2 +2021 )﹣2021×2 =﹣2021.故答案为:﹣2021.【点评】此题主要考查了有理数的混合运算 ,在解题时要注意按照两者的转换公式进行计算即可.13.如果x +y =﹣4 ,x﹣y =8 ,那么代数式x2﹣y2的值是.【考点】平方差公式.【专题】计算题.【分析】由题目可发现x2﹣y2 = (x +y ) (x﹣y ) ,然后用整体代入法进行求解.【解答】解:∵x +y =﹣4 ,x﹣y =8 ,∴x2﹣y2 = (x +y ) (x﹣y ) = (﹣4 )×8 =﹣32.故答案为:﹣32.【点评】此题考查了平方差公式 ,由题设中代数式x +y ,x﹣y的值 ,将代数式适当变形 ,然后利用 "整体代入法〞求代数式的值.14.假设 (x﹣m )2 =x2 +x +a ,那么m = .【考点】完全平方公式.【专题】计算题.【分析】等式左边利用完全平方公式展开 ,利用多项式相等的条件确定出m的值即可.【解答】解:∵ (x﹣m )2 =x2 +x +a =x2﹣2mx +m2 ,∴﹣2m =1 ,a =m2 ,那么m =﹣ ,a =.故答案为:﹣【点评】此题考查了完全平方公式 ,熟练掌握完全平方公式是解此题的关键.15.假设x3 =﹣8a9b6 ,那么x .【考点】幂的乘方与积的乘方.【分析】根据幂的乘方与积的乘方法那么进行解答即可.【解答】解:∵x3 =﹣8a9b6 ,∴x3 = (﹣2a3b2 )3 ,∴x =﹣2a3b2.故答案为: =﹣2a3b2.【点评】此题考查的是幂的乘方与积的乘方法那么 ,先根据题意得出x3 = (﹣2a3b2 )3是解答此题的关键.16.计算: (3m﹣n +p ) (3m +n﹣p ) = .【考点】平方差公式;完全平方公式.【专题】计算题.【分析】原式利用平方差公式化简 ,再利用完全平方公式计算即可得到结果.【解答】解:原式 =9m2﹣ (n﹣p )2 =9m2﹣n2 +2np﹣p2.故答案为:9m2﹣n2 +2np﹣p2【点评】此题考查了平方差公式 ,以及完全平方公式 ,熟练掌握公式是解此题的关键.17.阅读以下文字与例题将一个多项式分组后 ,可提公因式或运用公式继续分解的方法是分组分解法.例如: (1 )am +an +bm +bn = (am +bm ) + (an +bn )=m (a +b ) +n (a +b )= (a +b ) (m +n )(2 )x2﹣y2﹣2y﹣1 =x2﹣ (y2 +2y +1 )=x2﹣ (y +1 )2= (x +y +1 ) (x﹣y﹣1 )试用上述方法分解因式a2 +2ab +ac +bc +b2 = .【考点】因式分解 -分组分解法.【专题】压轴题;阅读型.【分析】首||先进行合理分组 ,然后运用提公因式法和公式法进行因式分解.【解答】解:原式 = (a2 +2ab +b2 ) + (ac +bc )= (a +b )2 +c (a +b )= (a +b ) (a +b +c ).故答案为 (a +b ) (a +b +c ).【点评】此题考查了因式分解法 ,要能够熟练运用分组分解法、提公因式法和完全平方公式.18.观察 ,分析 ,猜想:1×2×3×4 +1 =52;2×3×4×5 +1 =112;3×4×5×6 +1 =192;4×5×6×7 +1 =292;n (n +1 ) (n +2 ) (n +3 ) +1 = . (n为整数 )【考点】规律型:数字的变化类.【分析】观察以下各式:1×2×3×4 +1 =52 = (12 +3×1 +1 )2;2×3×4×5 +1 =112 = (22 +3×2 +1 )2;3×4×5×6 +1 =192 = (32 +3×3 +1 )2 ,4×5×6×7 +1 =292 = (42 +3×4 +1 )2 ,得出规律:n (n +1 ) (n +2 ) (n +3 ) +1 = (n2 +3×n +1 )2 , (n≥1 ).【解答】解:∵1×2×3×4 +1 =[ (1×4 ) +1]2 =52 ,2×3×4×5 +1 =[ (2×5 ) +1]2 =112 ,3×4×5×6 +1 =[ (3×6 ) +1]2 =192 ,4×5×6×7 +1 =[ (4×7 ) +1]2 =292 ,∴n (n +1 ) (n +2 ) (n +3 ) +1 = (n2 +3×n +1 )2.故答案为:n (n +1 ) (n +2 ) (n +3 ) +1 = (n2 +3×n +1 )2.【点评】此题考查了数字的变化规律 ,解答此题的关键是发现规律为n (n +1 ) (n +2 ) (n +3 ) +1 = (n2 +3n +1 )2 (n≥1 ) ,一定要通过观察 ,分析、归纳并发现其中的规律.三、解答题 (共46分 )19.通过对代数式的适当变形 ,求出代数式的值.(1 )假设x +y =4 ,xy =3 ,求 (x﹣y )2 ,x2y +xy2的值.(2 )假设x = ,y = ,求x2﹣xy +y2的值.(3 )假设x2﹣5x =3 ,求 (x﹣1 ) (2x﹣1 )﹣ (x +1 )2 +1的值.(4 )假设m2 +m﹣1 =0 ,求m3 +2m2 +2021的值.【考点】整式的混合运算 -化简求值.【分析】 (1 )将 (x﹣y )2通过配方法转化成 (x +y )2 ,x2y +xy2因式分解即可;(2 )利用配方法转化成 = (x +y )2﹣3xy即可;(3 )根据整式的乘法把式子展开即可;(4 )先把m2 +m﹣1 =0 ,变形为m2 =1﹣m.把m3 +2m2 +2021变形为m2(m +2 ) +2021 = (1﹣m ) (m +2 ) +2021即可;【解答】解: (1 ) (x﹣y )2 =x2﹣2xy +y2 =x2 +2xy +y2﹣4xy = (x +y )2﹣4xy42﹣4×3 =4 , x2y +xy2 =xy (x +y ) =3×4 =12 ,(2 )x2﹣xy +y2 = (x +y )2﹣3xy = ( + +﹣ )2﹣3 ( + ) (﹣ ) = (2 )2﹣3×2 =28﹣6 =22(3 ) (x﹣1 ) (2x﹣1 )﹣ (x +1 )2 +1 =2x2﹣3x +1﹣ (x2 +2x +1 ) +1 =x2﹣5x +1 =3 +1 =44 )由m2 +m﹣1 =0 ,得m2 =1﹣m.把m3 +2m2 +2021 =m2(m +2 ) +2021 = (1﹣m ) (m +2 ) +2021 =m﹣1﹣m +2 +2021【点评】此题考查了学生的应用能力 ,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.20.2a =5 ,2b =3 ,求2a +b +3的值.【考点】同底数幂的乘法.【分析】直接利用同底数幂的乘法运算法那么求出即可.【解答】解:2a +b +3 =2a•2b•23 =5×3×8 =120.【点评】此题主要考查了同底数幂的乘法运算 ,熟练掌握运算法那么是解题关键.21.利用因式分解计算:1﹣22 +32﹣42 +52﹣62 +… +992﹣1002 +1012.【考点】因式分解的应用.【分析】先把原式变形为1 +32﹣22 +52﹣42 +… +1012﹣1002,再因式分解得1 + (3 +2 ) + (5 +4 ) +… + (101 +100 ) ,然后进行计算即可.【解答】解:1﹣22 +32﹣42 +52﹣62 +… +992﹣1002 +1012=1 +32﹣22 +52﹣42 +… +1012﹣1002=1 + (3 +2 ) (3﹣2 ) + (5 +4 ) (5﹣4 ) +… + (101 +100 ) (101﹣100 )=1 + (3 +2 ) + (5 +4 ) +… + (101 +100 )==5151.【点评】此题考查了因式分解的应用 ,用到的知识点是平方差公式 ,关键是对要求的式子进行变形 ,注意总结规律 ,得出结果.22.先化简 ,再求值:x (x﹣2 )﹣ (x +1 ) (x﹣1 ) ,其中x =10.【考点】整式的混合运算 -化简求值.【专题】计算题.【分析】按单项式乘以单项式法那么和平方差公式化简 ,然后把给定的值代入求值.【解答】解:原式 =x2﹣2x﹣x2 +1 =﹣2x +1 ,当x =10时 ,原式 =﹣2×10 +1 =﹣19.【点评】考查的是整式的混合运算 ,主要考查了公式法、单项式与多项式相乘以及合并同类项的知识点.23.利用分解因式说明: (n +5 )2﹣ (n﹣1 )2能被12整除.【考点】因式分解的应用.【分析】将原式因式分解 ,结果能被12整除即可.【解答】解:因为 (n +5 )2﹣ (n﹣1 )2 =n2 +10n +25﹣ (n2﹣2n +1 ) =12 (n +2 ) ,所以 (n +5 )2﹣ (n﹣1 )2能被12整除.【点评】考查了因式分解的应用 ,解决此题的关键是用因式分解法把所给式子整理为含有12的因数相乘的形式.24.观察以下等式:1× =1﹣ ,2× =2﹣ ,3× =3﹣,…(1 )猜想并写出第n个等式;(2 )证明你写出的等式的正确性.【考点】规律型:数字的变化类.【专题】证明题;探究型.【分析】 (1 )等号左边第|一个因数为整数 ,与第二个因数的分子相同 ,第二个因数的分母比分子多1;等号右边为等号左边的第|一个数式﹣第二个因数 ,即n× =n﹣;(2 )把左边进行整式乘法 ,右边进行通分.【解答】解: (1 )猜想:n× =n﹣;(2 )证:右边 = = =左边 ,即n× =n﹣.【点评】主要考查:等式找规律 ,难点是怎样证明 ,不是验证.此题隐含着逆向思维及数学归纳法的思想.。

北师大版七年级下册数学整式的乘除单元测试

北师大版七年级下册数学整式的乘除单元测试

、选择题1. 下列计算正确的是( )A. (- 2a ) 2=2a 2B.a 6- a =a 2C.3aa i 2=3a 3D. (- 2a 2) (- 3a 3) =6a 62. 若(m -3) °=1,则m 的取值为()A.m=3B.m M3.m < 3 D.m > 33. 运用乘法公式计算(2+a )( a - 2)的结果是()A.a 2 - 4a - 4B.a 2 - 2a - 4C.4 - a 2D.a 2 - 44. 下列能用平方差公式计算的是( )A. (- x+y )( x -y )B. (x - 1)( - 1 - x )C. ( 2x+y )( 2y - x )D. (x - 2)( x+1)5. 若 a - b=1, ab=- 2,则(a+1)( b - 1)的值为( )A.0B.1C.-4D.26. 如果多项式x 2+mx+9是一个完全平方式,则 m 的值是( )A. ± 3B.3C. ± 6D.67. 如图,正方形卡片A 类,B 类和长方形卡片C 类若干张,若要用 A 、B 、C 三类卡片拼一个长为( 宽为(a+b )的长方形,则需要 C 类卡片()8. 下列算式,计算正确的有( ) ①10 -3=;②()0=1 ;③3a -2=;④(-2) 3 + (- 2)A.1个B.2个C.3个D.4个9. 已知 a+b=4, a - b=3,则 a 2 - b 2=( )A.4B.3C.12D.110. 化简 x (2x - 1)- x 2 ( 2-x )的结果是()A. - x 3 - xB.x 3 - xC. - x 2 - 1D.x 3 - 111. 已知 a m =5, a n =6,则 a m+n 的值为()5 6 A.11 B.30C. D. 整式的乘除单元复习a+3b ),5=- 2 2 A.2张B.3张C.4张D.5张、填空题12. 已知,,则___ = .(-4) 2017X( - 1 ) = ____________ .14•计算:(x-1) (x+2)= _________15. 计算(-2xy3) 2= _________ ;「€)2014x(-)2015= ________________16. 已知2m=3, 2n=4,则22m+23n= _________ .17. 计算:___________ (-x2y) 2=(-2) -2=-2x2(- x) 3= ___________(-)2014x 4015= _________(-1) 2015+ (- n) 0+2-218.计算:(ab2) 3十(—ab) 2=19.计算::■:/1 』一.20. 若8x=4x+2, 则x= ________ .21. 用四个相同的长方形与一个小正方形无重叠、无缝隙地拼成一个大正方形的图案(如图),则由图形能得出(a- b)2= ________ (化为a、b两数和与积的形式)三、解答题22. 计算:(1)(- ) X (- ) 2X(- ) 3;(2)( y+2)( y-2)-( y - 1)( y+5)23. 已知:2x+3y- 4=0,求4x8y的值.24•已知n正整数,且x2n=2,求(3x3n) 2- 4 (x2) 2n的值.25. 观察下列式子.①3 2- 12=( 3+1)( 3- 1) =8;②52- 32=( 5+3)( 5- 3) =16;③7 2- 52=( 7+5)( 7- 5) =24;④9 2- 72=( 9+7)( 9- 7) =32.( 1)求212- 192= ________ .( 2)猜想:任意两个连续奇数的平方差一定是________ ,并给予证明.参考答案、选择题CBDBCCCACBB二、填空题12. 21613. 414. x2+ x —215.4x2y6;-16. 7317. x4y2; 一;2x5; 4;18. ab419. a220. 421. (a+b) 2- 4ab三、解答题22. 解:(1)原式=(-)1+2+3= (- ) 6=;(2)原式=y2- 4 - y2- 5y+y+5= - 4y+1 .23. 解:•/ 2x+3y - 4=0, /• 2x+3y=4,... 4x8y=22x23y=22x+3y=24=16,••• 4x8y的值是1624. 解:原式=9x6n-4x4n=9 (x2n) 3- 4 (x2n) 2当x2n=2 时,原式=9x2- 16=56.25. (1) 80(2)这两个数和的2倍。

完整word完整word版北师大版七年级下册数学整式的乘除单元测试

完整word完整word版北师大版七年级下册数学整式的乘除单元测试

整式的乘除单元复习一、选择题1. )下列计算正确的是(2263223236 =6a3a?a?A. 2a=3a=2a3a B. a ÷aD. =a2a C. )(﹣))(﹣(﹣0=1m 2.m3 )﹣,则若()的取值为(A. m=3B. m≠3C. m3D. m3 ><3.2+aa2 ))()的结果是(运用乘法公式计算(﹣22224 4C. 4a4a4 B. aD. a2aA. a﹣﹣﹣﹣﹣﹣4. )下列能用平方差公式计算的是(A. x+yxyB. x11xC. 2x+y2yxD. x2x+1 ))((﹣())()((﹣(﹣﹣)(﹣)﹣﹣)5.ab=1ab=2a+1b1 ),则()(﹣)的值为(若﹣﹣,A. 0B. 1C. -4D. 22+mx+9m 6.x )的值是(是一个完全平方式,则如果多项式A. ±3B. 3C. ±6D. 67.ABCABCa+3b),类,、类和长方形卡片三类卡片拼一个长为(类若干张,若要用、如图,正方形卡片a+bC ))的长方形,则需要类卡片(宽为(A. 2B. 3C. 4D. 5 张张张张÷③3a2 ①10④= =0.0001 ②0.0001=1 8. );(下列算式,计算正确的有((﹣););﹣﹣﹣330225 2 =2 .(﹣﹣) D. 4B. 2C. 3A. 1个个个个22b=39.a+b=4aab= ),﹣(,则﹣已知A. 4B. 3C. 12D. 12x1x10.2xx2 )(化简)的结果是((﹣)﹣﹣33321 xA. xxB. xxC. 1D. x﹣﹣﹣﹣﹣﹣m+nnm aaa11.=5=6 )的值为(,则,已知.D. C. A. 11B. 30二、填空题=________. 12. ,则,已知20162017×1=________ 13.0.25 ×4 .(﹣(﹣))14.x-1(x+2)=________ )计算:(2014220153=________ =________ ×1.515.2xy .(﹣))计算(﹣;(﹣)mn2m3n=________ =42 +216.2=32 .已知,,则22=________ xy17. )计算:(﹣﹣2=________ 2)(﹣23=________x?2x)﹣(﹣20142015=________ ×40.25 .)(﹣﹣220150=________ 1 +π+2.)(﹣(﹣)232=________ 18.ab ab÷))计算:((﹣________. 19. 计算:xx+2x=________ 20.8 =4.则若,21.用四个相同的长方形与一个小正方形无重叠、无缝隙地拼成一个大正方形的图案(如图),则由图形能2=________abab 两数和与积的形式)得出((化为﹣)、三、解答题22. 计算:32×1×;())(﹣)(﹣(﹣)2y+2y2y1y+5 ).﹣﹣)(()()﹣()(xy 4 ?8 2x+3y23.4=0的值.﹣,求已知:2n3n222n nx =23x x424.的值.正整数,且))已知,求(﹣(25. 观察下列式子.22=3+131①3=81 ;(﹣)(﹣)22=5+35②533=16 ;)(﹣)﹣(22=7+5755=24()求﹣2________ ,()﹣﹣22=________ 12119 .③7 ;﹣(﹣))(22=9+797=32 ④9 7.()并给予证明.)猜想:任意两个连续奇数的平方差一定是(.参考答案一、选择题C B D B C C C A C B B二、填空题12.21613.42x2 x 14.-+261.5 y 4x15.;﹣16.73542x2xy417.;;;;4ab 18.2 a 19.20.424ab a+b 21.﹣)(三、解答题61+2+3== 22.1=;(﹣))原式)(﹣解:(225y+y+5=2=y4y+14y .(﹣)原式﹣﹣﹣∴2x+3y=423.∵2x+3y4=0 ,﹣解:,4∴43y2x+3yxy2x=2?2?8=16=2=2,4∴yx ?8 16 的值是22n32n4n6n 4x =9x24.4x=9x,﹣解:原式)﹣(()32n 16=56 x=9×2=2 .﹣当时,原式80125.)(22 倍()这两个数和的。

(典型题)初中数学七年级数学下册第一单元《整式的乘除》测试(有答案解析)

(典型题)初中数学七年级数学下册第一单元《整式的乘除》测试(有答案解析)

一、选择题1.定义运算(1)a b a b ⊗=-,下面给出了关于这种运算的四个结论: ①2(2)6⊗-=; ②a b b a ⊗=⊗;③若0a b ⊗=,则0a =; ④若0a b +=,则()()2a a b b ab ⊗+⊗=. 其中正确结论的个数是( ) A .1B .2C .3D .42.某种产品的原料提价,因而厂家决定对产品进行提价,现有三种方案 方案一:第一次提价p %,第二次提价q % 方案二:第一次提价q %,第二次提价p % 方案三:第一、二次提价均为2p q+% 其中p ,q 是不相等的正数,下列说法正确的个数是(提示:因为p≠q ,(p -q )2=p 2-2pq +q2>0,所以p 2+q 2>2pq )( ) (1) 方案一提价最多 (2)方案二提价最多 (3)方案三提价最多 (4)方案一二提价一样多 A .1B .2C .3D .43.若x 2+5x +m =(x +n )2,则m ,n 的值分别为( ).A .m =254,n =52B .m =254,n =5 C .m =25,n =5 D .m =5,n =524.下列运算正确的是( )A .a 6÷a 3=a 2B .(a 2)3=a 5C .(﹣2a 2)3=﹣8a 6D .(2a +1)2=4a 2+2a +1 5.23ab a ⋅的计算结果是( ) A .3abB .6abC .32a bD .33a b6.下列运算正确的是( )A .325a a a =B .()325x x =C .824x x x ÷=D .()326a ba b =7.()()()2483212121+++···()32211++的个位数是( )A .4B .5C .6D .88.下列运算正确..的是( ) A .246x x x ⋅=B .246()x x =C .3362x x x +=D .33(2)6x x -=-9.如图:用四个全等的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用a ,b 分别表示矩形的长和宽(a b >),则下列关系中不正确的是( )A .12a b +=B .2a b -=C .35ab =D .2284a b +=10.如果单项式223a b a b m n -+-与38b m n 是同类项,那么这两个单项式的积是( ) A .6163m n -B .6323m n -C .383m n -D .6169m n -11.下列各式运算正确的是( ) A .235a a a +=B .1025a a a ÷=C .()32626bb = D .2421a aa -⋅=12.如图所示的四边形均为矩形或正方形,下列等式能够正确表示该图形面积关系的是( )A .()()22-a b a b a b +-=B .()2222a b a ab b +=++ C .()2222a b a ab b -=-+D .()2222a b a ab b -=--二、填空题13.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了()n a b +(n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应222()2a b a ab b +=++展开式中的系数;第四行的四个数1,3,3,1,恰好对应着+=+++33223()33a b a a b ab b 展开式中的系数等等.根据上面的规律,写出5()a b +的展开式:5()a b +=_________.利用上面的规律计算:5432252102102521-⨯+⨯-⨯+⨯-=_________.14.观察等式:232222+=-;23422222++=-;2345222222+++=-;…已知按一定规律排列的一组数:1002,1012,1022,…,1992,2002,若1002S =,用含S 的式子表示这组数据的和是__________.15.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是_____.16.已知3927x y ÷=,则20202y x +-的值为_________. 17.计算()()222x mx xx --+的结果不含2x 的项,那么m =______.18.若20206m =,20204n =,则22020m n -=_____. 19.若9×32m ×33m =322,则m 的值为_____.20.若0a >,且2x a =,3y a =,则x y a +的值等于________.三、解答题21.先化简,再求值:()322484(2)(2)ab a bab a b a b -÷++-,其中a ,b 满足2(2)|1|0a b -+-=.22.(1)若x 满足(30)(20)10x x --=-,求22(30)(20)x x -+-的值;(2)若x 满足22(2017)(2015)4036x x -+-=,求(2017)(2015)x x --的值;(3)如图,正方形ABCD 的边长为x ,10,20AE CG ==,长方形EFGD 的面积是500,四边形 NGDH 和MEDQ 都是正方形,PQDH 是长方形,求图中阴影部分的面积.(结果必须是一个具体的数值)23.如图所示,用大小相等的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形…,按照这样的方法拼下去.(1)第4个正方形需要 个小正方形,第5个正方形需要 个小正方形; (2)第m 个正方形比第(m -1)个正方形多需要 个小正方形;(3)若第n 个正方形比第(n -1)个正方形多需要21个小正方形,求n 的值.24.如果2()()41x m x n x x ++=+-. ①填空:m n +=______,mn =______. ②根据①的结果,求下列代数式的值: (1)225m mn n ++;(2)2()m n -.25.数学活动课上,张老师准备了若干个如图①的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为,b 宽为a 的长方形,并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图②的大正方形.()1观察图②,请你写出代数式()222,,a b a b ab ++之间的等量关系是 ;()2根据()1中的等量关系,解决下列问题;①已知224,10a b a b +=+=,求ab 的值;②已知()()222020201852x x -+-=,求2019x -的值.26.计算:(1)(x 3)2•(﹣2x 2y 3)2; (2)(a ﹣3)(a +3)+(2a +1)2.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】直接利用新定义求解即可判断选项的正误. 【详解】解:运算a ⊗b=a (1-b ), 所以2⊗(-2)=2(1+2)=6,所以①正确; a ⊗b=a (1-b ),b ⊗a=b (1-a ),∴②不正确;若a ⊗b=0,a ⊗b=a (1-b )=0,可得a=0,或b=1.所以③不正确; 若a+b=0,则(a ⊗a )+(b ⊗b )=a (1-a )+b (1-b )=a+b-(a 2+b 2)=-(a+b )2+2ab=2ab ,所以④正确,正确的两个, 故选B . 【点睛】本题考查了命题的真假的判断与应用,新定义的理解与应用,基本知识的考查.2.B解析:B 【分析】根据各方案中的百分率,分比表示 出提价后的单价,方案一:(1+p%)(1+q%)=1+p%+q%+p%•q%,方案二:(1+q%)(1+p%)=1+p%+q%+p%•q%,方案一与方案二一样多;方案三: (1+2p q+ %)2>1+ p%+q%++p%•q%,方案三提价最多即可判断. 【详解】解:设某种产品的原料价格为1,方案一:第一次提价p %,第二次提价q %,某种产品的原料提价后价格为(1+p%)(1+q%)=1+p%+q%+p%•q%,方案二:第一次提价q %,第二次提价p %, 某种产品的原料提价后价格为(1+q%)(1+p%)==1+p%+q%+p%•q%,方案一与方案二一样多, 方案三:第一、二次提价均为2p q +%,某种产品的原料提价后价格为(1+2p q+ %)2=1+p%+q%+2%2p q +⎛⎫ ⎪⎝⎭=1+ p%+q%+()222+2%4p q pq +,p 2+q 2>2pq ,22+22244p q pq pq pqpq ++>=,(1+2p q + %)2=1+ p%+q%+2%2p q +⎛⎫ ⎪⎝⎭=1+ p%+q%+()222+2%4p q pq +>1+ p%+q%++p%•q%, 方案三提价最多,说法正确的个数是正确的个数有2个. 故选择:B . 【点睛】本题考查百分率应用问题,列代数式,多项式乘以多项式运算,比较代数式值的大小,利用公式p 2+q 2>2pq 进行放缩比较大小是解题关键.3.A解析:A 【分析】根据完全平方公式和整式的性质计算,得到m 和n 的关系式,通过计算即可得到答案. 【详解】∵x 2+5x+m =(x+n )2=x 2+2nx+n 2 ∴2n =5,m =n 2∴m =254,n =52 故选:A . 【点睛】本题考查了整式、乘法公式、一元一次方程、乘方的知识;解题的关键是熟练掌握整式、完全平方公式的性质,从而完成求解.4.C解析:C 【分析】分别根据同底数幂的除法,幂的乘方,积的乘方以及完全平方公式逐一判断即可. 【详解】解:A. a 6÷a 3=a 3,故选项A 不合题意; B.(a 2)3=a 6,故选项B 不合题意;C.(-2a 2b )3=-8a 6b 3,正确,故选项C 符合题意;D.(2a+1)2=4a 2+4a+1,故选项D 不合题意. 故选:C . 【点睛】本题主要考查了幂的运算以及完全平方公式,熟练掌握幂的运算法则是解答本题的关键.5.D解析:D【分析】直接利用单项式乘单项式计算得出答案.【详解】解:3ab•a2=3a3b.故选:D.【点睛】本题主要考查了单项式乘单项式,正确掌握相关运算法则是解题的关键.6.A解析:A【分析】根据幂的运算性质判断即可;【详解】325=,故A正确;a a a()326=,故B错误;x x826÷=,故C错误;x x x()3263=,故D错误;a b a b故答案选A.【点睛】本题主要考查了幂的运算性质,准确分析判断是解题的关键.7.C解析:C【分析】原式中的3变形为22-1,反复利用平方差公式计算即可得到结果.【详解】解:3(22+1)(24+1)(28+1)…(232+1)+1=(22-1)(22+1)(24+1)(28+1)…(232+1)+1=(24-1)(24+1)(28+1)…(232+1)+1…=264-1+1=264,∵21=2,22=4,23=8,24=16,25=32,…,∴个位上数字以2,4,8,6为循环节循环,∵64÷4=16,∴264个位上数字为6,即原式个位上数字为6.故选:C.【点睛】本题考查了平方差公式,熟练掌握平方差公式是解本题的关键.8.A解析:A 【分析】根据同底数幂的乘法、幂的乘方、积的乘方以及合并同类项进行判断即可. 【详解】A 选项246x x x ⋅=,选项正确,故符合题意;B 选项248()x x =,选项错误,故不符合题意;C 选项3332x x x +=,选项错误,故不符合题意;D 选项33(2)8x x -=-,选项错误,故不符合题意.故选:A . 【点睛】本题考查同底数幂的乘法、幂的乘方、积的乘方以及合并同类项,属于基础题,熟练掌握这些计算公式和方法是解决本题的关键.9.D解析:D 【分析】能够根据大正方形和小正方形的面积分别求得正方形的边长,再根据其边长分别求解,根据4个矩形的面积和等于两个正方形的面积的式求解即可. 【详解】解:A 、根据大正方形的面积求得该正方形的边长是12,则12a b +=,故A 选项不符合题意;B 、根据小正方形的面积可以求得该正方形的边长是2,则2a b -=,故B 选项不符合题意;C 、根据4个矩形的面积和等于大正方形的面积减去小正方形的面积,即41444140ab,35ab =,故 C 选项不符合题意;D 、222()2144a b a b ab +=++=,所以 221442351447074a b ,故 D 选项符合题意. 故选:D . 【点睛】本题考查了代数式和图形的面积公式正确运算,熟悉相关性质是解题的关键.10.B解析:B 【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,即可求出a 和b ,再利用单项式乘以单项式计算结果即可. 【详解】 解:由题意可得:2328a b a b b -=⎧⎨+=⎩, 解得:72a b ==,,则这两个单项式分别为:3163m n -,316m n , ∴它们的积为:3163166323?3m n m n m n -=-, 故选:B . 【点睛】本题主要考察同类项的概念、单项式乘以单项式,掌握同类项的概念是解题的关键.11.D解析:D 【分析】根据幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;合并同类项的法则,对各选项计算后利用排除法求解. 【详解】解:A 、a 2与3a 不是同类项,不能合并,故本选项错误; B 、1028a a a ÷=,故本选项错误; C 、()32628b b =,故本选项错误;D 、24221a aa a --⋅==,正确. 故选:D . 【点睛】本题考查了幂的乘方的性质,同底数幂的乘法,合并同类项的法则,熟练掌握运算性质是解题的关键,合并同类项时,不是同类项的不能合并.12.C解析:C 【分析】根据阴影部分的面积的不同表示方法,即可求出答案. 【详解】解:如图所示,根据图中的阴影部分面积可以表示为:(a-b )2 图中的阴影部分面积也可以表示为:a 2-2ab+b 2 可得:(a-b )2=a 2-2ab+b 2故选:C【点睛】本题考查了完全平方公式的几何背景,解决问题的关键是能用算式表示出阴影部分的面积二、填空题13.a5+5a4b+10a3b2+10a2b3+5ab4+b51【分析】(1)直接根据图示规律写出图中的数字再写出(a+b)5的展开式;(2)发现这一组式子中是2与-1的和的5次幂由(1)中的结论得:2解析:a5+5a4b+10a3b2+10a2b3+5ab4+b5 1【分析】(1)直接根据图示规律写出图中的数字,再写出(a+b)5的展开式;(2)发现这一组式子中是2与-1的和的5次幂,由(1)中的结论得:25-5×24+10×23-10×22+5×2-1=(2-1)5,计算出结果.【详解】解:(1)如图,则(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;(2)25-5×24+10×23-10×22+5×2-1.=25+5×24×(-1)+10×23×(-1)2+10×22×(-1)3+5×2×(-1)4+(-1)5=(2-1)5=1.【点睛】本题考查了完全式的n次方,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b)n中,相同字母a的指数是从高到低,相同字母b的指数是从低到高.14.【分析】根据已知条件和2100=S将按一定规律排列的一组数:210021012102…21992200求和即可用含S的式子表示这组数据的和【详解】解:∵2100=S∴2100+2101+2102+…解析:22S S【分析】根据已知条件和2100=S,将按一定规律排列的一组数:2100,2101,2102,…,2199,2200,求和,即可用含S的式子表示这组数据的和.【详解】解:∵2100=S,∴2100+2101+2102+…+2199+2200=S+2S+22S+…+299S+2100S=S(1+2+22+…+299+2100)=S(1+2100-2+2100)=S(2S-1)=2S2-S.故答案为:2S2-S.【点睛】本题考查了规律型-数字的变化类、列代数式,解决本题的关键是观察数字的变化寻找规律.15.30【分析】直接利用正方形的性质结合三角形面积求法利用平方差公式即可得出答案【详解】解:设大正方形的边长为a小正方形的边长为b故阴影部分的面积是:AE•BC+AE•BD=AE(BC+BD)=(AB﹣解析:30【分析】直接利用正方形的性质结合三角形面积求法,利用平方差公式即可得出答案.【详解】解:设大正方形的边长为a,小正方形的边长为b,故阴影部分的面积是:12AE•BC+12AE•BD=12AE(BC+BD)=12(AB﹣BE)(BC+BD)=12(a﹣b)(a+b)=12(a2﹣b2)=12×60=30.故答案为:30.【点睛】本题主要考查平方差公式与几何图形和三角形的面积公式,用代数式表示阴影部分的面积,是解题的关键.16.【分析】把化成同底数幂的除法算式得出的值然后整体代入算式即可求解【详解】∵∴∴故答案为:2017【点睛】此题考查了同底数幂的除法的逆运算然后用到整体代入的思想求解要熟练同底数幂的除法的法则是解题的关键 解析:【分析】把3927x y ÷=化成同底数幂的除法算式232333=3x y x y -÷=得出2x y -的值,然后整体代入算式即可求解.【详解】∵23933x y x y ÷=÷23x y -=33=∴23x y -=,∴202022020(2)y x x y +-=--20203=-2017=.故答案为:2017.【点睛】此题考查了同底数幂的除法的逆运算,然后用到整体代入的思想求解.要熟练同底数幂的除法的法则是解题的关键.17.-2【分析】根据多项式的运算法则把括号展开再合并同类项;找到含有x 的二次项并让其系数为0即可求出m 的值【详解】解:原式==∵乘积中不含x2的项∴m+2=0∴m=-2故答案为:-2【点睛】本题主要考查解析:-2【分析】根据多项式的运算法则把括号展开,再合并同类项;找到含有x 的二次项并让其系数为0,即可求出m 的值.【详解】解:原式=4332222x x mx mx x x +----=()433222x x mx m x x +--+-, ∵乘积中不含x 2的项,∴m+2=0,∴m=-2,故答案为:-2.【点睛】本题主要考查多项式与多项式的乘法,运算法则需要熟练掌握,不含某一项就让这一项的系数等于0是解题的关键.18.9【分析】根据幂的乘方运算法则以及同底数幂的除法法则计算即可【详解】∵∴故答案为:9【点睛】本题主要考查了同底数幂的除法以及幂的乘方熟记幂的运算法则是解答本题的关键解析:9根据幂的乘方运算法则以及同底数幂的除法法则计算即可.【详解】∵20206m =,20204n =,∴222(2020)20200922406m n m n -=÷=÷=.故答案为:9.【点睛】本题主要考查了同底数幂的除法以及幂的乘方,熟记幂的运算法则是解答本题的关键. 19.4【分析】先变形9=32再利用同底数幂的乘法运算法则运算然后指数相等列等式求解即可【详解】∵9×32m×33m=32×32m×33m =32+2m+3m=322∴2+2m+3m=22即5m=20解得:解析:4【分析】先变形9=32,再利用同底数幂的乘法运算法则运算,然后指数相等列等式求解即可.【详解】∵9×32m ×33m =32×32m ×33m =32+2m+3m =322∴2+2m+3m=22,即5m=20,解得:m=4,故答案为:4.【点睛】本题考查了同底数幂的乘法、等式的性质,灵活运用同底数幂的乘法运算法则是解答的关键.20.6【分析】根据同底数幂的乘法法则求解【详解】故答案为:6【点睛】本题考查了同底数幂的乘法解答本题的关键是掌握同底数幂的乘法法则:同底数幂相乘底数不变指数相加解析:6【分析】根据同底数幂的乘法法则求解.【详解】·236x y x y a a a +==⨯= .故答案为:6.【点睛】本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.三、解答题21.242a ab -,当21a b ==,时,12.先计算整式混合运算,利用非负数求出a b ,的值,在代入求值即可.【详解】解:322(48)4(2)(2)ab a b ab a b a b -÷++-,22224b ab a b =-+-,242a ab =-,∵2(2)|1|0a b -+-=,2(2),100||a b --≥≥,∴20,10a b -=-=,当21a b ==,时,原式24222116412=⨯-⨯⨯=-=.【点睛】本题考查了整式的混合运算及化简求值,非负数性质,准确进行整式混合运算是解题关键.22.(1)120;(2)2016;(3)2100【分析】(1)设(30-x )=m ,(x -20)=n ,利用完全平方公式变形计算;(2)设(2017-x )=c ,(2015-x )=d ,则(2017-x )2+(2015-x )2=c 2+d 2=4036,c -d =(2017-x )-(2015-x )=2,所以2cd =(c 2+d 2)-(c -d )2=4036-22=4032,可得cd =2016,即可解答;(3)根据正方形ABCD 的边长为x ,AE =10,CG =20,所以DE =(x -10),DG =x -20,得到(x -10)(x -20)=500,设(x -10)=a ,(x -20)=b ,从而得到ab =500,a -b =(x -10)-(x -20)=10,根据举例求出a 2+b 2,即可求出阴影部分的面积.【详解】解:(1)设(30-x )=m ,(x -20)=n ,则(30-x )(x -20)=mn =-10,m +n =(30-x )+(x -20)=10,∴(30-x )2+(x -20)2=m 2+n 2=(m +n )2-2mn =(-10)2-2×(-10)=120;(2)设(2017-x )=c ,(2015-x )=d ,则(2017-x )2+(2015-x )2=c 2+d 2=4036,c -d =(2017-x )-(2015-x )=2,∴2cd =(c 2+d 2)-(c -d )2=4036-22=4032,∴cd =2016,∴(2017-x )(2015-x )=cd =2016.(3)∵正方形ABCD 的边长为x ,AE =10,CG =20,∴DE =(x -10),DG =x -20,∴(x -10)(x -20)=500,设(x -10)=a ,(x -20)=b ,∴ab =500,a -b =(x -10)-(x -20)=10,∴a 2+b 2=(a -b )2+2ab =102+2×500=1100,∴阴影部分的面积为:a 2+b 2+2ab =1100+2×500=2100.本题考查了完全平方公式,解决本题的关键是熟记完全平方公式,进行转化运用.23.(1)25,36;(2)(2m+1);(3)10【分析】(1)根据前几个图形中小正方形的个数变化规律发现,第n个正方形需要(n+1)2个小正方形,令n=4和n=5即可解答;(2)根据变化规律,分别写出第m个和第m﹣1个大正方形中小正方形的个数的表达式,作差,再利用完全平方公式展开化简即可;(3)根据变化规律和题意列出方程求解即可解答.【详解】解:(1)第1个正方形需要4=22个小正方形,第2个正方形需要9=32个小正方形,第3个正方形需要16=42个小正方形,……由此规律,第n个正方形需要(n+1)2个小正方形,∴第4个正方形需要52=25个小正方形,第5个正方形需要62=36个小正方形,故答案为:25,36;(2)由变化规律知,第m个正方形需要(m+1)2个小正方形,第(m﹣1)个正方形需要m2个小正方形,由(m+1)2﹣m2=m2+2m+1﹣m2=2m+1得:第m个正方形比第(m-1)个正方形多需要(2m+1)个小正方形,故答案为:(2m+1);(3)由(2)知第n个正方形比第(n-1)个正方形多需要(2n+1)个小正方形,由题意,2n+1=21,解得:n=10.【点睛】本题考查了图形变化规律的探究、完全平方公式、合并同类项、解一元一次方程,仔细观察图形,得出各个图形中小正方形的个数与图形序号的平方关系是解答的关键.24.①4,−1;②(1)13;(2)20【分析】①据多项式乘多项式的运算法则求解即可;②根据完全平方公式计算即可.【详解】①∵(x+m)(x+n)=x2+(m+n)x+mn=x2+4x−1,∴m+n=4,mn=−1.故答案为:4,−1;②(1)m2+5mn+n2=(m+n)2+3mn=42+3×(−1)=16−3=13;(2)(m−n)2=(m+n)2−4mn=42−4×(−1)=16+4=20.【点睛】本题主要考查了完全平方公式以及多项式乘多项式,熟记相关公式与运算法则是解答本题25.(1)()2222a b a b ab +=++;(2)①3ab =;②20195x -=±.【分析】(1)整体看是一个边长为(a+b )的正方形,局部看它有一个边长为a ,b 的正方形,两个长为b ,宽为a 的矩形组成,根据图形的面积相等即可确定它们之间的关系; (2)①公式变形为ab=222()()2a b a b +-+计算即可; ②把x-2020变形成(x-2019)-1, 把x-2018变形成(x-2019)+1,用整体思想展开公式计算即可.【详解】()()22212a b a b ab +=++;理由如下:图②是边长为()a b +的正方形,()2S a b ∴=+图②可看成1个边长为a 的正方形,1个边长为b 的正方形以及2个长为,b 宽为a 的长方形的组合图形, 222,S a b ab ∴=++()222 2a b a b ab ∴+=++. ()24a b +=①,()216,a b +∴=即22216a b ab ++=.又2210,a b +=3ab ∴=;②设2019,x a -=则20201,20181x a x a -=--=+,()()222020201852x x -+-=, ()()22 1152a a ∴-++=,22212152,a a a a ∴-++++=22252,a ∴+=2250,a ∴=225,a ∴=即()2201925,x -= 20195x ∴-=±.本题考查了完全平方公式的几何意义,公式的应用,以及公式的整体思想代换应用,熟练掌握公式的几何意义和公式的变形是解题的关键.26.(1)4x10y6;(2)5a2+4a﹣8.【分析】(1)根据整式的乘法运算即可求出答案.(2)根据乘法公式即可求出答案.【详解】解:(1)(x3)2•(﹣2x2y3)2=x6•4x4y6=4x10y6.(2)(a﹣3)(a+3)+(2a+1)2=a2﹣9+4a2+4a+1=5a2+4a﹣8.【点睛】本题考查整式的运算,解题的关键熟练运用整式的运算法则,本题属于基础题型.。

北师大版七年级下册--第一章-整式的乘除---单元测试题-含答案

北师大版七年级下册--第一章-整式的乘除---单元测试题-含答案

北师大版七年级下册第一章整式的乘除单元测试题一、选择题1 •下列计算正确的是()3 2 2 3 6A. a — a = aB. a a = a3 3 2、2 4C. (3a) = 9aD. (a ) = a2. PM2.5是指大气中直径小于或等于 0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A . 0.25 X0—3B. 0.25 X0—4C . 2.5 X0—5 D. 2.5 X0—63 . 若 102a= x,10b= y,则 104a+ 23的值为()A . xy B. 2xyC .2 2xy D.2xy4 . 下列各式中不能用平方差公式进行计算的是( )A . (m— n )(m+ n) B. (—x—y)( —x—y)C . / 4 4 4 | 4、(x — y )(x +y)D. (a3—b3)(b3+a3)5. 2x y g 3xy+ y3)的计算结果是()A .2 43 2 | 22x y — x y + x y B. —x2y+ 2x2y4C . 2x y + x y — 6x y D. —6x3y2+ 2x2y6.下列计算中正确的是()A. (— 2a2b3)十—2ab)= a2b22 4 2 2 2B. (— 2a b)十一2ab) = a b1C. 2 a bc^a b=4c1 2, 3D. ga b c 讯一5abc) = 5b7.已知 a+ b= m, ab= — 4,化简(a — 2)(b— 2)的结果是()A . 6B . 2m— 8C. 2m D . — 2m8 .算式999032 + 888052 + 777072之值的十位数字为()A . 1B . 2、填空题9. (1)若 2m = 3,2n = 5,则 4m+n⑵若3x= 4,0 = 7,则3x为的值为_________ .10._______________________________ 计算:(4a— b2)2= .11.____________________________________ 计算:20152— 2X2015X2014+ 20142 = .12. 已知 P = 3xy— 8x+ 1,Q= x— 2xy— 2,当 x^0时,3P— 2Q= 7 恒成立,则 y 的值为13 .如果a与b异号,那么(a+ b)2与(a— b)2的大小关系是三、解答题14. 计算:"八 3 2「7 ,2、z 2 3(1) m m + m 讯一m )+ (m );2 23 42(2) (x — 2xy) 9x — (9xy — 12x y ) -3xy.15. 计算:(1) (3a+ 5b — 2c)(3a — 5b— 2c);(2) (x+ 1)(x2— 1)(x— 1).16. 如图,要设计一幅长为3xcm、宽为2ycm的长方形图案,其中有两横两竖的彩条,横彩条的宽度为acm,竖彩条的宽度为bcm,问空白区域的面积是多少?17. 试说明:两个连续奇数的积加上1, 一定是一个偶数的平方.18. 当x、y为何值时,代数式x2 + y2+ 4x— 6y+ 15有最小值?并求出最小值.。

整式的乘除单元检测试卷含答案解析

整式的乘除单元检测试卷含答案解析

第一章整式的乘除单元检测一、选择题1.PM2.5是指大气中直径小于或等于0.000 002 5 m的颗粒物,将0.000 002 5用科学记数法表示为().A.0.25×10-5B.0.25×10-6 C.2.5×10-5D.2.5×10-6 2.李老师做了个长方形教具,其中一边长为2a+b,另一边长为a-b,则该长方形的面积为().A.6a+b B.2a2-ab-b2 C.3a D.10a-b3.计算:3-2的结果是().A.-9 B.-6 C.-19 D.194.计算(-a-b)2等于().A.a2+b2B.a2-b2 C.a2+2ab+b2D.a2-2ab+b25.下列多项式的乘法中可用平方差公式计算的是().A.(1+x)(x+1) B.(2-1a+b)(b-2-1a)C.(-a+b)(a-b) D.(x2-y)(y2+x)6.一个长方体的长、宽、高分别为3a-4,2a,a,则它的体积等于().A.3a3-4a2B.a2 C.6a3-8a2D.6a3-8a7.计算x2-(x-5)(x+1)的结果,正确的是().A.4x+5 B.x2-4x-5 C.-4x-5 D.x2-4x+58.已知x+y=7,xy=-8,下列各式计算结果正确的是().A.(x-y)2=91 B.x2+y2=65 C.x2+y2=511 D.(x-y)2=567 9.下列各式的计算中不正确的个数是().①100÷10-1=10②10-4×(2×7)0=1 000③(-0.1)0÷(-2-1)-3=8④(-10)-4÷(-10-1)-4=-1A.4 B.3 C.2 D.1二、填空题10.用小数表示1.21×10-4是________.11.自编一个两个单项式相除的题目,使所得的结果为-6a3,你所编写的题目为______________________________________________________________________ __.12.已知(9n)2=38,则n=__________.13.长为3m+2n,宽为5m-n的长方形的面积为__________.14.用小数表示3.14×10-4=__________.15.要使(ax2-3x)(x2-2x-1)的展开式中不含x3项,则a=__________.16.100m·1 000n的计算结果是__________.三、解答题17.计算:1122-113×111.18.先化简,再求值:(a2b-2ab2-b3)÷b-(a+b)(a-b),其中a=12,b=-1.19.先化简,再求值:(3x-y)2-(2x+y)2-5x(x-y),其中x=0.2,y=0.01.20.如图,一块半圆形钢板,从中挖去直径分别为x,y的两个半圆:(1)求剩下钢板的面积;(2)若当x=4,y=2时,剩下钢板的面积是多少?(π取3.14)21.在一次联欢会上,节目主持人让大家做一个猜数的游戏,游戏的规则是:主持人让观众每人在心里想好一个除0以外的数,然后按以下顺序计算:(1)把这个数加上2后平方;(2)然后再减去4;(3)再除以原来所想的那个数,得到一个商.最后把你所得到的商是多少告诉主持人,主持人便立即知道你原来所想的数是多少,你能解释其中的奥妙吗?22.八年级学生小明是一个喜欢思考问题而又乐于助人的好学生,一天邻居家读小学的小李,请他帮忙检查作业:7×9=63;8×8=64;11×13=143;12×12=144;24×26=624;25×25=625.小明仔细检查后,夸小李聪明,作业全对了!小明还从这几题中发现了一个规律,你知道小明发现了什么规律吗?请用字母表示这一规律,并说明它的正确性.参考答案1.D 点拨:0.000 002 5=2.5×10-6,故选D.2.B 点拨:根据长方形的面积=长×宽可列出代数式为:长方形的面积=(2a +b )·(a -b ),然后计算整理化为最简形式即可.3.D 点拨:3-2=132=19.4.C 点拨:本题主要考查我们对完全平方公式的理解能力,如何确定用哪一个公式,主要看两数的符号是相同还是相反.5.B 点拨:本题主要考查了平方差公式的结构.注意两个二项式中有一项完全相同,另一项互为相反数,并且相同的项和互为相反数的项必须同时具有.6.C 点拨:本题考查了多项式乘单项式的运算法则,要熟练掌握长方体的体积公式.根据长方体的体积=长×宽×高,列出算式,再根据单项式乘多项式的运算法则计算即可.7.A 点拨:x 2-(x -5)(x +1)=x 2-(x 2-4x -5)=4x +5.8.B 点拨:(x -y )2=(x +y )2-4xy =72-4×(-8)=81;x 2+y 2=(x +y )2-2xy =72-2×(-8)=65.9.B 点拨:根据零指数幂、负指数幂和有理数的乘方等知识分别进行计算,然后根据实数的运算法则求得计算结果.10.0.000 121 点拨:根据负指数幂的意义把10的负指数幂转化为小数即可.1.21×10-4=1.21×0.000 1=0.000 121.11.答案不唯一,如-12a 5÷2a 212.2 点拨:先把9n 化为32n ,再根据幂的乘方的运算法则,底数不变,指数相乘,即可得出4n =8,从而求得n 的值.13.15m 2+7mn -2n 2 点拨:本题考查了整式的乘法运算,涉及长方形的面积公式,正确列出代数式是解答本题的关键.14.0.000 31415.-32 点拨:本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0,同时要注意各项符号的处理.16.102m +3n 点拨:100m ·1 000n =(102)m ·(103)n =102m ·103n =102m +3n .17.解:原式=1122-(112+1)(112-1)=1122-(1122-1)=1122-1122+1=1.18.解:(a 2b -2ab 2-b 3)÷b -(a +b )(a -b )=a 2-2ab -b 2-(a 2-b 2)=a 2-2ab -b 2-a 2+b 2=-2ab .当a =12,b =-1时,原式=-2×12×(-1)=1.点拨:本题考查多项式除单项式,平方差公式,运算时要注意符号.19.解:原式=9x 2-6xy +y 2-(4x 2+4xy +y 2)-5x 2+5xy =-5xy . 当x =0.2,y =0.01时,原式=-5×0.2×0.01=-0.01.20.解:(1)S 剩=12·π·⎣⎢⎡⎦⎥⎤(x +y )24-x 2+y 24=14πxy . 答:剩下钢板的面积为π4xy .(2)当x =4,y =2时,S 剩=14×3.14×4×2=6.28.点拨:本题考查了完全平方公式,(1)中注意大圆的半径需从图上得出,注意这里都是半圆.21.解:设这个数为x ,据题意得,[(x +2)2-4]÷x=(x 2+4x +4-4)÷x=x +4.如果把这个商告诉主持人,主持人只需减去4就知道你所想的数是多少. 点拨:本题考查了完全平方公式,多项式除单项式,读懂题目信息并列出算式是解题的关键.22.解:n (n +2)=(n +1)2-1.点拨:解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.。

整式的乘除单元测试(一)(北师版)(含答案)

整式的乘除单元测试(一)(北师版)(含答案)

整式的乘除单元测试(一)(北师版)一、单选题(共16道,每道6分)1.下列计算正确的是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:幂的乘方2.计算的结果是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:同底数幂的乘法3.若,,则的值为( )A. B.C.2D.答案:B解题思路:试题难度:三颗星知识点:同底数幂的乘法4.已知,则的值为( )A.-1B.2C.0D.1答案:D解题思路:试题难度:三颗星知识点:幂的乘方5.计算的结果是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:幂的乘方6.计算的结果是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:单项式乘多项式7.计算的结果是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:平方差公式8.计算的结果是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:平方差公式9.计算的结果是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:多项式乘多项式10.计算的结果是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:整式的乘除11.如果的展开式中不含x的二次项,那么的值为( )A.0B.C.2D.答案:B解题思路:试题难度:三颗星知识点:整式的乘法12.如图1,在边长为的正方形中挖掉一个边长为的小正方形(),把余下的部分剪拼成一长方形如图2,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:平方差公式的应用13.已知,则的值分别为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:平方差公式14.如图,在边长为a的正方形的两边分别剪去一个边长为b,a-b的小正方形(a>b),用两种方法表示边长为a-b的小正方形的面积,可以验证一个等式,则这个等式是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:完全平方公式的几何意义15.计算的结果为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:完全平方公式16.若,则的值为( )A.6B.-6C.±6D.36答案:C解题思路:试题难度:三颗星知识点:完全平方公式。

整式的乘除》单元考试题及答案

整式的乘除》单元考试题及答案

整式的乘除》单元考试题及答案第五章:整式的乘除单元测验数学试卷班级:______ 姓名:______ 得分:______一、填空题:(每小题3分,共30分)1.(-a)×(-a)×a = ________;-x²⁵³ ÷ (-x)³²² = ________2.-2x²y³3.2c³ × 3(-8x²) × (-x) × (-y)² = ________;abc² × (-2ac) =________4.(2²)² ÷ 2x = ________;5.-x²y × (x²-2xy+1/5) = ________;6.(-1/2) × (-4xy) = 12xy;-2 + (π-3.14) - (-2) = ________7.(a-10a+7) = ________;若x-3x+1=2,则x+(2/2)¹ =________8.若x²n=2,则2x³n = ________;若642 × 83 = 2ⁿ,则n = ________9.(-8)²⁰⁰⁴ = ________10.已知ab=-3,则-abab-ab-b = ________二、选择题:(每小题3分,共30分)11.下列各式计算正确的是()A、a² = a×a;B、3×5x² = 10x⁶;C、(-c)÷(-c) = -1;D、ab³ = a³b³12.下列各式计算正确的是()A、(x+2y)² = x²+4y²;B、(x+5)(x-2) = x²+3x-10;C、(-x+y)² = x²+y²;D、(x+2y)(x-2y) = x²-4y²13.用科学记数法表示的各数正确的是()A、 = 3.45×10⁴;B、0. = 4.3×10⁻⁵;C、-0. = -4.8×10⁻⁴;D、- = 3.4×10⁵14.当a=1/3时,代数式(a-4)(a-3)-(a-1)(a-3)的值为()A、3/4;B、-6;C、0;D、815.已知a+b=2,ab=-3,则a²-ab+b²的值为()A、11;B、12;C、13;D、1416.已知28a²bm÷4anb²=7b²,那么m、n的值为()A、m=4,n=2;B、m=4,n=1;17、设正方形边长为x,则面积为x^2,根据题意可得(x+3)^2-x^2=39,化简得x=6,答案为C。

整式的除法单元测试

整式的除法单元测试

整式的除法单元测试
整式的除法是代数学中的一个重要概念,通过单元测试对学生对整式的除法运算能力进行考核和评估,有助于帮助他们更好地掌握这一知识点。

下面将进行整式的除法单元测试,考察学生的能力。

1. 计算以下整式的除法:
a) \( \frac{3x^2 + 5x - 2}{x + 2} \)
b) \( \frac{4x^3 + 2x^2 - 5x}{2x - 1} \)
c) \( \frac{6x^4 - 3x^2 + 2x - 1}{3x^2 - x + 2} \)
2. 解答以下问题:
a) 如何判断一个整式能否被另一个整式整除?
b) 当被除式为一次整式,除数为常数时,整式的除法运算有何特点?
c) 在整式的除法中,除数为一次整式,被除式为高次整式时,如何进行配减操作?
3. 选择题:
a) 若 \( \frac{ax^2 + bx + c}{x - d} = px + q \),则 \( a =
\_\_\_\_\_\_\_\_ \) 。

A. p
B. q
C. d
D. b
b) 对于任意整式 \( f(x) \),若 \( \frac{f(x)}{x + 2} = 3x - 1 \),则\( f(-2) = \_\_\_\_\_\_\_\_ \) 。

A. -7
B. 3
C. -5
D. 5
通过以上单元测试,可以全面检验学生对整式的除法运算的理解和掌握程度,帮助他们发现并改进自己的不足之处,提高整式的运算能力。

愿所有学生都能在这次单元测试中取得好成绩,更好地理解和运用整式的除法知识。

整式的除法单元测试

整式的除法单元测试

整式的乘除一、选择题(每小题3分,共30分)1.下列计算正确的是()A.(x3)2=x5B.(2x)2=2x2C.x3·x3=x6D.(x+1)2=x2+12.下列运算正确的是()A.-2x2y·3xy2=-6x2y2B.(-x-2y)(x+2y)=x2-4y2C.6x3y2÷2x2y=3xyD.(4x3y2)2=16x9y43.计算(-xy3)2的结果是()A.x2y6B.-x2y6C.x2y9D.-x2y94.已知空气的单位体积质量是0。

001239 g/cm3,则用科学记数法表示该数为()A.1.239×10-3 g/cm3B.1.239×10-2 g/cm3C.0.1239×10-2 g/cm3D.12.39×10-4 g/cm35.若a=-0.22,b=-2-2,c=(-错误!)-2,d=(-错误!)0,则a,b,c,d的大小关系为()A.a<b<c<d B.b<a<d<cC.a<d<c<b D.c<a<d<b6.按如图1-Z-1所示的程序计算,若开始输入的n值为-2,则最后输出的结果是()图1-Z-1A.14 B.16 C.42 D.147.已知x2+2mx+9是某个整式的平方的展开式,则m的值为()A.1 B.3 C.-3 D.±38.计算(a+1)(a-1)(a2+1)(a4+1)的结果是()A.a8-1 B.a8-a4+1C.a8-2a4+1 D.以上选项都不对9.计算a2(a+b)(a-b)+a2b2的结果是()A.a4B.a6C.a2b2D.a2-b210.有若干张面积分别为a2,ab,b2的纸片,阳阳从中抽取了1张面积为a2的正方形纸片,4张面积为ab的长方形纸片,若他想拼成一个大正方形,则还需要抽取面积为b2的正方形纸片() A.2张B.4张C.6张D.8张二、填空题(每小题4分,共24分)11.如果a+b=2018,a-b=1,那么a2-b2=________.12.已知a x=2,a y=3,则a2x+3y=________.13.若错误!错误!没有意义,则x-2的值为________.14.一个长方形的长减少5 cm,宽增加2 cm,就变成了一个正方形,并且这两个图形的面积相等,则原长方形的面积为________ cm2.15.如果(2a+2b+1)·(2a+2b-1)=63,那么(a+b)2=________.16.我们知道,同底数幂的乘法法则为:a m·a n=a m+n(其中a≠0,m,n为正整数),类似地,我们规定关于任意正整数m,n的一种新运算:h(m+n)=h(m)·h(n),请根据这种新运算填空:(1)若h(1)=错误!,则h(2)=________;(2)若h(1)=k(k≠0),那么h(n)·h(2018)=________(用含n和k 的代数式表示,其中n为正整数).三、解答题(共46分)17.(8分)计算:(1)错误!错误!-(2016-2π)0+错误!错误!×错误!错误!;(2)(2x+y+3)(2x+y-3)-(2x+3)(2x-3).18.(8分)先化简,再求值:(1)(4ab3-8a2b2)÷4ab+(2a+b)(2a-b),其中a=2,b=1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的乘除一、选择题(每小题3分,共30分)1.下列计算正确的是( )A .(x 3)2=x 5B .(2x )2=2x 2C .x 3·x 3=x 6D .(x +1)2=x 2+12.下列运算正确的是( )A .-2x 2y ·3xy 2=-6x 2y 2B .(-x -2y )(x +2y )=x 2-4y 2C .6x 3y 2÷2x 2y =3xyD .(4x 3y 2)2=16x 9y 43.计算(-xy 3)2的结果是( )A .x 2y 6B .-x 2y 6C .x 2y 9D .-x 2y 94.已知空气的单位体积质量是0.001239 g/cm 3,则用科学记数法表示该数为( )A .1.239×10-3 g/cm 3B .1.239×10-2 g/cm 3C .0.1239×10-2 g/cm 3D .12.39×10-4 g/cm 35.若a =-0.22,b =-2-2,c =(-14)-2,d =(-14)0,则a ,b ,c ,d 的大小关系为( )A .a <b <c <dB .b <a <d <cC .a <d <c <bD .c <a <d <b6.按如图1-Z -1所示的程序计算,若开始输入的n 值为-2,则最后输出的结果是( )图1-Z -1A .14B .16C .42D .147.已知x 2+2mx +9是某个整式的平方的展开式,则m 的值为( )A .1B .3C .-3D .±38.计算(a +1)(a -1)(a 2+1)(a 4+1)的结果是( )A .a 8-1B .a 8-a 4+1C .a 8-2a 4+1D .以上选项都不对9.计算a 2(a +b )(a -b )+a 2b 2的结果是( )A .a 4B .a 6C .a 2b 2D .a 2-b 210.有若干张面积分别为a 2,ab ,b 2的纸片,阳阳从中抽取了1张面积为a 2的正方形纸片,4张面积为ab 的长方形纸片,若他想拼成一个大正方形,则还需要抽取面积为b 2的正方形纸片( )A .2张B .4张C .6张D .8张二、填空题(每小题4分,共24分)11.如果a +b =2018,a -b =1,那么a 2-b 2=________.12.已知a x =2,a y =3,则 a 2x +3y =________.13.若⎝ ⎛⎭⎪⎫x -120没有意义,则x -2的值为________. 14.一个长方形的长减少5 cm ,宽增加2 cm ,就变成了一个正方形,并且这两个图形的面积相等,则原长方形的面积为________ cm 2.15.如果(2a +2b +1)·(2a +2b -1)=63,那么(a +b )2=________.16.我们知道,同底数幂的乘法法则为:a m ·a n =a m +n (其中a ≠0,m ,n 为正整数),类似地,我们规定关于任意正整数m ,n 的一种新运算:h (m +n )=h (m )·h (n ),请根据这种新运算填空:(1)若h (1)=23,则h (2)=________;(2)若h (1)=k (k ≠0),那么h (n )·h (2018)=________(用含n 和k 的代数式表示,其中n 为正整数).三、解答题(共46分)17.(8分)计算:(1)⎝ ⎛⎭⎪⎫-12-2-(2016-2π)0+⎝ ⎛⎭⎪⎫-322018× ⎝ ⎛⎭⎪⎫232018;(2)(2x +y +3)(2x +y -3)-(2x +3)(2x -3).18.(8分)先化简,再求值:(1)(4ab3-8a2b2)÷4ab+(2a+b)(2a-b),其中a=2,b=1.(2)(x-1)(2x-1)-(x+1)2+1,其中x2-5x=14.19.(6分)已知太阳系以外某恒星与地球的距离是3.6×1013 km,光速是3×105 km/s.如果一年按3×107 s计算,那么从该星发出的光经过多长时间才能到达地球?20.(6分)已知多项式(ax+1)(x2-3x-2)的结果中不含有x的一次项(a是常数),求代数式(2a+1)2-(2a+1)(2a-1)的值.21.(8分)探究应用:(1)计算:①(a-2b)(a2+2ab+4b2)=________;②(2x-y)(4x2+2xy+y2)=________.(2)上面的整式乘法计算结果很简洁,由此发现一个新的乘法公式:________________________(请用含字母a,b的式子表示).(3)直接用公式计算:①(3x-2y)(9x2+6xy+4y2)=__________;②(m-3)(m2+________+9)=________.22.(10分)在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9,请帮他计算出最后结果.(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.详解详析1.C [解析] (x 3)2=x 6,A 选项错误;(2x )2=22×x 2=4x 2,B 选项错误.C 选项正确;(x +1)2=x 2+2x +1,故D 选项错误,故选C.2.C 3.A4.A [解析] 0.001239=1.239×10-3.故选A.5.B 6.C 7.D8.A [解析] (a +1)(a -1)(a 2+1)(a 4+1)=(a 2-1)(a 2+1)(a 4+1)=(a 4-1)(a 4+1)=a 8-1.9.A [解析] 原式=a 2(a 2-b 2)+a 2b 2=a 4-a 2b 2+a 2b 2=a 4.故选A.10.B11.2018 [解析] a 2-b 2=(a +b )(a -b ) = 2018×1=2018.12.108 [解析] a 2x +3y =a 2x ·a 3y =(a x )2·(a y )3=22×33= 4×27=108.13.414.1009 [解析] 设正方形的边长为x cm ,则(x +5)(x -2)=x 2,解得x =103,所以原长方形的面积S =x 2=1009.故答案是1009.15.1616.(1)49 (2)k n +2018 [解析] (1)将h (2)变形为h (1+1),再根据定义新运算:h (m +n )=h (m )·h (n )计算即可求解;(2)根据h (1)=k (k ≠0),以及定义新运算:h (m +n )=h (m )·h (n ),将原式变形为k n ·k 2018,再根据同底数幂的乘法法则计算即可求解.(1)∵h (1)=23,h (m +n )=h (m )·h (n ),∴h (2)=h (1+1)=23×23=49;(2)∵h (1)=k (k ≠0),h (m +n )=h (m )·h (n ),∴h (n )·h (2018)=k n ·k 2018=k n +2018.17.解:(1)原式=4-1+1=4.(2)原式=(2x +y )2-9-4x 2+9=4xy +y 2.18.解:(1)(4ab 3-8a 2b 2)÷4ab +(2a +b )(2a -b )=b 2-2ab +4a 2-b 2=4a 2-2ab .当a =2,b =1时,原式=4×22-2×2×1=16-4=12.(2)(x -1)(2x -1)-(x +1)2+1=2x 2-x -2x +1-(x 2+2x +1)+1=2x 2-x -2x +1-x 2-2x -1+1=x 2-5x +1.当x 2-5x =14时,原式=(x 2-5x )+1=14+1=15.19.解:设从该星发出的光经过t 年能到达地球,由题意得: t =(3.6×1013)÷(3×105)÷(3×107)=4.答:从该星发出的光经过4年才能到达地球.20.解:(ax+1)(x2-3x-2)=ax3-3ax2-2ax+x2-3x-2=ax3+(1-3a)x2-(2a+3)x-2.由结果中不含x的一次项,得到-(2a+3)=0,解得a=-1.5.(2a+1)2-(2a+1)(2a-1)=4a2+4a+1-4a2+1=4a+2.把a=-1.5代入上式,得4a+2=4×(-1.5)+2=-4,所以(2a+1)2-(2a+1)(2a-1)的值为-4.21.(1)①a3-8b3②8x3-y3(2)(a-b)(a2+ab+b2)=a3-b3(3)①27x3-8y3②3m m3-2722.[解析] (1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)根据题意列出关系式,化简得到结果,验证即可.解:(1)[(9+1)2-(9-1)2]×25÷9=18×2×25÷9=100.(2)[(a+1)2-(a-1)2]×25÷a=4a×25÷a=100.即最后结果都为100.。

相关文档
最新文档