自动控制原理黄坚课后答案
《自动控制原理》黄坚课后习题答案

=
-3
4
A2=
-3
4
A2=
+
-
4
3
+
f(t)=
e-t3
2
e-3t2
-t
e-t12
1
+
-
4
3
+
f(t)=
e-t3
2
e-3t2
-t
e-t12
1
= s=-1 [s(s+3)]2[s(s+3)-(s+2)(2s+3)]
A1(s+1)2A1=(s+1)2s
(s+1)2(s+2)s=-1A1=(s+1)2s(s+1)2(s+2)s=-1A3=(s+2)
s
(s+1)2(s+2)s=-2A3=(s+2)
s
(s+1)2(s+2)s=-2
d
ds
s
s+2
][
A2= s=-1
d
R2I1(s)
Uc(s)L1L2 L1=-R2 /LsL2=-/LCs2L3=-1/sCR1Δ1=1
L1L3=R2/LCR1s2P1=R2/LCR1s2=
R1CLs2+(R1R2C+L)s+R1+R2Ur(s)
Uc(s)
R2=
R1CLs2+(R1R2C+L)s+R1+R2Ur(s)
i2Lu1 解
u1=ui-uoi2=C
《自动控制原理》黄坚课后习题答案解析

2-1试建立图所示电路的动态微分方程-u o+u o解:u 1=u i -u oi 2=C du 1dt i 1=i-i 2u o i=R 2u 1i 1=R 1=u i -u oR1dtd (u i -u o )=C(a)u C d (u i -u o )dtu o -R 2=i -u o R 1i=i 1+i 2i 2=C du 1dt u o i 1=R 2u 1-u o =L R2du odtR 1i=(u i -u 1)(b)解:du )-R 2(u i -u o )=R 1u 0-CR 1R 2(idt dt du oCR 1R 2du o dt du idt +R 1u o +R 2u 0=CR 1R 2+R 2u iu o+C R 2du 1dt o +L R 2du odtu du o dt R 1R 2L du o dt +CL R 2d 2u o dt 2=--i R 1u o R 1u oR 2+C )u o R 1R 2L du o dt ) CL R 2d 2u o dt 2=++(u i R 11R 11R 2+(C+2-2 求下列函数的拉氏变换。
(1) f(t)=sin4t+cos4tL [sin ωt ]= ωω2+s 2=s+4s 2+16L [sin4t+cos4t ]= 4s 2+16s s 2+16+s ω2+s 2L [cos ωt ]=解:解:L [t 3+e 4t ]= 3!s 41s-4+6s+24+s 4s 4(s+4)=(3) f(t)=t n e atL [t n e at ]=n!(s-a)n+1解:(4) f(t)=(t-1)2e 2tL [(t-1)2e 2t ]=e -(s-2)2(s-2)3解:2-3求下列函数的拉氏反变换。
A 1=(s+2)s+1(s+2)(s+3)s=-2=-1=2f(t)=2e -3t -e -2t(1) F(s)=s+1(s+2)(s+3)解:A 2=(s+3)s+1(s+2)(s+3)s=-3F(s)= 2s+31s+2-= A 1s+2s+3+ A 2(2) F(s)=s (s+1)2(s+2)f(t)=-2e -2t -te -t +2e -t解:= A 2s+1s+2+A 3+ A 1(s+1)2A 1=(s+1)2s (s+1)2(s+2)s=-1A 3=(s+2)s (s+1)2(s+2)s=-2d ds ss+2][A 2= s=-1=-1=2=-2(3) F(s)=2s 2-5s+1s(s 2+1)F(s)(s 2+1)s=+j =A 1s+A 2s=+jA 2=-5A 3=F(s)s s=0f(t)=1+cost-5sint解:= s + A 3s 2+1A 1s+A 2=12s s 2-5s+1=A 1s+A2 s=j s=jj -2-5j+1=jA 1+A 2-5j-1=-A 1+jA 2A 1=1F(s)= 1s s 2+1s -5s 2+1++解:=+s+1A 1s+3A 2(s+1)2+s A 3+A 4-12A 1= 23A 3= 112A 4= A 2= d [s=-1ds ](s+2)s(s+3) -34= -34A 2= +-43+f(t)=e -t 32e -3t 2-t e -t 121= s=-1 [s(s+3)]2[s(s+3)-(s+2)(2s+3)](2-4)求解下列微分方程。
自动控制原理 黄坚 第二版 课后答案第五章

5-1设单位负反馈系统的开环传递函数110)(+=s s G ,当把下列输入信号作用在闭环系统输入端时,试求系统的稳态输出。
(1))30sin()( +=t t r (2) )452cos(2)( -=t t r(s+1)1解: (s+11)1 )A ω 112+()2 1ω √ =0.905 = 112+1 1√ = 122 1√ =-5.2o φ ( ω ) ω 11 =-tg -1 1 11=-tg -1 c s (t)=0.9sin(t+24.8o) (1)计算的最后结果: (1))83.24sin(905.0)(+=t t c ; (2))3.532cos(785.1)(-=t t c ;5-2设控制系统的开环传递函数如下,试绘制各系统的开环幅相频率特性曲线和开环对数频率特性曲线。
(1))15)(5(750)(++=s s s s G (2))1110)(1(200)(2++=s s s s G(3))18)(12(10)(++=s s s G (4))1008()1(1000)(2+++=s s s s s G (5))1(10)(-=s s s G (6)13110)(++=s s s G(7))15)(1.0()2.0(10)(2+++=s s s s s G (8)13110)(+-=s s s G绘制各系统的开环幅相频率特性曲线:s(s+5)(s+15)(1) G(s)=750解:n-m=3I 型系统ω=0A()=∞ωφ-90o (ω)=-270o φ(ω)=0)=A(ω(2s+1)(8s+1)(3) G(s)=10解:n-m=20型系统ω=0)=10 A(ω-180φ)=-180o (ω)=0A()=ω0)=0o φ(ω)=s(s-1)(5) G(s)=10解:n-m=2I 型系统ω=0ω=∞)=∞A(ω-270)=-270o φ(ω)=-180φ)=-180o (ω)=0A()=ω10(s+0.2)s 2(s+0.1)(s+15)(7) G(s)=解:n-m=3II 型系统ω=0ω=∞)=∞A(ω-180o φ(ω)=-270oφ(ω)=0A()= ωω绘制各系统的开环对数频率特性曲线:s(s+5)(s+15)(1) G(s)=750解:s(G(s)=1051s+1)s+1)(151ω1=5ω2=15低频段曲线:20lgK=20dBω=0ω=∞-90)=-90o φ(ω)=-270)=-270o φ(ω)=相频特性曲线:(2s+1)(8s+1)(3) G(s)=10解:低频段曲线:20lgK=20dB ω1=0.125ω2=0.5相频特性曲线:ω=0ω=∞0)=0o φ(ω)=-180)=-180o φ(ω)=s(s-1)(5) G(s)=10解:低频段曲线:20lgK=20dB ω1=1ω=0ω=∞-270oφ(ω)=-180)=-180oφ(ω)=相频特性曲线:5-3已知电路如图所示,设R 1=19k Ω,R 2=1 k Ω,C=10μF 。
自动控制原理 答案 黄坚习题详解

第二章 自动控制系统的数学模型习题2-1 试建立图示电路的动态微分方程。
解:(a )解法一:直接列微分方程组法⎪⎩⎪⎨⎧-==+O i C O C C u u u Ru R u dt du C 21i i O O u CR dt du u R CR R R dt du 121211+=++⇒ 解法二: 应用复数阻抗概念求)()(11)(11s U s I Cs R Cs R s U O i ++= (1) 2)()(R s U s I O = (2) 联立式(1)、(2),可解得: Cs R R R R Cs R R s U s U i o 212112)1()()(+++= 微分方程为: i ioo u CR dt du u R CR R R dt du 121211+=++ (b )解法一:直接列微分方程组法⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧++=+===COC i O L C O L L L u R u dt du C R u u u u R u i dt di L u)(212 (a) (b) + u C -io oo u R u R R dt du C R R L dt u d LC R 22121221)()(=++++⇒解法二: 应用复数阻抗概念求⎪⎪⎩⎪⎪⎨⎧++=+=)(]1)()([)()()()(2122s U sC s U R s U R s U Ls R R s U s U CC O i O C)()()()()()(2212121s U R s U R R s sU C R R L s U LCs R io o o =++++⇒ 拉氏反变换可得系统微分方程:io o o u R u R R dt du C R R L dt u d LC R 22121221)()(=++++2-7 证明图示的机械系统(a)和电网络系统(b)是相似系统(即有相同形式的数学模型)。
解:(a)取A 、B 两点分别进行受力分析。
自动控制原理 黄坚 第二版 课后答案 第三章

3-1设温度计需要在一分钟内指示出响应值的98%,并且假设温度计为一阶系统,求时间常数T 。
如果将温度计放在澡盆内,澡盆的温度以10C/min 的速度线性变化。
求温度计的误差。
解:c(t)=c(∞)98%t=4T=1 min r(t)=10te(t)=r(t)-c(t)c(t)=10(t-T+e )-t/T =10(T-e )-t/T =10T =2.5T=0.253-2电路系统如图所示,其中F C k R k R μ5.2,200,20110=Ω=Ω=。
设系统初始状态为零,试求:系统的单位阶跃响应8)()(1=t u t u c c 以及时的1t 值;解:R 1Cs+1R 1/R 0G (s )= u c (t)=K(1–e t T -)KTs +1=T=R 1C=0.5 K=R 1/R 0=10=10(1–e -2t )8=10(1–e -2t)0.8=1–e-2te -2t =0.2 t=0.8g(t)=e -t/T T Kt 1=0.8=4u c (t)=K(t-T+T e -t/T )=4R(s)=1s 2R(s)=1R(s)=1s 3T 2=K(s s+1/T +T s 2-1s 3-T 2)=1.2Ts 1s 3K +1U c (s)= -0.5t+0.25-0.25e -2t )12t 2u c (t)=10(3-3已知单位反馈系统的开环传递函数为)5(4)(+=s s s G 试求该系统的单位阶跃响应。
解:C(s)=s 2+5s+4R(s)4s(s+1)(s+4)C(s)=4R(s)=s1s+41+1/3s =4/3s +1-c(t)=1+ 4e 13-4t -t 3-e3-4已知单位负反馈系统的开环传递函数为 )1(1)(+=s s s G 试求该系统的上升时间r t 。
、峰值时间p t 、超调量%σ和调整时间s t 。
1s(s+1)G(s)=t p =d ωπ 3.140.866= =3.63t s = ζ3ωn=6t s = ζ4ωn =8解:C(s)=s 2+s+1R(s)12= 1ωn 2ωn ζ=1ζ=0.5=1ωn =0.866d ω= ωn 2 ζ1-=60o -1ζ=tg β21-ζt r =d ωπβ-= 3.14-3.14/30.866=2.42σ%=100%e -ζζπ1-2=16%-1.8e3-6已知系统的单位阶跃响应为t te et c 10602.12.01)(---+= ,试求:(1)系统的闭环传递函数;(2)系统的阻尼比ζ和无阻尼自然震荡频率n ω;解:s+601+0.2s C(s)= 1.2s +10-s(s+60)(s+10)=600=s 2+70s+600C(s)R(s)600R(s)=s 12=600ωn2ωn ζ=70ζ=1.43=24.5ωn3-7设二阶控制系统的单位阶跃响应曲线如图所示,如果该系统为单位负反馈系统,试确定其开环传递函数。
自动控制原理黄坚 第二版 第三章习题答案

第三章习题课 (3-13)
3-13 已知系统结构如图,试确定系统稳 定时τ值范围。 R(s) 10 C(s) 1 解: 10(1+ 1 ) s G(s)=s2+s+10 s τ 10(s+1) =s(s2+s+10 s) τ 10(s+1) Φ(s)= s3 +s2+10 s2+10s+10 τ 10(1+10 )-10 τ b31= 1+10 >0 τ
e
-1.8
第三章习题课 (3-6)
3-6 已知系统的单位阶跃响应: -60t -10t c(t)=1+0.2e -1.2e (1) 求系统的闭环传递函数。 (2) 求系统的阻尼比和无阻尼振荡频率。 1 + 0.2 - 1.2 = 600 解: C(s)= s s+60 s+10 s(s+60)(s+10) 1 C(s)= 600 R(s)= s R(s) s2+70s+600 ω n=24.5 ζ 2 ω n=70 ω n2 =600 ζ=1.43
第三章习题课 (3-17)
1 r(t)=I(t), t , 2 t2 (2) 求系统的稳态误差: 1 K1 τ = 1 G(s)= 2 解: s +Kτ s s( 1 Kτ s+1)
1
1 R(s)= s υ=1
Kp=∞ K =K υ
ess1=0 τ ess2= =0.24 ess3=∞
R(s)= s1 2 R(s)= s1 3
(3) 求d1(t)作用下的稳态误差. 1 K F(s)= Js G(s)=Kp + s -F(s) 1 essd= lim s1+G(s)F(s) s s→0 - 1 1 =0 Js = lim s K) 1 s s→0 1+(Kp+ s Js
自动控制原理黄坚第二版课后答案第四章

4-1 已知系统的零、极点分布如图,大解:(5)(7)(8)4-2 已知开环传递函数,试用解析法绘制出系统的根轨迹,并判断点(-2+j0),(0+j1),(-3+j2)是否在根轨迹上。
解:K r (s+1)G(s)=K rΦ(s)=s+1+Kr K r =0s=-1-K r系统的根轨迹s=-1K r =→∞s=-∞s=-2+j0s=0+j14-3 已知系统的开环传递函数,试绘制出根轨迹图。
解: 1p 1=0 p 2=-1 2p 1~p 2 z 1=-1.5 z 2z 1~p 3 3)根轨迹的渐近线 n-m= 1 θ= + 180o4)分离点和会合点A (s )B'(s )=A'(s )B (s )A(s)=s 3+6s 2+5s B(s)=s 2+7s+8.25A(s)'=3s 2+12s+5B(s)'=2s+7s 1=-0.63s 2=-2.5s 3=-3.6s 4=-7.28解得K s(s+1)(s+4)(2) G(s)=r (s+1.5)1)开环零、极点p 1=0p 2=-1p3=-42)实轴上根轨迹段p 1~p 2z 1=-1.5p 3~z 13)根轨迹的渐近线n-m= 2θ= +90o 2σ=-1-4+1.5=-1.754)分离点和会合点 A(s)=s 3+5s 2+4s B(s)=s+1.5 A(s)'=3s 2+10s+4 B(s)'=1 解得 s=-0.62 5)系统根轨迹K s(s+1)2(3) G(s)=r1)开环零、极点p 1=0p 2=-1p 3=-12)实轴上根轨迹段p 1~p 2p 3~-∞3)根轨迹的渐近线n-m=34θ= +180+60o ,闭环特征方程为s 3+2s 2+s+K r =05)分离点和会合点A(s)=s 3+2s 2+s B(s)=1A(s)'=3s 2+4s+1B(s)'=0解得s=-0.336)系统根轨迹1p 1=0p2p 1~p 2p 4=-15p 3~z 143)根轨迹的渐近线n-m=3(4) G(s)=3σ=-3-7-15+8=-5.67θ= +180o +60o , K r =0 ω1=0K r =638 ω2,3=±6.25)分离点和会合点A(s)=s 4+25s 3+171s 2+315s B(s)=s+8A(s)'=4s 3+75s 2+342s+315B(s)'=2s+7解得s=-1.44)根轨迹与虚轴的交点闭环特征方程为s 4+25s 3+171s 2+323s+8K r =04-5 已知系统的开环传递函数。
《自动控制原理》黄坚课后习题答案解析word版本

《⾃动控制原理》黄坚课后习题答案解析word版本2-1试建⽴图所⽰电路的动态微分⽅程-u o+u o解:u 1=u i -u oi 2=C du 1dt i 1=i-i 2u o i=R 2u 1i 1=R 1=u i -u oR1dtd (u i -u o )=C(a)u C d (u i -u o )dtu o -R 2=i -u o R 1i=i 1+i 2i 2=C du 1dt u o i 1=R 2u 1-u o =L R2du odtR 1i=(u i -u 1)(b)解:)-R 2(u i -u o )=R 1u 0-CR 1R 2(dui dt dt duo CR 1R 2du o dt du idt +R 1u o +R 2u 0=CR 1R 2+R 2u iu o+C R 2du 1dt o +L R 2du odtu du o dt R 1R 2L du o dt +CL R 2d 2u o dt 2=--i R 1u o R 1u oR 2+C )u o R 1R 2L du o dt ) CL R 2d 2u o dt 2=++(u i R 11R 11R 2+(C+2-2 求下列函数的拉⽒变换。
(1) f(t)=sin4t+cos4tL [sin ωt ]= ωω2+s 2=s+4s 2+16L [sin4t+cos4t ]= 4s 2+16s s 2+16+s ω2+s 2L [cos ωt ]=解:(2) f(t)=t 3+e 4t解:L [t 3+e 4t ]= 3!s 41s-4+6s+24+s 4s 4(s+4)=(3) f(t)=t n e atL [t n e at ]=n!(s-a)n+1解:(4) f(t)=(t-1)2e 2tL [(t-1)2e 2t ]=e -(s-2)2(s-2)3解:2-3求下列函数的拉⽒反变换。
A 1=(s+2)s+1(s+2)(s+3)s=-2=-1=2f(t)=2e -3t -e -2t(1) F(s)=s+1(s+2)(s+3)解:A 2=(s+3)s+1(s+2)(s+3)s=-3F(s)= 2s+31s+2-= A 1s+2s+3+ A 2(2) F(s)=s (s+1)2(s+2)f(t)=-2e -2t -te -t +2e -t解:= A 2s+1s+2+ A 3+A 1(s+1)2A 1=(s+1)2s (s+1)2(s+2)s=-1A 3=(s+2)s (s+1)2(s+2)s=-2d ds s s+2][A 2= s=-1=-1=2=-2(3) F(s)=2s 2-5s+1s(s 2+1)F(s)(s 2+1)s=+j =A 1s+A 2s=+jA 2=-5A 3=F(s)s s=0f(t)=1+cost-5sint解:= s + A 3s 2+1A 1s+A 2=12s s 2-5s+1=A 1s+A2 s=j s=jj -2-5j+1=jA 1+A 2-5j-1=-A 1+jA 2A 1=1F(s)= 1s s 2+1s -5s 2+1++(4) F(s)=s+2s(s+1)2(s+3)解:=+s+1A 1s+3A 2(s+1)2+s A 3+A 4-12A 1= 23A 3= 112A 4= A 2= d [s=-1ds ](s+2)s(s+3) -34= -34A 2= +-43+f(t)=e -t 32e -3t 2-t e -t 121= s=-1 [s(s+3)]2[s(s+3)-(s+2)(2s+3)](2-4)求解下列微分⽅程。
《自动控制原理》黄坚课后习题答案教学提纲

《自动控制原理》黄坚课后习题答案2-1试建立图所示电路的动态微分方程u o+u o解:u 1=u i -u oi 2=C du 1dt i 1=i-i 2u o i=R 2u 1i 1=R 1=u i -u oR1dtd (u i -u o )=C(a)u C d (u i -u o )dtu o -R 2=i -u o R 1i=i 1+i 2i 2=C du 1dt u o i 1=R 2u 1-u o =L R2du odtR 1i=(u i -u 1)(b)解:)-R 2(u i -u o )=R 1u 0-CR 1R 2(du idt dt duo CR 1R 2du o dt du idt +R 1u o +R 2u 0=CR 1R 2+R 2u iu o+C R 2du 1dt o +L R 2du odtu du o dt R 1R 2L du o dt +CL R 2d 2u o dt 2=--i R 1u o R 1u oR 2+C )u o R 1R 2L du o dt ) CL R 2d 2u o dt 2=++(u i R 11R 11R 2+(C+2-2 求下列函数的拉氏变换。
(1) f(t)=sin4t+cos4tL [sin ωt ]= ωω2+s 2=s+4s 2+16L [sin4t+cos4t ]= 4s 2+16s s 2+16+s ω2+s 2L [cos ωt ]=解:(2) f(t)=t 3+e 4t解:L [t 3+e 4t ]= 3!s 41s-4+6s+24+s 4s 4(s+4)=(3) f(t)=t n e atL [t n e at ]=n!(s-a)n+1解:(4) f(t)=(t-1)2e 2tL [(t-1)2e 2t ]=e -(s-2)2(s-2)3解:2-3求下列函数的拉氏反变换。
A 1=(s+2)s+1(s+2)(s+3)s=-2=-1=2f(t)=2e -3t -e -2t(1) F(s)=s+1(s+2)(s+3)解:A 2=(s+3)s+1(s+2)(s+3)s=-3F(s)= 2s+31s+2-= A 1s+2s+3+ A 2(2) F(s)=s (s+1)2(s+2)f(t)=-2e -2t -te -t +2e -t解:= A 2s+1s+2+ A 3+A 1(s+1)2A 1=(s+1)2s (s+1)2(s+2)s=-1A 3=(s+2)s (s+1)2(s+2)s=-2d ds ss+2][A 2= s=-1=-1=2=-2(3) F(s)=2s 2-5s+1s(s 2+1)F(s)(s 2+1)s=+j =A 1s+A 2s=+jA 2=-5A 3=F(s)s s=0f(t)=1+cost-5sint解:= s + A 3s 2+1A 1s+A 2=12s s 2-5s+1=A 1s+A2 s=j s=jj -2-5j+1=jA 1+A 2-5j-1=-A 1+jA 2A 1=1F(s)= 1s s 2+1s -5s 2+1++(4) F(s)=s+2s(s+1)2(s+3)解:=+s+1A 1s+3A 2(s+1)2+s A 3+A 4-12A 1= 23A 3= 112A 4= A 2= d [s=-1ds ](s+2)s(s+3) -34= -34A 2= +-43+f(t)=e -t 32e -3t 2-t e -t 121= s=-1 [s(s+3)]2[s(s+3)-(s+2)(2s+3)](2-4)求解下列微分方程。
自动控制原理及其应用第二版课后答案

自动控制原理及其应用第二版课后答案【篇一:《自动控制原理》黄坚课后习题答案】ss=txt>uo-u+o(a)解:i1=i-i2u1=ui-uouuu-ui=i1==211dud(u-u)i2=c=c(b)解:(u-u)i=i1+i2i=udui1=i2=c2duu1-uo=21u-uud(u-u)-c=12dudur2(ui-uo )=r1u0-cr1r2(-)duducr1r2+r1uo+r2u0=cr1r2+r2uidud2uuuduu--21112=2+cud2udu+(c+=12+(1+2)uo12duu+c2duo+22-2 求下列函数的拉氏变换。
(1) f(t)=sin4t+cos4t(2) f(t)=t3+e4t434t解:l[t+e](3) f(t)=tneat解:l[tneat]=(4) f(t)=(t-1)2e2t解:l[(t-1)2e2t]=e-(s-2)2-3求下列函数的拉氏反变换。
(1) f(s)=aa解:a1=(s+2)=-1a2=2 -f(t)=2e-3t-e-2t(2) f(s)=aaa解:a1=(s+1)=-1a2[=2a3s=-2=-2f(t)=-2e-2t-te-t+2e-t(3) f(s)=2as+aa解:f(s)(s2=a1s+a2j=a1s+aj-2-5j+1=ja1+a2-5j-1=-a1+ja2a1=1a2=-5a3=f(s)s=1++f(t)=1+cost-5sint(4) f(s)=解:=a+a+a+aa1a3a4a2ad[2]s=-1f(t)=e-t-e-t++e-3t(2-4)求解下列微分方程。
a2=5 a3=-4y(t)=1+5e-2t-4e-3t并求传递函数。
2-5试画题图所示电路的动态结构图,c+sc)r2r+rrscu(s)==c1+(+sc)r212121(2)cl1=-r2 /lsl2=-/lcs2l3=-1/scr1l1l3=r2/lcr1s2c112122-8 设有一个初始条件为零的系统,系统的输入、输出曲线如图,求g(s)。
第五章自动控制原理黄坚课后答案

5-1设单位负反馈系统的开环传递函数110)(+=s s G ,当把下列输入信号作用在闭环系统输入端时,试求系统的稳态输出。
(1))30sin()(+=t t r (2) )452cos(2)(-=t t r计算的最后结果: (1))83.24sin(905.0)(+=t t c ; (2)) 3.532cos(785.1)(-=t t c ;5-2设控制系统的开环传递函数如下,试绘制各系统的开环幅相频率特性曲线和开环对数频率特性曲线。
(1))15)(5(750)(++=s s s s G (2))1110)(1(200)(2++=s s s s G(3))18)(12(10)(++=s s s G (4))1008()1(1000)(2+++=s s s s s G (5))1(10)(-=s s s G (6)13110)(++=s s s G(7))15)(1.0()2.0(10)(2+++=s s s s s G (8)13110)(+-=s s s G 绘制各系统的开环幅相频率特性曲线: 绘制各系统的开环对数频率特性曲线:5-3已知电路如图所示,设R 1=19k Ω,R 2=1 k Ω,C=10μF 。
试求该系统传递函数,并作出该系统的伯德图。
计算的最后结果:19.0,2.0)(,1)(1221112===+=+=c R T c R R T s T sT s G ;5-4已知一些最小相位系统的对数幅频特性曲线如图所示,试写出它们的传递函数(并粗略地画出各传递函数所对应的对数相频特性曲线)。
计算的最后结果数字:(a)11010)(+=s s G (b) 101)(ss G +=; (c))1100)(101.0(100)(++=s s s s G ; (d))1100)(110)(1(250)(+++=ss s s G ;(e) 3.0,3.50,]12)[(100)(2==++=ξωωξωn nnsss s G5-6画出下列给定传递函数的极坐标图。
《自动控制原理》黄坚课后习题答案解析word版本

2-1试建立图所示电路的动态微分方程-u o+u o解:u 1=u i -u oi 2=C du 1dt i 1=i-i 2u o i=R 2u 1i 1=R 1=u i -u oR1dtd (u i -u o )=C(a)u C d (u i -u o )dtu o -R 2=i -u o R 1i=i 1+i 2i 2=C du 1dt u o i 1=R 2u 1-u o =L R2du odtR 1i=(u i -u 1)(b)解:)-R 2(u i -u o )=R 1u 0-CR 1R 2(dui dt dt duo CR 1R 2du o dt du idt +R 1u o +R 2u 0=CR 1R 2+R 2u iu o+C R 2du 1dt o +L R 2du odtu du o dt R 1R 2L du o dt +CL R 2d 2u o dt 2=--i R 1u o R 1u oR 2+C )u o R 1R 2L du o dt ) CL R 2d 2u o dt 2=++(u i R 11R 11R 2+(C+2-2 求下列函数的拉氏变换。
(1) f(t)=sin4t+cos4tL [sin ωt ]= ωω2+s 2=s+4s 2+16L [sin4t+cos4t ]= 4s 2+16s s 2+16+s ω2+s 2L [cos ωt ]=解:(2) f(t)=t 3+e 4t解:L [t 3+e 4t ]= 3!s 41s-4+6s+24+s 4s 4(s+4)=(3) f(t)=t n e atL [t n e at ]=n!(s-a)n+1解:(4) f(t)=(t-1)2e 2tL [(t-1)2e 2t ]=e -(s-2)2(s-2)3解:2-3求下列函数的拉氏反变换。
A 1=(s+2)s+1(s+2)(s+3)s=-2=-1=2f(t)=2e -3t -e -2t(1) F(s)=s+1(s+2)(s+3)解:A 2=(s+3)s+1(s+2)(s+3)s=-3F(s)= 2s+31s+2-= A 1s+2s+3+ A 2(2) F(s)=s (s+1)2(s+2)f(t)=-2e -2t -te -t +2e -t解:= A 2s+1s+2+ A 3+A 1(s+1)2A 1=(s+1)2s (s+1)2(s+2)s=-1A 3=(s+2)s (s+1)2(s+2)s=-2d ds ss+2][A 2= s=-1=-1=2=-2(3) F(s)=2s 2-5s+1s(s 2+1)F(s)(s 2+1)s=+j =A 1s+A 2s=+jA 2=-5A 3=F(s)s s=0f(t)=1+cost-5sint解:= s + A 3s 2+1A 1s+A 2=12s s 2-5s+1=A 1s+A2 s=j s=jj -2-5j+1=jA 1+A 2-5j-1=-A 1+jA 2A 1=1F(s)= 1s s 2+1s -5s 2+1++(4) F(s)=s+2s(s+1)2(s+3)解:=+s+1A 1s+3A 2(s+1)2+s A 3+A 4-12A 1= 23A 3= 112A 4= A 2= d [s=-1ds ](s+2)s(s+3) -34= -34A 2= +-43+f(t)=e -t 32e -3t 2-t e -t 121= s=-1 [s(s+3)]2[s(s+3)-(s+2)(2s+3)](2-4)求解下列微分方程。
自动控制原理及其应用解答第二版黄坚课后解答

利用控制系统实现对家居安防的监控和管理,如监控摄像头、门禁 系统等。
智能环境控制系统
通过控制系统实现对家居环境的调节和控制,如温度、湿度和空气质 量的调节和控制。
PART 06
黄坚课后解答解析
课后习题解答
习题1解答
该题考查了开环传递函数与闭环传递函数的关系,通过求 解闭环传递函数的极点和零点,可以得到系统的稳定性和 性能指标。
01
描述线性时不变系统的一种数学模型,通过系统输入和输出的
拉普拉斯变换来定义。
状态空间模型
02
描述线性时不变系统的一种数学模型,通过系统的状态变量和
输入、输出关系来定义。
差分方程模型
03
描述离散时间线性系统的数学模型,通过系描述函数模型
描述非线性系统的数学模型,通过输入和输出 信号的傅里叶变换来定义。
相平面模型
描述非线性系统的数学模型,通过系统的相平 面图来定义。
输入输出模型
描述非线性系统的数学模型,通过系统的输入和输出信号来定义。
控制系统的状态空间模型
状态方程
描述控制系统状态变量的微分方程,包括状 态变量、输入和输出。
输出方程
描述控制系统输出变量的微分方程,根据状 态变量和输入信号来定义。
状态转移矩阵
案例2
某电机控制系统,要求系统具有 高精度和高动态性能,如何根据 系统参数进行设计和优化?
案例3
某化工过程控制系统,要求系统 具有鲁棒性和可靠性,如何根据 系统参数进行设计和优化?
https://
2023 WORK SUMMARY
THANKS
感谢观看
REPORTING
自动控制的历史与发展
1 2 3
自动控制原理及其应用第二版黄坚课后习题答案ppt课件

2-3-1 函数的拉氏变换。
F(s)=(s+1s+)(1s+3)
解:A1=(s+2)(s+1s)+(s1+3)
= -1
s=-2
A2=(s+3)
s+1 (s+1)(s+3)
=2
s=-3
F(s)=
2 s+3
-
1 s+2
f(t)=2e-3t-e-2t
2-3-2 函数的拉氏变换。
F(s)=(s+1)s2(s+2)
解:F(s)(s2+1) s=+j =A1s+A2 s=+j
A1=1, A2=-5 A3=F(s)s s=0 =1
F(s)=
1 s
+
s s2+1
+
-5 s2+1
2-3-4 函数的拉氏变换。
(4)
F(s)=
s+2 s(s+1)2(s+3)
=
2 3
+112
e-3t-
3 4
e-t-
t 2
e-t
解:f(t)=
u1=i1R1 i1=iL+ic
uL=LdditL
ic=C
duc dt
=d(udi-tuo)
iL=i2=
uo R2
习题课一 (2-2)
求下列函数的拉氏变换。
(1) f(t)=sin4t+cos4t
解:∵L[sinwt]=
w w2+s2
L[coswt]=
s w2+s2
∴L[sin4t+cos4t]=
自动控制原理答案(黄坚)第四章

第四章 根轨迹分析法习题4-2 单位回馈控制系统的开环传递函数1)(+=s K s G r,试用解析法绘出r K 从零变化到无穷时的死循环根轨迹图,并判断-2, j1, (-3+j2)是否在根轨迹上。
解:1-s 01s 0r=⇒=+=时,K2-s 02s 1r=⇒=+=时,K3-s 03s 2r=⇒=+=时,K……-2 在根轨迹上,(-3+j2),j1不在根轨迹上。
4-3 回馈控制系统的开环传递函数如下,0≥r K ,试画出各系统的根轨迹图。
(2) )4)(1()5.1()(+++=s s s s K s G r (3) 2)1()(+=s s K s G r ,解:(2)1)开环零、极点:p 1=0,p 2=-1,p 3=-4,z=-1.0,n=3,m=1 2)实轴上根轨迹段:(0,-1),(-1.5,-4) 3)根轨迹的渐近线:︒±=±=-+±=-=----=902)12(,75.12)5.1(410)2( ππϕσm n k aa夹角交点条渐近线4)分离点和会合点6.05.1141111-=+=++++d d d d d 试探法求得(3)1)开环零、极点:p 1=0,p 2,3=-1,n=32)实轴上根轨迹段:(0,-1),(-1,-∞) 3)根轨迹的渐近线:±=-+±=-=--=3)12(,323110)3( ππϕσm n k aa夹角交点条渐近线4)分离点和会合点310121-=⇒=++d d d 5)与虚轴交点:223++s s4-5 系统的开环传递函数为)1()2()(++=s s s K s G r ,(1) 画出系统的根轨迹,标出分离点和会合点;(2) 当增益r K 为何值时,复数特征根的实部为-2?求出此根。
解: (1)1)开环零、极点:p 1=0,p 22)实轴上根轨迹段:(0,-13)分离点和会合点.3,586.02111121-=-=⇒+=++d d d d d123s s s s r2K -r21 1K rKj,202rr±==⇒=-s K K(2)系统特征方程为02)1(rr2=+++K s K s2j 2322122,1rr±-==-=+-=-s K Ka b ,,得:由4-6 单位回馈系统的前向信道函数为)3)(1()(++=s s s K s G r,为使死循环主导极点具有阻尼比5.0=ξ,试确定r K 的值。
自动控制原理答案黄坚习题详解汇总

⾃动控制原理答案黄坚习题详解汇总第⼆章⾃动控制系统的数学模型习题2-1 试建⽴图⽰电路的动态微分⽅程。
解:(a )解法⼀:直接列微分⽅程组法-==+O i C O C C u u u R u R u dt du C 21i i O O u CR dt du u R CR R R dt du 121211+=++? 解法⼆:应⽤复数阻抗概念求)()(11)(11s U s I Cs R Cs R s U O i ++= (1) 2)()(R s U s I O = (2)联⽴式(1)、(2),可解得: Cs R R R R Cs R R s U s U i o 2 12112)1()()(+++= 微分⽅程为: i ioo u CR dt du u R CR R R dt du 121211+=++ (b )解法⼀:直接列微分⽅程组法++=+===COC i O L C O L L L u R u dt du C R u u u u R u i dt di L u)(212 (a) (b) + u C -io o o u R u R R dt du C R R L dt u d LC R 22121221)()(=++++?解法⼆:应⽤复数阻抗概念求++=+=)(]1)()([)()()()(2122s U sC s U R s U R s U Ls R R s U s U CC O i OC)()()()()()(2212121s U R s U R R s sU C R R L s U LCs R io o o =++++? 拉⽒反变换可得系统微分⽅程:io o o u R u R R dt du C R R L dt u d LC R 22121221)()(=++++2-7 证明图⽰的机械系统(a)和电⽹络系统(b)是相似系统(即有相同形式的数学模型)。
解:(a)取A 、B 两点分别进⾏受⼒分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动控制原理黄坚课后
答案
Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】
5-1设单位负反馈系统的开环传递函数1
10)(+=
s s G ,当把下列输入信号作用在闭环系统输入端时,试求系统的稳态输出。
(1))30sin()( +=t t r
(2) )452cos(2)( -=t t r
计算的最后结果:
(1)) 83.24sin(905.0)(+=t t c ;
(2)) 3.532cos(785.1)(-=t t c ;
5-2设控制系统的开环传递函数如下,试绘制各系统的开环幅相频率特性曲线和开环对数频率特性曲线。
(1))15)(5(750)(++=s s s s G (2))
1110)(1(200)(2++=s s s s G (3))18)(12(10)(++=
s s s G (4))1008()1(1000)(2+++=s s s s s G (5))1(10)(-=s s s G (6)1
3110)(++=s s s G (7))15)(1.0()2.0(10)(2+++=
s s s s s G (8)13110)(+-=s s s G 绘制各系统的开环幅相频率特性曲线:
绘制各系统的开环对数频率特性曲线:
5-3已知电路如图所示,设R 1=19k Ω,R 2=1 k Ω,C=10μF 。
试求该系统传递函数,并作出该系统的伯德图。
计算的最后结果:19.0,2.0)(,1
)(1221112===+=+=c R T c R R T s T s T s G ; 5-4已知一些最小相位系统的对数幅频特性曲线如图所示,试写出它们的传递函数(并粗略地画出各传递函数所对应的对数相频特性曲线)。
计算的最后结果数字:(a) 110
10)(+=s s G (b) 101)(s s G +=; (c) )1100)(101.0(100
)(++=s s s s G ; (d) )1100)(110)(1(250)(+++=s s s s G ;
(e) 3.0,3.50,]12)[(100)(2==++=
ξωωξωn n
n s s
s s G 5-6画出下列给定传递函数的极坐标图。
试问这些曲线是否穿越实轴。
若穿越,则求其与实轴交点的频率ω及相应的幅值)(ωj G 。
(1) )
21)(1(1)(s s s s G ++=; (2) )1(1)(2s s s G +=
; 计算的最后结果: (1) s rad /71.0=ω,幅值67.0;
(2)不穿越 ;
5-7设系统的奈氏曲线如图所示,其中p 为s 的右半平面上开环根的个数,v 为开环积分环节的个数,试判别系统的稳定性。
解:
最后结果: (a)不稳定; (b )稳定; (c) 不稳定; (d) 稳定;
(e) 稳定; (f) 稳定; (g) 稳定; (h) 不稳定。
5-8设系统的开环传递函数如下,试绘制各系统的伯德图,并求出穿越频率ωc 。
(1) )
1.01)(5.01(10)(s s s s G ++= (2) )10016()
2.01(75)(2+++=
s s s s s G 计算的最后结果: (1)s rad c /5.4=ω; (2)s rad c /75.0=ω。
5-14已知系统的开环传递函数为)
11.0)(1()(++=s s s K s G ,分别判定当开环放大倍数K=5和K=20时闭环系统的稳定性,并求出相位裕量。
计算的最后结果:5=K 时,06.111>= γ,闭环系统稳定。
20=K 时,07.112<-= γ,闭环系统不稳定。
5-17某最小相位系统的开环对数幅频特性如图所示。
要求:
(1)求出系统开环传递函数;
(2)利用相位裕量判断系统的稳定性;
(3)将其对数幅频特性向右平移十倍频程,试讨论对系统性能的影响。
计算的最后结果: (1))1201)(11.01(10
)(++=s s s s G ;
(2)07.5>= γ,闭环系统稳定;
(3)系统的稳定性改变,调节时间缩短,系统动态响应加快。
5-18已知系统的结构如图所示,试绘制系统的伯德图,并计算)(c w γ。
解:
-。