2016浙江丽水中考数学解析

合集下载

中考数学——浙江中考真题——平行四边形

中考数学——浙江中考真题——平行四边形

平行四边形浙江中考真题一. 选择题(共15小题) 1. (2017•丽水)如图,在▱ABCD 中,连结AC ,∠ABC =∠CAD =45°,AB =2,则BC 的长是( )A.B. 2C. D. 42. (2016•绍兴)小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是( ) A. ①,②B. ①,④C. ③,④D. ②,③3. (2016•衢州)如图,在▱ABCD 中,M 是BC 延长线上的一点,若∠A =135°,则∠MCD 的度数是( ) A. 45° B. 55° C. 65° D. 75°4. (2016•宁波)如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S 1,另两张直角三角形纸片的面积都为S 2,中间一张正方形纸片的面积为S 3,则这个平行四边形的面积一定可以表示为( ) A. 4S 1 B. 4S 2C. 4S 2+S 3D. 3S 1+4S 35. (2016•丽水)如图,▱ABCD 的对角线AC ,BD 交于点O ,已知AD =8,BD =12,AC =6,则△OBC 的周长为( ) A. 13 B. 17 C. 20 D. 266. (2016•温州)六边形的内角和是( ) A. 540° B. 720° C. 900° D. 1080°7. (2016•舟山)已知一个正多边形的内角是140°,则这个正多边形的边数是( ) A. 6 B. 7 C. 8 D. 98. (2015•杭州)下列图形是中心对称图形的是( )A. B. C. D.M9. (2015•衢州)如图,在▱ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE的长等于()A. 8cmB. 6cmC. 4cmD. 2cm10. (2015•宁波)如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形. 若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为()A. ①②B. ②③C. ①③D. ①②③11. (2017•绍兴)在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图,该图中,四边形ABCD是矩形,E 是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠F AE=∠FEA. 若∠ACB=21°,则∠ECD的度数是() A. 7° B. 21° C. 23° D. 24°12. (2017•嘉兴)如图,在平面直角坐标系xOy中,已知点A0),B(1,1). 若平移点A到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是()A. 向左平移1个单位,再向下平移1个单位B. 向左平移(1)个单位,再向上平移1个单位C. 个单位,再向上平移1个单位D. 向右平移1个单位,再向上平移1个单位13. (2015•衢州)如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于()A. 米B. 6米C.D. 3米14. (2015•台州)如图,在菱形ABCD中,AB=8,点E,F分别在AB,AD上,且AE=AF,过点E作EG∥AD交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O. 当四边形AEOF与四边形CGOH的周长之差为12时,AE的值为()A. 6.5B. 6C. 5.5D. 515. (2015•安徽)如图,矩形ABCD中,AB=8,BC=4. 点E在边AB上,点F在边CD上,点G、H在对角线AC 上. 若四边形EGFH是菱形,则AE的长是()A. B. C. 5 D. 6二. 填空题(共12小题)16. (2017•湖州)已知一个多边形的每一个外角都等于72°,则这个多边形的边数是.17. (2016•衢州)已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=.18. (2015•衢州)如图,小聪与小慧玩跷跷板,跷跷板支架高EF为0.6米,E是AB的中点,那么小聪能将小慧翘起的最大高度BC等于米.19. (2017•绍兴)如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F. 若小敏行走的路程为3100m,则小聪行走的路程为m.20. (2016•绍兴)如图,矩形ABCD 中,AB =4,BC =2,E 是AB 的中点,直线l 平行于直线EC ,且直线l 与直线EC 之间的距离为2,点F 在矩形ABCD 边上,将矩形ABCD 沿直线EF 折叠,使点A 恰好落在直线l 上,则DF 的长为 .21. (2016•杭州)在菱形ABCD 中,∠A =30°,在同一平面内,以对角线BD 为底边作顶角为120°的等腰三角形BDE ,则∠EBC 的度数为 .22. (2016•丽水)如图,在菱形ABCD 中,过点B 作BE ⊥AD ,BF ⊥CD ,垂足分别为点E ,F ,延长BD 至G ,使得DG =BD ,连结EG ,FG ,若AE =DE ,则_____________EGAB=.23. (2015•丽水)如图,四边形ABCD 与四边形AECF 都是菱形,点E 、F 在BD 上. 已知∠BAD =120°,∠EAF =30°,则_____________ABAE=.24. (2015•温州模拟)如图,在菱形ABCD 中,点E 是AB 上的一点,连接DE 交AC 于点O ,连接BO ,且∠AED =50°,则∠CBO = 度.25. (2015•温州)图甲是小明设计的带菱形图案的花边作品. 该作品由形如图乙的矩形图案拼接而成(不重叠、无缝隙). 图乙中67AB BC =,EF =4cm ,上下两个阴影三角形的面积之和为54cm 2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为 cm.26. (2016•南京)如图,菱形ABCD 的面积为120cm 2,正方形AECF 的面积为50cm 2,则菱形的边长为 cm.27. (2016•天津)如图,在正方形ABCD 中,点E ,N ,P ,G 分别在边AB ,BC ,CD ,DA 上,点M ,F ,Q 都在对角线BD 上,且四边形MNPQ 和AEFG 均为正方形,则MNPQAEFGS S 正方形正方形的值等于 .三. 解答题(共8小题)28. (2016•舟山)如图1,已知点E ,F ,G ,H 分别是四边形ABCD 各边AB ,BC ,CD ,DA 的中点,根据以下思路可以证明四边形EFGH 是平行四边形:(1)如图2,将图1中的点C 移动至与点E 重合的位置,F ,G ,H 仍是BC ,CD ,DA 的中点,求证:四边形CFGH 是平行四边形;(2)如图3,在边长为1的小正方形组成的5×5网格中,点A ,C ,B 都在格点上,在格点上画出点D ,使点C 与BC ,CD ,DA 的中点F ,G ,H 组成正方形CFGH ; (3)在(2)条件下求出正方形CFGH 的边长.29. (2016•温州)如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.30. (2016•温州)如图,在方格纸中,点A,B,P都在格点上. 请按要求画出以AB为边的格点四边形,使P在四边形内部(不包括边界上),且P到四边形的两个顶点的距离相等.(1)在图甲中画出一个▱ABCD.(2)在图乙中画出一个四边形ABCD,使∠D=90°,且∠A≠90°. (注:图甲、乙在答题纸上)31. (2017•杭州)如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC 于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.32. (2016•台州)如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H.(1)求证:△PHC≌△CFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.33. (2016•衢州)如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.34. (2016•金华)在平面直角坐标系中,点O为原点,点A的坐标为(﹣6,0). 如图1,正方形OBCD的顶点B在x 轴的负半轴上,点C在第二象限. 现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式.(2)若α为锐角,12tan =,当AE取得最小值时,求正方形OEFG的面积.(3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为:1?若能,求点P的坐标;若不能,试说明理由35. (2016•广州)如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求∠ABD的度数.平行四边形浙江中考真题参考答案与试题解析一. 选择题(共15小题)1. (2017•丽水)如图,在▱ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC的长是()A. B. 2 C. 2 D. 4【分析】证出△ACD是等腰直角三角形,由勾股定理求出AD,即可得出BC的长.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=2,BC=AD,∠D=∠ABC=∠CAD=45°,∴AC=CD=2,∠ACD=90°,即△ACD是等腰直角三角形,∴BC=AD==2;故选:C.【点评】本题考查了平行四边形的性质、勾股定理、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明△ACD是等腰直角三角形是解决问题的关键.2. (2016•绍兴)小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是()A. ①,②B. ①,④C. ③,④D. ②,③【分析】确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题.【解答】解:∵只有②③两块角的两边互相平行,且中间部分相联,角的两边的延长线的交点就是平行四边形的顶点,∴带②③两块碎玻璃,就可以确定平行四边形的大小.故选:D.【点评】本题考查平行四边形的定义以及性质,解题的关键是理解如何确定平行四边形的四个顶点,四个顶点的位置确定了,平行四边形的大小就确定了,属于中考常考题型.3. (2016•衢州)如图,在▱ABCD中,M是BC延长线上的一点,若∠A=135°,则∠MCD的度数是()A. 45°B. 55°C. 65°D. 75°【分析】根据平行四边形对角相等,求出∠BCD,再根据邻补角的定义求出∠MCD即可.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠BCD=135°,∴∠MCD=180°﹣∠DCB=180°﹣135°=45°.故选:A.【点评】本题考查平行四边形的性质、邻补角定义等知识,解题的关键是熟练掌握平行四边形性质,属于基础题,中考常考题型.4. (2016•宁波)如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A. 4S1B. 4S2C. 4S2+S3D. 3S1+4S3【分析】设等腰直角三角形的直角边为a,正方形边长为c,求出S2(用a、c表示),得出S1,S2,S3之间的关系,由此即可解决问题.【解答】解:设等腰直角三角形的直角边为a,正方形边长为c,则S2=(a+c)(a﹣c)=a2﹣c2,∴S2=S1﹣S3,∴S3=2S1﹣2S2,∴平行四边形面积=2S1+2S2+S3=2S1+2S2+2S1﹣2S2=4S1.故选:A.【点评】本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1,S2,S3之间的关系,属于中考常考题型.5. (2016•丽水)如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为()A. 13B. 17C. 20D. 26【分析】由平行四边形的性质得出OA=OC=3,OB=OD=6,BC=AD=8,即可求出△OBC的周长.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC=3,OB=OD=6,BC=AD=8,∴△OBC的周长=OB+OC+AD=3+6+8=17.故选:B.【点评】本题主要考查了平行四边形的性质,并利用性质解题. 平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.6. (2016•温州)六边形的内角和是()A. 540°B. 720°C. 900°D. 1080°【分析】多边形内角和定理:n变形的内角和等于(n﹣2)×180°(n≥3,且n为整数),据此计算可得.【解答】解:由内角和公式可得:(6﹣2)×180°=720°,故选:B.【点评】此题主要考查了多边形内角和公式,关键是熟练掌握计算公式:(n﹣2)•180°(n≥3,且n为整数). .7. (2016•舟山)已知一个正多边形的内角是140°,则这个正多边形的边数是()A. 6B. 7C. 8D. 9【分析】首先根据一个正多边形的内角是140°,求出每个外角的度数是多少;然后根据外角和定理,求出这个正多边形的边数是多少即可.【解答】解:360°÷(180°﹣140°)=360°÷40°=9.答:这个正多边形的边数是9.故选:D.【点评】此题主要考查了多边形的内角与外角,要熟练掌握,解答此题的关键是要明确多边形的外角和定理. 8. (2015•杭州)下列图形是中心对称图形的是()A. B. C. D.【分析】根据中心对称图形的定义和图形的特点即可求解.【解答】解:由中心对称的定义知,绕一个点旋转180°后能与原图重合,则只有选项A是中心对称图形.故选:A.【点评】本题考查了中心对称图形的概念:如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.9. (2015•衢州)如图,在▱ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE的长等于()A. 8cmB. 6cmC. 4cmD. 2cm【分析】由平行四边形的性质得出BC=AD=12cm,AD∥BC,得出∠DAE=∠BEA,证出∠BEA=∠BAE,得出BE=AB,即可得出CE的长.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=12cm,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=8cm,∴CE=BC﹣BE=4cm;故选:C.【点评】本题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.10. (2015•宁波)如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形. 若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为()A. ①②B. ②③C. ①③D. ①②③【分析】首先设图形①的长和宽分别是a、c,图形②的边长是b,图形③的边长是d,原来大长方形的周长是l,判断出l=2(a+2b+c),a=b+d,b=c+d;然后分别判断出图形①、图形②的周长都等于原来大长方形的周长的,所以它们的周长不用测量就能知道,而图形③的周长不用测量无法知道,据此解答即可.【解答】解:如图1,,设图形①的长和宽分别是a、c,图形②的边长是b,图形③的边长是d,原来大长方形的周长是l,则l=2(a+2b+c),根据图示,可得(1)﹣(2),可得:a﹣b=b﹣c,∴2b=a+c,∴l=2(a+2b+c)=2×2(a+c)=4(a+c),或l=2(a+2b+c)=2×4b=8b,∴2(a+c)=,4b=,∵图形①的周长是2(a+c),图形②的周长是4b,的值一定,∴图形①②的周长是定值,不用测量就能知道,图形③的周长不用测量无法知道.∴分割后不用测量就能知道周长的图形的标号为①②.故选:A.【点评】此题主要考查了中心对称的性质和应用,要熟练掌握,解答此题的关键是要明确中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.11. (2017•绍兴)在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图,该图中,四边形ABCD是矩形,E 是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠F AE=∠FEA. 若∠ACB=21°,则∠ECD的度数是()A. 7°B. 21°C. 23°D. 24°【分析】由矩形的性质得出∠BCD=90°,AB∥CD,AD∥BC,证出∠FEA=∠ECD,∠DAC=∠ACB=21°,由三角形的外角性质得出∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∠ACD=3x,由互余两角关系得出方程,解方程即可.【解答】解:∵四边形ABCD是矩形,∴∠BCD=90°,AB∥CD,AD∥BC,∴∠FEA=∠ECD,∠DAC=∠ACB=21°,∵∠ACF=∠AFC,∠F AE=∠FEA,∴∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∴∠ACD=3x,∴3x+21°=90°,解得:x=23°;故选:C.【点评】本题考查了矩形的性质、平行线的性质、直角三角形的性质、三角形的外角性质;熟练掌握矩形的性质和平行线的性质是解决问题的关键.12. (2017•嘉兴)如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1). 若平移点A到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是()A. 向左平移1个单位,再向下平移1个单位B. 向左平移(2﹣1)个单位,再向上平移1个单位C. 向右平移个单位,再向上平移1个单位D. 向右平移1个单位,再向上平移1个单位【分析】过点B作BH⊥OA,交OA于点H,利用勾股定理可求出OB的长,进而可得点A向左或向右平移的距离,由菱形的性质可知BC∥OA,所以可得向上或向下平移的距离,问题得解.【解答】解:过B作射线BC∥OA,在BC上截取BC=OA,则四边形OACB是平行四边形,过B作BH⊥x轴于H,∵B(1,1),∴OB==,∵A(,0),∴C(1+,1)∴OA=OB,∴则四边形OACB是菱形,∴平移点A到点C,向右平移1个单位,再向上平移1个单位而得到,故选:D.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;13. (2015•衢州)如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于()A. 6米B. 6米C. 3米D. 3米【分析】由四边形ABCD为菱形,得到四条边相等,对角线垂直且互相平分,根据∠BAD=60°得到三角形ABD 为等边三角形,在直角三角形ABO中,利用勾股定理求出OA的长,即可确定出AC的长.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,OA=OC,OB=OD,AB=BC=CD=AD=24÷4=6(米),∵∠BAD=60°,∴△ABD为等边三角形,∴BD=AB=6(米),OD=OB=3(米),在Rt△AOB中,根据勾股定理得:OA==3(米),则AC=2OA=6米,故选:A.【点评】此题考查了勾股定理,菱形的性质,以及等边三角形的判定与性质,熟练掌握菱形的性质是解本题的关键.14. (2015•台州)如图,在菱形ABCD中,AB=8,点E,F分别在AB,AD上,且AE=AF,过点E作EG∥AD交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O. 当四边形AEOF与四边形CGOH的周长之差为12时,AE的值为()A. 6.5B. 6C. 5.5D. 5【分析】根据菱形的性质得出AD∥BC,AB∥CD,推出平行四边形ABHF、AEGD、GCHO,得出AF=FO=OE=AE 和OH=CH=GC=GO,根据菱形的判定得出四边形AEOF与四边形CGOH是菱形,再解答即可.【解答】解:∵四边形ABCD是菱形,∴AD=BC=AB=CD,AD∥BC,AB∥CD,∵EG∥AD,FH∥AB,∴四边形AEOF与四边形CGOH是平行四边形,∴AF=OE,AE=OF,OH=GC,CH=OG,∵AE=AF,∴OE=OF=AE=AF,∵AE=AF,∴BC﹣BH=CD﹣DG,即OH=HC=CG=OG,∴四边形AEOF与四边形CGOH是菱形,∵四边形AEOF与四边形CGOH的周长之差为12,∴4AE﹣4(8﹣AE)=12,解得:AE=5.5,故选:C.【点评】此题考查菱形的性质,关键是根据菱形的判定得出四边形AEOF与四边形CGOH是菱形.15. (2015•安徽)如图,矩形ABCD中,AB=8,BC=4. 点E在边AB上,点F在边CD上,点G、H在对角线AC 上. 若四边形EGFH是菱形,则AE的长是()A. 2B. 3C. 5D. 6【分析】连接EF交AC于O,由四边形EGFH是菱形,得到EF⊥AC,OE=OF,由于四边形ABCD是矩形,得到∠B=∠D=90°,AB∥CD,通过△CFO≌△AOE,得到AO=CO,求出AO=AC=2,根据△AOE∽△ABC,即可得到结果.【解答】解;连接EF交AC于O,∵四边形EGFH是菱形,∴EF⊥AC,OE=OF,∵四边形ABCD是矩形,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠CAB,在△CFO与△AOE中,,∴△CFO≌△AOE,∴AO=CO,∵AC==4,∴AO=AC=2,∵∠CAB=∠CAB,∠AOE=∠B=90°,∴△AOE∽△ABC,∴,∴,∴AE=5.故选:C.【点评】本题考查了菱形的性质,全等三角形的判定和性质,相似三角形的判定和性质,熟练运用定理是解题的关键.二. 填空题(共12小题)16. (2017•湖州)已知一个多边形的每一个外角都等于72°,则这个多边形的边数是5.【分析】用多边形的外角和360°除以72°即可.【解答】解:边数n=360°÷72°=5.故答案为:5.【点评】本题考查了多边形的外角和等于360°,是基础题,比较简单.17. (2016•衢州)已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=4或﹣2.【分析】分别在平面直角坐标系中确定出A、B、O的位置,再根据两组对边分别平行的四边形是平行四边形可确定C的位置,从而求出x的值.【解答】解:根据题意画图如下:以O,A,B,C为顶点的四边形是平行四边形,则C(4,1)或(﹣2,1),则x=4或﹣2;故答案为:4或﹣2.【点评】此题主要考查了平行四边形的判定,关键是掌握两组对边分别平行的四边形是平行四边形.18. (2015•衢州)如图,小聪与小慧玩跷跷板,跷跷板支架高EF为0.6米,E是AB的中点,那么小聪能将小慧翘起的最大高度BC等于 1.2米.【分析】先求出F为AC的中点,根据三角形的中位线求出BC=2EF,代入求出即可.【解答】解:∵EF⊥AC,BC⊥AC,∴EF∥BC,∵E是AB的中点,∴F为AC的中点,∴BC=2EF,∵EF=0.6米,∴BC=1.2米,故答案为:1.2.【点评】本题考查了三角形的中位线性质,平行线的性质和判定的应用,解此题的关键是求出BC=2EF,注意:垂直于同一直线的两直线平行.19. (2017•绍兴)如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F. 若小敏行走的路程为3100m,则小聪行走的路程为4600m.【分析】连接CG,由正方形的对称性,易知AG=CG,由正方形的对角线互相平分一组对角,GE⊥DC,易得DE=GE. 在矩形GECF中,EF=CG. 要计算小聪走的路程,只要得到小聪比小敏多走了多少就行.【解答】解:连接GC,∵四边形ABCD为正方形,所以AD=DC,∠ADB=∠CDB=45°,∵∠CDB=45°,GE⊥DC,∴△DEG是等腰直角三角形,∴DE=GE.在△AGD和△GDC中,∴△AGD≌△GDC∴AG=CG在矩形GECF中,EF=CG,∴EF=AG.∵BA+AD+DE+EF﹣BA﹣AG﹣GE=AD=1500m.∵小敏共走了3100m,∴小聪行走的路程为3100+1500=4600(m)故答案为:4600【点评】本题考查了正方形的性质、全等三角形的性质和判定、矩形的性质及等腰三角形的性质. 解决本题的关键是证明AG=EF,DE=GE.20. (2016•绍兴)如图,矩形ABCD中,AB=4,BC=2,E是AB的中点,直线l平行于直线EC,且直线l与直线EC之间的距离为2,点F在矩形ABCD边上,将矩形ABCD沿直线EF折叠,使点A恰好落在直线l上,则DF 的长为2或4﹣2.【分析】当直线l在直线CE上方时,连接DE交直线l于M,只要证明△DFM是等腰直角三角形即可利用DF= DM解决问题,当直线l在直线EC下方时,由∠DEF1=∠BEF1=∠DF1E,得到DF1=DE,由此即可解决问题.【解答】解:如图,当直线l在直线CE上方时,连接DE交直线l于M,∵四边形ABCD是矩形,∴∠A=∠B=90°,AD=BC,∵AB=4,AD=BC=2,∴AD=AE=EB=BC=2,∴△ADE、△ECB是等腰直角三角形,∴∠AED=∠BEC=45°,∴∠DEC=90°,∵l∥EC,∴ED⊥l,∴EM=2=AE,∴点A、点M关于直线EF对称,∵∠MDF=∠MFD=45°,∴DM=MF=DE﹣EM=2﹣2,∴DF=DM=4﹣2.当直线l在直线EC下方时,∵∠DEF1=∠BEF1=∠DF1E,∴DF1=DE=2,综上所述DF的长为2或4﹣2.故答案为2或4﹣2.【点评】本题考查翻折变换、矩形的性质、等腰直角三角形的性质和判定,解题的关键是正确画出图形,注意有两种情形,属于中考常考题型.21. (2016•杭州)在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为45°或105°.【分析】如图当点E在BD右侧时,求出∠EBD,∠DBC即可解决问题,当点E在BD左侧时,求出∠DBE′即可解决问题.【解答】解:如图,∵四边形ABCD是菱形,∴AB=AD=BC=CD,∠A=∠C=30°,∠ABC=∠ADC=150°,∴∠DBA=∠DBC=75°,∵ED=EB,∠DEB=120°,∴∠EBD=∠EDB=30°,∴∠EBC=∠EBD+∠DBC=105°,当点E′在BD右侧时,∵∠DBE′=30°,∴∠E′BC=∠DBC﹣∠DBE′=45°,∴∠EBC=105°或45°,故答案为105°或45°.【点评】本题考查菱形的性质、等腰三角形的性质等知识,解题的关键是正确画出图形,考虑问题要全面,属于中考常考题型.22. (2016•丽水)如图,在菱形ABCD中,过点B作BE⊥AD,BF⊥CD,垂足分别为点E,F,延长BD至G,使得DG=BD,连结EG,FG,若AE=DE,则=.【分析】连接AC、EF,根据菱形的对角线互相垂直平分可得AC⊥BD,根据线段垂直平分线上的点到线段两端点的距离相等可得AB=BD,然后判断出△ABD是等边三角形,再根据等边三角形的三个角都是60°求出∠ADB=60°,设EF与BD相交于点H,AB=4x,然后根据三角形的中位线平行于第三边并且等于第三边的一半求出EH,再求出DH,从而得到GH,利用勾股定理列式求出EG,最后求出比值即可.【解答】解:如图,连接AC、EF,在菱形ABCD中,AC⊥BD,∵BE⊥AD,AE=DE,∴AB=BD,又∵菱形的边AB=AD,∴△ABD是等边三角形,∴∠ADB=60°,设EF与BD相交于点H,AB=4x,∵AE=DE,∴由菱形的对称性,CF=DF,∴EF是△ACD的中位线,∴DH=DO=BD=x,在Rt△EDH中,EH=DH=x,∵DG=BD,∴GH=BD+DH=4x+x=5x,在Rt△EGH中,由勾股定理得,EG===2x,所以,==.故答案为:.【点评】本题考查了菱形的性质,等边三角形的判定与性质,勾股定理,三角形的中位线平行于第三边并且等于第三边的一半,难点在于作辅助线构造出直角三角形以及三角形的中位线.23. (2015•丽水)如图,四边形ABCD与四边形AECF都是菱形,点E、F在BD上. 已知∠BAD=120°,∠EAF=30°,则=.【分析】利用菱形的性质对角线平分对角,结合勾股定理以及锐角三角函数关系表示出AB,AE的长,进而求出即可.【解答】解:过点E作EN⊥AB于点N,∵四边形ABCD与四边形AECF都是菱形,点E、F在BD上,∠BAD=120°,∠EAF=30°,∴∠ABD=30°,∠EAC=15°,则∠BAE=45°,∴设AN=x,则NE=x,AE=x,BN==x,∴==.故答案为:.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,表示出AB,AE的长是解题关键.24. (2015•温州模拟)如图,在菱形ABCD中,点E是AB上的一点,连接DE交AC于点O,连接BO,且∠AED=50°,则∠CBO=50度.【分析】根据两直线平行,内错角相等∠CDO=∠AED,再根据菱形的性质CD=CB,∠BCO=∠DCO,所以△BCO 与△DCO全等,根据全等三角形对应角相等即可求出∠CBO的度数.【解答】解:在菱形ABCD中,AB∥CD,∴∠CDO=∠AED=50°,CD=CB,∠BCO=∠DCO,∴在△BCO和△DCO中,,∴△BCO≌△DCO(SAS),∴∠CBO=∠CDO=50°.故答案为50.【点评】本题考查点较多,有菱形的对边平行,菱形的邻边相等的性质,菱形的对角线平分一组对角的性质,三角形全等的判定和全等三角形对应角相等的性质,熟练掌握各性质是解题的关键.25. (2015•温州)图甲是小明设计的带菱形图案的花边作品. 该作品由形如图乙的矩形图案拼接而成(不重叠、无缝隙). 图乙中,EF=4cm,上下两个阴影三角形的面积之和为54cm2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为cm.【分析】首先取CD的中点G,连接HG,设AB=6acm,则BC=7acm,中间菱形的对角线HI的长度为xcm;然后根据GH∥BC,可得x=3.5a﹣2;再根据上下两个阴影三角形的面积之和为54cm2,可得a(7a﹣x)=18,据此求出a、x的值各是多少;最后根据AM∥FC,求出HK的长度,再用HK的长度乘以4,求出该菱形的周长为多少即可.【解答】解:如图乙,H是CF与DN的交点,取CD的中点G,连接HG,,设AB=6acm,则BC=7acm,中间菱形的对角线HI的长度为xcm,∵BC=7acm,MN=EF=4cm,∴CN=,∵GH∥BC,∴,∴,∴x=3.5a﹣2…(1);∵上下两个阴影三角形的面积之和为54cm2,∴6a•(7a﹣x)÷2=54,∴a(7a﹣x)=18…(2);由(1)(2),可得a=2,x=5,∴CD=6×2=12(cm),CN=,∴DN==15(cm),又∵DH===7.5(cm),∴HN=15﹣7.5=7.5(cm),∵AM∥FC,∴=,∴HK=,∴该菱形的周长为:=(cm).故答案为:.【点评】(1)此题主要考查了菱形的性质和应用,要熟练掌握,解答此题的关键是要明确:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.(2)此题还考查了矩形的性质和应用,要熟练掌握,解答此题的关键是要明确:①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形. 它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.26. (2016•南京)如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为13cm.【分析】根据正方形的面积可用对角线进行计算解答即可.【解答】解:因为正方形AECF的面积为50cm2,所以AC=cm,因为菱形ABCD的面积为120cm2,所以BD=cm,所以菱形的边长=cm.故答案为:13.【点评】此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.27. (2016•天津)如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.【分析】根据辅助线的性质得到∠ABD=∠CBD=45°,四边形MNPQ和AEFG均为正方形,推出△BEF与△BMN 是等腰直角三角形,于是得到FE=BE=AE=AB,BM=MN=QM,同理DQ=MQ,即可得到结论.【解答】解:在正方形ABCD中,∵∠ABD=∠CBD=45°,∵四边形MNPQ和AEFG均为正方形,∴∠BEF=∠AEF=90°,∠BMN=∠QMN=90°,∴△BEF与△BMN是等腰直角三角形,∴FE=BE=AE=AB,BM=MN=QM,同理DQ=MQ,∴MN=BD=AB,∴==,故答案为:.【点评】本题考查了正方形的性质,等腰直角三角形的性质,正方形的面积的计算,熟练掌握等腰直角三角形的性质是解题的关键.三. 解答题(共8小题)28. (2016•舟山)如图1,已知点E,F,G,H分别是四边形ABCD各边AB,BC,CD,DA的中点,根据以下思路可以证明四边形EFGH是平行四边形:(1)如图2,将图1中的点C移动至与点E重合的位置,F,G,H仍是BC,CD,DA的中点,求证:四边形CFGH 是平行四边形;。

2016丽水中考数学答案

2016丽水中考数学答案

浙江省2016年初中毕业升学考试(丽水卷)数学试卷参考答案及评分标准一、 选择题(本题有10小题,每小题3分,共30分)二、填空题(本题有6小题,每小题4分,共24分)11. a (m -3) 12.70° 13.23 14.1 16.(1)4m m+;三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分) 17.(本题6分)解:原式 ……6分 18.(本题6分)解:去括号,得3 x -5<4+6x ,移项,得3x -6x <4+5,合并同类项,得-3x <9,两边都除以-3,得x >-3. ……6分 19.(本题6分)解:在Rt △ABC 中,BC =2,∠A =30°,∴2tan tan30BC AC A ︒=== 由题意,得EF =AC =23.在Rt △EFC 中,∠E =45°,∴CF =EF ·cos45°=23×22=6.∴AF =AC -CF =23-6. ……6分 20.(本题8分)解:(1) “跳绳”项目的女生人数=4006002602402+-=(人). ……2分 (2)观察男、女生各项目平均成绩统计图可知:立定跳远、游泳、跳绳三项目的男、女生总平均成绩均小于9分,投篮项目的男、女 生总平均成绩一定大于9分.掷实心球项目的男、女生总平均成绩=4008.76009.29400600⨯+⨯=+.∴属于“优秀”项目的有投篮、掷实心球两个项目. ……3分(3)A类(识图能力):能用两统计图中的一个图提出合理化建议.如:“游泳”项目考试的人最多,可选考“游泳”.B类(数据分析能力):能结合两统计图的数据提出合理化建议.如:“投篮”项目人数虽然不是最多,但平均成绩较高,建议选“投篮”.C类(综合运用能力):能利用两统计图中的数据并结合学生实际提出合理化建议.如:“跳绳”项目的报名人数少,男、女生的平均成绩都很低,若不是跳绳水平很高,建议不选择该项目.)注:符合A类给1分;符合B类给2分;符合C类给3分. ……3分21.(本题8分)解:(1)∵从起点到紫金大桥用了35分钟,且平均速度是0.3千米/分,∴a=0.3×35=10.5(千米). ……2分(2)①∵线段OA经过点O(0,0),A(35,10.5),∴OA的函数解析式是S=0.3t (0≤t≤35).∴当S=2.1时,0.3t=2.1,解得t=7.∵该运动员从第一次过C点到第二次过C点所用的时间为68分钟,∴该运动员从起点到第二次过C点共用的时间是7+68=75(分钟).∴AB经过(35,10.5),(75,2.1)两点.设AB所在直线的函数解析式是S=kt+b,∴3510.575 2.1k bk b+=⎧⎨+=⎩,解得0.2117.85kb=-⎧⎨=⎩.∴AB 所在直线的函数解析式是S =-0.21t +17.85. ……4分②∵该运动员跑完赛程所用的时间即为直线AB 与x 轴交点横坐标的值. ∴当S =0时,-0.21t +17.85=0 ,解得, t =85.∴该运动员跑完赛程用时85分钟. ……2分 22.(本题10分)解:(1)连结OD ,BD ,∵AB 是半圆O 的切线,∴AB ⊥BC ,即∠ABO=90°. ∵AB=AD ,∴∠ABD =∠ADB ,∵OB=OD ,∴∠DBO =∠BDO ,∴∠ABD +∠DBO =∠ADB +∠BDO ,∴∠ADO =∠ABO=90°,∴AD 是半圆O 的切线. ……3分(2)由(1),∠ADO =∠ABO=90°,∴∠A=360°-∠ADO -∠ABO -∠BOD=180°-∠BOD .而∠DOC =180°-∠BOD ,∴∠A=∠DOC .∵AD 是半圆O 的切线,∴∠ODE=90°.∴∠ODC +∠CDE =90°.∵BC 是直径,∴∠ODC +∠BDO =90°.∴∠BDO=∠CDE , ∵∠BDO=∠OBD ,∴∠DOC =2∠BDO .∴∠DOC =2∠CDE ,∴∠A=2∠CDE . ……4分 (3)∵∠CDE=27°,∴由(2),得∠DOC=2∠CDE=54°, ∴∠BOD=180°-54°=126°.EA D C··∵OB=2,∴BD l =πππ571802126180=⨯⨯=R n . ……3分 23.(本题10分) 解:(1)∵110a =>0,∴抛物线顶点为最低点.∵y =110x 2-45x +3=110( x -4)2+75. ∴绳子最低点离地面的距离为75米. ……3分 (2)由(1)可知,BD =8.令x =0得y =3,∴A (0,3),C (8,3)由题意得:抛物线F 1的顶点坐标为(2,1.8),∴设F 1的解析式为:y =a (x -2)2+1.8. 将(0,3)代入,得:4a +1.8=3,解得: a=0.3,∴抛物线F 1为: y =0.3(x -2)2+1.8.当x =3时,y =0.3×1+1.8=2.1,∴MN 的长度为2.1米. ……3分 (3)∵MN =CD =3,∴根据抛物线的对称性可知抛物线F 2的顶点在ND 的垂直平分线上, ∴抛物线F 2的顶点坐标为(12m +4,k ),∴抛物线F 2的解析式为:y =14(x -12m -4)2+k . 把C (8,3)代入,得:14(4-12m )2+k =3,∴k =-14(4-12m )2+3,∴k =-116(m -8)2+3. ∴k 是关于m 的二次函数.又∵由已知m<8,在对称轴的左侧,∴k 随m 的增大而增大. ∴当k =2时,-116(m -8)2+3=2,解得: m 1=4, m 2=12 (不符合题意,舍去) . 当k =2.5时,-116(m -8)2+3=2.5,解得: m 1=8- m 2= 8+(不符合题意,舍去). ∴m 的取值范围是4≤m ≤8- ……4分 24.(本题12分)解:(1)∵在矩形ABCD 中,∠DCE=90°,∵F 是斜边DE 的中点,∴CF =EF ,∴∠FEC =∠FCE . 又∵∠BFC =90°,且E 为BC 的中点,∴EF =EC ,∴CF =CE . 在△BFC 与△DCE 中,∵∠BFC =∠DCE , CF =CE ,∠FCB =∠DEC , ∴△BFC ≌△DCE . ……4分 (2)设CE =a ,由BE =2CE ,得BE =2a ,BC =3a .ABCDEF∵∠FEC =∠FCE ,∠BFC =∠DCE =90°,∴△BFC ∽△DCE . ∴CF BC EC ED=,即132EDa a ED =,∴22132ED a =,∴226ED a =.∴DC .∴CD BC ==. ……4分 (3)过C ′作C ′H ⊥AF 于点H ,连结CC ′交EF 于M ,由(2)得:FC =FE =FD ,∠FEC =∠FCE .∵AD ∥BC ,∴∠ADF =∠CEF ,∴∠ADF =∠BCF . ∵AD =BC ,∴△ADF ≌△BCF ,∴∠AFD =∠BFC =90°. ∵C ′H ⊥AF ,C ′C ⊥EF ,∴∠HFE =∠C ′HF =∠C ′MF =90°.∴四边形C ′MFH 是矩形,∴FM= C ′H =5102.设EM =x ,则FC =FE =x +5102. 在Rt △EMC 和Rt △FMC 中,由勾股定理得:CE 2-EM 2=CF 2-FM 2.∴2222)5102()5102(1-+=-x x ,解得:10101=x ,2102-=x (舍去) . 由(2)得,CF BCEC ED=,将CE=1,BE=n 代入计算,得CF =222+n . ∴51021010222+=+n ,解得:4=n . ……4分E。

2016浙江(杭州、金华、丽水、绍兴、台州、温州市)中考试题集合

2016浙江(杭州、金华、丽水、绍兴、台州、温州市)中考试题集合

2016杭州市初中毕业升学考试数学卷一、填空题(每题3分)1()A. 2B. 3C. 4D.52. 如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若12ABBC=,则DEEF=()FEDCBAcbanmA. 13B.12C.23D.13.下列选项中,如图所示的圆柱的三视图画法正确的是()A.俯视图左视图主视图B.俯视图左视图主视图C.主视图左视图俯视图D.主视图左视图俯视图4. 如图是某市2016年四月每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是()A. 14℃,14℃B. 15℃,15℃C. 14℃,15℃D. 15℃,14℃5. 下列各式变形中,正确的是( ) A . 236x x x = B . x = C .211x x x x⎛⎫-÷=- ⎪⎝⎭D .2211124x x x ⎛⎫-+=-+ ⎪⎝⎭6. 已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为( )A . ()5182106x =+B .5182106x -=⨯C . ()5182106x x -=+D .()5182106x x +=-7. 设函数(0,0)ky k x x=≠>的图像如图所示,若1z y =,则z 关于x 的函数图像可能为( )A. B. C. D.8. 如图,已知AC 是O 的直径,点B 在圆周上(不与A 、C 重合),点D 在AC 的延长线上,连接BD 交O 于点E ,若∠AOB =3∠ADB ,则( )DA(第7题图) (第8题图) (第12题图)A . DE EB =B .EB =C .DO =D .DE OB =9. 已知直角三角形纸片的两条直角边分别为m 和n (m n <),过锐角三角形顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则( ) A .2220m mn n ++= B .2220m mn n -+= C .2220m mn n +-= D .2220m mn n --= 10. 设a ,b 是实数,定义@的一种运算如下:()()22@a b a b a b =+--则下列结论: ①若@0a b =,则0a =或0b = ②()@@@a b c a b a c +=+ ③不存在实数a ,b ,满足 ④设a ,b 是矩形的长和宽,若矩形的周长固定,则当a =b 时, @a b 最大.其中正确的是 .A .②③④B .①③④C . ①②④D . ①②③二、填空题(每题4分)11. tan 60︒= .12. 已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是 .13. 若整式22x ky +(k 为不等于零的常数)能在有理数范围内因式分解,则K 的值可以是 (写出一个即可).14. 在菱形ABCD 中,∠A =30°,在同一平面内,以对角线BD 为底边作顶角为120°的等腰三角形BDE ,则∠EBC 的度数为 15. 在平面直角坐标系中,已知A (2,3),B (0,1),C (3,1),若线段AC 与BD 互相平分,则点D 关于坐标原点的对称点的坐标为 .16. 已知关于x 的方程2m x =的解满足()30325x y n n x y n -=-⎧<<⎨+=⎩,若1y >,则m 的取值范围是 .三、解答题17.(6分) 计算11623⎛⎫÷-+ ⎪⎝⎭,方方同学的计算过程如下,原式=1166121823⎛⎫÷-+÷=-+ ⎪⎝⎭=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.18.(8分)某汽车厂去年每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图如图所示.根据统计图回答下列问题:(1)若第一季度的汽车销售量为2120辆,求该季的汽车产量; (2)圆圆同学说:“因为第二,第三这两个季度汽车销售数量占当季汽车产量是从75%降到50%,所以第二季度的汽车产量一定高于第三季度的汽车产量”,你觉得圆圆说的对吗?为什么?19.(8分)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,∠AED =∠B ,射线AG 分别交线段DE ,BC 于点F ,G ,且AD DFAC CG=. (1)求证:△ADF ∽△ACG ; (2)若12AD AC =,求AFFG的值. GFE DCBA20.(10分)把一个足球垂直水平地面向上踢,时间为t (秒)是该足球距离地面的高度h (米)适用公式()22004h t t t =-≤≤.(1)当t =3时,求足球距离地面的高度;(2)当足球距离地面的高度为10米时,求t .(3)若存在实数1212,()t t t t ≠当t =1t 或2t 时,足球距离地面的高度都为m (米),求m 的取值范围.21.(10分)如图,已知四边形ABCD 和四边形DEFG 为正方形,点E 在线段DE 上,点A ,D ,G在同一直线上,且AD =3,DE =1,连接AC ,CG ,AE ,并延长AE 交CG 于点H . (1) 求sin EAC ∠的值. (2)求线段AH 的长.H G FEDCBA22.(12分)已知函数()212,0y ax bx y ax b ab =+=+≠.在同一平面直角坐标系中. (1)若函数1y 的图像过点(-1,0),函数2y 的图像过点(1,2),求a ,b 的值. (2)若函数2y 的图像经过1y 的顶点.①求证:20a b +=;②当312x <<时,比较1y ,2y 的大小.23.(12分)在线段AB 的同侧作射线AM 和BN ,若∠MAB 与∠NBA 的平分线分别交射线BN ,AM 于点E ,F ,AE 和BF 交于点P .如图,点点同学发现当射线AM ,BN 交于点C ;且∠ACB =60°时,有一下两个结论:①∠APB =120°;②AF +BE =AB .那么,当AM 平行BN 时:(1)点点发现的结论还成立吗?若成立,请给与证明,若不成立,请求出∠APB 的度数,写出AF ,BE ,AB 长度之间的等量关系,并给与证明;(2)设点Q 为线段AE 上一点,QB =5,若AF +BE =16,四边形ABEF 的面积为,求AQ 的长.PFE MNCB A2016年浙江省丽水市中考数学试卷一、选择题:每小题3分,共30分 1.(3分)(2016•丽水)下列四个数中,与﹣2的和为0的数是( ) A .﹣2 B .2 C .0 D .﹣ 2.(3分)(2016•丽水)计算32×3﹣1的结果是( ) A .3 B .﹣3 C .2 D .﹣2 3.(3分)(2016•丽水)下列图形中,属于立体图形的是( )A .B .C .D .4.(3分)(2016•丽水)+的运算结果正确的是( ) A .B .C .D .a+b5.(3分)(2016•丽水)某校对全体学生开展心理健康知识测试,七、八、九三个年级共有A .七年级的合格率最高B .八年级的学生人数为262名C .八年级的合格率高于全校的合格率D .九年级的合格人数最少 6.(3分)(2016•丽水)下列一元二次方程没有实数根的是( )A .x 2+2x+1=0 B .x 2+x+2=0 C .x 2﹣1=0 D .x 2﹣2x ﹣1=0 7.(3分)(2016•丽水)如图,▱ABCD 的对角线AC ,BD 交于点O ,已知AD=8,BD=12,AC=6,则△OBC 的周长为( )A.13 B.17 C.20 D.268.(3分)(2016•丽水)在直角坐标系中,点M,N在同一个正比例函数图象上的是()A.M(2,﹣3),N(﹣4,6)B.M(﹣2,3),N(4,6)C.M(﹣2,﹣3),N(4,﹣6)D.M(2,3),N(﹣4,6)9.(3分)(2016•丽水)用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是()A.B.C.D.10.(3分)(2016•丽水)如图,已知⊙O是等腰Rt△ABC的外接圆,点D是上一点,BD交AC于点E,若BC=4,AD=,则AE的长是()A.3 B.2 C.1 D.1.2二、填空题:每小题4分,共24分11.(4分)(2016•丽水)分解因式:am﹣3a=.12.(4分)(2016•丽水)如图,在△ABC中,∠A=63°,直线MN∥BC,且分别与AB,AC相交于点D,E,若∠AEN=133°,则∠B的度数为.13.(4分)(2016•丽水)箱子里放有2个黑球和2个红球,它们除颜色外其余都相同,现从箱子里随机摸出两个球,恰好为1个黑球和1个红球的概率是.14.(4分)(2016•丽水)已知x2+2x﹣1=0,则3x2+6x﹣2=.15.(4分)(2016•丽水)如图,在菱形ABCD中,过点B作BE⊥AD,BF⊥CD,垂足分别为点E,F,延长BD至G,使得DG=BD,连结EG,FG,若AE=DE,则=.16.(4分)(2016•丽水)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于A,B两点,与x轴、y轴分别交于C,D两点,连结OA,OB,过A作AE⊥x轴于点E,交OB于点F,设点A的横坐标为m.(1)b=(用含m的代数式表示);(2)若S△OAF+S四边形EFBC=4,则m的值是.三、解答题17.(6分)(2016•丽水)计算:(﹣3)0﹣|﹣|+.18.(6分)(2016•丽水)解不等式:3x﹣5<2(2+3x)19.(6分)(2016•丽水)数学拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含45°的三角板的斜边与含30°的三角板的长直角边相等,于是,小陆同学提出一个问题:如图,将一副三角板直角顶点重合拼放在一起,点B,C,E在同一直线上,若BC=2,求AF的长.请你运用所学的数学知识解决这个问题.20.(8分)(2016•丽水)为了帮助九年级学生做好体育考试项目的选考工作,某校统计了本县上届九年级毕业生体育考试各个项目参加的男、女生人数及平均成绩,并绘制成如图两个统计图,请结合统计图信息解决问题.(1)“掷实心球”项目男、女生总人数是“跳绳”项目男、女生总人数的2倍,求“跳绳”项目的女生人数;(2)若一个考试项目的男、女生总平均成绩不小于9分为“优秀”,试判断该县上届毕业生的考试项目中达到“优秀”的有哪些项目,并说明理由;(3)请结合统计图信息和实际情况,给该校九年级学生体育考试项目的选择提出合理化建议.21.(8分)(2016•丽水)2016年3月27日“丽水半程马拉松竞赛”在莲都举行,某运动员从起点万地广场西门出发,途经紫金大桥,沿比赛路线跑回中点万地广场西门.设该运动员离开起点的路程S(千米)与跑步时间t(分钟)之间的函数关系如图所示,其中从起点到紫金大桥的平均速度是0.3千米/分,用时35分钟,根据图象提供的信息,解答下列问题:(1)求图中a的值;(2)组委会在距离起点2.1千米处设立一个拍摄点C,该运动员从第一次经过C点到第二次经过C点所用的时间为68分钟.①求AB所在直线的函数解析式;②该运动员跑完赛程用时多少分钟?22.(10分)(2016•丽水)如图,AB是以BC为直径的半圆O的切线,D为半圆上一点,AD=AB,AD,BC的延长线相交于点E.(1)求证:AD是半圆O的切线;(2)连结CD,求证:∠A=2∠CDE;(3)若∠CDE=27°,OB=2,求的长.23.(10分)(2016•丽水)如图1,地面BD上两根等长立柱AB,CD之间悬挂一根近似成抛物线y=x2﹣x+3的绳子.(1)求绳子最低点离地面的距离;(2)因实际需要,在离AB为3米的位置处用一根立柱MN撑起绳子(如图2),使左边抛物线F1的最低点距MN为1米,离地面1.8米,求MN的长;(3)将立柱MN的长度提升为3米,通过调整MN的位置,使抛物线F2对应函数的二次项系数始终为,设MN离AB的距离为m,抛物线F2的顶点离地面距离为k,当2≤k≤2.5时,求m的取值范围.24.(12分)(2016•丽水)如图,矩形ABCD中,点E为BC上一点,F为DE的中点,且∠BFC=90°.(1)当E为BC中点时,求证:△BCF≌△DEC;(2)当BE=2EC时,求的值;(3)设CE=1,BE=n,作点C关于DE的对称点C′,连结FC′,AF,若点C′到AF的距离是,求n的值.2016年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)(2016•金华)实数﹣的绝对值是()A.2 B.C.﹣D.﹣2.(3分)(2016•金华)若实数a,b在数轴上的位置如图所示,则下列判断错误的是()A.a<0 B.ab<0 C.a<b D.a,b互为倒数3.(3分)(2016•金华)如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()A.Φ45.02B.Φ44.9C.Φ44.98D.Φ45.014.(3分)(2016•金华)从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()A.B.C.D.5.(3分)(2016•金华)一元二次方程x2﹣3x﹣2=0的两根为x1,x2,则下列结论正确的是()A.x1=﹣1,x2=2 B.x1=1,x2=﹣2 C.x1+x2=3 D.x1x2=26.(3分)(2016•金华)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD 的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD7.(3分)(2016•金华)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()A.B.C.D.8.(3分)(2016•金华)一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要()A.米2B.米2C.(4+)米2D.(4+4tanθ)米29.(3分)(2016•金华)足球射门,不考虑其他因素,仅考虑射点到球门AB的张角大小时,张角越大,射门越好.如图的正方形网格中,点A,B,C,D,E均在格点上,球员带球沿CD方向进攻,最好的射点在()A.点C B.点D或点EC.线段DE(异于端点)上一点D.线段CD(异于端点)上一点10.(3分)(2016•金华)在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)(2016•金华)不等式3x+1<﹣2的解集是.12.(4分)(2016•金华)能够说明“=x不成立”的x的值是(写出一个即可).13.(4分)(2016•金华)为监测某河道水质,进行了6次水质检测,绘制了如图的氨氮含量的折线统计图.若这6次水质检测氨氮含量平均数为1.5mg/L,则第3次检测得到的氨氮含量是mg/L.14.(4分)(2016•金华)如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED 的度数是.15.(4分)(2016•金华)如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是.16.(4分)(2016•金华)由6根钢管首尾顺次铰接而成六边形钢架ABCDEF,相邻两钢管可以转动.已知各钢管的长度为AB=DE=1米,BC=CD=EF=FA=2米.(铰接点长度忽略不计)(1)转动钢管得到三角形钢架,如图1,则点A,E之间的距离是米.(2)转动钢管得到如图2所示的六边形钢架,有∠A=∠B=∠C=∠D=120°,现用三根钢条连接顶点使该钢架不能活动,则所用三根钢条总长度的最小值是米.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)(2016•金华)计算:﹣(﹣1)2016﹣3tan60°+(﹣2016)0.18.(6分)(2016•金华)解方程组.19.(6分)(2016•金华)某校组织学生排球垫球训练,训练前后,对每个学生进行考核.现随机抽取部分学生,统计了训练前后两次考核成绩,并按“A,B,C”三个等次绘制了如图不完整的统计图.试根据统计图信息,解答下列问题:(1)抽取的学生中,训练后“A”等次的人数是多少?并补全统计图.(2)若学校有600名学生,请估计该校训练后成绩为“A”等次的人数.20.(8分)(2016•金华)如图1表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1)设北京时间为x(时),首尔时间为y(时),就0≤x≤12,求y关于x的函数表达式,(2)如图2表示同一时刻的英国伦敦时间(夏时制)和北京时间,两地时差为整数.如果现在伦敦(夏时制)时间为7:30,那么此时韩国首尔时间是多少?21.(8分)(2016•金华)如图,直线y=x﹣与x,y轴分别交于点A,B,与反比例函数y=(k>0)图象交于点C,D,过点A作x轴的垂线交该反比例函数图象于点E.(1)求点A的坐标.(2)若AE=AC.①求k的值.②试判断点E与点D是否关于原点O成中心对称?并说明理由.22.(10分)(2016•金华)四边形ABCD的对角线交于点E,有AE=EC,BE=ED,以AB 为直径的半圆过点E,圆心为O.(1)利用图1,求证:四边形ABCD是菱形.(2)如图2,若CD的延长线与半圆相切于点F,已知直径AB=8.①连结OE,求△OBE的面积.②求弧AE的长.23.(10分)(2016•金华)在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax2相交于A,B两点(点B在第一象限),点D在AB的延长线上.(1)已知a=1,点B的纵坐标为2.①如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,求AC的长.②如图2,若BD=AB,过点B,D的抛物线L2,其顶点M在x轴上,求该抛物线的函数表达式.(2)如图3,若BD=AB,过O,B,D三点的抛物线L3,顶点为P,对应函数的二次项系数为a3,过点P作PE∥x轴,交抛物线L于E,F两点,求的值,并直接写出的值.24.(12分)(2016•金华)在平面直角坐标系中,点O为原点,点A的坐标为(﹣6,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式.(2)若α为锐角,tanα=,当AE取得最小值时,求正方形OEFG的面积.(3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为:1?若能,求点P的坐标;若不能,试说明理由。

浙江省中考数学《填空压轴题》专题练习含答案解析

浙江省中考数学《填空压轴题》专题练习含答案解析

2016年中考数学《填空压轴题》专题练习1. (2015年广东4分)如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 . (第1题)(第2题)2. (2015年广东深圳3分)如图,已知点A 在反比例函数(0)k y x x=<上,作Rt ABC ∆,点D 为斜边AC 的中点,连DB 并延长交y 轴于点E ,若BCE ∆的面积为8,则k = .3. (2015年广东汕尾5分)(2015年广东梅州3分)若()()121212121a b n n n n =+-+-+,,对任意自然数n 都成立,则a = ,b = ;计算:11111335571921m =+++⋅⋅⋅+=⨯⨯⨯⨯ .. 4. (2015年广东广州3分)如图,四边形ABCD 中,∠A =90°,33AB =,AD =3,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为 .(第4题)(第6题)(第7题)5. (2015年广东佛山3分)各边长度都是整数,最大边长为8的三角形共有 个.6. (2015年陕西3分)如图,AB 是⊙O 的弦,AB =6,点C 是⊙O 上的一个动点,且∠ACB =45°.若点M ,N 分别是AB ,BC 的中点,则MN 长的最大值是 .7. (2015年浙江衢州4分)如图,已知直线334y x =-+分别交x 轴、y 轴于点A 、B ,P 是抛物线21252y x x =-++上的一个动点,其横坐标为a ,过点P 且平行于y 轴的直线交直线334y x =-+于点Q ,则当PQ BQ =时,a 的值是 .【 8. (2015年浙江绍兴5分)(2015年浙江义乌4分) 实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm 高度处连通(即管子底端离容器底5cm ),现三个容器中,只有甲中有水,水位高1cm ,如图所示. 若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升65cm ,则开始注入 分钟的水量后,甲与乙的水位高度之差是0.5cm. (第8题)(第9题)9. (2015年浙江台州5分)如图,正方形ABCD 的边长为1,中心为点O ,有一边长大小不定的正六边形EFGHIJ 绕点O 可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD 内(包括正方形的边),当这个六边形的边长最大时,AE 的最小值为 。

七年级数学上册第一章丰富的图形世界检测题含解析新版北师大版

七年级数学上册第一章丰富的图形世界检测题含解析新版北师大版

港云连的丽美第一章 丰富的图形世界检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分) 1.在棱柱中( ) A.只有两个面平行 B.所有的棱都平行 C.所有的面都是平行四边形 D.两底面平行,且各侧棱也互相平行2.下列平面图形不能够围成正方体的是( )3. (2016·浙江丽水中考) 下列图形中,属于立体图形的是( ) A .B .C .D .4. (2016·江苏连云港中考)如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面的字是( )A .丽B .连C .云D .港5.(2015·湖北宜昌中考)下列图形中可以作为一个三棱柱的展开图的是( )A B 第4题图C D6.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列左图是以下四个图中的哪一个绕着直线旋转一周得到的( )A B D C7.如图是一个立体图形从三个不同方向看到的形状图,这个立体图形是由一些相同的小正方体构成,这些相同的小正方体的个数是()A.4B.5C.6D.78.如图所示的几何体中,从上面看到的图形相同的是()第8题图A.①②B.①③C.②③D.②④9. (2016·安徽中考改编)如图,一个放置在水平桌面上的圆柱,从正面看到的图形是( )第9题图10.如图,下面三个正方体的六个面都按相同规律涂有红、黄、蓝、白、黑、绿六种颜色,那么涂黄色、白色、红色的对面分别是()A.蓝色、绿色、黑色B.绿色、蓝色、黑色C.绿色、黑色、蓝色D.蓝色、黑色、绿色二、填空题(每小题3分,共24分)11.下列表面展开图的立体图形的名称分别是:______、______、______、______.第11题图12.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去____(填序号).13.如果一个几何体从三个方向看到的图形之一是三角形,这个几何体可能是(写出3个即可).14.若几何体从正面看是圆,从左面和上面看都是长方形,则该几何体是 .15.在桌上摆有一些大小相同的正方体木块,其从正面和从左面看到的形状图如图所示,则摆出这样的图形至少需要块正方体木块,至多需要块正方体木块.第15题图16.如图所示的立体图形是由几个小正方体组成的一个几何体,这个几何体从上面看到的形状图是_____________.(填A或B或C或D)第16题图17.(2015·山东青岛中考)如图,在一次数学活动课上,张明用17个棱长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭的几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小正方体,王亮所搭几何体的表面积为___.第17题图18.下列第二行的哪种几何体的表面能展开成第一行的平面图形?请对应填空.①:_____________;②:_____________;③:_____________;④:_____________;⑤:_____________.第18题图三、解答题(共46分)19.(6分)如图是一个正方体骰子的表面展开图,请根据要求回答问题:(1)如果1点在上面,3点在左面,几点在前面?(2)如果5点在下面,几点在上面?第19题图第20题图20.(6分)画出如图所示的正三棱锥从正面、上面看到的形状图.21.(6分)如图是一个由若干个小正方体搭成的几何体从上面看到的形状图,其中小正方形内的数字是该位置小正方体的个数,请你画出它从正面和从左面看到的形状图.第21题图第22题图22.(7分)画出下列几何体从正面、左面看到的形状图.23.(7分)如图,某同学在制作正方体模型的时候,在方格纸上画出几个小正方形(图中阴影部分),但是由于疏忽少画了一个,请你给他补上一个,使之可以组合成正方体,你有几种画法,在图上用阴影注明.第23题图24.(7分)如图是一个正方体的平面展开图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和均为5,求的值.第24题图25.(7分)一只蜘蛛在一个正方体的顶点A处,一只蚊子在正方体的顶点B处,如图所示,现在蜘蛛想尽快地捉到这只蚊子,那么它所走的最短路线是怎样的,在图上画出来,这样的最短路线有几条?第25题图第一章丰富的图形世界检测题参考答案一、选择题1.D 解析:对于A,如果是长方体,不止有两个面平行,故错误;对于B,如果是长方体,不可能所有的棱都平行,只是所有的侧棱都平行,故错误;对于C,如果是底面为梯形的棱柱,不是所有的面都是平行四边形,故错误;对于D,根据棱柱的定义知其正确,故选D.2.B 解析:利用自己的空间想象能力或者自己动手实践一下,可知答案选B.3.C 解析:A中,角是平面图形,故A错误;B中,圆是平面图形,故B错误;C中,圆锥是立体图形,故C正确;D中,三角形是平面图形,故D错误.4. D 解析:根据正方体的表面展开图可知,丽与连相对;美与港相对;的与云相对.5.A 解析: 依据平面展开图想象围成的多面体的形状,借助想象力,通过比较与综合可知只有选项A中的展开图才能围成三棱柱.6.A 解析:A可以通过旋转得到两个圆柱,故本选项正确;B可以通过旋转得到一个圆柱,一个圆筒,故本选项错误;C可以通过旋转得到一个圆柱,两个圆筒,故本选项错误;D可以通过旋转得到三个圆柱,故本选项错误.7.D8.C 解析:①从上面看到的图形是一个没圆心的圆,②③从上面看到的图形是一个带圆心的圆,④从上面看到的图形是两个不带圆心的同心圆,故答案选C.9.C 解析:对于放置在水平桌面上的圆柱体,从它的正面看到的图形是长方形,所以选C.10.B 解析:分析可知黄色的对面是绿色,白色的对面是蓝色,红色的对面是黑色.二、填空题11.圆柱圆锥四棱锥三棱柱12.1或2或6 解析:根据有“田”字格的展开图都不是正方体的表面展开图可知,应剪去1或2或6,答案不唯一.13.圆锥,三棱柱,三棱锥等14.圆柱解析:几何体从正面看是圆,从左面和上面看都是长方形,符合这个条件的几何体只有圆柱.15.6 16 解析:易得第一层最少有4块正方体,最多有12块正方体;第二层最少有2块正方体,最多有4块正方体,故总共至少有6块正方体,至多有16块正方体.16.C 解析:该几何体从上面看是三个正方形排成一行,所以从上面看到的形状图是C.17.19,48 解析:两人所搭成的几何体拼成一个大长方体,该长方体的长、宽、高至少为3,3,4,所以它的体积为36,故它是由36个棱长为1的小正方体搭成的,那么王亮至少还需要36-17=19(个)小正方体.王亮所搭几何体上面面积为8,右侧面积为7,左侧面积为7,后面面积为9,前面面积为9,底面面积为8,故表面积为48.18.D,E,A,B,C三、解答题19.解:(1)如果1点在上面,3点在左面,那么2点在前面.(2)如果5点在下面,那么2点在上面.20.解:几何体从正面、上面看到的形状图如图所示.第20题图21.解:从正面和从左面看到的形状图如图所示:第21题图22.解:从正面、左面看到的形状图如图所示:第22题图23.解:画图如图所示,共有四种画法.第23题图24.解:由于正方体的平面展开图共有六个面,其中面“”与面“3”相对,面“”与面“-2”相对,面“”与面“10”相对, 则,,,解得,,.故.25.分析:欲求从点A到点B的最短路线,在立体图形中难以解决,可以考虑把正方体展开成平面图形来考虑.如图(1)所示,我们都有这样的实际经验,在两点之间,走直线路程最短,因而沿着从点A到点B的虚线走,路程最短,然后把展开图折叠起来.第25题图(1)解:所走的最短路线是正方体平面展开图中从点A到点B的连线(如图(1)).在正方体上,像这样的最短路线一共有6条,但通过地面的有2条,这2条不符合实际意义,故符合题意的只有4条,如图(2)所示.第25题图(2)。

浙江省丽水市中考数学真题试题(带解析)

浙江省丽水市中考数学真题试题(带解析)

丽水市中考数学试题解析卷一、选择题(共10小题,每小题3分,满分30分)1.(•丽水)如果零上2℃记作+2℃,那么零下3℃记作( )A.-3℃B.-2℃C.+3℃D.+2℃考点:正数和负数。

专题:计算题。

分析:一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:“正”和“负”相对,∴如果零上2℃记作+2℃,那么零下3℃记作-3℃,故选A.点评:此题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.(•丽水)计算3a•(2b)的结果是( )A.3ab B.6a C.6ab D.5ab考点:单项式乘单项式。

分析:根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解答:解:3a•(2b)=3×2a•b=6ab.故选C.点评:本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.3.(•丽水)如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是( ) A.-4 B.-2 C.0 D.4考点:绝对值;数轴。

专题:计算题。

分析:如果点A,B表示的数的绝对值相等,那么AB的中点即为坐标原点.解答:解:如图,AC的中点即数轴的原点O.根据数轴可以得到点A表示的数是-2.故选B.点评:此题考查了数轴有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.确定数轴的原点是解决本题的关键.4.(•丽水)把分式方程转化为一元一次方程时,方程两边需同乘以( )A.x B.2x C.x+4 D.x(x+4)考点:解分式方程。

分析:根据各分母寻找公分母x(x+4),方程两边乘最简公分母,可以把分式方程转化为整式方程.解答:解:由两个分母(x+4)和x可得最简公分母为x(x+4),所以方程两边应同时乘以x(x+4).故选D.点评:本题考查解分式方程去分母的能力,确定最简公分母应根据所给分式的分母来决定.5.(•丽水)在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是( )A.①B.②C.③D.④考点:利用旋转设计图案。

丽水市2016届中考数学模拟试卷含答案

丽水市2016届中考数学模拟试卷含答案

丽水市2016届初三数学模拟卷一、选择题(本题共30分,每题3分)1.2的相反数是 ( ). A .2 B .2- C .12- D .122. a ,b 都是实数,且a <b ,则下列不等式的变形正确的是 ( ). A .a +x >b +x B .-a +1<-b +1 C .3a <3b D.a 2> b23.数轴上的A 、B 两点位置如图,点B 关于点O 的对称点为B 1,则线段AB 1的长为多少.( ).(第3题图) (第5题图)A .4B .-4C .8D .-84. (-x 4)3等于 ( ). A .x 7B .x 12C .-x 7D .-x125、如图△ABC 是直角三角形,AB ⊥CD ,图中与∠CAB 互余的角有 ( ) A .1个 B .2个 C .3个 D .4个6、将代数式x 2+6x-3化为(x+p )2+q 的形式,正确的是 ( )A 、(x+3)2+6B 、(x-3)2+6C 、(x+3)2-12D 、(x-3)2-127、如图,是丽水PM2.5来源统计图,则根据统计图得出的下列判断中,正确的是 ( )(第7题图) (第8题图) A .汽车尾气约为建筑扬尘的3倍 B .表示建筑扬尘的占7% C .表示煤炭燃烧的圆心角约126° D .煤炭燃烧的影响最大8、如图,正比例函数y 1与反比例函数y 2相交于点E (﹣1,2),若 y 1<y 2<0,则x 的取值范围在数轴上表示正确的是 ( )6-2A B CA15%35%建筑其他煤炭燃烧42%汽车尾气排放丽水pm 2.5来源扬尘A .B.CD .9A=90°,∠B=30°,分别以A 、B 为圆心,超过AB 一半长为半径D 和E ,连接AE.则下列说法中不正确的是 ( )C(第10题图) A ..∠AED=60° C .AE=BE D .S △DAE :S △AEC =1:310、如图,是半径为1的圆弧,∠AOC 等于45°,D 是上的一动点,则四边形AODC的面积s 的取值范围是 ( )A .42242+≤≤S B .42242+≤<S C .22222+≤≤S D .22222+<<S 二、填空题(本题共24分,每题4分) 11、x2﹣9= . 12、化为最简根式的结果是根式2-31 .13、如图,a ∥b ,∠1=60°,∠2=50°,∠3= °.(第13题图) 14、“nice to meet you (很高兴见到你)”,在这段句子的所有英文字母中,字母e 出现的概率是 .15、如图,□ABCD 中,P 是角平分线AD 上的一点,且21=CP AP ,延长CP 分别交AB 、DB 的延长线于点E 、F ,则PE ︰EF = .(第15题图) (第16题图) 16、如图,反比例函数xky =(x >0)的图象与矩形OABC 的边长AB 、BC 分别交于点E 、F ,已知S △FOC =3 且AE=BE ,则 (1)、k= .(2)、△OEF 的面积的值为 .三、解答题(本题共8题,第17—19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分,各小题都必须写出解答过程) 17.(本题6分)计算:()01-331-16++π)(. 18.(本题6分)解不等式4523+≤-x x )(. 19.(本题6分)如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB 位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动2 m (即BD =2 m )到达CD 位置时,它与地面所成的角∠CDO=45°,求梯子的长.(第19题图) 20.(本题8分)来自某综合商场财务部的报告表明,商场1﹣5月份的销售总额一共是370万元,图1、图2C反映的是商场今年1﹣5月份的商品销售额统计情况.(1)、该商场三月份销售总额是___________.(2) 试求四月份的销售总额,并求服装部四月份销售额占1—5月份销售总额的百分比(结果百分比中保留两位小数).(3)有人认为 5月份服装部月销售额比4月份减少了,你认为正确吗?请说明理由.21.(本题8分)已知:如图,⊙O 的半径OC 垂直弦AB 于点H ,连接BC ,过点A 作弦AE ∥BC ,过点C 作CD ∥BA 交EA 延长线于点D ,延长CO 交AE 于点F . (1)求证:CD 为⊙O 的切线; (2)若BC=10,AB=16,求OF 的长.(第21题图)22.(本题10分)在一条笔直的公路上有A 、B 两地,甲骑自行车从A 地到B 地;乙骑摩托车从B 地到A 地,到达A 地后立即按原路返回,如图是甲、乙两人距B 地的距离y (km )与行驶时间x (h )之间的函数图象,根据图象解答以下问题: (1)写出A 、B 两地之间的距离; (2)请问甲乙两人何时相遇(3)求出在9-18小时之间甲乙两人相距s 与时间x 的函数表达式(第22题图)23.(本题10分)Dx ( h)y ( km )918360如图,足球运动员在O 处抛出一球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求篮球开始飞出到第一次落地时,该抛物线的表达式. (2)足球第一次落地距守门员多少米?(取734=)(3)运动员乙要抢到第二个落点,他应再向前跑多少米?(取562=)(第23题图)24.(本题12分)如图,将边长为2的正方形纸片ABCD 折叠,使点B 落在CD 上,落点记为E (不与点C ,D 重合),点A 落在点F 处,折痕MN 交AD 于点M ,交BC 于点N . (1)、若21=CDCE ,①求出 BN 的长; ② 求BNAM 的值;(2)若),2(1为整数且n n n CD CE ≥=则BN AM的值是多少(用含的式子表示).丽水市初三数学模拟卷数学参考答案一、9、解析:由画法得,ED 是中垂线,所以A 选项正确由中垂线的性质得AE=EB ,所以C 正确∵∠CAB=∠EDB=Rt ∠, ∴ED ∥CA,∴∠BED=∠BCA=60°EA=BE ,根据三线合一得,∠AED=∠BED=60°∴B 正确由D 为中点,ED ∥CA 得E 为BC 的中点,∴S △ABE =S △ACE ,而D 为AB 中点,∴S △ADE =S △BDE ∴S △DAE :S △AEC =1:2.所以D 错误 10、解析如图,过点C 作CF 垂直AO 于点F,过点D 作DE 垂直CO 于点E, ∵CO=AO=1,∠COA=45°所以CF=FO=22,∴S △AFC=22121⨯⨯42=则面积最小的四边形面积为D 无限接近点C 所以最小面积无限接近42但是不能取到∵△AOC 面积确定,∴要使四边形AODC 面积最大,则要使△COD 面积最大。

中考丽水数学试题及答案

中考丽水数学试题及答案

中考丽水数学试题及答案一、选择题(每题3分,共30分)1. 若a、b、c是三角形的三边长,且a^2 + b^2 = c^2,则该三角形是直角三角形。

A. 正确B. 错误答案:A2. 函数y = 2x + 3的图象经过第一、二、三象限。

A. 正确B. 错误答案:A3. 已知x = 2是方程x^2 - 5x + 6 = 0的解,则另一个解是x = 3。

A. 正确B. 错误答案:B4. 一个数的相反数是它本身,则这个数是0。

A. 正确B. 错误答案:A5. 圆的周长与它的半径成正比例。

A. 正确B. 错误答案:A6. 一个正数的算术平方根一定大于这个数。

A. 正确B. 错误答案:B7. 一个数的立方根与它本身相等的数是±1和0。

A. 正确B. 错误答案:A8. 一组数据的平均数是5,中位数是4,众数是6,则这组数据可能的中位数是4。

A. 正确B. 错误答案:A9. 一个等腰三角形的两边长分别是3和5,则它的周长是13。

A. 正确B. 错误答案:B10. 一个多边形的内角和是外角和的3倍,则这个多边形是八边形。

A. 正确B. 错误答案:A二、填空题(每题3分,共30分)11. 已知一个等腰三角形的底边长为6,腰长为5,则其周长为16。

12. 一个数的绝对值是5,则这个数是±5。

13. 一个数的平方是25,则这个数是±5。

14. 一个数的立方是-8,则这个数是-2。

15. 一个数的倒数是2,则这个数是1/2。

16. 一个数的相反数是-3,则这个数是3。

17. 一个数的算术平方根是3,则这个数是9。

18. 一个数的立方根是2,则这个数是8。

19. 一个数的平方根是±2,则这个数是4。

20. 一个数的平方是16,则这个数是±4。

三、解答题(共40分)21. 计算:(2x^2 - 3x + 1) - (x^2 - 4x + 5) = x^2 + x - 4。

22. 解方程:2x^2 - 5x - 3 = 0,解得x1 = -1/2,x2 = 3。

丽水市中考数学试卷及答案解析

丽水市中考数学试卷及答案解析

浙江省丽水市中考数学试卷解析(本试卷满分120分,考试时间120分钟)参考公式:抛物线2y ax bx c =++的顶点坐标为24,24b b ac a a ⎛⎫-- ⎪⎝⎭.一、选择题(本题有10小题,每小题3分,共30分)1. (浙江丽水3分) 在数-3,-2,0,3中,大小在-1和2之间的数是【 】A. -3B. -2C. 0D. 3 【答案】C.【考点】有理数大小比较.【分析】在-1和2之间的数必然大于-1,小于2,四个答案中只有0符合条件. 故选C. 2. (浙江丽水3分) 计算32)(a 结果正确的是【 】A. 23a B. 6a C. 5a D. a 6 【答案】B. 【考点】幂的乘方.【分析】根据幂的乘方运算法则计算作出判断:23236()a a a ⨯==.故选B.3. (浙江丽水3分) 由4个相同小立方体搭成的几何体如图所示,则它的主视图是【 】A.B. C. D.【答案】A.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,从正面看易得有两层,下层有2个正方形,上层左边有一个正方形.故选A . 4. (浙江丽水3分)分式x--11可变形为【 】 A. 11--x B. x +11 C. x +-11 D. 11-x【答案】D.【考点】分式的基本性质.【分析】根据分式的性质,分子分母都乘以﹣1,分式的值不变,可得答案:分式11x--的分子分母都乘以﹣1,得11x-.故选D.5. (浙江丽水3分)一个多边形的每个内角均为120°,则这个多边形是【】A. 四边形B. 五边形C. 六边形D. 七边形【答案】C.【考点】多边形的外角性质.【分析】∵多边形的每个内角均为120°,∴外角的度数是:180°﹣120°=60°.∵多边形的外角和是360°,∴这个多边形的边数是:360÷60=6.故选C.6. (浙江丽水3分)如图,数轴上所表示关于x的不等式组的解集是【】A. x≥2B. x>2C. x>-1D. -1<x≤2【答案】A.【考点】在数轴上表示不等式的解。

中考数学备考专题复习反比例函数含解析

中考数学备考专题复习反比例函数含解析

反比例函数一、单选题(共12题;共24分)1、(2016•龙东)已知反比例函数y= ,当1<x<3时,y的最小整数值是()A、3B、4C、5D、62、如果等腰三角形的底边长为x,底边上的高为y,则它的面积为定植S时,则x与y的函数关系式为()A、y=B、y=C、y=D、y=3、(2016•大庆)已知A(x1, y1)、B(x2, y2)、C(x3, y3)是反比例函数y= 上的三点,若x1<x2<x3, y2<y1<y3,则下列关系式不正确的是()A、x1•x2<0B、x1•x3<0C、x2•x3<0D、x1+x2<04、将一次函数y=x图象向下平移b个单位,与双曲线y=交于点A,与x轴交于点B,则OA2-OB2=( )A、-2B、2C、-D 、5、如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A、y=B、y=C、y=D、y=6、如图,△AOB为等边三角形,点A在第四象限,点B的坐标为(4,0),过点C(4,0)作直线l交AO于D,交AB于E,且点E在某反比例函数y=(k≠0)图象上,当△ADE和△DCO的面积相等时,k的值为()A、-B、-C、-3D、-67、教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()A、7:20B、7:30C、7:45D、7:508、(2015•玉林)如图,反比例函数y=的图象经过二次函数y=ax2+bx 图象的顶点(﹣,m)(m >0),则有()A、a=b+2kB、a=b﹣2kC、k<b<0D、a<k<09、如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y= (x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()A 、B 、C 、D 、10、(2016•济宁)如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB= ,反比例函数y= 在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A、60B、80C、30D、4011、(2016•湖北)一次函数y=ax+b和反比例函数y= 在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为()A 、B 、C 、D 、12、(2016•天津)若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y= 的图象上,则y1, y2, y3的大小关系是()A、y1<y3<y2B、y1<y2<y3C、y3<y2<y1D、y2<y1<y3二、填空题(共5题;共6分)13、如果函数y=x2m-1为反比例函数,则m的值是________.14、(2015•黄石)反比例函数y=的图象有一支位于第一象限,则常数a的取值范围是________ .15、(2016•宁波)如图,点A为函数y= (x>0)图象上一点,连结OA,交函数y= (x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为________.16、(2016•丽水)如图,一次函数y=﹣x+b与反比例函数y= (x>0)的图象交于A,B两点,与x轴、y轴分别交于C,D两点,连结OA,OB,过A作AE⊥x轴于点E,交OB于点F,设点A的横坐标为m.(1)b=________(用含m的代数式表示);(2)若S△OAF+S四边形EFBC=4,则m的值是________.17、(2016•绍兴)如图,已知直线l:y=﹣x,双曲线y= ,在l上取一点A(a,﹣a)(a>0),过A作x轴的垂线交双曲线于点B,过B作y轴的垂线交l于点C,过C作x轴的垂线交双曲线于点D,过D作y轴的垂线交l于点E,此时E与A重合,并得到一个正方形ABCD,若原点O在正方形ABCD的对角线上且分这条对角线为1:2的两条线段,则a的值为________.三、解答题(共3题;共15分)18、当m 取何值时,函数是反比例函数?19、(2016•苏州)如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y= (x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.20、已知与是反比例函数图象上的两个点.(1)求m和k的值(2)若点C(-1,0),连结AC,BC,求△ABC的面积(3)根据图象直接写出一次函数的值大于反比例函数的值的的取值范围.四、综合题(共4题;共45分)21、(2016•曲靖)在平面直角坐标系中,把横纵坐标都是整数的点称为“整点”.(1)直接写出函数y= 图象上的所有“整点”A1, A2, A3,…的坐标;(2)在(1)的所有整点中任取两点,用树状图或列表法求出这两点关于原点对称的概率.22、(2015•广州)已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.23、(2016•枣庄)如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y= (k>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?24、(2016•雅安)已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,且与双曲线y= 交于点C(1,a).(1)试确定双曲线的函数表达式;(2)将l1沿y轴翻折后,得到l2,画出l2的图象,并求出l2的函数表达式;(3)在(2)的条件下,点P是线段AC上点(不包括端点),过点P作x轴的平行线,分别交l2于点M,交双曲线于点N,求S△AMN的取值范围.答案解析部分一、单选题【答案】A【考点】反比例函数的性质【解析】【解答】解:在反比例函数y= 中k=6>0,∴该反比例函数在x>0内,y随x的增大而减小,当x=3时,y= =2;当x=1时,y= =6.∴当1<x<3时,2<y<6.∴y的最小整数值是3.故选A.【分析】根据反比例函数系数k>0,结合反比例函数的性质即可得知该反比例函数在x>0中单调递减,再结合x的取值范围,可得出y的取值范围,取其内的最小整数,本题得解.本题考查了反比例函数的性质,解题的关键是找出反比例函数y= 在1<x<3中y的取值范围.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数的系数结合反比例函数的性质得出该反比例函数的单调性是关键.【答案】C【考点】根据实际问题列反比例函数关系式,三角形的面积【解析】【解答】∵S=xy,∴y=.故选C.【分析】考查列反比例函数关系式,得到三角形高的等量关系是解决本题的关键.三角形的面积= 1 2 底×高,那么高=,把相关数值代入即可求解.【答案】A【考点】反比例函数图象上点的坐标特征【解析】【解答】解:∵反比例函数y= 中,2>0,∴在每一象限内,y随x的增大而减小,∵x1<x2<x3, y2<y1<y3,∴点A,B在第三象限,点C在第一象限,∴x1<x2<0<x3,∴x1•x2<0,故选A.【分析】根据反比例函数y= 和x1<x2<x3, y2<y1<y3,可得点A,B在第三象限,点C在第一象限,得出x1<x2<0<x3,再选择即可.本题考查了反比例函数图象上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,本题是逆用,难度有点大.【答案】B【考点】一次函数图象与几何变换,反比例函数与一次函数的交点问题【解析】【解答】∵平移后解析式是y=x+b,代入y=得:x+b=,即x2+bx=,y=x+b与x轴交点B的坐标是(-b,0),设A的坐标是(x,y),∴OA2-OB2=x2+y2+(-b)2=x2+(x+b)2-b2=2x2+2xb=2(x2+xb)=2×=2,故选B.【分析】本题考查了一次函数和反比例函数的交点问题的应用,主要考查学生的计算能力的能力.【答案】D【考点】反比例函数图象的对称性【解析】【解答】由于函数图象关于原点对称,所以阴影部分面积为圆面积,则圆的面积为10π×4=40π.因为P(3a,a)在第一象限,则a>0,3a>0,根据勾股定理,OP=于是π=40π,a=±2,(负值舍去),故a=2.P点坐标为(6,2).将P(6,2)代入y=,得:k=6×2=12.反比例函数解析式为:y=.故选D.【分析】根据P(3a,a)和勾股定理,求出圆的半径,进而表示出圆的面积,再根据圆的面积等于阴影部分面积的四倍,求出圆的面积,建立等式即可求出a的值,从而得出反比例函数的解析式.【点评】此题是一道综合题,既要能熟练正确求出圆的面积,又要会用待定系数法求函数的解析式.【答案】C【考点】反比例函数系数k的几何意义,待定系数法求反比例函数解析式,三角形的面积【解析】【解答】如图,连接AC,∵点B的坐标为(4,0),△AO B为等边三角形,∴AO=OB=4.∴点A的坐标为(2,-2).∵C(4,0),∴AO=OC=4,∴∠OCA=∠OAC.∵∠AOB=60°,∴∠ACO=30°.又∵∠B="60°." ∴∠BAC=90°.∵S△ADE=S△DCO, S△AEC=S△ADE+S△ADC, S△AOC=S△DCO+S△ADC,∴∴S△AEC=S△AOC =×AE•AC=•CO•2,即•AE•2=×2×2,∴E点为AB的中点(3,-).把E点(3,-)代入y=中得:k=-3故选C.【分析】连接AC,由B的坐标得到等边三角形AOB的边长,得到AO与CO,得到AO=OC,利用等边对等角得到一对角相等,再由∠AOB=60°,得到∠ACO=30°,可得出∠BAC为直角,可得出A的坐标,由三角形ADE与三角形DCO面积相等,且三角形AEC面积等于三角形AED与三角形ADC面积之和,三角形AOC面积等于三角形DCO面积与三角形ADC面积之和,得到三角形AEC与三角形AOC面积相等,进而确定出AE的长,可得出E为AB中点,得出E的坐标,将E坐标代入反比例解析式中求出k的值,即可确定出反比例解析式。

2016年浙江省丽水市中考数学真题解析

2016年浙江省丽水市中考数学真题解析

2016年浙江省丽水市中考数学试卷参考答案与试题解析一、选择题:每小题3分,共30分1.(3分)(2016•丽水)下列四个数中,与﹣2的和为0的数是()A.﹣2 B.2 C.0 D.﹣【考点】相反数.【专题】计算题;实数.【分析】找出﹣2的相反数即为所求.【解答】解:下列四个数中,与﹣2的和为0的数是2,故选B【点评】此题考查了相反数,熟练掌握相反数的定义是解本题的关键.2.(3分)(2016•丽水)计算32×3﹣1的结果是()A.3 B.﹣3 C.2 D.﹣2【考点】负整数指数幂.【分析】根据同底数幂的乘法底数不变指数相加,可得答案.【解答】解:32×3﹣1=32﹣1=3.故选:A.【点评】本题考查了同底数幂的乘法,利用底数不变指数相加是解题关键.3.(3分)(2016•丽水)下列图形中,属于立体图形的是()A.B.C.D.【考点】认识立体图形.【分析】根据平面图形所表示的各个部分都在同一平面内,立体图形是各部分不在同一平面内的几何,由一个或多个面围成的可以存在于现实生活中的三维图形,可得答案.【解答】解:A、角是平面图形,故A错误;B、圆是平面图形,故B错误;C、圆锥是立体图形,故C正确;D、三角形是平面图形,故D错误.故选:C.【点评】本题考查了认识立体图形,立体图形是各部分不在同一平面内的几何,由一个或多个面围成的可以存在于现实生活中的三维图形.4.(3分)(2016•丽水)+的运算结果正确的是()A.B.C.D.a+b【考点】分式的加减法.【专题】计算题;推理填空题.【分析】首先通分,把、都化成以ab为分母的分式,然后根据同分母分式加减法法则,求出+的运算结果正确的是哪个即可.【解答】解:+=+=故+的运算结果正确的是.故选:C.【点评】此题主要考查了分式的加减法的运算方法,要熟练掌握,解答此题的关键是要明确:(1)同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减.(2)异分母分式加减法法则:把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.5.(3分)(2016•丽水)某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少【考点】统计表.【分析】分析统计表,可得出各年级合格的人数,然后结合选项进行回答即可.【解答】解:∵七、八、九年级的人数不确定,∴无法求得七、八、九年级的合格率.∴A错误、C错误.由统计表可知八年级合格人数是262人,故B错误.∵270>262>254,∴九年级合格人数最少.故D正确.故选;D.【点评】本题主要考查的是统计表的认识,读懂统计表,能够从统计表中获取有效信息是解题的关键.6.(3分)(2016•丽水)下列一元二次方程没有实数根的是()A.x2+2x+1=0 B.x2+x+2=0 C.x2﹣1=0 D.x2﹣2x﹣1=0【考点】根的判别式.【分析】求出每个方程的根的判别式,然后根据判别式的正负情况即可作出判断.【解答】解:A、△=22﹣4×1×1=0,方程有两个相等实数根,此选项错误;B、△=12﹣4×1×2=﹣7<0,方程没有实数根,此选项正确;C、△=0﹣4×1×(﹣1)=4>0,方程有两个不等的实数根,此选项错误;D、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不等的实数根,此选项错误;故选:B.【点评】本题主要考查一元二次方程根的情况,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.(3分)(2016•丽水)如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为()A.13 B.17 C.20 D.26【考点】平行四边形的性质.【分析】由平行四边形的性质得出OA=OC=3,OB=OD=6,BC=AD=8,即可求出△OBC的周长.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC=3,OB=OD=6,BC=AD=8,∴△OBC的周长=OB+OC+AD=3+6+8=17.故选:B.【点评】本题主要考查了平行四边形的性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.8.(3分)(2016•丽水)在直角坐标系中,点M,N在同一个正比例函数图象上的是()A.M(2,﹣3),N(﹣4,6) B.M(﹣2,3),N(4,6)C.M(﹣2,﹣3),N(4,﹣6)D.M(2,3),N(﹣4,6)【考点】一次函数图象上点的坐标特征.【分析】设正比例函数的解析式为y=kx,根据4个选项中得点M的坐标求出k的值,再代入N点的坐标去验证点N 是否在正比例函数图象上,由此即可得出结论.【解答】解:设正比例函数的解析式为y=kx,A、﹣3=2k,解得:k=﹣,﹣4×(﹣)=6,6=6,∴点N在正比例函数y=﹣x的图象上;B、3=﹣2k,解得:k=﹣,4×(﹣)=﹣6,﹣6≠6,∴点N不在正比例函数y=﹣x的图象上;C、﹣3=﹣2k,解得:k=,4×=6,6≠﹣6,∴点N不在正比例函数y=x的图象上;D、3=2k,解得:k=,﹣4×=﹣6,﹣6≠6,∴点N不在正比例函数y=x的图象上.故选A.【点评】本题考查了一次函数图象上点的坐标特征以及待定系数法求函数解析式,解题的关键是验证4个选项中点M、N是否在同一个正比例函数图象上.本题属于基础题,难度不大,解决该题型题目时,根据给定的一点的坐标利用待定系数法求出正比例函数解析式,再代入另一点坐标去验证该点是否在该正比例函数图象上.9.(3分)(2016•丽水)用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是()A.B.C.D.【考点】作图—复杂作图.【分析】根据过直线外一点作已知直线的垂线作图即可求解.【解答】解:A、根据垂径定理作图的方法可知,CD是Rt△ABC斜边AB上的高线,不符合题意;B、根据直径所对的圆周角是直角的方法可知,CD是Rt△ABC斜边AB上的高线,不符合题意;C、根据相交两圆的公共弦的性质可知,CD是Rt△ABC斜边AB上的高线,不符合题意;D、无法证明CD是Rt△ABC斜边AB上的高线,符合题意.故选:D.【点评】考查了作图﹣复杂作图,关键是熟练掌握作过直线外一点作已知直线的垂线的方法.10.(3分)(2016•丽水)如图,已知⊙O是等腰Rt△ABC的外接圆,点D是上一点,BD交AC于点E,若BC=4,AD=,则AE的长是()A.3 B.2 C.1 D.1.2【考点】三角形的外接圆与外心.【专题】计算题.【分析】利用圆周角性质和等腰三角形性质,确定AB为圆的直径,利用相似三角形的判定及性质,确定△ADE和△BCE 边长之间的关系,利用相似比求出线段AE的长度即可.【解答】解:∵等腰Rt△ABC,BC=4,∴AB为⊙O的直径,AC=4,AB=4,∴∠D=90°,在Rt△ABD中,AD=,AB=4,∴BD=,∵∠D=∠C,∠DAC=∠CBE,∴△ADE∽△BCE,∵AD:BC=:4=1:5,∴相似比为1:5,设AE=x,∴BE=5x,∴DE=﹣5x,∴CE=28﹣25x,∵AC=4,∴x+28﹣25x=4,解得:x=1.故选:C.【点评】题目考查了圆的基本性质、等腰直角三角形性质、相似三角形的判定及应用等知识点,题目考查知识点较多,是一道综合性试题,题目难易程度适中,适合课后训练.二、填空题:每小题4分,共24分11.(4分)(2016•丽水)分解因式:am﹣3a=a(m﹣3).【考点】因式分解-提公因式法.【分析】根据提公因式法的一般步骤进行因式分解即可.【解答】解:am﹣3a=a(m﹣3).故答案为:a(m﹣3).【点评】本题考查的是提公因式法进行因式分解,提公因式法基本步骤:找出公因式;提公因式并确定另一个因式:用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式.12.(4分)(2016•丽水)如图,在△ABC中,∠A=63°,直线MN∥BC,且分别与AB,AC相交于点D,E,若∠AEN=133°,则∠B的度数为70°.【考点】相似三角形的判定与性质;平行线的性质.【分析】根据平行线的性质只要求出∠ADE,由∠AEN=∠A+∠ADE计算即可.【解答】解:∵∠AEN=∠A+∠ADE,∠AEN=133°,∠A=63°,∴∠ADE=70°,∵MN∥BC,∴∠B=∠ADE=70°,故答案为70°.【点评】本题考查平行线的性质,三角形的外角性质等知识,解题的关键是灵活运用这些知识解决问题,属于基础题,中考常考题型.13.(4分)(2016•丽水)箱子里放有2个黑球和2个红球,它们除颜色外其余都相同,现从箱子里随机摸出两个球,恰好为1个黑球和1个红球的概率是.【考点】列表法与树状图法.【专题】统计与概率.【分析】根据题意可以列出相应的树状图,从而可以得到恰好为1个黑球和1个红球的概率.【解答】解:由题意可得,故恰好为1个黑球和1个红球的概率是:,故答案为;.【点评】本题考查列表法和树状图法,解题的关键是明确题意,列出相应的树状图,求出相应的概率.14.(4分)(2016•丽水)已知x2+2x﹣1=0,则3x2+6x﹣2=1.【考点】代数式求值.【分析】直接利用已知得出x2+2x=1,再代入原式求出答案.【解答】解:∵x2+2x﹣1=0,∴x2+2x=1,∴3x2+6x﹣2=3(x2﹣2x)﹣2=3×1﹣2=1.故答案为:1.【点评】此题主要考查了代数式求值,利用整体思想代入是解题关键.15.(4分)(2016•丽水)如图,在菱形ABCD中,过点B作BE⊥AD,BF⊥CD,垂足分别为点E,F,延长BD至G,使得DG=BD,连结EG,FG,若AE=DE,则=.【考点】菱形的性质.【分析】连接AC、EF,根据菱形的对角线互相垂直平分可得AC⊥BD,根据线段垂直平分线上的点到线段两端点的距离相等可得AB=BD,然后判断出△ABD是等边三角形,再根据等边三角形的三个角都是60°求出∠ADB=60°,设EF与BD相交于点H,AB=4x,然后根据三角形的中位线平行于第三边并且等于第三边的一半求出EH,再求出DH,从而得到GH,利用勾股定理列式求出EG,最后求出比值即可.【解答】解:如图,连接AC、EF,在菱形ABCD中,AC⊥BD,∵BE⊥AD,AE=DE,∴AB=BD,又∵菱形的边AB=AD,∴△ABD是等边三角形,∴∠ADB=60°,设EF与BD相交于点H,AB=4x,∵AE=DE,∴由菱形的对称性,CF=DF,∴EF是△ACD的中位线,∴DH=DO=BD=x,在Rt△EDH中,EH=DH=x,∵DG=BD,∴GH=BD+DH=4x+x=5x,在Rt△EGH中,由勾股定理得,EG===2x,所以,==.故答案为:.【点评】本题考查了菱形的性质,等边三角形的判定与性质,勾股定理,三角形的中位线平行于第三边并且等于第三边的一半,难点在于作辅助线构造出直角三角形以及三角形的中位线.16.(4分)(2016•丽水)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于A,B两点,与x轴、y轴分别交于C,D两点,连结OA,OB,过A作AE⊥x轴于点E,交OB于点F,设点A的横坐标为m.(1)b=m+(用含m的代数式表示);(2)若S△OAF+S四边形EFBC=4,则m的值是.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据待定系数法点A的纵坐标相等列出等式即可解决问题.(2)作AM⊥OD于M,BN⊥OC于N.记△AOF面积为S,则△OEF面积为2﹣S,四边形EFBN面积为4﹣S,△OBC 和△OAD面积都是6﹣2S,△ADM面积为4﹣2S=2(2﹣s),所以S△ADM=2S△OEF,推出EF=AM=NB,得B(2m,)代入直线解析式即可解决问题.【解答】解:(1)∵点A在反比例函数y=(x>0)的图象上,且点A的横坐标为m,∴点A的纵坐标为,即点A的坐标为(m,).令一次函数y=﹣x+b中x=m,则y=﹣m+b,∴﹣m+b=即b=m+.故答案为:m+.(2)作AM⊥OD于M,BN⊥OC于N.∵反比例函数y=,一次函数y=﹣x+b都是关于直线y=x对称,∴AD=BC,OD=OC,DM=AM=BN=CN,记△AOF面积为S,则△OEF面积为2﹣S,四边形EFBN面积为4﹣S,△OBC和△OAD面积都是6﹣2S,△ADM面积为4﹣2S=2(2﹣s),∴S△ADM=2S△OEF,∴EF=AM=NB,∴点B坐标(2m,)代入直线y=﹣x+m+,∴=﹣2m=m+,整理得到m2=2,∵m>0,∴m=.故答案为.【点评】本题考查反比例函数与一次函数图象的交点、对称等知识,解题的关键是利用对称性得到很多相等的线段,学会设参数解决问题,属于中考填空题中的压轴题.三、解答题17.(6分)(2016•丽水)计算:(﹣3)0﹣|﹣|+.【考点】实数的运算;零指数幂.【专题】计算题;实数.【分析】原式利用零指数幂法则,绝对值的代数意义,以及二次根式性质计算即可得到结果.【解答】解:原式=1﹣+2=1+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2016•丽水)解不等式:3x﹣5<2(2+3x)【考点】解一元一次不等式.【专题】方程与不等式.【分析】先去括号,然后移项及合并同类项,系数化为1,即可解答本题.【解答】解:3x﹣5<2(2+3x),去括号,得3x﹣5<4+6x,移项及合并同类项,得﹣3x<9,系数化为1,得x>﹣3.故原不等式组的解集是:x>﹣3.【点评】本题考查解一元一次不等式,解题的关键是明确解一元一次不等式的方法.19.(6分)(2016•丽水)数学拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含45°的三角板的斜边与含30°的三角板的长直角边相等,于是,小陆同学提出一个问题:如图,将一副三角板直角顶点重合拼放在一起,点B,C,E在同一直线上,若BC=2,求AF的长.请你运用所学的数学知识解决这个问题.【考点】特殊角的三角函数值.【分析】根据正切的定义求出AC,根据正弦的定义求出CF,计算即可.【解答】解:在Rt△ABC中,BC=2,∠A=30°,AC==2,则EF=AC=2,∵∠E=45°,∴FC=EF•sinE=,∴AF=AC﹣FC=2﹣.【点评】本题考查的是特殊角的三角函数值的应用,掌握锐角三角函数的概念、熟记特殊角的三角函数值是解题的关键.20.(8分)(2016•丽水)为了帮助九年级学生做好体育考试项目的选考工作,某校统计了本县上届九年级毕业生体育考试各个项目参加的男、女生人数及平均成绩,并绘制成如图两个统计图,请结合统计图信息解决问题.(1)“掷实心球”项目男、女生总人数是“跳绳”项目男、女生总人数的2倍,求“跳绳”项目的女生人数;(2)若一个考试项目的男、女生总平均成绩不小于9分为“优秀”,试判断该县上届毕业生的考试项目中达到“优秀”的有哪些项目,并说明理由;(3)请结合统计图信息和实际情况,给该校九年级学生体育考试项目的选择提出合理化建议.【考点】条形统计图;频数(率)分布折线图.【分析】(1)先根据统计图得到“掷实心球”项目男、女生总人数,除以2可求“跳绳”项目男、女生总人数,再减去“跳绳”项目男生人数,即可得到“跳绳”项目的女生人数;(2)根据平均数公式得到该县上届毕业生的考试项目中达到“优秀”的有哪些项目即可求解;(3)根据统计图提出合理化建议,合理即可.【解答】解:(1)(400+600)÷2﹣260=1000÷2﹣260=500﹣260=240(人)答:“跳绳”项目的女生人数是240人;(2)“掷实心球”项目平均分:(400×8.7+600×9.2)÷(400+600)=(3480+5520)÷1000=9000÷1000=9(分),投篮项目平均分大于9分,其余项目平均分小于9分.故该县上届毕业生的考试项目中达到“优秀”的有投篮,掷实心球两个项目.(3)如:游泳项目考试的人数最多,可以选考游泳.【点评】本题考查的是条形统计图、频数(率)分布折线图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.(8分)(2016•丽水)2016年3月27日“丽水半程马拉松竞赛”在莲都举行,某运动员从起点万地广场西门出发,途经紫金大桥,沿比赛路线跑回中点万地广场西门.设该运动员离开起点的路程S(千米)与跑步时间t(分钟)之间的函数关系如图所示,其中从起点到紫金大桥的平均速度是0.3千米/分,用时35分钟,根据图象提供的信息,解答下列问题:(1)求图中a的值;(2)组委会在距离起点2.1千米处设立一个拍摄点C,该运动员从第一次经过C点到第二次经过C点所用的时间为68分钟.①求AB所在直线的函数解析式;②该运动员跑完赛程用时多少分钟?【考点】一次函数综合题.【分析】(1)根据路程=速度×时间,即可解决问题.(2)①先求出A、B两点坐标即可解决问题.②令s=0,求出x的值即可解决问题.【解答】解:(1)∵从起点到紫金大桥的平均速度是0.3千米/分,用时35分钟,∴a=0.3×35=10.5千米.(2)①∵线段OA经过点O(0,0),A(35,10.5),∴直线OA解析式为y=0.3t(0≤t≤35),∴当s=2.1时,0.3t=2.1,解得t=7,∵该运动员从第一次经过C点到第二次经过C点所用的时间为68分钟,∴该运动员从起点点到第二次经过C点所用的时间是7+68=75分钟,∴直线AB经过(35,10.5),(75,2.1),设直线AB解析式s=kt+b,∴解得,∴直线AB 解析式为s=﹣0.21t+17.85.②该运动员跑完赛程用的时间即为直线AB与x轴交点的横坐标,∴当s=0,时,﹣0.21t+17.85=0,解得t=85∴该运动员跑完赛程用时85分钟.【点评】本题考查一次函数综合题,待定系数法等知识,解题的关键是搞清楚路程、速度、时间之间的关系,学会利用一次函数的性质解决实际问题,属于中考常考题型.22.(10分)(2016•丽水)如图,AB是以BC为直径的半圆O的切线,D为半圆上一点,AD=AB,AD,BC的延长线相交于点E.(1)求证:AD是半圆O的切线;(2)连结CD,求证:∠A=2∠CDE;(3)若∠CDE=27°,OB=2,求的长.【考点】切线的判定与性质;弧长的计算.【分析】(1)连接OD,BD,根据圆周角定理得到∠ABO=90°,根据等腰三角形的性质得到∠ABD=∠ADB,∠DBO=∠BDO,根据等式的性质得到∠ADO=∠ABO=90°,根据切线的判定定理即可得到即可;(2)由AD是半圆O的切线得到∠ODE=90°,于是得到∠ODC+∠CDE=90°,根据圆周角定理得到∠ODC+∠BDO=90°,等量代换得到∠DOC=2∠BDO,∠DOC=2∠CDE即可得到结论;(3)根据已知条件得到∠DOC=2∠CDE=54°,根据平角的定义得到∠BOD=180°﹣54°=126°,然后由弧长的公式即可计算出结果.【解答】(1)证明:连接OD,BD,∵AB是⊙O的直径,∴AB⊥BC,即∠ABO=90°,∵AB=AD,∴∠ABD=∠ADB,∵OB=OD,∴∠DBO=∠BDO,∴∠ABD+∠DBO=∠ADB+∠BDO,∴∠ADO=∠ABO=90°,∴AD是半圆O的切线;(2)证明:由(1)知,∠ADO=∠ABO=90°,∴∠A=360°﹣∠ADO﹣∠ABO﹣∠BOD=180°﹣∠BOD,∵AD是半圆O的切线,∴∠ODE=90°,∴∠ODC+∠CDE=90°,∵BC是⊙O的直径,∴∠ODC+∠BDO=90°,∴∠BDO=∠CDE,∵∠BDO=∠OBD,∴∠DOC=2∠BDO,∴∠DOC=2∠CDE,∴∠A=∠CDE;(3)解:∵∠CDE=27°,∴∠DOC=2∠CDE=54°,∴∠BOD=180°﹣54°=126°,∵OB=2,∴的长==π.【点评】本题考查了切线是性质,弧长的计算,圆周角定理,等腰三角形的性质,正确的作出辅助线是解题的关键.23.(10分)(2016•丽水)如图1,地面BD上两根等长立柱AB,CD之间悬挂一根近似成抛物线y=x2﹣x+3的绳子.(1)求绳子最低点离地面的距离;(2)因实际需要,在离AB为3米的位置处用一根立柱MN撑起绳子(如图2),使左边抛物线F1的最低点距MN为1米,离地面1.8米,求MN的长;(3)将立柱MN的长度提升为3米,通过调整MN的位置,使抛物线F2对应函数的二次项系数始终为,设MN离AB的距离为m,抛物线F2的顶点离地面距离为k,当2≤k≤2.5时,求m的取值范围.【考点】二次函数的应用.【分析】(1)直接利用配方法求出二次函数最值得出答案;(2)利用顶点式求出抛物线F1的解析式,进而得出x=3时,y的值,进而得出MN的长;(3)根据题意得出抛物线F2的解析式,得出k的值,进而得出m的取值范围.【解答】解:(1)∵a=>0,∴抛物线顶点为最低点,∵y=x2﹣x+3=(x﹣4)2+,∴绳子最低点离地面的距离为:m;(2)由(1)可知,BD=8,令x=0得y=3,∴A(0,3),C(8,3),由题意可得:抛物线F1的顶点坐标为:(2,1.8),设F1的解析式为:y=a(x﹣2)2+1.8,将(0,3)代入得:4a+1.8=3,解得:a=0.3,∴抛物线F1为:y=0.3(x﹣2)2+1.8,当x=3时,y=0.3×1+1.8=2.1,∴MN的长度为:2.1m;(3)∵MN=DC=3,∴根据抛物线的对称性可知抛物线F2的顶点在ND的垂直平分线上,∴抛物线F2的顶点坐标为:(m+4,k),∴抛物线F2的解析式为:y=(x﹣m﹣4)2+k,把C(8,3)代入得:(4﹣m﹣4)2+k=3,解得:k=﹣(4﹣m)2+3,∴k=﹣(m﹣8)2+3,∴k是关于m的二次函数,又∵由已知m<8,在对称轴的左侧,∴k随m的增大而增大,∴当k=2时,﹣(m﹣8)2+3=2,解得:m1=4,m2=12(不符合题意,舍去),当k=2.5时,﹣(m﹣8)2+3=2.5,解得:m18﹣24,m2=8+2(不符合题意,舍去),∴m的取值范围是:4≤m≤8﹣2.【点评】此题主要考查了二次函数的应用以及顶点式求二次函数解析式等知识,正确表示出函数解析式是解题关键.24.(12分)(2016•丽水)如图,矩形ABCD中,点E为BC上一点,F为DE的中点,且∠BFC=90°.(1)当E为BC中点时,求证:△BCF≌△DEC;(2)当BE=2EC时,求的值;(3)设CE=1,BE=n,作点C关于DE的对称点C′,连结FC′,AF,若点C′到AF的距离是,求n的值.【考点】四边形综合题.【分析】(1)由矩形和直角三角形斜边上的中线性质得出CF=DE=EF,由等腰三角形的性质得出∠FEC=∠FCE,证出CF=CE,由ASA证明△BCF≌△DEC即可;(2)设CE=a,则BE=2a,BC=3a,证明△BCF∽△DEC,得出对应边成比例=,得出ED2=6a2,由勾股定理得出DC=a,即可得出结果;(3)过C′作C′H⊥AF于点H,连接CC′交EF于M,由直角三角形斜边上的中线性质得出∠FEC=∠FCE,证出∠ADF=∠BCF,由SAS证明△ADF≌△BCF,得出∠AFD=∠BFC=90°,证出四边形C′MFH是矩形,得出FM=C′H=,设EM=x,则FC=FE=x+,由勾股定理得出方程,解方程求出EM=,FC=FE=+;由(2)得:,把CE=1,BE=n代入计算即可得出n的值.【解答】(1)证明;∵在矩形ABCD中,∠DCE=90°,F是斜边DE的中点,∴CF=DE=EF,∴∠FEC=∠FCE,∵∠BFC=90°,E为BC中点,∴EF=EC,∴CF=CE,在△BCF和△DEC中,,∴△BCF≌△DEC(ASA);(2)解:设CE=a,由BE=2CE,得:BE=2a,BC=3a,∵CF是Rt△DCE斜边上的中线,∴CF=DE,∵∠FEC=∠FCE,∠BFC=∠DCE=90°,∴△BCF∽△DEC,∴=,即:=,解得:ED2=6a2由勾股定理得:DC===a,∴==;(3)解:过C′作C′H⊥AF于点H,连接CC′交EF于M,如图所示:∵CF是Rt△DCE斜边上的中线,∴FC=FE=FD,∴∠FEC=∠FCE,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴∠ADF=∠CEF,∴∠ADF=∠BCF,在△ADF和△BCF中,,∴△ADF≌△BCF(SAS),∴∠AFD=∠BFC=90°,∵CH⊥AF,C′C⊥EF,∠HFE=∠C′HF=∠C′MF=90°,∴四边形C′MFH是矩形,∴FM=C′H=,设EM=x,则FC=FE=x+,在Rt△EMC和Rt△FMC中,由勾股定理得:CE2﹣EM2=CF2﹣FM2,∴12﹣x2=(x+)2﹣()2,解得:x=,或x=﹣(舍去),∴EM=,FC=FE=+;由(2)得:,把CE=1,BE=n代入上式计算得:CF=,∴,解得:n=4.【点评】本题是四边形综合题目,考查了矩形的性质与判定、全等三角形的判定与性质、直角三角形斜边上的中线性质、勾股定理、相似三角形的判定与性质、等腰三角形的判定与性质等知识;本题综合性强,难度较大,证明三角形全等和三角形相似是解决问题的关键.。

2016年浙江省丽水市中考数学模拟试卷(二)及答案

2016年浙江省丽水市中考数学模拟试卷(二)及答案

2016年浙江省丽水市中考数学模拟试卷(二)一、选择题(共10小题,每小题4分,满分40分)1.下列的运算中,其结果正确的是()A.x+2=5 B. 16x2﹣7x2=9x2 C. x8÷x2=x4 D. x(﹣xy)2=x2y22.下列各图中,沿着虚线将正方形剪成两部分,那么由这两部分既能拼成平行四边形,又能拼成三角形和梯形的是()A. B. C. D.3.下列计算错误的是()A. x3•x4=x7 B.(x2)3=x6 C. x3÷x3=x D. x4+x4=2x44.关于x的不等式组只有4个整数解,则a的取值范围是()A.﹣5≤a≤﹣ B.﹣5≤a<﹣ C.﹣5<a≤﹣ D.﹣5<a<﹣5.甲、乙、丙、丁四名运动员参加4×100米接力赛,甲必须为第一接力棒或第四接力棒的运动员,那么这四名运动员在比赛过程的接棒顺序有()A. 3种 B. 4种 C. 6种 D. 12种6.若a>0,则点P(﹣a,2)应在()A.第﹣象限内 B.第二象限内 C.第三象限内 D.第四象限内7.设a=﹣,b=2﹣,c=﹣2,则a,b,c的大小关系是()A. a>b>c B. a>c>b C. c>b>a D. b>c>a8.如图,一圆内切四边形ABCD,且AB=16,CD=10,则四边形的周长为()A. 50 B. 52 C. 54 D. 569.给出下列4个结论:①边长相等的多边形内角都相等;②等腰梯形既是轴对称图形又是中心对称图形;③三角形的内切圆和外接圆是同心圆;④圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线.其中正确结论的个数有()A. 0个 B. 1个 C. 2个 D. 3个10.如图,在△ABC中,已知∠C=90°,AC=60cm,AB=100cm,a,b,c…是在△ABC内部的矩形,它们的一个顶点在AB上,一组对边分别在AC上或与AC平行,另一组对边分别在BC 上或与BC平行.若各矩形在AC上的边长相等,矩形a的一边长是72cm,则这样的矩形a、b、c…的个数是()A. 6 B. 7 C. 8 D. 9一.填空题,每小题5分,满分25分11.计算= .12.已知摄氏温度(℃)与华氏温度(℉)之间的转换关系是:摄氏温度=×(华氏温度﹣32).若华氏温度是68℉,则摄氏温度是℃.13.在直角坐标系中,O是坐标原点.点P(m,n)在反比例函数y=的图象上.若m=k,n=k﹣2,则k= ;若m+n=k,OP=2,且此反比例函数y=满足:当x>0时,y随x的增大而减小,则k= .14.诗云:“远望巍巍塔七层,灯光点点倍加增,共灯三百八十一,试问尖头几盏灯?”请回答:.15.如图,将一块斜边长为12cm,∠B=60°的直角三角板ABC,绕点C沿逆时针方向旋转90°至△A′B′C′的位置,再沿CB向右平移,使点B′刚好落在斜边AB上,那么此三角板向右平移的距离是cm.三、解答题16.解方程:x2+2x+3﹣=0.17.已知:如图,AM是△ABC的中线,∠DAM=∠BAM,CD∥AB.求证:AB=AD+CD.18.某酒厂生产A,B两种品牌的酒,每天两种酒共生产700瓶,每种酒每瓶的成本和利润如下表所示,设每天共获利y元,每天生产A种品牌的酒x瓶.A B成本(元)5035利润(元)2015(1)请写出y关于x的关系式;(2)如果该厂每天至少投入成本30 000元,那么每天至少获利多少元?(3)要使每天的利润率最大,应生产A,B两种酒各多少瓶?19.已知直线l及l外一点A,分别按下列要求写出画法,并保留两图痕迹.(1)在图1中,只用圆规在直线l上画出两点B,C,使得点A,B,C是一个等腰三角形的三个顶点;(2)在图2中,只用圆规在直线l外画出一点P,使得点A,P所在直线与直线l平行.20.如图,已知Rt△ADC中,∠D=90°,以AD为直径的⊙O交斜边AC于F,OE∥AC,交DC 于E.(1)求证:EF为⊙O的切线;(2)求证:2EF2=CF•OE.21.如图,直角坐标系中,已知点A(2,4),B(5,0),动点P从B点出发沿BO向终点O 运动,动点Q从A点出发沿AB向终点B运动.两点同时出发,速度均为每秒1个单位,设从出发起运动了xs.(1)Q点的坐标为(用含x的代数式表示);(2)当x为何值时,△APQ是一个以AP为腰的等腰三角形?(3)记PQ的中点为G.请你探求点G随点P,Q运动所形成的图形,并说明理由.2016年浙江省丽水市中考数学模拟试卷(二)参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.下列的运算中,其结果正确的是()A.x+2=5 B. 16x2﹣7x2=9x2 C. x8÷x2=x4 D. x(﹣xy)2=x2y2考点:整式的混合运算.分析:利用整式运算的方法逐一计算,进一步比较得出答案即可.解答:解:A、3x+2不能合并,此选项错误;B、16x2﹣7x2=9x2,此选项正确;C、x8÷x2=x6,此选项错误;D、x(﹣xy)2=x3y2,此选项错误.故选:B.点评:此题考查整式的混合运算,掌握符号的判定与运算的方法是解决问题的关键.2.下列各图中,沿着虚线将正方形剪成两部分,那么由这两部分既能拼成平行四边形,又能拼成三角形和梯形的是()A. B. C. D.考点:剪纸问题;正方形的性质.专题:压轴题;操作型.分析:第一个正方形沿虚线剪成两部分,这两部分可拼成平行四边形;第二个既可以拼成平行四边形,也可以拼成下三角和梯形;第三个拼成的图形为特殊的平行四边形正方形;第四个可拼成平行四边形.解答:解:故选B.点评:本题主要考查剪纸问题,充分考查了学生的空间想象能力.3.下列计算错误的是()A. x3•x4=x7 B.(x2)3=x6 C. x3÷x3=x D. x4+x4=2x4考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减;合并同类项,只把系数相加减,字母与字母的次数不变,对各选项分析判断后利用排除法求解.解答:解:A、x3•x4=x7,正确;B、(x2)3=x6,正确;C、应为x3÷x3=1,故本选项错误;D、x4+x4=2x4,正确.故选C.点评:本题主要考查同底数幂的乘法,幂的乘方,同底数幂的除法,合并同类项的法则,熟练掌握运算性质是解题的关键.4.关于x的不等式组只有4个整数解,则a的取值范围是()A.﹣5≤a≤﹣ B.﹣5≤a<﹣ C.﹣5<a≤﹣ D.﹣5<a<﹣考点:一元一次不等式组的整数解.专题:计算题;压轴题.分析:首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.解答:解:不等式组的解集是2﹣3a<x<21,因为不等式组只有4个整数解,则这4个解是20,19,18,17.所以可以得到16≤2﹣3a<17,解得﹣5<a≤﹣.故选:C.点评:正确解出不等式组的解集,正确确定2﹣3a的范围,是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.5.甲、乙、丙、丁四名运动员参加4×100米接力赛,甲必须为第一接力棒或第四接力棒的运动员,那么这四名运动员在比赛过程的接棒顺序有()A. 3种 B. 4种 C. 6种 D. 12种考点:推理与论证.专题:压轴题.分析:若甲作第一棒时,乙、丙、丁有6种排列方法;若甲作第四棒时,也有6种排列方法.所以共有12种接棒顺序.解答:解:当甲作第一棒时,接棒顺序有:①甲、乙、丙、丁;②甲、乙、丁、丙;③甲、丙、乙、丁;③甲、丙、丁、乙;⑤甲、丁、乙、丙;⑥甲、丁、丙、乙.因此共有6种接棒顺序.同理当甲做第四棒时,也有6种接棒顺序.因此共有6+6=12种接棒顺序.故选D.点评:此题主要是考虑乙、丙、丁的排列方法.解决此类题时,最好按序排列,以免造成头绪混乱,漏解错解的状况.6.若a>0,则点P(﹣a,2)应在()A.第﹣象限内 B.第二象限内 C.第三象限内 D.第四象限内考点:点的坐标.分析:应先判断出所求的点的横纵坐标的符号,进而判断点P所在的象限.解答:解:∵a>0,∴﹣a<0,∵点P的横坐标是负数,纵坐标是正数,∴点P在平面直角坐标系的第二象限.故选B.点评:解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.7.设a=﹣,b=2﹣,c=﹣2,则a,b,c的大小关系是()A. a>b>c B.a>c>b C. c>b>a D. b>c>a考点:实数大小比较.分析:先把各无理数进行估算,再比较大小即可.也可以通过比较它们倒数的大小解决问题.解答:解:∵≈1.73,≈1.4,≈2.23,∴a=﹣≈1.73﹣1.41=0.32;b=2﹣≈2﹣1.73=0.27;c=﹣2≈2.23﹣2=0.23.∵0.32>0.27>0.23,∴a>b>c.故选A.点评:本题考查了同学们对无理数大小的估算能力,比较简单.8.如图,一圆内切四边形ABCD,且AB=16,CD=10,则四边形的周长为()A. 50 B. 52 C. 54 D. 56考点:切线长定理.分析:根据切线长定理,可以证明圆外切四边形的性质:圆外切四边形的两组对边和相等,从而可求得四边形的周长.解答:解:由题意可得圆外切四边形的两组对边和相等,所以四边形的周长=2(16+10)=52.故选B.点评:熟悉圆外切四边形的性质:圆外切四边形的两组对边和相等.9.给出下列4个结论:①边长相等的多边形内角都相等;②等腰梯形既是轴对称图形又是中心对称图形;③三角形的内切圆和外接圆是同心圆;④圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线.其中正确结论的个数有()A. 0个 B. 1个 C. 2个 D. 3个考点:等腰梯形的性质;多边形;三角形的外接圆与外心;三角形的内切圆与内心.分析:对各个结论进行分析从而确定正确的答案.解答:解:①:比如一般的菱形的各边相等,但各角不相等,所以命题错误;②:等腰梯形不是中心对称图形,所以命题错误;③:三角形的内切圆的圆心是三条角平分线的交点,外接圆的圆心是三条垂直平分线的交点,只有等边三角形才能重合,所以命题错误;④:圆心到直线的距离等于半径的直线,是圆的切线,不能说圆心到直线上一点的距离,错误.故选A.点评:理解各个概念,说明一个命题的错误,只需举出反例即可.10.如图,在△ABC中,已知∠C=90°,AC=60cm,AB=100cm,a,b,c…是在△ABC内部的矩形,它们的一个顶点在AB上,一组对边分别在AC上或与AC平行,另一组对边分别在BC 上或与BC平行.若各矩形在AC上的边长相等,矩形a的一边长是72cm,则这样的矩形a、b、c…的个数是()A. 6 B. 7 C. 8 D. 9考点:勾股定理的应用.专题:压轴题;规律型.分析:根据勾股定理可以求出每阶台阶的宽,依据BC的长,即可解答.解答:解:如图,易证△BDE≌△EFG≌△GKH≌△HLM,可得BD=EF=GK=HL=BC﹣DC=﹣72=8cm.根据此规律,共有80÷8﹣1=9个这样的矩形.故选D.点评:本题将勾股定理和规律的探索与实际问题相结合,有一定的难度,善于观察题目的信息是解题以及学好数学的关键.一.填空题,每小题5分,满分25分11.计算= .考点:分母有理化.专题:计算题.分析:运用二次根式的乘法法则,将分子的二次根式化为积的形式,约分,比较简便.解答:解:原式==.故答案为:.点评:主要考查了二次根式的化简和二次根式的运算法则.注意最简二次根式的条件是:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数因式.上述两个条件同时具备(缺一不可)的二次根式叫最简二次根式.12.已知摄氏温度(℃)与华氏温度(℉)之间的转换关系是:摄氏温度=×(华氏温度﹣32).若华氏温度是68℉,则摄氏温度是20 ℃.考点:有理数的混合运算.专题:应用题.分析:把华式温度68℉,直接代入摄式温度=×(华式温度﹣32),求值即可.解答:解:当华式温度=68℉,摄式温度=×(华式温度﹣32)=×(68﹣32)=×36=20℃.点评:注意按照两者的转换公式进行计算,熟练有理数的混合运算法则.13.在直角坐标系中,O是坐标原点.点P(m,n)在反比例函数y=的图象上.若m=k,n=k﹣2,则k= 3 ;若m+n=k,OP=2,且此反比例函数y=满足:当x>0时,y随x 的增大而减小,则k= 2 .考点:反比例函数图象上点的坐标特征;反比例函数的性质.分析:把点P的坐标代入反比例函数关系式来求k的值;当k>0时,反比例函数y=的图象:当x>0时,y随x的增大而减小.解答:解:∵点P(m,n)在反比例函数y=的图象上.且m=k,n=k﹣2,∴k﹣2=,解得 k=3;∵m+n=k,OP=2,∴,解得 k=2或k=﹣1.又∵当x>0时,y随x的增大而减小,∴k>0,∴k=2符合题意.故答案是:3;2.点评:本题考查了反比例函数的性质,反比例函数图象上点的坐标特征.所有在反比例函数上的点的横纵坐标的积应等于比例系数.14.诗云:“远望巍巍塔七层,灯光点点倍加增,共灯三百八十一,试问尖头几盏灯?”请回答:3盏灯.考点:一元一次方程的应用.分析:要求尖头几盏灯,就要先设出求知数,再根据倍加增求出各层的灯数,然后根据共灯三百八十一的等量关系列出方程求解.解答:解:设顶层有x盏灯.根据题意得:x+2x+4x+8x+16x+32x+64x=381,解得:x=3.因此尖头(最顶层)有3盏灯.故答案为:3盏灯.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.15.如图,将一块斜边长为12cm,∠B=60°的直角三角板ABC,绕点C沿逆时针方向旋转90°至△A′B′C′的位置,再沿CB向右平移,使点B′刚好落在斜边AB上,那么此三角板向右平移的距离是()cm.考点:解直角三角形;平移的性质;旋转的性质.专题:压轴题.分析:综合利用直角三角形的性质和锐角三角函数的概念及旋转,平移的性质解题.解答:解:如图,BC=AB•cos60°=6.由平移的性质知:∠WQS=∠ACB=90°,WQ=BC=6,∴BQ=WQ•cot60°=2.∴QC=BC﹣BQ=6﹣2.点评:本题考查了学生综合运用数学知识的能力,注意旋转和平移后的图形与原图形全等.三、解答题16.解方程:x2+2x+3﹣=0.考点:无理方程.分析:设=y,则原方程即可转化为关于y的方程,解方程求得y的值,然后转化为关于x的方程,从而求解.解答:解:设=y,则x2+2x=y2﹣5,则原式即:y2﹣y﹣2=0,解得:y1=2,y2=﹣1(舍去),则x2+2x=4﹣5,即(x+1)2=0,解得x1=x2=﹣1.点评:本题考查了无理方程的解法,在解无理方程是最常用的方法是两边平方法及换元法,本题用了换元法.17.已知:如图,AM是△ABC的中线,∠DAM=∠BAM,CD∥AB.求证:AB=AD+CD.考点:全等三角形的判定与性质.分析:首先画出辅助线:延长AM,与CD的延长线相交于点N.再证明△ABM≌△NCM,可得AB=CN,再证明AD=ND,即可得到AB=CN=AD+CD.解答:证明:延长AM,与CD的延长线相交于点N.∵CD∥AB,∴∠BAM=∠N.又∵∠BMA=∠CMN,BM=CM,∴△ABM≌△NCM.∴AB=CN.∵∠BAM=∠N,∠DAM=∠BAM,∴∠DAM=∠N.∴AD=ND.∴AB=CN=AD+CD.点评:此题主要考查了全等三角形的判定与性质,解题的关键是证明AD=ND,AB=CN.18.某酒厂生产A,B两种品牌的酒,每天两种酒共生产700瓶,每种酒每瓶的成本和利润如下表所示,设每天共获利y元,每天生产A种品牌的酒x瓶.A B成本(元)5035利润(元)2015(1)请写出y关于x的关系式;(2)如果该厂每天至少投入成本30 000元,那么每天至少获利多少元?(3)要使每天的利润率最大,应生产A,B两种酒各多少瓶?考点:一元一次不等式的应用;一次函数的应用.专题:图表型.分析:(1)获利y元=A种品牌的酒的获利+B种品牌的酒的获利.(2)关系式为:A种品牌的酒的成本+B种品牌的酒的成本≥30 000,算出x的最小整数值代入(1)即可(3)关键描述语是:利润率最大,应选取利润率最大的生产最大数量.解答:解:(1)根据题意,得y=20x+15(700﹣x),即y=5x+10500.(2)根据题意,得50x+35(700﹣x)≥30000,解得x≥=366.因为x是整数,所以取x=367,代入y=5x+10500,得y=12335.答:每天至少获利12335元.(3)生产A种酒的利润率为=;生产B种酒的利润率为=,因为<,所以要使每天的利润率最大,应生产A种酒0瓶,B种酒700瓶.答:应生产A种酒0瓶,B种酒700瓶.点评:解决本题的关键是读懂题意,根据关键描述语找到符合题意的等量关系和不等关系式组.19.已知直线l及l外一点A,分别按下列要求写出画法,并保留两图痕迹.(1)在图1中,只用圆规在直线l上画出两点B,C,使得点A,B,C是一个等腰三角形的三个顶点;(2)在图2中,只用圆规在直线l外画出一点P,使得点A,P所在直线与直线l平行.考点:作图—复杂作图.专题:压轴题.分析:(1)以点A为圆心,大于点A到直线l的距离长为半径画弧,与直线l交于B,C 两点,则点B,C即为所求.或在直线l上任取一点B,以点B为圆心,AB长为半径画弧,与直线l交于点C,则点B,C即为所求;(2)在直线l上任取B,C两点,以点A为圆心,BC长为半径画弧,以点C为圆心,AB长为半径画弧,两弧交于点P.则点P即为所求.解答:解:(1)画法一:以点A为圆心,大于点A到直线l的距离长为半径画弧,与直线l交于B,C两点,则点B,C即为所求.画法二:在直线l上任取一点B,以点B为圆心,AB长为半径画弧,与直线l交于点C,则点B,C 即为所求.(2)画法:在直线l上任取B,C两点,以点A为圆心,BC长为半径画弧,以点C为圆心,AB长为半径画弧,两弧交于点P.则点P即为所求.点评:此题通过作图考查了等腰三角形的性质和平行四边形的性质.20.如图,已知Rt△ADC中,∠D=90°,以AD为直径的⊙O交斜边AC于F,OE∥AC,交DC 于E.(1)求证:EF为⊙O的切线;(2)求证:2EF2=CF•OE.考点:切线的判定;相似三角形的判定与性质.专题:证明题.分析:(1)连接OF、DF交OE于点G,在△ODF和△EFD中,利用等边对等角证明∠ODF=∠OFD,∠EDF=∠EFD,则∠OFE=∠ODC=90°,从而证得;(2)利用切割线定理,以及直角三角形斜边上的中线等于斜边的一半,利用CD分别表示出2EF2和CF•OE,即可证得.解答:证明:(1)连接OF、DF交OE于点G.∵AD是圆的直径,∴∠AFD=90°,即∠DF⊥AC,又∵OE∥AC,∴OE⊥DF,又∵OD=OF,∴DG=GF,∠ODF=∠OFD,∴DE=EF,∴∠EDF=∠EFD,∴∠OFE=∠ODC=90°,∴OF⊥EF,则EF是圆的切线;(2)证明:∵O是AB的中点,OE∥AC,∴OE是△ABC的中位线,∴OE=AC,即AC=2OE,又∵CD是圆的切线,∴CD2=CF•AC=2CF•OE,即CF•OE=CD2.∵在直角△DFC中,E是CD的中点,∴EF=C D,即CD=2EF,∴2EF2=CD2,∴2EF2=CF•OE.点评:本题考查了切线的判定定理、切割线定理和直角三角形的性质定理,利用CD分别表示出2EF2和CF•OE是关键.21.如图,直角坐标系中,已知点A(2,4),B(5,0),动点P从B点出发沿BO向终点O 运动,动点Q从A点出发沿AB向终点B运动.两点同时出发,速度均为每秒1个单位,设从出发起运动了xs.(1)Q点的坐标为(2+,4﹣)(用含x的代数式表示);(2)当x为何值时,△APQ是一个以AP为腰的等腰三角形?(3)记PQ的中点为G.请你探求点G随点P,Q运动所形成的图形,并说明理由.考点:等腰三角形的判定;一元二次方程的应用;坐标与图形性质;待定系数法求一次函数解析式;勾股定理.专题:压轴题.分析:(1)如果过点A作OB的垂线,不难求出cos∠ABO=,sin∠ABO=,因此,Q移动时,横向移动的速度是1•cos∠ABO=单位/秒,纵向移动的速度是1•sin∠ABO=单位/秒,因此Q得坐标就可表示为(2+,4﹣).(2)有了A、Q的坐标,如果分别过A、Q做x轴的垂线,通过构成的直角三角形,不难用x表示出AQ、AP和PQ的值,然后分AP=AQ,PQ=AP两种情况进行讨论,得出x的值.(3)通过观察G点似乎应该在三角形ABO的中位线上,因此它的轨迹应该是个线段.可设AB、BO的中点分别为点M、N,设M N、PQ相交于点G′,只要证明G′与G重合,也就是G′是QP的中点即可.过点P作PK∥AO交AB于点K.只要证明KM=QM就行了,根据三角形AOB为等腰三角形,AQ、PK、MN都平行,不难得出AQ=BK,AM=BM,因此便可得出KM=QM 了.由此便可得出G′是PQ中点,与G重合.解答:解:(1)(2+,4﹣).(2)由题意,得P(5﹣x,0),0<x≤5由勾股定理求得PQ2=(﹣3)2+(4﹣)2AP2=(3﹣x)2+42若AQ=AP,则x2=(3﹣x)2+42,解得x=若PQ=AP则(﹣3)2+(4﹣)2=(3﹣x)2+42即x2﹣10x=0,解得x1=0(舍去),x2=经检验,当x=或x=时,△APQ是一个以AP为腰的等腰三角形.(3)设AB、BO的中点分别为点M、N,则点G随点P、Q运动所形成的图形是线段MN设MN,PQ相交于点G′,过点P作PK∥AO交AB于点K∴PK∥AO∥MN∴△A0B∽△KPB∽△MNB.∵AB=OB∴BK=BP=AQ,BM=BN∴BK﹣BM=AQ﹣BM,BK﹣BM=AQ﹣AM即KM=QM∴PG′=QG′∴G′是PQ的中点即点G′与点G重合.∴点G随点P、Q运动所形成的图形是△OBA的中位线MN.点评:本题考查综合应用点的坐标,等腰三角形的判定等知识进行推理论证、运算及探究证明的能力.。

2016年丽水市中考数学试题解析版

2016年丽水市中考数学试题解析版

2016年浙江省丽水市中考数学试卷A .七年级的合格率最高B. 八年级的学生人数为 262名 C. 八年级的合格率高于全校的合格率 D .九年级的合格人数最少 6. 下列一元二次方程没有实数根的是(2A. x +2x+仁0 7. 如图,?ABCD 周长为()年级 七年级八年级 九年级 合格人数270262254800名学生,各年级 七、八、九三个年级共有 ( )B. ------- C . D . a+ba+h a+h ab某校对全体学生开展心理健康知识测试, 的合格人数如表所示,则下列说法正确的是 1. 2. A . 3. 、选择题:每小题 3分,共30分 下列四个数中,与-2的和为0的数是()B . 2C . 0D .-32 >3-1的结果是( ) B . - 3 C . 2D . - 2计算 3下列图形中,属于立体图形的是( 4. -+的运算结果正确的是(5. ) 2 2 2B . x +x+2=0C . x -仁0D . x - 2x -仁0的对角线 AC , BD 交于点O ,已知AD=8 , BD=12 , AC=6,则△ OBC 的A .B .C .A . 13B . 17C . 20D . 26&在直角坐标系中,点M, N在同一个正比例函数图象上的是( )A. M (2,- 3), N (- 4, 6)B. M (- 2, 3), N (4, 6)C. M (- 2,- 3) , N (4, -6)D. M (2,3), N (- 4, 6)9.用直尺和圆规作Rt△ ABC斜边AB上的高线CD,以下四个作图中,作法错误的是()BC=4 ,AD=,贝U AE 的长是(二、填空题:每小题 4分,共24分 11 .分解因式: am - 3a= ____________ .12•如图,在△ ABC 中,/ A=63 °直线MN // BC ,且分别与AB , AC 相交于点D , E ,若 / AEN=133 °则/ B 的度数为 _________________ .13•箱子里放有2个黑球和2个红球,它们除颜色外其余都相同, 现从箱子里随机摸出两个球,恰好为1个黑球和1个红球的概率是 _______________ .2 214.已知 x +2x - 1=0,贝U 3x +6x - 2= ___________ .15•如图,在菱形 ABCD 中,过点B 作BE 丄AD , BF 丄CD ,垂足分别为点 E , F ,延长BD 至 G ,使得 DG=BD ,连结 EG , FG ,若 AE=DE 「:= ___________________ .©16.如图,一次函数 y= - x+b 与反比例函数 y= . (x >0)的图象交于 A , B 两点,与x 轴、 y 轴分别交于C , D 两点,连结OA , OB ,过A 作AE 丄x 轴于点E ,交OB 于点F ,设点A 的横坐标为m . (1) b= ___________ (用含m 的代数式表示);D . 1.210.如图,已知O O 是等腰Rt △ ABC 的外接圆,点 D 是■,上一点,BD 交AC 于点E ,若(2) 、△ OAF +S 四边形EFBC =4,贝V m 的值是三、解答题 17•计算:(—3)I — 一1+18.解不等式:3x - 5V 2 (2+3x )19•数学拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含 45。

2016年中考数学选择压轴题专题练习及解析

2016年中考数学选择压轴题专题练习及解析

2016年中考数学《选择压轴题》专题练习1. (2015年广东3分)如图,已知正ΔABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设ΔEFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是【 】A. B.C. D.2. (2015年广东深圳3分)如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①ADG FDG ∆∆≌;②2GB AG =;③GDE BEF ∆∆∽;④725BEF S ∆=.在以上4个结论中,正确的有【 】 A. 1 B. 2 C.3D. 43. (2015年广东汕尾4分)对于二次函数2 2y x x =-+有下列四个结论:①它的对称轴是直线1x =;②设22111222 2 2y x x y x x =-+=-+,,则当21>x x 时,有21>y y ;③它的图象与x 轴的两个交点是(0,0)和(2,0);④当0<<2x 时,>0y .其中正确结论的个数为【 】 A. 1 B.2 C. 3 D. 44. (2015年广东广州3分)已知2是关于x 的方程2230x mx m -+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为【 】A. 10B. 14C. 10或14D. 8或10 5. (2015年广东佛山3分)下列给出5个命题:①对角线互相垂直且相等的四边形是正方形;②六边形的内角和等于720°; ③相等的圆心角所对的弧相等; ④顺次连结菱形各边中点所得的四边形是矩形;⑤三角形的内心到三角形三个顶点的距离相等.其中正确命题的个数是【 】A. 2个B. 3个C. 4个D. 5个 6. (2015年广东梅州3分)对于二次函数2 2y x x =-+有下列四个结论:①它的对称轴是直线1x =;②设22111222 2 2y x x y x x =-+=-+,,则当21>x x 时,有21>y y ;③它的图象与x 轴的两个交点是(0,0)和(2,0);④当0<<2x 时,>0y .其中正确结论的个数为【 】 A. 1 B.2 C. 3 D. 47. (2015年浙江衢州)如图,已知等腰,ABC AB BC ∆= ,以AB 为直径的圆交AC 于点D ,过点D 的O e 的切线交BC 于点E ,若5,4CD CE == ,则O e 的半径是【 】 A. 3 B. 4 C.256 D. 2588. (2015年浙江绍兴4分)挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走. 如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走【 】 A. ②号棒 B. ⑦号棒 C. ⑧号棒 D. ⑩号棒 9. (2015年浙江台州4分)(2015年浙江义乌3分)某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人” ;乙说:“两项都参加的人数小于5人” .对于甲、乙两人的说法,有下列四个命题,其中真命题的是【 】A.若甲对,则乙对B.若乙对,则甲对C.若乙错,则甲错D.若甲粗,则乙对10. (2015年浙江温州4分)如图,C 是以AB 为直径的半圆O 上一点,连结AC ,BC ,分别以AC ,BC 为边向外作正方形ACDE ,BCFG ,DE ,FG ,»»AC BC,的中点分别是M ,N ,P ,Q. 若MP+NQ=14,AC+BC=18,则AB 的长是【 】 A.29 B.790C. 13D. 16 11. (2015年浙江舟山3分)(2015年浙江嘉兴4分) 如图,抛物线221y x x m =-+++交x 轴于点A (a ,0)和B (b , 0),交y 轴于点C ,抛物线的顶点为D .下列四个命题:①当>0x 时,>0y ;②若1a =-,则4b =;③抛物线上有两点P (1x ,1y )和Q (2x ,2y ),若12<1<x x ,且12>2x x +,则12>y y ;④点C 关于抛物线对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,当2m =时,四边形EDFG周长的最小值为. 其中真命题的序号是【 】A. ①B. ②C. ③D. ④ 12.(2015年浙江杭州3分)设二次函数11212())0(()y a x x x x a x x =--≠≠,的图象与一次函数()20y dx e d =+≠的图象交于点1(0)x ,,若函数21y y y =+的图象与x 轴仅有一个交点,则【 】A. 12()a x x d -=;B. 21()a x x d -=; C. 212()a x x d -=;D. ()212a x x d +=(第11题) (第13题) (第14题) 13.(2015年浙江湖州3分)如图,已知在平面直角坐标系xOy 中,O 是坐标原点,点A 是函数1y x=(x <0)图象上一点,AO 的延长线交函数2k y x=(x >0,k 是不等于0的常数)的图象于点C ,点A 关于y 轴的对称点为A ′,点C 关于x 轴的对称点为C ′,连接CC ′,交x 轴于点B ,连结AB ,AA ′,A ′C ′,若ΔABC 的面积等于6,则由线段AC ,CC ′,C ′A ′,A ′A 所围成的图形的面积等于【 】【来A.8B.10C.D.14.(2015年浙江金华3分)如图,正方形ABCD 和正三角形AEF 都内接于⊙O ,EF 与BC ,CD 分别相交于点G ,H ,则EFGH的值是【 】【 A.26B. 2C. 3D. 215.(2015年浙江丽水3分)如图,在方格纸中,线段a ,b ,c ,d 的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有【 】A. 3种B. 6种C. 8种D. 12种(第15题) (第16题)16.(2015年浙江宁波4分) 如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形. 若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形标号为【 】A. ①②B. ②③C. ①③D. ①②③ 17. (2015年安徽4分)如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能是【 】A.B .C .D .18. (2015年北京3分)一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB ,BC ,CA ,OA ,OB ,OC 组成. 为记录寻宝者的进行路线,在BC 的中点M 处放置了一台定位仪器,设寻宝者行进的时间为x ,寻宝者与定位仪器之间的距离为y ,若寻宝者匀速行进,且表示y 与x 的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为【 】A 、A→O→B B 、B→A→CB 、C 、B→O→CD 、C→B→O19. (2015年上海4分)如图,已知在⊙O 中,AB 是弦,半径OC ⊥AB ,垂足为点D ,要使四边形OACB 为菱形,还需要添加一个条件,这个条件可以是【 】A 、AD BD =B 、OD CD =C 、CAD CBD ∠=∠ D 、OCA OCB ∠=∠ 20. (2015年重庆A4分)如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为3,1,反比例函数3y x=的图像经过A ,B 两点,则菱形ABCD 的面积为【 】A. 2 B. 4C.D.(第19题) (第20题) (第21题)21. (2015年重庆B4分)如图,在平面直角坐标系中,菱形ABOC 的顶点O 在坐标原点,边BO 在x 轴的负半轴上,∠BOC =60°,顶点C 的坐标为(m,,反比例函数ky x=的图像与菱形对角线AO 交于D 点,连接BD ,当BD ⊥x 轴时,k 的值是【 】A.B. -C.D. -22. (2015年江苏苏州3分)如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB =2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为【 】A .4km B.(2+km C. D.(4km(第22题) (第23题)23. (2015年江苏无锡3分)如图,Rt △ABC 中,∠ACB =90º,AC =3,BC =4,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段B ′F 的长为【 】A.35 B. 45 C. 23D. 24. (2015年福建福州3分)已知一个函数图像经过()()1422-- ,,,两点,在自变量x 的某个取值范围内,都有函数值y 随x 的增大而减小,则符合上述条件的函数可能是【 】A. 正比例函数B. 一次函数C. 反比例函数D. 二次函数25. (2015年福建泉州3分)在同一平面直角坐标系中,函数2y ax bx =+与y bx a =+的图象可能是【 】A.B.C.D.26. (2015年福建厦门4分)如图,在ΔABC 中,AB =AC ,D 是边BC 的中点,一个圆过点A ,交边AB 于点E ,且与BC 相切于点D ,则该圆的圆心是【 】A .线段AE 的中垂线与线段AC 的中垂线的交点B .线段AB 的中垂线与线段AC 的中垂线的交点 C .线段AE 的中垂线与线段BC 的中垂线的交点D .线段AB 的中垂线与线段BC 的中垂线的交点(第26题) (第28题)27. (2015年内蒙古呼和浩特3分)函数22x xy x+=的图象为【 】A.B.C.D.28. (2015年江苏徐州3分)若函数y kx b =-的图像如图所示,则关于x 的不等式()3>0kx b --的解集为【 】A. <2xB. >2xC. <5xD. >5x 29.(2015年福建漳州4分)在数学活动课上,同学们利用如图的程序进行计算,发现无论x 取任何正整数,结果都会进入循环,下面选项一定不是该循环的是【 】A. 4,2,1B. 2,1,4C. 1,4,2D. 2,4,1 30. (2015年湖南株洲3分)有两个一元二次方程:M :20ax bx c ++=N :20cx bx a ++=,其中0a c +=,以下列四个结论中,错误的是【 】A 、如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根;B 、如果方程M 有两根符号相同,那么方程N 的两根符号也相同;C 、如果5是方程M 的一个根,那么15是方程N 的一个根; D 、如果方程M 和方程N 有一个相同的根,那么这个根必是1x =.31. (2015年江西南昌3分)如图,在ΔABC 中,AB =BC =4,AO =BO ,P 是射线CO 上的一个动点,∠AOC =60°,则当ΔP AB 为直角三角形时,AP 的长为 ▲ .(第31题) (第32题)32. (2015年江西3分)已知抛物线()20y ax bx c a ++>=过()()2023- ,,,两点,那么抛物线的对称轴【 】A. 只能是x =-1B. 可能是y 轴C. 在y 轴右侧且在直线x =2的左侧D. 在y 轴左侧 33. (2015年四川成都3分)如图,正六边形ABCDEF 内接于圆O ,半径为4,则这个正六边形的边心距OM 和弧BC 的长分别为【 】A.2、3πB. 32、π C. 3、23π D. 32、43π34. (2015年四川宜宾3分)在平面直角坐标系中,任意两点()()1122,,,A x y B x y 规定运算:①()1212,⊕=++A B x x y y ;②1212=⊗+A B x x y y ;③当x 1= x 2且y 1= y 2时,A =B.有下列四个命题: (1)若A (1,2),B (2,–1),则(),31⊕= A B ,0=⊗A B ;(2)若⊕=⊕A B B C ,则A =C ; (3)若=⊗⊗A B B C ,则A =C ; (4)对任意点A 、B 、C ,均有()()⊕⊕=⊕⊕A B C A B C 成立.其中正确命题的个数为【 】A. 1个B. 2个C. 3个D. 4个 35. (2015年四川资阳3分)如图,在ΔABC 中,∠ACB =90º,AC =BC =1,E 、F 为线段AB 上两动点,且∠ECF =45°,过点E 、F 分别作BC 、AC 的垂线相交于点M ,垂足分别为H 、G .现有以下结论:①AB =②当点E 与点B 重合时,12MH =;③AF BE EF +=;④MG•MH =12,其中正确结论为【 】A. ①②③B. ①③④C. ①②④D. ①②③④ 36. (2015年四川泸州3分)在平面直角坐标系中,点A ,B ,动点C 在x 轴上,若以A 、B 、C 三点为顶点的三角形是等腰三角形,则点C 的个数为【 】A.2B.3C.4D.537. (2015年广东茂名3分)张三和李四两人加工同一种零件,每小时张三比李四多加工5个零件,张三加工120个这种零件与李四加工100个这种零件所用时间相等,求张三和李四每小时各加工多少个这种零件?若设张三每小时加工这种零件x 个,则下面列出的方程正确的是【 】A. 1201005x x =- B. 1201005x x =-C.1201005x x=+ D. 1201005x x =+(第35题) (第38题)38. (2015年广东珠海3分)如图,在⊙O 中,直径CD 垂直于弦AB ,若∠C=25°,则∠BOD 的度数是( ) A. 25° B. 30° C. 40° D. 50°39. (2015年贵州铜仁4分)如图,在平面直角坐标系系中,直线12y k x =+与x 轴交于点A ,与y 轴交于点C ,与反比例函数2k y x=在第一象限内的图象交于点B ,连接BO .若113OBCS tan BOC =∠=V ,,则k 2的值是【 】A. 3-B. 1C. 2D. 340. (2015年河南3分)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2015秒时,点P 的坐标是【 】A. (2014,0)B. (2015,-1)C. (2015,1)D. (2016,0)41. (2015年湖北黄冈3分)货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y (千米)与各自行驶时间t (小时)之间的函数图象是【 】A. B. C. D. 42. (2015年湖北黄石3分)如图是自行车骑行训练场地的一部分,半圆O 的直径AB =100,在半圆弧上有一运动员C 从B 点沿半圆周匀速运动到M (最高点),此时由于自行车故障原地停留了一段时间,修理好继续以相同的速度运动到A 点停止.设运动时间为t ,点B 到直线OC 的距离为d ,则下列图象能大致刻画d 与t 之间的关系是【 】A.B.C.D.43. (2015年江苏连云港3分)如图是本地区一种产品30天的销售图象,图①是产品日销售量y (单位:件)与时间t (单位;天)的函数关系,图②是一件产品的销售利润z (单位:元)与时间t (单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是【 】A. 第24天的销售量为200件;B. 第10天销售一件产品的利润是15元;C. 第12天与第30天这两天的日销售利润相等;D. 第30天的日销售利润是750元44. (2015年江苏南京2分)如图,在矩形ABCD 中,AB =4,AD =5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D 作⊙O 的切线交BC 于点M ,则DM 的长为【 】 A.133 B. 92C.D.(第44题) (第45题)45. (2015年江苏泰州3分)如图,ΔABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线分别交 AC 、AD 、AB 于点E 、O 、F ,则图中全等的三角形的对数是【 】 A. 1对 B. 2对 C. 3对 D. 4对 46. (2015年陕西3分)下列关于二次函数()2211y ax ax a =-+>的图象与x 轴交点的判断,正确的是【 】A. 没有交点B. 只有一个交点,且它位于y 轴右侧C. 有两个交点,且它们均位于y 轴左侧D. 有两个交点,且它们均位于y 轴右侧 47. (梅州市2015年3分)对于二次函数x x y 22+-=.有下列四个结论:①它的对称轴是直线1=x;②设12112x x y +-=,22222x x y +-=,则当12x x >时,有12y y >;③它的图象与x 轴的两个交点是(0,0)和(2,0);④当20<<x 时,0>y .其中正确的结论的个数为( )A .1B .2C .3D .4 48. (3分)(2015•济南)如图,抛物线y=﹣2x 2+8x ﹣6与x 轴交于点A 、B ,把抛物线在x 轴及其上方的部分记作C 1,将C 1向右平移得C 2,C 2与x 轴交于点B ,D .若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A.﹣2<m<B.﹣3<m<﹣C.﹣3<m<﹣2 D.﹣3<m<﹣49.(2015•菏泽3分)如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CB D.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)50.(2015年四川省自贡市3分)如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的小值是()A、2102-B、6 C、2132-D、4参考答案1.【答案】D.【考点】由实际问题列函数关系式(几何问题);二次函数的性质和图象.【分析】根据题意,有AE=BF=CG,且正三角形ABC的边长为2,∴2===-BE CF AG x. ∴△AEG、△BEF、△CFG三个三角形全等.在△AEG 中,2==-,A E x A G x ,∴()1224=⋅⋅⋅=-V AEGS AE AG sinA x x .∴()2332442=-=-=-+V V ABC AEGy S S x x x x .∴其图象为开口向上的二次函数.故选D. 2. 【答案】C.【考点】折叠问题;正方形的性质;全等、相似三角形的判定和性质;勾股定理.【分析】由折叠和正方形的性质可知,0,90D F D C D A D F C C ==∠=∠=, ∴090DFG A ∠=∠=.又∵DG DG =,∴()ADG FDG HL ∆∆≌. 故结论①正确.∵正方形ABCD的边长为12,BE =EC ,∴6BE EC EF ===.设AG FG x ==,则6,12E G x B G x =+=-,在Rt BEG ∆中,由勾股定理,得222EG BE BG =+,即()()222662x x +=+-,解得,4x =.∴4,8AG GF BG === .∴2GB AG =. 故结论②正确.∵6BE EF ==,∴BEF ∆是等腰三角形.易知GDE ∆不是等腰三角形,∴GDE ∆和BEF ∆不相似. 故结论③错误. ∵11682422BEG S BE BG ∆=⋅⋅=⋅⋅=,∴67224105BEFBEG EF S S EG ∆∆=⋅=⋅=.故结论④正确. 综上所述,4个结论中,正确的有①②④三个.故选C. 3. 【答案】C.【考点】二次函数的图象和性质.【分析】∵()22211y x x x =-+=--+,∴二次函数图象的对称轴是直线1x =.故结论①正确.∴当1x ≥时,y 随x 的增大而减小,此时,当21>x x 时,有21<y y .故结论②错误.∵2 20y x x =-+=的解为120,2x x == ,∴二次函数x 轴的两个交点是(0,0)和(2,0) .故结论③正确.∵二次函数图象与x 轴的两个交点是(0,0)和(2,0),且有最大值1,∴当0<<2x 时,>0y .故结论④正确. 综上所述,正确结论有①③④三个.故选C. 4. 【答案】B.【考点】一元二次方程的解和解一元二次方程;确定三角形的条件.【分析】∵2是关于x 的方程2230x mx m -+=的一个根,∴4430m m -+=,解得4m =. ∴方程为28120x x -+=,解得122,6x x == .∵这个方程的两个根恰好是等腰三角形ABC 的两条边长, ∴根据三角形三边关系,只能是6,6,2.∴三角形ABC 的周长为14.故选B.5.【答案】A.【考点】命题和定理;正方形的判定;多边形内角和定理;圆周角定理;三角形中位线定理;菱形的性质;矩形的判定;三角形的内心性质.【分析】根据相关知识对各选项进行分析,判作出断: ①对角线互相垂直且相等的平行四边形才是正方形,命题不正确.②根据多边形内角和公式,得六边形的内角和等于()62180720-⨯︒=︒,命题正确.③同圆或等圆满中,相等的圆心角所对的弧才相等,命题不正确.④根据三角形中位线定理、菱形的性质和矩形的判定可知:顺次连结菱形各边中点所得的四边形是矩形,命题正确. ⑤三角形的内心到三角形三边的距离相等,命题不正确.其中正确命题的个数是2个.故选A.6. 【答案】C.【考点】二次函数的图象和性质.【分析】∵()22211y x x x =-+=--+,∴二次函数图象的对称轴是直线1x =.故结论①正确. ∴当1x ≥时,y 随x 的增大而减小,此时,当21>x x 时,有21<y y .故结论②错误.∵220y x x =-+=的解为120,2x x == ,∴二次函数图象与x 轴的两个交点是(0,0)和(2,0) .故结论③正确.∵二次函数图象与x 轴的两个交点是(0,0)和(2,0),且有最大值1,∴当0<<2x 时,>0y .故结论④正确.综上所述,正确结论有①③④三个.故选C. 7. 【答案】D .【考点】等腰三角形的性质;切线的性质;平行的判定和性质;矩形的判定和性质;勾股定理;方程思想的应用. 【分析】如答图,连接OD ,过点B 作BF OD ⊥于点F , ∵AB BC =,∴A C ∠=∠.∵AO DO =,∴A ADO ∠=∠.∴C ADO ∠=∠.∴//OD BC .∵DE 是O e 的切线,∴DE OD ⊥.∴DE BC ⊥. ∴90CED ∠=︒,且四边形DEBF 是矩形. ∵5,4CD CE == ,∴由勾股定理,得3DE =. 设O e 的半径是x , 则(),3,244OB x BF OF x BE x x x ===-=--=- .∴由勾股定理,得222OB OF BF =+,即()22234x x =+-,解得258x =.∴O e 的半径是258.故选D . 8. 【答案】D.【考点】探索规律题(图形变化类).【分析】当一根棒条没有被其它棒条压着时,就可以把它往上拿走. 如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,第3次应拿走⑥号棒,第4次应拿走②号棒,第5次应拿走⑧号棒,第6次应拿走⑩号棒,故选D.9. 【答案】B.【考点】逻辑判断推理题型问题;真假命题的判定. 【分析】针对逻辑判断问题逐一分析作出判断:A.若甲对,即只参加一项的人数大于14人,等价于等于15或16或17或18或19人,则两项都参加的人数为5或4或3或2或1人,故乙不对;B.若乙对,即两项都参加的人数小于5人,等价于等于4或3或2或1人,则只参加一项的人数为等于16或17或18或19人,故甲对;C.若乙错,即两项都参加的人数大于或等于5人,则只参加一项的人数小于或等于15人,故甲可能对可能错;D.若甲粗,即只参加一项的人数\小于或等于14人,则两项都参加的人数大于或等于6人,故乙错.综上所述,四个命题中,其中真命题是“若乙对,则甲对”. 故选B.10. 【答案】C.【考点】正方形的性质;垂径定理;梯形的中位线定理;方程思想、转换思想和整体思想的应用.【分析】如答图,连接OP 、OQ ,∵DE ,FG ,»»AC BC,的中点分别是M ,N ,P ,Q , ∴点O 、P 、M 三点共线,点O 、Q 、N 三点共线. ∵ACDE ,BCFG 是正方形, ∴AE=CD=AC ,BG=CF=BC.设AB=2r ,则,OM MP r ON NQ r =+=+ . ∵点O 、M 分别是AB 、ED 的中点, ∴OM是梯形ABDE的中位线.∴()()()1112222OM AE BD AE CD BC AC BC =+=++=+,即()122M P r A CB C +=+.同理,得()122NQ r BC AC +=+.两式相加,得()322MP NQ r AC BC ++=+.∵MP+NQ=14,AC+BC=18,∴3142182132r r +=⨯⇒=.故选C. 11. 【答案】C.【考点】真假命题的判断;二次函数的图象和性质;曲线上点的坐标与方程的关系;轴对称的应用(最短线路问题);勾股定理.【分析】根据二次函数的图象和性质对各结论进行分析作出判断:①从图象可知当>>0x b 时,<0y ,故命题“当>0x 时,>0y ”不是真命题;②∵抛物线221y x x m =-+++的对称轴为212x =-=-,点A 和B 关于轴对称,∴若1a =-,则3b =,故命题“若1a =-,则4b =”不是真命题;③∵故抛物线上两点P (1x ,1y )和Q (2x ,2y )有12<1<x x ,且12>2x x +,∴211>1x x --,又∵抛物线221y x x m =-+++的对称轴为1x =,∴12>y y ,故命题“抛物线上有两点P (1x ,1y )和Q (2x ,2y ),若12<1<x x ,且12>2x x +,则12>y y ” 是真命题;④如答图,作点E 关于x 轴的对称点M ,作点D 关于y 轴的对称点N ,连接MN ,ME 和ND 的延长线交于点P ,则MN 与x 轴和y 轴的交点G ,F 即为使四边形EDFG 周长最小的点.2∵2m =, ∴223y x x =-++的顶点D 的坐标为(1,4),点C 的坐标为(0,3).∵点C 关于抛物线对称轴的对称点为E ,∴点E 的坐标为(2,3).∴点M 的坐标为()2,3- ,点N 的坐标为()1,4- ,点P 的坐标为(2,4).∴DE MN ==∴当2m =时,四边形EDFG 周长的最小值为DE MN +=故命题“点C 关于抛物线对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,当2m =时,四边形EDFG 周长的最小值为 不是真命题. 综上所述,真命题的序号是③.故选C.12. 【答案】B.【考点】一次函数与二次函数综合问题;曲线上点的坐标与方程的关系.【分析】∵一次函数()20y dx e d =+≠的图象经过点1(0)x ,,∴110dx e e dx =+⇒=-.∴()211y dx dx d x x =-=-.∴()()[]2112112()()()y y y a x x x x d x x x x a x x d =+=--+-=--+.又∵二次函数112()()(0)y ax x x x a x x =--≠≠,的图象与一次函数()20y dx e d =+≠的图象交于点1(0)x ,,函数21y y y =+的图象与x 轴仅有一个交点,∴函数21y y y =+是二次函数,且它的顶点在x 轴上,即()2211y y y a x x =+=-.∴()[]()()212121()()x x a x x d a x x a x x d a x x --+=-⇒-+=-.. 令1x x =,得()1211()a x x d a x x -+=-,即1221()0()0a xx d ax x d -+=⇒--=.故选B. 13. 【答案】B.【考点】反比例函数综合题;曲线上点的坐标与方程的关系;轴对称的性质;特殊元素法和转换思想的应用. 【分析】如答图,连接A ′C , ∵点A 是函数1y x= (x <0)图象上一点,∴不妨取点A ()1,1-- . ∴直线AB :y x =.∵点C 在直线AB 上,∴设点C (),x x .∵△ABC 的面积等于6,∴()1162x x ⋅⋅+=,解得123,4x x ==- (舍去).∴点C ()3,3 .∵点A 关于y 轴的对称点为A ′,点C 关于x 轴的对称点为C ′,∴点A ′()1,1- ,点C ′()3,3- .∴由线段AC ,CC ′,C ′A ′,A ′A 所围成的图形的面积等于'''1124621022AA C CA C S S ∆∆+=⨯⨯+⨯⨯=.故选B.14. 【答案】C.【考点】正方形和等边三角形的性质;圆周角定理;锐角三角函数定义;特殊角的三角函数值;等腰直角三角形的判定和性质,特殊元素法的应用.【分析】如答图,连接AC,EC ,AC 与EF 交于点M .则根据对称性质,AC 经过圆心O ,∴AC 垂直 平分EF ,01EAC FAC EAF 302∠=∠=∠=.不妨设正方形ABCD 的边长为2,则A C =∵AC 是⊙O 的直径,∴0AEC 90∠=. 在Rt ACE ∆中,A E c o=⋅=1CE AC sin EAC 2=⋅∠=在Rt MCE ∆中,∵0FEC FAC 30∠=∠=,∴1CM CE sin EAC 2=⋅∠=易知G C H ∆是等腰直角三角形,∴GF 2CM ==又∵A EF ∆是等边三角形,∴EF AE ==.∴EF GH ==故选C. 15. 【答案】B .【考点】网格问题;勾股定理;三角形构成条件;无理数的大小比较;平移的性质;分类思想的应用. 【分析】由图示,根据勾股定理可得:a b c d =∵<,<,,<<a b c a d c b d c b a d b d +++=-+ ,∴根据三角形构成条件,只有,,a b d 三条线段首尾相接能组成三角形.如答图所示,通过平移,,a b d 其中两条线段,使得和第三条线段首尾相接组成三角形,能组成三角形的不同平移方法有6种.故选B .16. 【答案】A.【考点】多元方程组的应用(几何问题).【分析】如答图,设原住房平面图长方形的周长为2l ,①的长和宽分别为,a b ,②③的边长分别为,c d .根据题意,得2a c d c b d a b c l =+⎧⎪=+⎨⎪++=⎩ ①②③,-①②,得2a c c b a b c -=-⇒+=,将2a b c +=代入③,得1422c l c l =⇒=(定值), 将122c l =代入2a b c +=,得()122a b l a b l+=⇒+=(定值),而由已列方程组得不到d .∴分割后不用测量就能知道周长的图形标号为①②.故选A. 17. 【答案】A .【考点】一次函数和二次函数综合问题;曲线上点的坐标与方程的关系;数形结合思想的应用. 【分析】∵y =ax 2+(b -1)x +c =ax 2+bx +c -x ,∴函数y =ax 2+(b -1)x +c 的图象上点的纵坐标是二次函数y 2=ax 2+bx +c 图象上点的纵坐标与一次函数y 1=x 图象上点的纵坐标之差.∵一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,而P 、Q 两点都在第一象限,∴函数y =ax 2+(b -1)x +c 的图象与x 轴相交于两点,且这两点都在x 轴的正方向.故选A . 18. 【答案】C【考点】单动点问题;函数图象的识别;垂线段最短的性质;排他法的应用.【分析】从图2可知,寻宝者与定位仪器之间的距离开始和结束时是相同的,因此,可排除A 、D 选项;从图2可知,寻宝者与定位仪器之间的距离的最近点,相对于开始和结束时位置离中点更近,因此,如答图,过点M分别作,,,OB OC AB AC 的垂线,垂足分别为点,,,E F P Q ,此时,根据垂线段最短的性质,点,,,E F P Q 是寻宝者与定位仪器之间的距离的最近点. 显然,,OE OF BE CF AP =<==,即点,E F离中点的距离小于开始和结束时的距离;点,P Q离中点的距离大于开始和结束时的距离.∴寻宝者的行进路线可能为B→O→C. 故选C.19.【答案】B.【考点】菱形的判定;垂径定理;平行四边形的判定.【分析】要判定四边形OACB为菱形,根据菱形的判定可知,一组邻边相等的平行四边形是菱形,由于OA OB=,且半径OC⊥AB,根据垂径定理有AD BD=,从而根据对角线互相平分的四边形是平行四边形的判定,只要另一条对角线也平分即可,从而只要添加条件OD CD=即可. 因此,这个条件可以是OD CD=.故选B.20.【答案】D.【考点】反比例函数综合题;曲线上点的坐标与方程的关系;菱形的性质;勾股定理.【分析】∵A,B两点的纵坐标分别为3,1,反比例函数3 yx =的图像经过A,B两点,∴A(1,3),B(3,1).∴AB=∵四边形ABCD是菱形,∴AD AB==AD 与BC的距离为2.∴菱形ABCD的面积为2=故选D.21.【答案】D.【考点】反比例函数综合题;曲线上点的坐标与方程的关系;菱形的性质;锐角三角函数定义;特殊角的三角函数值.【分析】如答图,AC交y轴于点H,则CH⊥y轴.∵∠BOC=60°,∴∠COH=30°,∵点C的坐标为(m,),∴,CH m OH==∴6cosOHOCCOH===∠.∵四边形ABOC是菱形,∴6OB OC==,∠BOD=30°.∵BD⊥x轴,∴6BD OB tan BOD=⋅∠==∴点D的坐标为(6,-.∵点D在反比例函数kyx=的图像上,∴()6-⋅=-故选D.22.【答案】B.【考点】解直角三角形的应用(方向角问题);矩形的判定和性质;等腰直角三角形的判定和性质.【分析】如答图,过点B作BE⊥AC交AC于点E,过点E作EF⊥CD交CD于点F,则根据题意,四边形BDEF是矩形,△ABE、△EFC和△ADC都是等腰直角三角形,∵AB=2,∴DF=BF= AB=2,AE=∵∠EBC=∠BCE=22.5°,∴CE=BE=2.∴CF==∴2CD DF CF=+=km).∴船C离海岸线l的距离为(2+km.故选B.23.【答案】B.【考点】翻折变换(折叠问题);折叠的性质;等腰直角三角形的判定和性质;勾股定理.【分析】根据折叠的性质可知34CD AC B C BC ACE DCE BCF B CF CE A=='==∠=∠∠=∠'⊥,,,,,∴431B D DCE B CF ACE BCF '=-=∠+∠'=∠+∠,.∵90ACB ∠=︒,∴45ECF ∠=︒. ∴ECF V 是等腰直角三角形. ∴45EF CE EFC =∠=︒,.∴135BFC B FC ∠=∠'=︒. ∴90B FD ∠'=︒. ∵1122ABC S AC BC AB CE =⋅⋅=⋅⋅V ,∴AC BC AB CE ⋅=⋅.在Rt ABC V 中,根据勾股定理,得A B=5,∴123455CE CE ⋅=⋅⇒=.∴125EF CE ==. 在Rt AECV 中,根据勾股定理,得95AE ==,∴95ED AE ==.∴35DF EF ED =-=.在Rt B FD 'V 中,根据勾股定理,得45B F '==.故选B .24. 【答案】D.【考点】正比例函数、一次函数、反比例函数、二次函数的图象和性质.【分析】∵函数图像经过()()1422-- ,,,两点,∴该函数不可能是正比例函数.∵若一次函数的图像经过()()1422-- ,,,两点,则函数值y 随x 的增大而增大, ∴该函数不可能是一次函数.∵若反比例函数的图像经过()()1422-- ,,,两点,则函<0和>0x 两个范围内,函数值y 随x的增大而增大,∴该函数不可能是反比例函数.∵若二次函数的图像经过()()1422-- ,,,两点,则当图像开口向下,对称轴在2x =右侧时,在对称轴右侧,函数值y 随x 的增大而减小;当图像开口向上,对称轴在1x =左侧时,在对称轴左侧,函数值y 随x 的增大而减小.2∴该函数可能是二次函数.故选D. 25. 【答案】C .【考点】一次函数、二次函数图象与系数的关系. 【分析】根据一次函数、二次函数图象与系数的关系对各选项逐一分析,作出判断:A 、对于直线y bx a =+来说,由图象可以判断,00a b >,>;而当00a b >,>时,对于抛物线2y ax bx=+来说,对称轴02bx a=-<,应在y 轴的左侧,故不合题意,图形错误.B 、对于直线y bx a =+来说,由图象可以判断,00a b <,<;而当0a <时,对于抛物线2y ax bx =+来说,图象应开口向下,故不合题意,图形错误.C 、对于直线y bx a =+来说,由图象可以判断,00a b <,>;而当00a b <,>时,对于抛物线2y ax bx=+来说,图象开口向下,对称轴>02bx a=-位于y 轴的右侧,故符合题意.D 、对于直线y bx a =+来说,由图象可以判断,00a b >,>;而当0a >时,对于抛物线2y ax bx =+来说,图象开口向下,故不合题意,图形错误.故选C .26. 【答案】C.【考点】线段中垂线的性质;切线的性质;垂径定理. 【分析】根据线段中垂线的性质、切线的性质和垂径定理,该圆的圆心是线段AE 的中垂线与线段BC 的中垂线的交点. 故选C. 27. 【答案】D.【考点】代数式化简;一次函数的图象;分类思想的应用.【分析】∵()()22>022<0x x x x y x x x ⎧++⎪==⎨--⎪⎩,∴当>0x 时,函数的图象为直线2y x =+的一部分;当<0x 时,函数的图象为直线2y x =--的一部分.符合此条件的是图象D.故选D.。

2016浙江丽水中考数学解析

2016浙江丽水中考数学解析

2016年浙江省丽水市中考数学试卷(满分150分,考试时间120分钟)一、选择题(本题有10小题,每小题3分,共30分)1. (2016淅江丽水,1,3分)下列四个数中,与-2的和为0的数是( )A.-2B.2C.0D.-12【答案】B .【逐步提示】本题考查相反数的概念,解题关键在于掌握互为相反数据两个数的和为0的性质.①利用相反数的定义;②找出-2的相反数即可.【详细解答】解:因为-2的相反数是2,所以与-2的和为0的数是2,故选择B.【解后反思】互为相反数的两个数的和为0.【关键词】相反数.2. (2016淅江丽水,2,3分)计算32×3-1的结果是( )A.3B.-3C.2D.-2【答案】A .【逐步提示】本题考查实数的计算,解题关键在于理解负指数的意义. ①先算乘方;②再算乘法.【详细解答】解:32×3-1=9×13=3,故选择A.【解后反思】实数的运算按照顺序顺序及运算法则进行计算,先算乘方开方,再算乘除,最后算加减.【关键词】有理数的乘方;负指数幂. 3. (2016淅江丽水,3,3分)下列图形中,属于立体图形的是( )【答案】C .【逐步提示】本题考查立体图形与平面图形的判断,解题关键在于理解立体图形与平面图形的区别. ①观察图形是否有用虚线表示着的部分;②用虚线表示着图形的为立体图形.【详细解答】解:C 选项中的图形有部分用虚线表示着,代表看不到的部分,表明为立体图形,故选择C.【解后反思】平面图形的各部分都能看到,表现在平面上都为实线;立体图形有看得到的部分用实线表示,而看不到的部分用虚线表示着,故有虚线表示着的图形为立体图形.【关键词】平面图形;立体图形.4. (2016淅江丽水,4,3分)1a +1b 的运算结果正确的是( ) A.1a b + B.2a b + C.a b ab+ D.ab 【答案】C .【逐步提示】本题考查异分母分式的加法,解题关键在于通分. ①通分;②合并.ABCD【详细解答】解:1a +1b =a ab +b ab =a b ab,故选择C. 【解后反思】异分母分式相加减,先通分转化为同分母分式再进行加减.【关键词】分式加减;通分.5. (2016淅江丽水,5,3分)某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如右表所示,则下列说法正确的是( )A.七年级的合格率最高B. 八年级的学生人数为262名C. 八年级的合格率高于全校的合格率D.九年级的合格人数最少【答案】D .【逐步提示】本题考查统计表的意义的理解及相关计算,解题关键在于正确理解统计表中数据的意义. ①分析题意学生共有800人,三个年级的及格人数在表中,每个年级中不及格的人数则不能推算出来;②三个年级的及格率不能判断高低.【详细解答】解:由题意学生共有800人及三个年级的及格人数,并未出现不及格人数,所以无法对三个年级的及格率高低进行判断,所以A 、C 错误;八年级及格学生数为262名,是否有不及格的不能做出判断,故B 错误;三个年级及格人数九年级最少可以判断是正确的,故选D.【解后反思】学生分为及格与不及格两种,哪个年级都可能有不及格的学生.全面、合理、充分理解图形中的信息,为解题打基础.【关键词】统计;统计表.6. (2016淅江丽水,6,3分)下列一元二次方程没有实数根的是( )A. x 2+2x+1=0B. x 2+x+2=0C. x 2-1=0D. x 2-2x-1=0【答案】B .【逐步提示】本题考查一元二次方程根的判别式的应用,解题关键在于理解判别式的意义. ①计算各方程△=b 2-4ac 的值;②根据△=b 2-4ac 的符号进行判断.【详细解答】解:A 选项Δ=0,方程有两个相等的实数根;B 选项Δ=-7<0,方程没有实数根;C 选项Δ=4>0,方程有两个不相等的实数根;D 选项Δ=8>0,方程有两个不相等的实数根,故选择B.【解后反思】一元二次方程ax 2+bx+c=0,当Δ=b 2-4ac=0时,方程有两个相等的实数根;当Δ=b 2-4ac<0时,方程没有实数根;Δ=b 2-4ac>0时,方程有两个不相等的实数根.【关键词】一元二次方程;一元二次方程根的判别式.7. (2016淅江丽水,7,3分)如图,□ABCD 的对角线AC ,BD 交于点O ,已知AD=8,BD=12,AC=6,则△OBC 的周长为( ) A.13 B.17 C.20 D.26【答案】B . 【逐步提示】本题考查平行四边形的性质,解题关键在于将三角形周长转化为平行四边形的对角线长与边长. ①根据平行四边形的性质得到BC 及OB+OC 的长;②求得△OBC 的周长.【详细解答】解:由题意得BC=AD=8, OB+OC=12(AC+BD)=9,所以△OBC 的周长=8+9=17,故选择B.【解后反思】平行四边形的对角线互相平分,平行四边形的对边相等,对角相等.求三角形ODCB A周长可以分别三条线段的长,也可以将一条或两条线段加起来整体求和.【关键词】平行四边形的性质.8. (2016淅江丽水,8,3分)在直角坐标系中,点M,N在同一个正比例函数图象上的是( )A.M(2,-3), N(-4,6)B. M(-2, 3), N(4,6)C. M(-2,-3), N(4, -6)D. M(2,3), N(-4,6)【答案】A.【逐步提示】本题考查正比例函数的图象和性质,解题关键在于理解正比例函数图象上点的横、纵坐标比值间的关系.①若每个点的横、纵坐标的比值相等,则两点位于同一正比例函数的图象上;②否则两点不在同一正比例函数的图象上.【详细解答】解:A选项中横、纵坐标的比值均为-23,B、C、D选项的横纵坐标之比不相等,有的是23,有的是-23,故选择A.【解后反思】同一正比例函数图象上点的横、纵坐标的比值相等.此题也可以根据一点坐标写出正比例函数的解析式,然后将另一点的坐标代入解析式进行验证.【关键词】正比例函数的图象和性质.9. (2016淅江丽水,9,3分)用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是( )A. B. C. D.【答案】D.【逐步提示】本题考查三角形的高的尺规作图,解题关键在于根据作图痕迹确定作图方法.①根据痕迹确定作图方法;②根据作图方法确定CD是否为斜边上的高线.【详细解答】解:A根据过直线外一点作已知直线的垂线的方法得到斜边AB上的高线CD,故正确;B选项通过作直径所对的圆周角构造斜边AB上的高线CD,故正确;C选项根据两圆连心线垂直平分公共弦得到斜边AB上的高线CD,故正确;D选项中的CD不一定是斜边AB上的高线,故错误,故选择D.【解后反思】作垂线的尺规作图的方法:连一点作已知直线的垂线;构造直径所对的圆周角;两圆连心线垂直平分公共弦;线段的垂直平分线.【关键词】三角形的高;尺规作图.10. (2016淅江丽水,10,3分)如图,已知⊙O是等腰Rt△ABC的外接圆,点D是AC上一点,BD交AC于点E,若BC=4,AD=45,则AE的长是( )A.3B.2C.1D.1.2【答案】C.【逐步提示】本题考查弧、弦、圆周角间关系,相似三角形的判定及性质等知识,解题关键在于根据DE的长度验证选项.①根据题意确定BD的长;②根据△CBE∽△DAE的相似比采用验证法确定正确答案.【详细解答】解:因为AC=BC=4,由勾股定理得所以285,△CBE∽△DAE,所以AE:BE=DE:CE=AD:CB=45:4=15,所以BE˙DE=AE˙CE.若AE=3,则BE=15>285,故错误;若AE=2,则BE=10>285,故错误;若AE=1,则BE=5,DE=35,CE=4-1=3,此时满足BE˙DE=AE˙CE,故AE=1时正确;若AE=1.2,则BE=6>285,故错误,故选择C.【解后反思】直接计算AE的长比较困难,可以采用比较法,验证法确定线段的长,如本题据题意确定图形中各线段间的关系,然后根据已知条件对所给选项进行验证从而得出正确的结论,验证法是解选择题的一种基本方法.【关键词】圆;相似三角形的性质;验证法.二、填空题(本题有6小题,每小题4分,共24分.)11.(2016淅江丽水,11,4分)分解因式:am-3a= .【答案】a(m-3) .【逐步提示】本题考查分解因式,解题的关键在于掌握因式分解的基本方法.利用提公因式法分解因式.【详细解答】解:am-3a =a(m-3).【解后反思】因式分解的步骤为:一提公因式;二看公式.公式包括平方差公式与完全平方公式,要能用公式法分解必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的2倍,如果没有两数乘积的2倍就不能分解,因式分解必须进行到不能再分解为止.【关键词】分解因式——提公因式法.12. (2016淅江丽水,12,4分)如图,在△ABC中,∠A=63°,直线MN∥BC,且分别与AB,AC相交于点D,E,若∠AEN=133°,则∠B的度数为( )【答案】70°.【逐步提示】本题考查三角形外角及平行线的性质,解题的关键在于三角形内角与外角关系的应用.①由三角形内角和求得∠ADE;②根据平行线的性质求得∠B.【详细解答】解:因为∠AEN=133°,∠A=63°,所以∠ADE=∠AEN-∠A= =133°-63°=70°,因为MN∥BC,所以∠B=∠ADE=70°.【解后反思】三角形一个外角等于不相邻两个内角的和;两直线平行,同位角相等,内错角相等,同旁内角互补.求角度有两条途径:一是直接求解;二是间接求解,①将此角转化为与了相等的其他角;②先求此线段的和、差、倍、分,再转化为线段的长.【关键词】三角形的外角;平行线的性质.13. (2016淅江丽水,13,4分)箱子里放有2个黑球和2个红球,它们除颜色外其余都相同,现从箱子里随机摸出两个球,恰好为1个黑球和1个红球的概率是___.【答案】2 3 .【逐步提示】本题考查概率的计算,解题的关键在于确定所有可能情况数与满足条件的情况数.①根据树状图或列表法确定所有可能情况;②从中确定出一红一黑的情况数,最后计算概率.【详细解答】解:画树状图如下:通过树状图分析,从箱子里摸球共有12种情况,其中摸到1红1黑的共有8种情况,故从箱子里随机摸出两个球,恰好为1个黑球和1个红球的概率是812=23,故答案为23.【解后反思】概率的计算先根据树状图或列表法确定所有可能情况,再从中确定满足条件的情况数,最后计算概率.【关键词】概率计算.14. (2016淅江丽水,14,4分) 已知x2+2x-1=0,则3x2+6x-2= .【答案】1.【逐步提示】本题考查整体代入法求代数式的值,解题的关键在于将待求式转化为已知式.采用整体代入法求值.【详细解答】解:3x2+6x-2=3(x2+2x-1)+1=0+1=1,故答案为1.【解后反思】整体代入法求值的关键在于对所求代数式的变形,将所求代数式变换为包含已知代数式的形式,再整体代入求值,变形方法包括拆项、添项、乘除某个因数或因式等.【关键词】整体思想;一元二次方程的值.15. (2016淅江丽水,15,4分)如图,在菱形ABCD中,过点B作BE⊥AD,BF⊥CD,垂足分别为E,F,延长BD至G,使得DG=BD,连接EG,FG,若AE=DE,则EGAB= .【答案】2.【逐步提示】本题考查菱形的性质,等边三角形的性质,特殊角的三角函数,解题的关键在于作出辅助线.①设出菱形的边长,用菱形的边长表示菱形中相关线段的长度;②连接EF,通过勾股定理确定EG的长,最后求得比值.【详细解答】解:因为AE=DE,BE⊥AD于E,所以AB=BD,又DG=BD,所以AB=AD=CB=CD=BD,所以△ABD与△CBD均为等边三角形,所以∠ABD=60°,所以∠EBD=30°,连接EF,交DB于H,设AB=AD=2,则ED=AE=1,DH=12,EH=2,HG=52,由勾股定理得EGAB=2.【解后反思】题目当中没有数据时,设出线段的长度可利于题目的计算,线段的长度的确定以利用以利于计算为标准. 求线段比值有两条途径:一是直接求解,即分别求得两线段的值,再计算比值;二是间接求解,通过相似、平行线等方法将线段的比转化为其他线段的比来计算.【关键词】菱形;勾股定理.16. (2016淅江丽水,16,4分如图,一次函数y=-x+b与反比例函数y=4x(x>0)的图象交于A,B两点,与x轴,y轴分别交于C,D两点,连接OA,OB,过A作AE⊥x轴于点E,交OB于点F.设点A的横坐标为m.(1)b= (用含m的代数式表示)(2)若S△OAF+S四边形EFBC=4,则m的值是.【答案】(1) m+4m.(2【逐步提示】本题考查一次函数与反比例函数的综合应用,不规则图形面积的计算,解决问题的关键在于作出辅助线确定△OEF与△BMC高的关系.①将点A横坐标代入反比例函数求得纵坐标,再将点A坐标代入一次函数即得b的值;②根据两函数的解析式求得A,B两点坐标,根据阴影部分面积间的关系推导出A,B,C三点横坐标间关系,通过方程求得m的值.【详细解答】解:由于点A在反比例函数y=4x上,所以设A点坐标(m,4m),将点A 坐标代入一次函数得b= m+4m,所以点D(0, m+4m),点C(m+4m,0).两函数解析式联立得44y x mmyx⎧=-++⎪⎪⎨⎪=⎪⎩,解得B点坐标为(4m,m),作BM⊥OC于M,则MC=OE=m,因为S 矩形AGOE =S △OAF + S △OAG + S △OEF = S △OAF +S 四边形EFBC =4,所以S △OAG + S △OEF = S 四边形EFBC = S 梯形EFBM + S △BMC = S △OBM -S △OEF + S △BMC ,因为S △OAG = S △OBM ,所以S △OEF = -S △OEF + S △BMC ,所以2S △OEF =S △BMC ,由于两个三角形底相等,所以MB=2EF ,所以EF 为△OBM 中位线,所以OE=EM=MC ,所以4m=2 m,解得【解后反思】将不规则图形转化为规则图形,通过图形间的转换得到各点坐标间的关系从而解决问题.【关键词】 一次函数;反比例函数;阴影部分面积.三.解答题(本题有8小时,第17~19题第题6分,共66分)17. (2016淅江丽水,17,6分)计算:(-3)0【逐步提示】本题考查实数的计算,解决问题的关键在于理解实数的计算法则.根据运算法则进行计算.【详细解答】解:原式【解后反思】非零数的零次幂等于1;正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零.【关键词】二次根式;零指数.18.(2016淅江丽水,18,6分)解不等式:3x-5<2(2+3x)【逐步提示】本题考查不等式的解,解决问题的关键在于运用法则进行计算.根据解不等式的步骤解不等式.【详细解答】解:去括号得:3x-5<4+6x ,移项得:3x-6x <4+5,合并同类项得:-3x <9,化系数为1得x>-3.【解后反思】不等式两边同时乘以或除以一个负数时不等号的方向要改变.【关键词】 不等式的解法.19. (2016淅江丽水,19,6分)数据拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含45°的三角板的斜边与含30°的三角板的长直角边相等.于是,小陆同学提出一个问题:如图,将一副三角板直角顶点重合拼放在一起,点B ,C ,E 在同一相线上.若BC=2,求AF 的长.请你运用所学的数学知识解决这个问题.【逐步提示】本题考查特殊角的三角函数的应用,特殊角的三角函数值是解决问题的关键.①根据特殊角的三角函数由一条边长求得其他直角边长;②再通过分解法求得AF 的长.【详细解答】解:在RtA △ABC 中,BC=2, ∠A=30°, ∴由AC=tan A BC =2tan 30°由题意,得在RtA △EFC 中, ∠E=45°, ∴CF=EF×cos45°∴AF=AC-FC=2【解后反思】根据三角函数求得相关线段的长度是解题的关键.关键词】三角函数;三角板.20. (2016淅江丽水,20,8分)为了帮助九年级学生做好体育考试项目的选考工作,某校统计了本县上届九年级毕业生体育考试各个项目参加的男、女生人数及平均成绩,并 制成如下两个统计图.请结合统计图信息解决问题:(1)“掷实心球”项目男、女生总人数是“跳绳”项目男、女生总人数的2倍,求“跳绳”项目的女生人数;(2)若一个考试项目的男、女生总平均成绩不小于9分为“优秀”,试判断该县上届毕业生的考试项目中达到“优秀”的有哪些项目,并说明理由;(3)请结合统计图信息和实际情况,给该校九年级学生体育考试项目的选择提出合理化建议.【逐步提示】本题考查利用条形图及折线图解决实际问题,解决问题的关键在于理解统计图所表示的实际意义.(1)根据条形统计图中的数据作答;(2)根据折线统计图中的数据作答;(3)可从识图能力,数据分析能力,综合运用能力三方面对问题进行解答.【详细解答】解:(1)“跳绳”项目的女生人数=4006002+-260=240(人); (2)观察男、女各项目平均成绩统计图可知:立定跳远、游泳、跳绳三项目的男、女生总平均成绩均小于9分,投篮项目的男、女生总平均成绩一定大于9分.投实心球项目的的男、女生总平均成绩=4008.76009.2400600⨯+⨯+=9,所以属于“优秀”项目的有投篮、掷实心球两个项目;(3)A 类(识图能力):能用两统计图中的一个图提出合理化建议.如:游泳项目考试的人最多,可选考游泳.B 类(数据分析能力):结合两统计图的数据提出合理化建议.如:“投篮”项目人数虽然不是最多,但平均成绩较高,建议选“投篮”.C类(综合运用能力):能利用两统计图的数据并结合学生实际提出合理化建议.如:“跳绳”项目的报名人数少,男、女生的平均成绩都很低,若不是跳绳水平很高,建议不选择该项目.【解后反思】统计类问题的许多条件隐含在图表中,需要认真读图表,从图形中分析出有用的信息,然后作答.【关键词】条形统计图;折线统计图;统计思想方法.三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)21.(2016淅江丽水,21,8分)2016年3月27日“丽水半程马拉松竞赛”在莲都举行,某运动员从起点万地广场西门出发,途经紫金大桥,沿比赛路线回终点万地广场西门.设该运动员离开起点的路程S(千米)与跑步时间t(分钟)之间的函数关系如图所示,其中从起点到紫金大桥的平均速度是0.3千米/分,用时35分钟,根据图象提供的信息,解答下列问题:(1)求图中a的值;(2)组委会在距离起点2.1千米处设立一个拍摄点C,该运动员从第一次过C点到第二次过C点所用的时间为68分钟.①求AB所在直线的函数解析式;②该运动员跑完赛程用时多少分钟?【逐步提示】本题考查一次函数的实际应用,解决问题的关键在于理解一次函数图象中各关键点所表示的意义.(1)根据速度和时间计算路程;(2)①根据运动时间求出第二次经过C点时所用的时间,根据两点法求得AB的解析式;②根据直线AB的解析式求出运动员跑完赛程所用时间.【详细解答】解:(1)∵从起点到紫金大桥的平均速度是0.3千米/分,用时35分钟,∴a=0.3×35=10.5(千米).(2)①∵线段OA经过点O(0,0),A(35,10.5),,∴OA的函数解析式是S=0.3t(0≤t≤35).∴当S=2.1时,0.3t=2.1,解得t=7.∵该运动员从第一次过C点到第二次过C点所用的时间为68分钟,∴该运动员从起点到第二次过C共用的时间是7+68=75(分钟).∴AB经过(35,10.5),(75,2.1)两设AB所在直线的函数解析式是S=kt+b,∴3510.5,75 2.1.k bk b+=⎧⎨+=⎩,解得0.21,17.85.kb=-⎧⎨=⎩∴AB所在直线的函数解析式是S=-0.21t+17.85②∵该运动员跑完赛程所用的时间即为直线AB与x轴交点横坐标的值∴当S=0时,-0.21t+17.85=0,解得t=85.∴该运动员跑完赛程用时85分钟.【解后反思】正比例函数及反比例函数的解析式需要一个点的坐标即可求出;一次函数的解析式需要两个点的坐标才能求出;二次函数的解析式需要三个点的坐标才能求出.【关键词】一次函数应用;待定系数法求函数的解析式.22. (2016淅江丽水,22,10分)如图,AB 是以BC 为直径的半圆O 的切线,D 为半圆上一点,AD=AB ,AD ,BC 的延长线相交于点E.⑴求证:AD 是半圆O 的切线;⑵连接CD ,求证:∠A=2∠CDE ;⑶若∠CDE =27°,OB=2,求BD 的长.【逐步提示】本题考查圆的相关性质,切线的判定,弧长的计算等,解决问题的关键在于辅助线的添加.⑴连接OD ,BD ,根据经过半径的外端,垂直于半径的直线为圆的切线进行证明; ⑵由各角间的关系进行推导得出结论;⑶由同角的余角相等推出∠DOC 的度数,再求出BD 的长.【详细解答】解:⑴连接OD ,BD ,∵AB 是半圆O 的切线,∴AB ⊥BC ,即∠ABO=90°. ∵AB=AD ,∴∠ABD=∠ADB ,∵OB=OD ,∴∠DBO=∠BDO ,∴∠ABD+∠DBO=∠ADB+∠BDO ,∴∠ADO=∠ABO=90°,∴AD 是半圆O 的切线. ⑵由⑴,∠ADO=∠ABO=90°,∴∠A=360°-∠ADO-∠ABO-∠BOD=180°-∠BOD. 而∠DOC=180°-∠BOD ∴∠A=∠DOC ,∵AD 是半圆O 的切线,∴∠ODE=90°,∴∠ODC+∠CDE =90°.∵BC 是直径,∴∠ODC+∠BDO =90°.∴∠BDO=∠CDE ,∵∠BDO=∠OBD ,∴∠ DOC =2∠BDO∴∠DOC =2∠CDE ,∴∠A =2∠CDE.⑶∵∠CDE=27°,∴由⑵得,∠ DOC =2∠CDE=54°,∴∠BOD =180°-54°=126°, ∵OB=2,∴BD l =1262180p 创=75π. 【解后反思】从同一点引两圆的两条切线,切线长相等;直径所对的圆周角相等;同角或等角的余角相等.【关键词】圆的切线的判定和性质;圆周角. 23. (2016淅江丽水,23,10分)如图,地面BD 上两根等长立柱AB ,CD 之间悬挂一根近似成抛物线y=110x 2-45x+3的绳子.(1)求绳子最低点离地面的距离;(2)因实际需要要,在离AB为3米的位置处用一根立柱MN撑起绳子(如图2),使左边抛物线F1的最低点距MN为1米,离地面1.8米,求MN的长;(3)将立柱MN的长度提升为3米,通过调整MN的位置,使抛物线F2对应函数的二次项系数始终为14,设MN离AB的距离为m,抛物线F2的顶点离地面距离为k,当2≤k≤2.5时,求m的取值范围.【逐步提示】本题考查二次函数的实际应用,解决问题的关键在于根据题意表示顶点的坐标.(1)将二次函数的一般式化为顶点式求得;(2)借助顶点式设出二次函数的解析式,代入A点坐标求得解析式,再根据N点横坐标求得MN的长;(3)抛物线的二次项系数始终为14,说明二次函数的形状不变,要过同一点C时,只能是顶点的位置发生变化,顶点位置满足坐标(12m+4,k),从而得到二次函数的解析式,然后根据k的取值范围确定出m的取值范围.【详细解答】解:(1)∵a=110>0,∴抛物线顶点为最低点.∵y=110x2-45x+3=110(x-4)2+75,∴绳子最低点离地面的距离为75米.(2)由(1)可知,BD=8,令x=0得y=3, ∴A(0,3),C(8,3),由题意得:抛物线F1的解析式为y=a(x-2)2+1.8.将(0,3)代入,得:4a+1.8=3,解得:a=0.3, ∴抛物线F1的解析式为y=0.3(x-2)2+1.8.当x=3时,y=0.3×1+1.8=2.1,所以MN的长度为2.1米.(3)∵MN=CD=3,∴根据抛物线的对称性可知抛物线F2的顶点在ND的垂直平分线上,∴抛物线F2的顶点坐标为(12m+4,k), ∴抛物线F2的解析式为:y=14(x-12m-4)2+k把C(8,3)代入,得:14(4-12m)2+k=3, ∴k=-14(4-12m)2+3∴k=-116(m-8)2+3,∴k是关于m的二次函数.又∵由已知m<8,在对称轴的左侧,∴k随m的增大而增大.∴k=2时,-116(m-8)2+3=2,解得:m1=4,m2=12(不符合题意,舍去).k=2.5时,-116(m-8)2+3=2.5,解得:m12(不符合题意,舍去).∴m的取值范围是4≤m≤8【解后反思】在已知顶点的情况下利用顶点式列二次函数的解析式,抛物线平移前后二次项系数不变.【关键词】二次函数的应用.24. (2016淅江丽水,24,12分)如图,矩形ABCD 中,点E 为BC 上一点,F 为DE 的中点,且∠BFC=90°;(1)当E 为BC 中点时,求证:△BCF ≌△DEC ;(2)当BE=2EC 时,求CD BC的值; (3)设CE=1,BE=n,作点C 关于DE 的对称点C′,连接FC′,AF ,若点C′到AF的距离是5,求n 的值.【逐步提示】本题考查矩形的性质,三角形全等的判定方法及性质,相似三角形的判定及性质,勾股定理等知识,解决问题的关键在于通过辅助线将未知条件转化到同一图形当中.(1)由矩形的性质及直角三角形斜边中线的性质根据ASA 判定△BFC ≌△DCE ;(2)通过相似三角形用同一量表示出CD 、BC 间的关系,通过比例式求得CD BC的值; (3)过C′作C′H ⊥AF 于点H ,连接CC′交EF 于M ,通过Rt △EMC 和Rt △FMC 建立方程经计算求得CF 的长,再由△BFC ∽△DCE 计算出CF 的长,两者建立方程计算出n 的值.【详细解答】解:(1)∵在矩形ABCD 中,∠DCE=90°,F 是斜边DE 的中点,∴CF=EF ,∴∠FEC=∠FCE.又∵∠DCE=90°,且E 为BC 的中点,∴EF=EC ,∴CF=CE在△BFC 与△DCE 中,∵∠BFC=∠DCE ,CF=CE ,∠FCB=∠DEC ,∴△BFC ≌△DCE.(2)设CE=a ,由BE=2CE ,得BE=2a,BC=3a.∵∠FEC=∠FCE, ∠BFC=∠DCE=90°, ∴△BFC ∽△DCE ∴CF BC EC ED =,即132ED a a ED=,∴12ED 2=3a 2, ∴ED 2=62, ∴∴CD BC=3a=3(3)过C′作C′H ⊥AF 于点H ,连接CC′交EF 于M ,由(2)得:FC=EF=FD ,∠FEC=∠FCE.∵AD ∥BC ,∴∠ADF=∠CEF ,∴∠ADF=∠BCF.∵AD=BC ,∴△ADF ≌△BCF ,∴∠AFD=∠BFC=90°∵C′H ⊥AF ,C′C ⊥EF ,∴∠HFE=∠C′HF=∠C′MF=90°.∴四边形C′MFH 是矩形,∴FM=C′H=5.设EM=x ,则. 在Rt △EMC 和Rt △FMC 中,由勾股定理得:22CE EM -= CF 2-FM 2∴1 2-x 2) 2)2,解得:x 1,x 2-由(2)得,CF BC EC ED =,将CE=1,BE=n 代入计算,得CF=2.∴2=10+5,解得:n=4. 【解后反思】借助于相似三角形边长之比求相关线段的比值;利用双直角三角形公共边长建立方程求解相关线段的长度.【关键词】矩形的判定及性质;全等三角形;相似三角形的判定及性质;勾股定理.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年浙江省丽水市中考数学试卷(解析:张红建,校对:刘顿)(满分150分,考试时间120分钟)一、选择题(本题有10小题,每小题3分,共30分)1. (2016淅江丽水,1,3分)下列四个数中,与-2的和为0的数是( )A.-2B.2C.0D.-12【答案】B .【逐步提示】本题考查相反数的概念,解题关键在于掌握互为相反数据两个数的和为0的性质.①利用相反数的定义;②找出-2的相反数即可.【详细解答】解:因为-2的相反数是2,所以与-2的和为0的数是2,故选择B.【解后反思】互为相反数的两个数的和为0.【关键词】相反数.2. (2016淅江丽水,2,3分)计算32×3-1的结果是( )A.3B.-3C.2D.-2【答案】A .【逐步提示】本题考查实数的计算,解题关键在于理解负指数的意义. ①先算乘方;②再算乘法.【详细解答】解:32×3-1=9×13=3,故选择A.【解后反思】实数的运算按照顺序顺序及运算法则进行计算,先算乘方开方,再算乘除,最后算加减.【关键词】有理数的乘方;负指数幂. 3. (2016淅江丽水,3,3分)下列图形中,属于立体图形的是( )【答案】C .【逐步提示】本题考查立体图形与平面图形的判断,解题关键在于理解立体图形与平面图形的区别. ①观察图形是否有用虚线表示着的部分;②用虚线表示着图形的为立体图形.【详细解答】解:C 选项中的图形有部分用虚线表示着,代表看不到的部分,表明为立体图形,故选择C.【解后反思】平面图形的各部分都能看到,表现在平面上都为实线;立体图形有看得到的部分用实线表示,而看不到的部分用虚线表示着,故有虚线表示着的图形为立体图形.【关键词】平面图形;立体图形.4. (2016淅江丽水,4,3分)1a +1b 的运算结果正确的是( ) A.1a b + B.2a b + C.a b ab+ D.ab 【答案】C .【逐步提示】本题考查异分母分式的加法,解题关键在于通分. ①通分;②合并.ABCD【详细解答】解:1a +1b =a ab +b ab =a b ab,故选择C. 【解后反思】异分母分式相加减,先通分转化为同分母分式再进行加减.【关键词】分式加减;通分.5. (2016淅江丽水,5,3分)某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如右表所示,则下列说法正确的是( )A.七年级的合格率最高B. 八年级的学生人数为262名C. 八年级的合格率高于全校的合格率D.九年级的合格人数最少【答案】D .【逐步提示】本题考查统计表的意义的理解及相关计算,解题关键在于正确理解统计表中数据的意义. ①分析题意学生共有800人,三个年级的及格人数在表中,每个年级中不及格的人数则不能推算出来;②三个年级的及格率不能判断高低.【详细解答】解:由题意学生共有800人及三个年级的及格人数,并未出现不及格人数,所以无法对三个年级的及格率高低进行判断,所以A 、C 错误;八年级及格学生数为262名,是否有不及格的不能做出判断,故B 错误;三个年级及格人数九年级最少可以判断是正确的,故选D.【解后反思】学生分为及格与不及格两种,哪个年级都可能有不及格的学生.全面、合理、充分理解图形中的信息,为解题打基础.【关键词】统计;统计表.6. (2016淅江丽水,6,3分)下列一元二次方程没有实数根的是( )A. x 2+2x+1=0B. x 2+x+2=0C. x 2-1=0D. x 2-2x-1=0【答案】B .【逐步提示】本题考查一元二次方程根的判别式的应用,解题关键在于理解判别式的意义. ①计算各方程△=b 2-4ac 的值;②根据△=b 2-4ac 的符号进行判断.【详细解答】解:A 选项Δ=0,方程有两个相等的实数根;B 选项Δ=-7<0,方程没有实数根;C 选项Δ=4>0,方程有两个不相等的实数根;D 选项Δ=8>0,方程有两个不相等的实数根,故选择B.【解后反思】一元二次方程ax 2+bx+c=0,当Δ=b 2-4ac=0时,方程有两个相等的实数根;当Δ=b 2-4ac<0时,方程没有实数根;Δ=b 2-4ac>0时,方程有两个不相等的实数根.【关键词】一元二次方程;一元二次方程根的判别式.7. (2016淅江丽水,7,3分)如图,□ABCD 的对角线AC ,BD 交于点O ,已知AD=8,BD=12,AC=6,则△OBC 的周长为( ) A.13 B.17 C.20 D.26【答案】B . 【逐步提示】本题考查平行四边形的性质,解题关键在于将三角形周长转化为平行四边形的对角线长与边长. ①根据平行四边形的性质得到BC 及OB+OC 的长;②求得△OBC 的周长.【详细解答】解:由题意得BC=AD=8, OB+OC=12(AC+BD)=9,所以△OBC 的周长=8+9=17,故选择B.【解后反思】平行四边形的对角线互相平分,平行四边形的对边相等,对角相等.求三角形ODCB A周长可以分别三条线段的长,也可以将一条或两条线段加起来整体求和.【关键词】平行四边形的性质.8. (2016淅江丽水,8,3分)在直角坐标系中,点M,N在同一个正比例函数图象上的是( )A.M(2,-3), N(-4,6)B. M(-2, 3), N(4,6)C. M(-2,-3), N(4, -6)D. M(2,3), N(-4,6)【答案】A.【逐步提示】本题考查正比例函数的图象和性质,解题关键在于理解正比例函数图象上点的横、纵坐标比值间的关系.①若每个点的横、纵坐标的比值相等,则两点位于同一正比例函数的图象上;②否则两点不在同一正比例函数的图象上.【详细解答】解:A选项中横、纵坐标的比值均为-23,B、C、D选项的横纵坐标之比不相等,有的是23,有的是-23,故选择A.【解后反思】同一正比例函数图象上点的横、纵坐标的比值相等.此题也可以根据一点坐标写出正比例函数的解析式,然后将另一点的坐标代入解析式进行验证.【关键词】正比例函数的图象和性质.9. (2016淅江丽水,9,3分)用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是( )A. B. C. D.【答案】D.【逐步提示】本题考查三角形的高的尺规作图,解题关键在于根据作图痕迹确定作图方法.①根据痕迹确定作图方法;②根据作图方法确定CD是否为斜边上的高线.【详细解答】解:A根据过直线外一点作已知直线的垂线的方法得到斜边AB上的高线CD,故正确;B选项通过作直径所对的圆周角构造斜边AB上的高线CD,故正确;C选项根据两圆连心线垂直平分公共弦得到斜边AB上的高线CD,故正确;D选项中的CD不一定是斜边AB上的高线,故错误,故选择D.【解后反思】作垂线的尺规作图的方法:连一点作已知直线的垂线;构造直径所对的圆周角;两圆连心线垂直平分公共弦;线段的垂直平分线.【关键词】三角形的高;尺规作图.10. (2016淅江丽水,10,3分)如图,已知⊙O是等腰Rt△ABC的外接圆,点D是 AC上一点,BD交AC于点E,若BC=4,AD=45,则AE的长是( )A.3B.2C.1D.1.2【答案】C.【逐步提示】本题考查弧、弦、圆周角间关系,相似三角形的判定及性质等知识,解题关键在于根据DE的长度验证选项.①根据题意确定BD的长;②根据△CBE∽△DAE的相似比采用验证法确定正确答案.【详细解答】解:因为AC=BC=4,由勾股定理得所以285,△CBE∽△DAE,所以AE:BE=DE:CE=AD:CB=45:4=15,所以BE˙DE=AE˙CE.若AE=3,则BE=15>285,故错误;若AE=2,则BE=10>285,故错误;若AE=1,则BE=5,DE=35,CE=4-1=3,此时满足BE˙DE=AE˙CE,故AE=1时正确;若AE=1.2,则BE=6>285,故错误,故选择C.【解后反思】直接计算AE的长比较困难,可以采用比较法,验证法确定线段的长,如本题据题意确定图形中各线段间的关系,然后根据已知条件对所给选项进行验证从而得出正确的结论,验证法是解选择题的一种基本方法.【关键词】圆;相似三角形的性质;验证法.二、填空题(本题有6小题,每小题4分,共24分.)11.(2016淅江丽水,11,4分)分解因式:am-3a= .【答案】a(m-3) .【逐步提示】本题考查分解因式,解题的关键在于掌握因式分解的基本方法.利用提公因式法分解因式.【详细解答】解:am-3a =a(m-3).【解后反思】因式分解的步骤为:一提公因式;二看公式.公式包括平方差公式与完全平方公式,要能用公式法分解必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的2倍,如果没有两数乘积的2倍就不能分解,因式分解必须进行到不能再分解为止.【关键词】分解因式——提公因式法.12. (2016淅江丽水,12,4分)如图,在△ABC中,∠A=63°,直线MN∥BC,且分别与AB,AC相交于点D,E,若∠AEN=133°,则∠B的度数为( )【答案】70°.【逐步提示】本题考查三角形外角及平行线的性质,解题的关键在于三角形内角与外角关系的应用.①由三角形内角和求得∠ADE;②根据平行线的性质求得∠B.【详细解答】解:因为∠AEN=133°,∠A=63°,所以∠ADE=∠AEN-∠A= =133°-63°=70°,因为MN∥BC,所以∠B=∠ADE=70°.【解后反思】三角形一个外角等于不相邻两个内角的和;两直线平行,同位角相等,内错角相等,同旁内角互补.求角度有两条途径:一是直接求解;二是间接求解,①将此角转化为与了相等的其他角;②先求此线段的和、差、倍、分,再转化为线段的长.【关键词】三角形的外角;平行线的性质.13. (2016淅江丽水,13,4分)箱子里放有2个黑球和2个红球,它们除颜色外其余都相同,现从箱子里随机摸出两个球,恰好为1个黑球和1个红球的概率是___.【答案】2 3 .【逐步提示】本题考查概率的计算,解题的关键在于确定所有可能情况数与满足条件的情况数.①根据树状图或列表法确定所有可能情况;②从中确定出一红一黑的情况数,最后计算概率.【详细解答】解:画树状图如下:通过树状图分析,从箱子里摸球共有12种情况,其中摸到1红1黑的共有8种情况,故从箱子里随机摸出两个球,恰好为1个黑球和1个红球的概率是812=23,故答案为23.【解后反思】概率的计算先根据树状图或列表法确定所有可能情况,再从中确定满足条件的情况数,最后计算概率.【关键词】概率计算.14. (2016淅江丽水,14,4分) 已知x2+2x-1=0,则3x2+6x-2= .【答案】1.【逐步提示】本题考查整体代入法求代数式的值,解题的关键在于将待求式转化为已知式.采用整体代入法求值.【详细解答】解:3x2+6x-2=3(x2+2x-1)+1=0+1=1,故答案为1.【解后反思】整体代入法求值的关键在于对所求代数式的变形,将所求代数式变换为包含已知代数式的形式,再整体代入求值,变形方法包括拆项、添项、乘除某个因数或因式等.【关键词】整体思想;一元二次方程的值.15. (2016淅江丽水,15,4分)如图,在菱形ABCD中,过点B作BE⊥AD,BF⊥CD,垂足分别为E,F,延长BD至G,使得DG=BD,连接EG,FG,若AE=DE,则EGAB= .【答案】2.【逐步提示】本题考查菱形的性质,等边三角形的性质,特殊角的三角函数,解题的关键在于作出辅助线.①设出菱形的边长,用菱形的边长表示菱形中相关线段的长度;②连接EF,通过勾股定理确定EG的长,最后求得比值.【详细解答】解:因为AE=DE,BE⊥AD于E,所以AB=BD,又DG=BD,所以AB=AD=CB=CD=BD,所以△ABD与△CBD均为等边三角形,所以∠ABD=60°,所以∠EBD=30°,连接EF,交DB于H,设AB=AD=2,则ED=AE=1,DH=12,EH=2,HG=52,由勾股定理得EGAB=2.【解后反思】题目当中没有数据时,设出线段的长度可利于题目的计算,线段的长度的确定以利用以利于计算为标准. 求线段比值有两条途径:一是直接求解,即分别求得两线段的值,再计算比值;二是间接求解,通过相似、平行线等方法将线段的比转化为其他线段的比来计算.【关键词】菱形;勾股定理.16. (2016淅江丽水,16,4分如图,一次函数y=-x+b与反比例函数y=4x(x>0)的图象交于A,B两点,与x轴,y轴分别交于C,D两点,连接OA,OB,过A作AE⊥x轴于点E,交OB于点F.设点A的横坐标为m.(1)b= (用含m的代数式表示)(2)若S△OAF+S四边形EFBC=4,则m的值是.【答案】(1) m+4m.(2【逐步提示】本题考查一次函数与反比例函数的综合应用,不规则图形面积的计算,解决问题的关键在于作出辅助线确定△OEF与△BMC高的关系.①将点A横坐标代入反比例函数求得纵坐标,再将点A坐标代入一次函数即得b的值;②根据两函数的解析式求得A,B两点坐标,根据阴影部分面积间的关系推导出A,B,C三点横坐标间关系,通过方程求得m的值.【详细解答】解:由于点A在反比例函数y=4x上,所以设A点坐标(m,4m),将点A 坐标代入一次函数得b= m+4m,所以点D(0, m+4m),点C(m+4m,0).两函数解析式联立得44y x mmyx⎧=-++⎪⎪⎨⎪=⎪⎩,解得B点坐标为(4m,m),作BM⊥OC于M,则MC=OE=m,因为S 矩形AGOE =S △OAF + S △OAG + S △OEF = S △OAF +S 四边形EFBC =4,所以S △OAG + S △OEF = S 四边形EFBC = S 梯形EFBM + S △BMC = S △OBM -S △OEF + S △BMC ,因为S △OAG = S △OBM ,所以S △OEF = -S △OEF + S △BMC ,所以2S △OEF =S △BMC ,由于两个三角形底相等,所以MB=2EF ,所以EF 为△OBM 中位线,所以OE=EM=MC ,所以4m=2 m,解得【解后反思】将不规则图形转化为规则图形,通过图形间的转换得到各点坐标间的关系从而解决问题.【关键词】 一次函数;反比例函数;阴影部分面积.三.解答题(本题有8小时,第17~19题第题6分,共66分)17. (2016淅江丽水,17,6分)计算:(-3)0【逐步提示】本题考查实数的计算,解决问题的关键在于理解实数的计算法则.根据运算法则进行计算.【详细解答】解:原式【解后反思】非零数的零次幂等于1;正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零.【关键词】二次根式;零指数.18.(2016淅江丽水,18,6分)解不等式:3x-5<2(2+3x)【逐步提示】本题考查不等式的解,解决问题的关键在于运用法则进行计算.根据解不等式的步骤解不等式.【详细解答】解:去括号得:3x-5<4+6x ,移项得:3x-6x <4+5,合并同类项得:-3x <9,化系数为1得x>-3.【解后反思】不等式两边同时乘以或除以一个负数时不等号的方向要改变.【关键词】 不等式的解法.19. (2016淅江丽水,19,6分)数据拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含45°的三角板的斜边与含30°的三角板的长直角边相等.于是,小陆同学提出一个问题:如图,将一副三角板直角顶点重合拼放在一起,点B ,C ,E 在同一相线上.若BC=2,求AF 的长.请你运用所学的数学知识解决这个问题.【逐步提示】本题考查特殊角的三角函数的应用,特殊角的三角函数值是解决问题的关键.①根据特殊角的三角函数由一条边长求得其他直角边长;②再通过分解法求得AF 的长.【详细解答】解:在RtA △ABC 中,BC=2, ∠A=30°, ∴由AC=tan A BC =2tan 30°由题意,得在RtA △EFC 中, ∠E=45°, ∴CF=EF×cos45°∴AF=AC-FC=2【解后反思】根据三角函数求得相关线段的长度是解题的关键.关键词】三角函数;三角板.20. (2016淅江丽水,20,8分)为了帮助九年级学生做好体育考试项目的选考工作,某校统计了本县上届九年级毕业生体育考试各个项目参加的男、女生人数及平均成绩,并 制成如下两个统计图.请结合统计图信息解决问题:(1)“掷实心球”项目男、女生总人数是“跳绳”项目男、女生总人数的2倍,求“跳绳”项目的女生人数;(2)若一个考试项目的男、女生总平均成绩不小于9分为“优秀”,试判断该县上届毕业生的考试项目中达到“优秀”的有哪些项目,并说明理由;(3)请结合统计图信息和实际情况,给该校九年级学生体育考试项目的选择提出合理化建议.【逐步提示】本题考查利用条形图及折线图解决实际问题,解决问题的关键在于理解统计图所表示的实际意义.(1)根据条形统计图中的数据作答;(2)根据折线统计图中的数据作答;(3)可从识图能力,数据分析能力,综合运用能力三方面对问题进行解答.【详细解答】解:(1)“跳绳”项目的女生人数=4006002+-260=240(人); (2)观察男、女各项目平均成绩统计图可知:立定跳远、游泳、跳绳三项目的男、女生总平均成绩均小于9分,投篮项目的男、女生总平均成绩一定大于9分.投实心球项目的的男、女生总平均成绩=4008.76009.2400600⨯+⨯+=9,所以属于“优秀”项目的有投篮、掷实心球两个项目;(3)A 类(识图能力):能用两统计图中的一个图提出合理化建议.如:游泳项目考试的人最多,可选考游泳.B 类(数据分析能力):结合两统计图的数据提出合理化建议.如:“投篮”项目人数虽然不是最多,但平均成绩较高,建议选“投篮”.C类(综合运用能力):能利用两统计图的数据并结合学生实际提出合理化建议.如:“跳绳”项目的报名人数少,男、女生的平均成绩都很低,若不是跳绳水平很高,建议不选择该项目.【解后反思】统计类问题的许多条件隐含在图表中,需要认真读图表,从图形中分析出有用的信息,然后作答.【关键词】条形统计图;折线统计图;统计思想方法.三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)21.(2016淅江丽水,21,8分)2016年3月27日“丽水半程马拉松竞赛”在莲都举行,某运动员从起点万地广场西门出发,途经紫金大桥,沿比赛路线回终点万地广场西门.设该运动员离开起点的路程S(千米)与跑步时间t(分钟)之间的函数关系如图所示,其中从起点到紫金大桥的平均速度是0.3千米/分,用时35分钟,根据图象提供的信息,解答下列问题:(1)求图中a的值;(2)组委会在距离起点2.1千米处设立一个拍摄点C,该运动员从第一次过C点到第二次过C点所用的时间为68分钟.①求AB所在直线的函数解析式;②该运动员跑完赛程用时多少分钟?【逐步提示】本题考查一次函数的实际应用,解决问题的关键在于理解一次函数图象中各关键点所表示的意义.(1)根据速度和时间计算路程;(2)①根据运动时间求出第二次经过C点时所用的时间,根据两点法求得AB的解析式;②根据直线AB的解析式求出运动员跑完赛程所用时间.【详细解答】解:(1)∵从起点到紫金大桥的平均速度是0.3千米/分,用时35分钟,∴a=0.3×35=10.5(千米).(2)①∵线段OA经过点O(0,0),A(35,10.5),,∴OA的函数解析式是S=0.3t(0≤t≤35).∴当S=2.1时,0.3t=2.1,解得t=7.∵该运动员从第一次过C点到第二次过C点所用的时间为68分钟,∴该运动员从起点到第二次过C共用的时间是7+68=75(分钟).∴AB经过(35,10.5),(75,2.1)两设AB所在直线的函数解析式是S=kt+b,∴3510.5,75 2.1.k bk b+=⎧⎨+=⎩,解得0.21,17.85.kb=-⎧⎨=⎩∴AB所在直线的函数解析式是S=-0.21t+17.85②∵该运动员跑完赛程所用的时间即为直线AB与x轴交点横坐标的值∴当S=0时,-0.21t+17.85=0,解得t=85.∴该运动员跑完赛程用时85分钟.【解后反思】正比例函数及反比例函数的解析式需要一个点的坐标即可求出;一次函数的解析式需要两个点的坐标才能求出;二次函数的解析式需要三个点的坐标才能求出.【关键词】一次函数应用;待定系数法求函数的解析式.22. (2016淅江丽水,22,10分)如图,AB 是以BC 为直径的半圆O 的切线,D 为半圆上一点,AD=AB ,AD ,BC 的延长线相交于点E.⑴求证:AD 是半圆O 的切线;⑵连接CD ,求证:∠A=2∠CDE ;⑶若∠CDE =27°,OB=2,求 BD的长. 【逐步提示】本题考查圆的相关性质,切线的判定,弧长的计算等,解决问题的关键在于辅助线的添加.⑴连接OD ,BD ,根据经过半径的外端,垂直于半径的直线为圆的切线进行证明; ⑵由各角间的关系进行推导得出结论;⑶由同角的余角相等推出∠DOC 的度数,再求出 BD的长. 【详细解答】解:⑴连接OD ,BD ,∵AB 是半圆O 的切线,∴AB ⊥BC ,即∠ABO=90°. ∵AB=AD ,∴∠ABD=∠ADB ,∵OB=OD ,∴∠DBO=∠BDO ,∴∠ABD+∠DBO=∠ADB+∠BDO ,∴∠ADO=∠ABO=90°,∴AD 是半圆O 的切线. ⑵由⑴,∠ADO=∠ABO=90°,∴∠A=360°-∠ADO-∠ABO-∠BOD=180°-∠BOD. 而∠DOC=180°-∠BOD ∴∠A=∠DOC ,∵AD 是半圆O 的切线,∴∠ODE=90°,∴∠ODC+∠CDE =90°.∵BC 是直径,∴∠ODC+∠BDO =90°.∴∠BDO=∠CDE ,∵∠BDO=∠OBD ,∴∠ DOC =2∠BDO∴∠DOC =2∠CDE ,∴∠A =2∠CDE.⑶∵∠CDE=27°,∴由⑵得,∠ DOC =2∠CDE=54°,∴∠BOD =180°-54°=126°, ∵OB=2,∴ BD l =1262180p 创=75π. 【解后反思】从同一点引两圆的两条切线,切线长相等;直径所对的圆周角相等;同角或等角的余角相等.【关键词】圆的切线的判定和性质;圆周角. 23. (2016淅江丽水,23,10分)如图,地面BD 上两根等长立柱AB ,CD 之间悬挂一根近似成抛物线y=110x 2-45x+3的绳子.(1)求绳子最低点离地面的距离;(2)因实际需要要,在离AB为3米的位置处用一根立柱MN撑起绳子(如图2),使左边抛物线F1的最低点距MN为1米,离地面1.8米,求MN的长;(3)将立柱MN的长度提升为3米,通过调整MN的位置,使抛物线F2对应函数的二次项系数始终为14,设MN离AB的距离为m,抛物线F2的顶点离地面距离为k,当2≤k≤2.5时,求m的取值范围.【逐步提示】本题考查二次函数的实际应用,解决问题的关键在于根据题意表示顶点的坐标.(1)将二次函数的一般式化为顶点式求得;(2)借助顶点式设出二次函数的解析式,代入A点坐标求得解析式,再根据N点横坐标求得MN的长;(3)抛物线的二次项系数始终为14,说明二次函数的形状不变,要过同一点C时,只能是顶点的位置发生变化,顶点位置满足坐标(12m+4,k),从而得到二次函数的解析式,然后根据k的取值范围确定出m的取值范围.【详细解答】解:(1)∵a=110>0,∴抛物线顶点为最低点.∵y=110x2-45x+3=110(x-4)2+75,∴绳子最低点离地面的距离为75米.(2)由(1)可知,BD=8,令x=0得y=3, ∴A(0,3),C(8,3),由题意得:抛物线F1的解析式为y=a(x-2)2+1.8.将(0,3)代入,得:4a+1.8=3,解得:a=0.3, ∴抛物线F1的解析式为y=0.3(x-2)2+1.8.当x=3时,y=0.3×1+1.8=2.1,所以MN的长度为2.1米.(3)∵MN=CD=3,∴根据抛物线的对称性可知抛物线F2的顶点在ND的垂直平分线上,∴抛物线F2的顶点坐标为(12m+4,k), ∴抛物线F2的解析式为:y=14(x-12m-4)2+k把C(8,3)代入,得:14(4-12m)2+k=3, ∴k=-14(4-12m)2+3∴k=-116(m-8)2+3,∴k是关于m的二次函数.又∵由已知m<8,在对称轴的左侧,∴k随m的增大而增大.∴k=2时,-116(m-8)2+3=2,解得:m1=4,m2=12(不符合题意,舍去).k=2.5时,-116(m-8)2+3=2.5,解得:m12(不符合题意,舍去).∴m的取值范围是4≤m≤8【解后反思】在已知顶点的情况下利用顶点式列二次函数的解析式,抛物线平移前后二次项系数不变.【关键词】二次函数的应用.24. (2016淅江丽水,24,12分)如图,矩形ABCD 中,点E 为BC 上一点,F 为DE 的中点,且∠BFC=90°;(1)当E 为BC 中点时,求证:△BCF ≌△DEC ;(2)当BE=2EC 时,求CD BC的值; (3)设CE=1,BE=n,作点C 关于DE 的对称点C′,连接FC′,AF ,若点C′到AF的距离是5,求n 的值.【逐步提示】本题考查矩形的性质,三角形全等的判定方法及性质,相似三角形的判定及性质,勾股定理等知识,解决问题的关键在于通过辅助线将未知条件转化到同一图形当中.(1)由矩形的性质及直角三角形斜边中线的性质根据ASA 判定△BFC ≌△DCE ;(2)通过相似三角形用同一量表示出CD 、BC 间的关系,通过比例式求得CD BC的值; (3)过C′作C′H ⊥AF 于点H ,连接CC′交EF 于M ,通过Rt △EMC 和Rt △FMC 建立方程经计算求得CF 的长,再由△BFC ∽△DCE 计算出CF 的长,两者建立方程计算出n 的值.【详细解答】解:(1)∵在矩形ABCD 中,∠DCE=90°,F 是斜边DE 的中点,∴CF=EF ,∴∠FEC=∠FCE.又∵∠DCE=90°,且E 为BC 的中点,∴EF=EC ,∴CF=CE在△BFC 与△DCE 中,∵∠BFC=∠DCE ,CF=CE ,∠FCB=∠DEC ,∴△BFC ≌△DCE.(2)设CE=a ,由BE=2CE ,得BE=2a,BC=3a.∵∠FEC=∠FCE, ∠BFC=∠DCE=90°, ∴△BFC ∽△DCE ∴CF BC EC ED =,即132ED a a ED=,∴12ED 2=3a 2, ∴ED 2=62, ∴∴CD BC=3a=3(3)过C′作C′H ⊥AF 于点H ,连接CC′交EF 于M ,由(2)得:FC=EF=FD ,∠FEC=∠FCE.∵AD ∥BC ,∴∠ADF=∠CEF ,∴∠ADF=∠BCF.∵AD=BC ,∴△ADF ≌△BCF ,∴∠AFD=∠BFC=90°∵C′H ⊥AF ,C′C ⊥EF ,∴∠HFE=∠C′HF=∠C′MF=90°.∴四边形C′MFH 是矩形,∴FM=C′H=5.设EM=x ,则. 在Rt △EMC 和Rt △FMC 中,由勾股定理得:22CE EM -= CF 2-FM 2∴1 2-x 2) 2)2,解得:x 1,x 2-由(2)得,CF BC EC ED =,将CE=1,BE=n 代入计算,得CF=2.∴2=10+5,解得:n=4. 【解后反思】借助于相似三角形边长之比求相关线段的比值;利用双直角三角形公共边长建立方程求解相关线段的长度.【关键词】矩形的判定及性质;全等三角形;相似三角形的判定及性质;勾股定理.。

相关文档
最新文档