九年级数学第一次月考题.docx
九年级数学上册月考试卷
九年级数学上册月考试卷一、选择题(每题3分,共30分)1. 一元二次方程x^2 - 2x = 0的根是()A. x_1=0,x_2=-2B. x_1=1,x_2=2C. x_1=1,x_2=-2D. x_1=0,x_2=22. 二次函数y = (x - 1)^2+2的顶点坐标是()A. (1,2)B. (-1,2)C. (1,-2)D. (-1,-2)3. 下列图形中,既是轴对称图形又是中心对称图形的是()A. 等边三角形B. 平行四边形。
C. 正五边形D. 圆。
4. 关于x的一元二次方程x^2+bx - 1 = 0的判别式Δ为()A. b^2-4B. b^2+4C. -b^2-4D. -b^2+45. 把二次函数y = 3x^2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数表达式是()A. y = 3(x - 2)^2+1B. y = 3(x + 2)^2-1C. y = 3(x - 2)^2-1D. y = 3(x + 2)^2+16. 已知关于x的方程x^2-3x + k = 0有两个相等的实数根,则k的值为()A. (9)/(4)B. -(9)/(4)C. (3)/(4)D. -(3)/(4)7. 一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是()A. 摸出的4个球中至少有一个是白球。
B. 摸出的4个球中至少有一个是黑球。
C. 摸出的4个球中至少有两个是黑球。
D. 摸出的4个球中至少有两个是白球。
8. 二次函数y = ax^2+bx + c(a≠0)的图象如图所示,则下列结论正确的是()(此处可插入一个二次函数图象,开口向下,与x轴有两个交点,对称轴为x = 1,顶点在第一象限等相关图象特征)A. a < 0,b < 0,c > 0B. a < 0,b > 0,c > 0C. a < 0,b < 0,c < 0D. a < 0,b > 0,c < 09. 若一元二次方程x^2+mx + 3 - m = 0的两根之积为-2,则m的值为()A. 5B. -5C. 2D. -210. 已知二次函数y = ax^2+bx + c(a≠0)的图象经过点(-1,0),(3,0),且当x = 0时,y = -3,则这个二次函数的表达式为()A. y = x^2-2x - 3B. y = -x^2+2x - 3C. y = -x^2-2x - 3D. y = x^2+2x - 3二、填空题(每题3分,共18分)11. 方程(x - 1)^2=4的解为______。
2024-2025学年安徽省阜阳市九年级上学期月考数学试题
2024-2025学年安徽省阜阳市九年级上学期月考数学试题1.下列函数一定是二次函数的是()A.B.C.D.2.方程的二次项系数、一次项系数、常数项分别为()A.4、、B.4、2、C.4、、1D.4、2、13.若二次函数的图象经过点,则该图象必经过点()A.B.C.D.4.关于x的一元二次方程的根的情况是()A.实数根的个数由b的值确定B.有两个不相等的实数根C.有两个相等的实数根D.没有实数根5.下列关于二次函数的图象说法中,错误的是()A.它的对称轴是直线B.它的图象有最低点C.它的顶点坐标是D.在对称轴的左侧,y随着x的增大而增大6.若m、n是关于x的方程的两个根,则的值为()A.4B.C.D.7.一抛物线的形状、开口方向与抛物线相同,顶点为,则此抛物线的解析式为()A.B.C.D.8.《九章算术》中有这样一道题:“今有二人同所立.甲行率六,乙行率四.乙东行,甲南行十步而邪东北与乙会.问:甲、乙行各几何?”大意是说:已知甲、乙二人同时从同一地点出发,甲的速度为6,乙的速度为4.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲走了多少步()A.24B.30C.32D.369.某校从本学期开始实施劳动教育,在学校靠墙(墙长22米)的一块空地上,开辟出一块矩形菜地,如图所示,矩形菜地的另外三边用一根长49米的绳子围成,并留1米宽的门,若想开辟成面积为300平方米的菜地,则菜地垂直于墙的一边的长为()A.10米B.12米C.15米D.不存在10.函数和()在同一平面直角坐标系中的图象可能是()A.B.C.D.11.二次函数的顶点坐标是______.12.由于制药技术的提高,某种疫苗的成本下降了很多,因此医院对该疫苗进行了两次降价,设平均降价率为x,已知该疫苗的原价为462元,降价后的价格为y元,则y与x之间的函数关系式为______.13.已知关于x的一元二次方程,其中a、b、c分别为三边的长,如果方程有两个相等的实数根,则的形状为______.14.抛物线的图象交y轴于点A,点A关于x轴的对称点为点B.(1)点B坐标为______;(2)点,,且线段CD与抛物线恰有一个公共点,则m的取值范是______.15.解方程:16.直线与抛物线交于点.(1)求a和n的值;(2)对于二次函数,当y随x的增大而增大时,求自变量x的取值范围.17.已知关于x的一元二次方程.(1)判断方程根的情况;(2)设,是方程的两个根,求的值.18.如图,将一些小圆按规律摆放:(1)第个图形有个小圆,第个图形有个小圆(用含的代数式表);(2)能用个小圆摆成这样的图形吗?如果能,请求出摆成的是第几个图形;如果不能,请说明理由.19.如图,在中,,,点M从点A开始沿AC以的速度向点C运动(到点C时停止),过点M作,交BC与点N,并设点M的运动时间为t s.(1)当t为何值时,的面积为?(2)若,求t的值.20.如图,抛物线与y轴交于点A,过点A作与x轴平行的直线,交抛物线相交于点B、C(点B在点C的左面),若,求m的值.21.已知二次函数.(1)求证:不论n取何值时,抛物线的顶点始终在一条直线上.(2)若点,都在二次函数图象上,求证:.22.某商店销售一款成本价为40元的洗发水,如果每瓶按60元销售,每天可卖20瓶.该商店通过调查发现,每瓶洗发水售价每降低1元,日销售量增加2瓶.(1)如果该商店想保持日利润不变,且尽快销售完这批洗发水,每瓶售价应定为多少元?(2)同城另一家商店也销售同款洗发水,标价为每瓶62.5元.为促进销售,提高利润,这家商品决定实行打折促销,且其销售价格不低于(1)中的售价且不高于60元,则洗发水至少需打几折?23.如图,抛物线与x轴相交于B,C两点(点B在点C的左边),与y轴相交于点A,直线AC的函数解析式为.(1)求点A,C的坐标;(2)求抛物线的解析式;(3)在直线AC上方的抛物线上有一点M,求四边形ABCM面积的最大值及此时点M的坐标.。
浙江省义乌市丹溪中学2024--2025学年九年级上学期数学第一次月考试卷
浙江省义乌市丹溪中学2024--2025学年九年级上学期数学第一次月考试卷一、单选题1.下列诗句所描述的事件中,属于必然事件的是( ) A .黄河入海流 B .手可摘星辰 C .锄禾日当午D .大漠孤烟直2.二次函数(3)(5)y x x =-+的图象的对称轴是( ) A .直线3x =B .直线5x =-C .直线=1x -D .直线1x =3.不透明的袋子中装有红球1个,绿球2个,除颜色外三个小球无其他差别.从中随机摸出一个小球,那么摸到红球的概率是( ) A .14B .13C .12D .344.将二次函数221y x x =+-转化为()2y a x h k =-+的形式,结果为( ) A . ()21y x =-B . ()21y x =+C . ()211y x =+-D . ()=+-2y x 125.已知点A (-1,y 1),B (2,y 2),C (-3,y 3)在抛物线y = -x 2+2x +c 上,则下列结论正确的是( ) A .123y y y >>B .213y y y >>C .312y y y >>D .321y y y >>6.在一个不透明的箱子里装有m 个球,其中红球4个,这些球除颜色外都相同,每次将球搅拌均匀后,任意摸出一个球记下颜色后再放回,大量重复试验后发现,摸到红球的频率在0.2,那么可以估算出m 的值为( ) A .8B .12C .16D .207.地面上一个小球被推开后笔直滑行,滑行的距离s 与时间t 的函数关系如图中的部分抛物线所示(其中P 是该抛物线的顶点),则下列说法正确的是( )A .小球滑行12秒停止B .小球滑行6秒停止C .小球滑行6秒回到起点D .小球滑行12秒回到起点8.二次函数24y ax x a =++与一次函数y ax a =+在同一平面直角坐标系中的图象可能是( )A .B .C .D .9.()()()120y a x x x x t a =--+>,点()00,x y 是函数图象上任意一点,( ) A .若0t <,则()20124a y x x <-- B .若0t ≥,则()20124a y x x >-- C .若0t <,则()20124a y x x ≤-- D .若0t ≥,则()20124a y x x ≥-- 10.已知二次函数2y ax bx c =++,当y n >时,x 的取值范围是31m x m -<<-,且该二次函数的图象经过点()()23,5,,4P t Q d t +两点,则d 的值可能是( )A .0B .1-C .4-D .6-二、填空题11.二次函数243y x =-的图像开口向.(填“上”或“下”)12.在一个不透明的箱子里装有m 个球,其中红球4个,这些球除颜色外都相同,每次将球搅拌均匀后,任意摸出一个球记下颜色后再放回,大量重复试验后发现,摸到红球的频率在0.2,那么可以估算出m 的值为.13.某果园有100棵橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一颗树,平均每棵树就会少结5个橘子.设果园增种x 棵橘子树,果园橘子总个数为y 个,则果园里增种棵橘子树,橘子总个数最多.14.某校有两块运动场地,甲、乙、丙三名学生各自随机选择其中的某个运动场地进行跑步训练,则甲、乙、丙三名学生在同一块场地跑步训练的概率为.15.已知二次函数22y x mx m =-++-,当12x -≤≤时,二次函数22y x mx m =-++-的最大值为6,则m 的值为.16.如图所示,从高为2m 的点A 处向右上抛一个小球P ,小球飞行路线呈抛物线L 形状,小球飞行的水平距离2m 时达到最大高度6m ,然后落在下方台阶上弹起,已知4MN =m ,1.2FM DE BC ===m ,1ON CD EF ===m ,若小球弹起形成一条与L 形状相同的抛物线,落下时落点Q 与B ,D 在同一直线上,则小球在台阶弹起时的最大高度是 m .三、解答题17.已知二次函数的表达式为: 265y x x =-+, (1)利用配方法将表达式化成2()y a x h k =-+的形式; (2)写出该二次函数图像的对称轴和顶点坐标.18.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为12.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表或画树状图等方法求出两次摸到的球都是白球的概率.19.数学老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.(1)根据上表数据估计从袋中摸出一个球是黑球的概率是_______;(精确到0.01) (2)估算袋中白球的个数.20.已知二次函数经过点()1,0-,()3,0,且最大值为4.(1)求二次函数的解析式;(2)在平面直角坐标系xOy 中,画出二次函数的图象; (3)当14x <<时,结合函数图象,直接写出y 的取值范围.21.为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y 千克与每平方米种植的株数x (28x ≤≤,且x 为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克. (1)求y 关于x 的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少千克? 22.根据以下素材,探索完成任务.素材1中23.二次函数2y ax bx c =++(a ,b ,c 是常数,0ab ≠).当2bx a=-时,函数y 有最小值1-.(1)若该函数图象的对称轴为直线1x =,并且经过()0,0点,求该函数的表达式. (2)若一次函数y ax c =+的图象经过二次函数2y ax bx c =++图象的顶点. ①求该二次函数图象的顶点坐标.②若()(),,,a p c q 是该二次函数图象上的两点,求证:p q >.24.在平面直角坐标系中,抛物线2y x bx c =++(b 、c 为常数)经过点()0,3-,()2,3-.点A 、B 在抛物线上(点A 与点B 不重合),且点A 的横坐标为m ,点B 的横坐标为123m -,将此抛物线在A 、B 两点之间的部分(包含A 、B 两点)记为G . (1)求此抛物线对应的函数表达式;(2)当G 的函数值y 随x 的增大而先减小后增大时,求m 的取值范围; (3)当A 、B 两点到直线=2y -距离相等时,求m 的值;(4)设点C 的坐标为()1,2m --,点D 的坐标为()1,2m --,连接CD ,当线段CD 与G 有一个公共点时,直接写出m 的取值范围.。
华师大版九年级数学上册学期第一次月考试卷【解析】.docx
2014-2015学年山东省聊城市于集镇中学九年级(上)第一次月考数学试卷一、选择题(每题3分,共36分)1.下列说法中,正确的个数为()①所有的正三角形都相似;②所有的正方形都相似;③所有的等腰直角三角形都相似;④所有的矩形都相似.A.1个B.2个C.3个D.4个2.一个五边形的边长分别为2、3、4、5、6,另一个和它相似的五边形的最大边长为24,则这个五边形的最短边为()A.6 B.8 C.10 D.123.如图所示,在△ABC中,DE∥BC,D在AB上,E在AC上,DF∥AC交BC于点F.若AE=5,EC=3,BF=1.5,则BC=()A.2.5 B.4 C.3 D.54.一个三角形的三边的比为2:3:4,则这个三角形三条边上的高的比为()A.2:3:4 B.6:4:3 C.4:3:2 D.4:9:65.如图所示,D是△ABC的AC边上的一点,根据下列条件,可以得到△BDC∽△ABC的是()A.AC•CB=CA•CD B.AB•CD=BD•BC C.BC2=AC•DC D.BD2=CD•DA6.用一个4倍的放大镜去放大△ABC,下列说法正确的是()A.△ABC放大后,∠A是原来的4倍B.△ABC放大后,周长是原来的4倍C.△ABC放大后,面积是原来的4倍D.以上说法都不正确7.在Rt△ABC中,∠C=90°,若sinA=,则cosB的值为()A.B.C.D.18.直角三角形ABC中,斜边AB是直角边BC的4倍,则cosA是()A.B. C.D.9.下列各式正确的是()A.cos60°<sin45°<tan45°B.sin45°<cos60°<tan45°C.sin45°<tan45°<cos60 D.cos60°<tan45°<sin45°10.在Rt△ABC中,∠C=90°,如果AB=2,BC=1,那么sinB的值是()A.B.C.D.11.一辆汽车沿坡角为α的斜坡前进500米,则它上升的最大高度为()A.500sinα B.C.500cosα D.12.如果等腰三角形的底角为30°,腰长为6cm,那么这个三角形的面积为()A.4.5cm2B.9cm2C.18cm2D.36cm2二、填空题(每空4分,共24分)13.已知两个相似三角形的相似比为3:2,且它们的面积和为52cm2,则其中较小的三角形的面积为.14.如图所示,DE∥BC,AC=12,AD=AB,则EC= .15.已知cosA=,且∠B=90°﹣∠A,则sinB= .16.如图所示,D、E分别是△ABC的边AC,AB上的点,∠ADE=∠B,AE=4,AC=16,则△ADE与△ACB的面积之比为.17.在△ABC中,∠C=90°,AC=3,AB=5,则cosB= .18.如图,在坡度为1:2的山坡上种树,要求株距(相邻两树间的水平距离)是6m,则斜坡上相邻两树间的坡面距离是m.三、计算题(每小题16分,共16分)19.计算(1)cos60°+sin45°+tan30°•cos30°;(2)sin60°•cos60°+sin45°•cos45°﹣sin30°•cos30°.四、应用题(20、21题每题10分,22、23题每题12分,共44分)20.如图所示,已知△ABC中,DE∥BC,AD=2,BD=5,AC=5,求AE的长.21.如图所示,正方形ABCD的边长是1,P为CD的中点,PQ⊥AP,交BC于Q,求BQ的长.22.如图,在△ABC中,已知∠A=60°,∠B=45°,AC=20,求AB的长.(注:辅助线要在答案卷上画出)23.如图所示,某厂车间的人字屋架为等腰三角形,跨度AB=12m,∠A=30°,求中柱CD和上弦AC的长.(结果保留根号,注:sin30°=,cos30°=,tan30°=)2014-2015学年山东省聊城市于集镇中学九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每题3分,共36分)1.下列说法中,正确的个数为()①所有的正三角形都相似;②所有的正方形都相似;③所有的等腰直角三角形都相似;④所有的矩形都相似.A.1个B.2个C.3个D.4个考点:相似图形.分析:利用对应角相等,对应边的比相等的图形是相似图形即可判断对错,从而确定答案.解答:解:①所有的正三角形都相似,正确;②所有的正方形都相似,正确;③所有的等腰直角三角形都相似,正确;④所有的矩形都相似,错误.故选C.点评:本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.2.一个五边形的边长分别为2、3、4、5、6,另一个和它相似的五边形的最大边长为24,则这个五边形的最短边为()A.6 B.8 C.10 D.12考点:相似多边形的性质.专题:应用题.分析:根据相似多边形的对应边的比相等可得.解答:解:两个相似的五边形,一个最长的边是6,另一个最大边长为24,则相似比是6:24=1:4,根据相似五边形的对应边的比相等,设后一个五边形的最短边的长为x,则2:x=1:4,解得:x=8.即后一个五边形的最短边的长为8.故选B.点评:本题主要考查了相似多边形的性质,对应边的比相等,因而最长的边一定是对应边,最短的边一定也是对应边.3.如图所示,在△ABC中,DE∥BC,D在AB上,E在AC上,DF∥AC交BC于点F.若AE=5,EC=3,BF=1.5,则BC=()A.2.5 B.4 C.3 D.5考点:平行线分线段成比例.专题:计算题.分析:根据平行线分线段成比例定理,先由DE∥BC得到=,可计算出=,再利用比例性质得到=,然后由DF∥AC得到=,再利用比例性质可计算出BC.解答:解:∵DE∥BC,∴=,即==,∴==,即=,∵DF∥AC,∴=,即=,∴BC=4.故选B.点评:本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.也考查了比例的性质.4.一个三角形的三边的比为2:3:4,则这个三角形三条边上的高的比为()A.2:3:4 B.6:4:3 C.4:3:2 D.4:9:6考点:三角形的面积;比例的性质.专题:常规题型.分析:设首先设三角形三条边长分别为:2x、3x、4x,三边上高分别为a、b、c,根据三角形的面积公式可得×2x•a=×3x•b=×4x•c,再算出a:b:c即可.解答:解:设三角形三条边长分别为:3x、4x、5x,三边上高分别为a、b、c,×2x•a=×3x•b=×4x•c,解得:a:b:c=6:4:3,故选:B.点评:此题主要考查了三角形的面积公式,三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.5.如图所示,D是△ABC的AC边上的一点,根据下列条件,可以得到△BDC∽△ABC的是()A.AC•CB=CA•CD B.AB•CD=BD•BC C.BC2=AC•DC D.BD2=CD•DA考点:相似三角形的判定.分析:利用相似三角形的判定利用=且夹角相等,进而得出答案.解答:解:当=,又∵∠C=∠C,∴△BDC∽△ABC,即BC2=AC•DC时,可以得到△BDC∽△ABC.故选:C.点评:此题考查了相似三角形的判定.此题难度不大,注意熟记定理是关键,注意数形结合思想的应用.6.用一个4倍的放大镜去放大△ABC,下列说法正确的是()A.△ABC放大后,∠A是原来的4倍B.△ABC放大后,周长是原来的4倍C.△ABC放大后,面积是原来的4倍D.以上说法都不正确考点:相似图形.分析:用4倍的放大镜放大一个△ABC,得到一个与原三角形相似的三角形;根据相似三角形的性质:相似三角形的面积比等于相似比的平方,周长比等于相似比.可知:放大后三角形的面积是原来的16倍,边长和周长是原来的4倍,而内角的度数不会改变.解答:解:∵放大前后的三角形相似,∴放大后三角形的内角度数不变,面积为原来的16倍,周长和边长均为原来的4倍.故选B.点评:本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.7.在Rt△ABC中,∠C=90°,若sinA=,则cosB的值为()A.B.C.D.1考点:特殊角的三角函数值.分析:根据特殊角的三角函数值及等腰直角三角形的性质解答.解答:解:∵Rt△ABC中,∠C=90°,sinA=,∴∠A=∠B=45°,∴cosB=.故选B.点评:本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,要熟练掌握.8.直角三角形ABC中,斜边AB是直角边BC的4倍,则cosA是()A.B. C.D.考点:锐角三角函数的定义;勾股定理.分析:首先根据勾股定理计算出AC的长,再利用锐角三角函数定义计算出∠A余弦即可.解答:解:设BC=x,则AB=4x,AC===x,cosA===,故选:B.点评:此题主要考查了锐角三角函数,以及勾股定理,关键是表示出AC的长.9.下列各式正确的是()A.cos60°<sin45°<tan45°B.sin45°<cos60°<tan45°C.sin45°<tan45°<cos60 D.cos60°<tan45°<sin45°考点:锐角三角函数的增减性.分析:先根据特殊角的三角函数值分别得出cos60°=,sin45°=,tan45°=1,再比较大小即可.解答:解:∵cos60°=,sin45°=,tan45°=1,又∵<<1,∴cos60°<sin45°<tan45°.故选A.点评:本题考查了特殊角的三角函数值,实数的大小比较,熟记特殊角的三角函数值是解题的关键.10.在Rt△ABC中,∠C=90°,如果AB=2,BC=1,那么sinB的值是()A.B.C.D.考点:锐角三角函数的定义;勾股定理.专题:计算题.分析:先由勾股定理求出AC的长,再根据正弦=对边÷斜边计算即可.解答:解:在Rt△ABC中,∵∠C=90°,AB=2,BC=1,∴AC=,∴sinB==,故选B.点评:本题考查了锐角三角函数的定义,解题时牢记定义是关键.11.一辆汽车沿坡角为α的斜坡前进500米,则它上升的最大高度为()A.500sinα B.C.500cosα D.考点:解直角三角形的应用-坡度坡角问题.分析:在三角函数中,根据坡度角的正弦值=垂直高度:坡面距离即可解答.解答:解:如图,∠A=α,AE=500.则EF=500sinα.故选A.点评:本题考查了解直角三角形的应用﹣坡度角问题,通过构造直角三角形,利用锐角三角函数求解.12.如果等腰三角形的底角为30°,腰长为6cm,那么这个三角形的面积为()A.4.5cm2B.9cm2C.18cm2D.36cm2考点:解直角三角形.分析:作底边上的高.运用等腰三角形的性质及三角函数定义分别求三角形的高和底边长,代入公式计算求解.解答:解:如图,作底边上的高AD.∠B=30°,AB=6cm,AD为高,则AD=ABsinB=ABsin30°=3,BD=ABcosB=6×=3.∴BC=2BD=6,S△ABC==×3×6=9.故选B.点评:利用等腰三角形中底边上的高也是底边上的中线求解.二、填空题(每空4分,共24分)13.已知两个相似三角形的相似比为3:2,且它们的面积和为52cm2,则其中较小的三角形的面积为16cm2.考点:相似三角形的性质.分析:根据相似三角形面积的比等于相似比的平方求出两个三角形的面积的比,然后求解即可.解答:解:∵两个相似三角形的相似比为3:2,∴它们的面积的比为9:4,∵它们的面积和为52cm2,∴较小的三角形的面积为52×=16cm2.故答案为:16cm2.点评:本题考查了相似三角形的性质,熟记性质并求出两个三角形的面积的比是解题的关键.14.如图所示,DE∥BC,AC=12,AD=AB,则EC= 4 .考点:平行线分线段成比例.专题:计算题.分析:先利用平行线分线段成比例,由DE∥BC得=,根据比例性质可计算出AE,然后利用EC=AC﹣AE求解.解答:解:∵DE∥BC,∴=,即=,∴AE=8,∴EC=AC﹣AE=12﹣8=4.故答案为4.点评:本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.15.已知cosA=,且∠B=90°﹣∠A,则sinB= .考点:特殊角的三角函数值.专题:计算题.分析:根据cosA的值可得出∠A的度数,然后求出∠B,继而可得出sinB的度数.解答:解:∵cosA=,∴∠A=30°,故可得∠B=90°﹣∠A=60°,∴sinB=.故答案为:.点评:此题考查了特殊角的三角函数值,属于基础题,解答本题的关键是熟练记忆一些特殊角的三角函数值.16.如图所示,D、E分别是△ABC的边AC,AB上的点,∠ADE=∠B,AE=4,AC=16,则△ADE与△ACB的面积之比为1:16 .考点:相似三角形的判定与性质.专题:常规题型.分析:易证△ADE∽ABC,可得对应边的比例,即可求得面积的比例.解答:解:∵∠A=∠A,∠ADE=∠B,∴△ADE∽△ACB,∴△ADE与△ACB的边长比为AE:AC=1:4,∴△ADE与△ACB的面积之比为1:16.点评:本题考查了相似三角形的判定,考查了相似三角形面积比是边长比的平方的性质.17.在△ABC中,∠C=90°,AC=3,AB=5,则cosB= .考点:锐角三角函数的定义.分析:根据勾股定理求出BC的长度,运用锐角三角函数的定义求解.解答:解:∵在△ABC中,∠C=90°,AC=3,AB=5,∴BC=4.∴cosB==.点评:本题考查了勾股定理和锐角三角函数的概念.18.如图,在坡度为1:2的山坡上种树,要求株距(相邻两树间的水平距离)是6m,则斜坡上相邻两树间的坡面距离是3m.考点:解直角三角形的应用-坡度坡角问题.专题:应用题.分析:利用垂直距离:水平宽度得到水平距离与斜坡的比,把相应的数值代入即可.解答:解:∵坡度为1:2,=,且株距为6米,∴株距:坡面距离=2:,∴坡面距离=株距×=3(米).另解:∵CB:AB=1:2,设CB=x,AB=2x,∴AC==x,∴=,∵AB=6m,∴AC=×6=3m.故答案为:3.点评:考查了解直角三角形的应用﹣坡度坡角问题,本题是将实际问题转化为直角三角形中的数学问题,可把条件和问题放到直角三角形中,进行解决.要注意坡度是坡角的正切函数.三、计算题(每小题16分,共16分)19.计算(1)cos60°+sin45°+tan30°•cos30°;(2)sin60°•cos60°+sin45°•cos45°﹣sin30°•cos30°.考点:特殊角的三角函数值.分析:(1)将特殊角的三角函数值代入求解;(2)将特殊角的三角函数值代入求解.解答:解:(1)原式=+×+×=++=(2)原式=×+×﹣×=.点评:本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.四、应用题(20、21题每题10分,22、23题每题12分,共44分)20.如图所示,已知△ABC中,DE∥BC,AD=2,BD=5,AC=5,求AE的长.考点:平行线分线段成比例.专题:计算题.分析:根据平行线分线段成比例由DE∥BC得到,然后根据比例的性质可计算出AE.解答:解:∵DE∥BC,∴,即=,∴AE=.点评:本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.21.如图所示,正方形ABCD的边长是1,P为CD的中点,PQ⊥AP,交BC于Q,求BQ的长.考点:相似三角形的判定与性质;正方形的性质.专题:常规题型.分析:易证△ADP∽△PCQ,可得,即可求BQ的值.解答:解:设BQ=x,则CQ=1﹣x,在正方形ABCD中,∠C=∠D=90°,∵∠APD+∠DAP=90°,∠APD+∠CPQ=90°,∴∠DAP=∠CPQ,∴△ADP∽△PCQ,∴,把AD=1,DP=PC=代入上式,解得x=,即BQ=.点评:本题考查了相似三角形的判定,考查了相似三角形对应边比例相等的性质.22.如图,在△ABC中,已知∠A=60°,∠B=45°,AC=20,求AB的长.(注:辅助线要在答案卷上画出)考点:解直角三角形.分析:过点C作CD⊥AB于D.先解Rt△ACD,得出AD=AC•cosA=AC=10,CD=AC•sinA=10,再解Rt△BCD,得出BD=CD=10,然后根据AB=AD+BD即可求解.解答:解:过点C作CD⊥AB于D.在Rt△ACD中,∵∠ADC=90°,∠A=60°,AC=20,∴AD=AC•cosA=AC=10,CD=AC•sinA=20×=10.在Rt△BCD中,∵∠BDC=90°,∠B=45°,∴BD=CD=10,∴AB=AD+BD=10+10.点评:本题考查了解直角三角形,锐角三角函数的定义,作出适当的辅助线构造直角三角形是解题的关键.23.如图所示,某厂车间的人字屋架为等腰三角形,跨度AB=12m,∠A=30°,求中柱CD和上弦AC的长.(结果保留根号,注:sin30°=,cos30°=,tan30°=)考点:解直角三角形的应用.分析:利用等腰三角形的性质结合锐角三角函数关系分别得出即可.解答:解:由题意可得:∵AB=12m,∠A=30°,∴AD=BD=6m,∴tan30°=,∴CD=6tan30°=2,∵cos30°=∴AC==4.答:中柱CD的长为2m和上弦AC的长为4m.点评:此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.初中数学试卷桑水出品。
人教版九年级上册数学第一次月考试卷含答案
人教版九年级上册数学第一次月考试题一、单选题1.下列方程中,属于一元二次方程的是()A 0=B .2x +1=0C .20y x +=D .21x =12.方程(x+3)(x-4)=0的根是()A .123,4x x =-=B .123,4x x ==C .1234,x x ==-D .123,4x x =-=-3.已知关于x 的方程260--=x kx 的一个根为x=4,则实数k 的值为()A .25B .52C .2D .54.用配方法解方程2250x x --=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=5.已知方程2380x x --=的两个解分别为12,x x ,则1212,x x x x +⋅的值分别是()A .3,-8B .-3,-8C .-3,8D .3,86.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x ,根据题意所列方程正确的是()A .236(1)3625x -=-B .236(12)25x -=C .236(1)25x -=D .225(1)36x -=7.抛物线22(2)1y x =-+的顶点坐标是()A .()2,1B .()2,1-C .()1,2D .()1,2-8.抛物线2y ax bx c =++的图象如图所示,则一元二次方程20ax bx c ++=的解是()A .x=-1B .x=3C .x=-1或x=3D .无法确认9.将抛物线y=4x 2向右平移1个单位,再向上平移3个单位,得到的抛物线是()A .y=4(x+1)2+3B .y=4(x ﹣1)2+3C .y=4(x+1)2﹣3D .y=4(x ﹣1)2﹣310.二次函数2(2)1y x =+-的图像大致为()A .B .C .D .二、填空题11.将方程()()3152x x x -=+化为一元二次方程的一般式______.12.一元二次方程x 2﹣4=0的解是_________.13.已知关于x 的一元二次方程22(2)(21)10m x m x -+++=有两个不相等的实数根,则m 的取值范围是______14.函数243y x x =-++有_____(填“最大”或“最小”),所求最值是_______15.抛物线2y ax bx c =++与x 轴的交点坐标为(1,0)-和(3,0),则这条抛物线的对称轴是x =______.16.已知二次函数23(1)y x k =-+的图象上三点1(2,)A y ,2(3,)B y ,3(4,)C y -,则1y 、2y 、3y 的大小关系是_____.17.将抛物线247y x x =++沿竖直方向平移,使其顶点在x 轴上,且过点A (m ,n ),B (m+10,n ),则n=________三、解答题18.解方程:(1)2410x x --=(2)()255x x-=-19.已知抛物线y=4x 2-11x-3.(1)求它的对称轴;(2)求它与x 轴,y 轴的交点坐标.20.已知关于x 的方程(1)若该方程的一个根为,求的值及该方程的另一根;(2)求证:不论取何实数,该方程都有两个不相等的实数根.21.如图,抛物线2y x bx c =-++经过坐标原点,并与x 轴交于点A (2,0).(1)求此抛物线的解析式:(2)设抛物线的顶点为B ,求∆OAB 的面积S .22.如图,某农场要建一个长方形的养鸡场,鸡场的一边靠墙,墙长25m ,另外三边木栏围着,木栏长40m .(1)若养鸡场面积为200m 2,求鸡场靠墙的一边长.(2)养鸡场面积能达到250m 2吗?如果能,请给出设计方案,如果不能,请说明理由23.已知抛物线()2114y a x =-+与直线21y x =+的一个交点的横坐标是2(1)求a 的值;(2)请在所给的坐标系中,画出函数21(1)4y a x =-+与21y x =+的图象,并根据图象,直接写出12y y ≥时x 的取值范围24.大润发超市以每件30元的价格购进一种商品,试销中发现每天的销售量y (件)与每件的销售价x (元)之间满足一次函数1623y x=-(1)写出超市每天的销售利润w (元)与每件的销售价x (元)之间的函数关系式;(2)如果超市每天想要获得销售利润420元,则每件商品的销售价应定为多少元?(3)如果超市要想获得最大利润,每件商品的销售价定为多少元最合适?最大销售利润为多少元?25.如图所示,抛物线2y x mx n =-++经过点A (1,0)和点C (4,0),与y 轴交于B(1)求抛物线所对应的解析式.(2)连接直线BC ,抛物线的对称轴与BC 交于点E ,F 为抛物线的顶点,求四边形AECF 的面积.(3)x 轴上是否存在一点P ,使得PB+PE 的值最小,若存在,请求出P 点坐标,若不存在,请说明理由.参考答案1.B 2.A 3.B 4.B 5.A 6.C 7.A 8.C 9.B 10.D11.238100x x --=12.x=±213.34m >且2m ≠14.最大715.116.123y y y <<17.2518.(1)2x =±,(2)5x =或4x =19.(1)x=118(2)该抛物线与x 轴的交点坐标为(3,0),1-,04⎛⎫⎪⎝⎭;该抛物线与y 轴的交点坐标为(0,-3).20.(1)m=1;0(2)见解析21.(1)y =−x 2+2x ;(2)122.(1)20m .(2)不能达到250m 2,理由见解析.23.(1)a=-1;(2)图见解析,-1≤x≤224.(1)w=-32x +252x -4860;(2)40或44;(3)42元,432元25.(1)254y x x =-+-;(2)458;(3)存在,P (2011,0)。
福建省漳州市2024-2025学年九年级上学期第一次数学月考试题
2024-2025学年上学期数学月考学校: 班级: 姓名: 座号:一、单项选择题(本题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)A.0x >B.1x >C.1x ≥D.1x ≠ 2.下列根式是最简二次根式的是( )A.9B.3C.4.用配方法解方程2210x x +−=时,配方结果正确的是( ) A.2(2)2x +=B.2(1)2x +=C.2(2)3x +=D.2(1)3x +=5.下列关于x 的方程中,一定是一元二次方程的是( )A.10x −=B.33x x +=C.2350x x +−=D.6.函数2y =++,则y x 的值为( )A.0B.2C.4D.87.下列计算正确的是( )4=3=−8.关于x 的一元二次方程280x mx +−=的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根9.微信红包是沟通人们之间感情的一种方式,已知小丽在2018年”元旦节”收到微信红包为300元,2020年为363元,若这两年小丽收到的微信红包的年平均增长率为x ,根据题意可列方程为( ) A.2300(1)363x +=B.2300(1)363x +=C.363(12)300x +=D.2300363x +=10.已知m ,n 是一元二次方程220230x x +−=的两个实数根,则代数式20ax bx c ++=22m m n ++的值等于( )A.2019B.2020C.2021D.2022二、填空题(本题共6小题,每小题4分,共24分。
) 11.比较大小:13.已知n 是整数,则n 的最小值是______ .14.1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x 步,则可列方程为_____________.15.已知a ,b 是一元二次方程2320x x −+=的两根,则22a b ab +=____________. 16.等腰三角形的边长都是方程2680x x −+=的根,则此三角形的周长为_____. 三、解答题(本题共9小题,共86分。
九年级数学上册月考试题及答案
九年级上册第一次月考一.选择题(每小题3分,共36分) 四个答案中有且只有一个答案是正确的.1、下列计算正确的是……………………………………………………………………… 【 】 A.145454522=-⨯+=- B.145452222=-=- C.694)9)(4(=-⨯-=-- D.694)9)(4(=⨯=--2、方程x(x-2)= x 的根是………………………………………………………………… 【 】 A.x=0 B.x=2 C. x 1=0,x 2=3 D.x 1=0,x 2=23.对于二次根式92+x ,以下说法不正确的是 ………………………………… 【 】 A .它是一个正数 B .是一个无理数 C .是最简二次根式 D .它的最小值是34、若a-b+c=0,则方程ax 2+bx+c=0(a 0≠)必有一个根是………………………… 【 】A .0B 、1C .-1D 、ba-5.下列式子化为最简二次根式后和2是同类二次根式的为……………………………… 【 】A. 27B. 18C. 12D.946.关于x 的一元二次方程(m -1)x 2 +x +m 2-1=0的一个根是0,则m 的值为【 】A .1 B. -1 C. -1或1 D. 217、对于任意实数x ,多项式x 2-6x+10的值是一个…………………………………… 【 】. A. 负数 B. 非正数 C. 正数 D. 无法确定正负的数8、使分式2561x x x --+的值等于零的x 是………………………………………………… 【 】.A.6B.-1或6C.-1D.-69. 用配方法解方程2250x x --=时,原方程应变形为……………………………………【 】A .()216x += B .()216x -=C .()229x +=D .()229x -=10、已知一次函数b ax y +=随x 的增大而减小,且与y 轴的正半轴相交,则关于x 的方程022=+-b x ax 的根的情况是……………………………………………………………………………………………………【 】 A 、有两个不相等的实数根 B 、有两个相等的实数根 C 、没有实数根 D 、无法确定 11、如图所示,某小区规划在一个长为40 m 、宽为26 m 的矩形场地ABCD 上修建三条同样宽的道路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草.若使每一块草坪的面积为144 m 2,求道路的宽度.若设道路的宽度为x m ,则x 满足的方程为 【 】 A 、6144)26)(40(⨯=--x x B 、614426402640⨯=--⨯x x C 、614422624026402⨯=+⨯--⨯x x x D 、6144)226)(240(⨯=--x x12.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A .12B .12或15C .15D .不能确定二、填空题(每小题3分,共18分)请将最后答案直接填在题中横线上.)13.在二次根式31-+x x 中,x 的取值范围是_____________. 14、若01=++-y x x ,则20132012y x +的值为 .15、方程2230x ax -+=有一个根是1,则另一根为 ,a 的值是16.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于 .17.将4个数a,b,c,d 排成2行、2列,两边各加一条竖直线记成a b c d称为二阶行列式,定义a b ad bc c d=-,若11611x x x x +-=-+,则x=_____18.已知△ABC 的三边a 、b 、c 满足a 2+b+21--c =10a+24-b -22,则△ABC 的形状是 。
九年级数学上册月考试卷及答案【完整】
九年级数学上册月考试卷及答案【完整】第一部分:选择题
1. 请问下列哪个选项是正确的?
a. A
b. B
c. C
d. D
2. 如果 a = 2,b = 3,那么 a + b 的值是多少?
a. 4
b. 5
c. 6
d. 7
3. 三角形的内角和是多少?
a. 90度
b. 180度
c. 270度
d. 360度
4. 请问下列哪个选项是与三角形有关的公式?
a. F = ma
b. E = mc^2
c. A = 1/2bh
d. H = VQ
第二部分:填空题
1. 以下哪个数是质数:___。
2. 三角形的面积公式是___。
3. 二次方程的解的个数与 ___ 相关。
4. 下面哪个选项是平行四边形的特性之一:___。
第三部分:解答题
1. 解方程:3x + 5 = 20。
2. 计算三角形 ABC 的面积,已知底边 BC = 8 cm,高 AD = 6 cm。
答案
第一部分:选择题
1. c
2. b
3. b
4. c
第二部分:填空题
1. 2
2. A = 1/2bh
3. 二次方程的解的个数与判别式相关
4. 对角线互相平分
第三部分:解答题
1. x = 5
2. 三角形 ABC 的面积为 24 平方厘米。
以上是九年级数学上册月考试卷及答案的完整内容。
请注意,只有在详细核对题目和答案后,才可确认完全准确性。
2024-2025学年初中九年级上学期第一次月考数学试题及答案(苏科版)
2024-2025学年度第一学期第一次月考模拟试卷一、单选题1. 下列是一元二次方程的是( )A. 20ax bx c ++=B. 22x x −=C. ()222x x x −=−D. 11x x+= 2. 一元二次方程2310x x −−=的根的情况为( )A. 无实数根B. 有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根3. 一元二次方程2430x x −+=配方后变形为( )A. ()241x −=B. ()221x −=C. ()241x +=D. ()221x += 4. 若关于x 一元二次方程2690kx x −+=有两个不相等的实数根,则k 的取值范围是( )A. 1k >B. 0k ≠C. 1k <D. 1k <且0k ≠ 5. 将抛物线2y x =先向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线对应的函数解析式为( )A. ()223y x =−+B. ()232y x =−+ C. ()223y x =++ D. ()232y x =−− 6. 若()()()1232,,1,,2,A y B y C y −是抛物线()221y x a =−+上的三点,则123,,y y y 为的大小关系为( )A 123y y y >> B. 132y y y >> C. 321y y y >> D. 312y y y >> 7. 若抛物线242y kx x =−−与x 轴有两个交点,则k 的取值范围为( )A. 2k >−B. 2k ≥−C. 2k >−且0k ≠D. 2k ≥−且0k ≠ 8. 二次函数2y ax bx c =++图象上部分点的对应值如下表则使0y <的x 的取值范围为( ) x 3− 2− 1− 01 2 3 4 y 60 4− 6− 6− 4− 0 6A. 0x <B. 12x >C. 23x −<<D. 2x <−或3x >的.二、填空题9. 已知m 是方程2520x x −−=的一个根,则22101m m −−=______. 10. 一元二次方程()2110x k x +++=有两个相等的实数根,那么k 的值为_____. 11. 若关于x 的一元二次方程()22240m x mx m −++−=有一个根是0,则m 的值为________ 12. 用一根长22cm 的铁丝围成面积是230cm 的矩形.假设矩形的一边长是cm x ,则可列出方程_____________________13. 如图,已知抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点,则关于x 的不等式2ax bx c kx m ++≥+的解集是________.14. 抛物线()232y x =−−−的顶点坐标是________ .15. 已知二次函数()214y x =+−,当02x ≤≤时,函数值y 取值范围为__________16. 飞机着陆后滑行的距离(米)关于滑行时间(秒)的函数解析式为260 1.5s t t =−,则飞机着陆后滑行_________秒才停下来.17. 如图所示,,A B 分别为22(2)1y x =−−图象上的两点,且直线AB 垂直于y 轴,若2AB =,则点B 的纵坐标为________.18. 如图,横截面为抛物线的山洞,山洞底部宽为8米,最高处高163米,现要水平放置横截面为正方形的箱子,其中两个顶点在抛物线上的大箱子,在大箱子的两侧各放置一个横截面为正方形的小箱子,则小箱子的正方形的最大边长为______米.三、解答题19. 商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由. 20. 解方程:(1)2(2x 1)9+=;(2)2x 2﹣4x =1(配方法);(3)22x 5x 10−+=;(4) ()2(x 3)4x 3x 0−−−= 21. 随着科技的发展,某省正加快布局以5G 等为代表的新兴产业.据统计,目前该省5G 基站数量约为1.5万座,计划到今年底,全省5G 基站数是目前的4倍;到后年底,全省5G 基站数量将达到17.34万座.(1)计划在今年底,全省5G 基站数量是多少万座?(2)按照计划,从今年底到后年底,全省5G 基站数量的年平均增长率为多少?22. 如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的边AB 的长为多少米时,能围成一个面积为2640m 的羊圈?(2)羊圈的面积能达到2650m 吗?如果能,请你给出设计方案;如果不能,请说明理由.23. 已知函数()214y x =−−+.(1)当x =____________时,抛物线有最大值,____________.(2)当x ____________时,y 随x 的增大而增大.(3)该函数可以由函数2y x =−的图象经过怎样的平移得到?(4)该抛物线与x 轴交于点____________,与y 轴交于点____________.(写坐标)(5)在下面的坐标系中画出该抛物线的图象.24. 已知图象的顶点坐标是()2,1,且与x 轴的一个交点坐标是()3,0,求此二次函数的解析式. 25. 已知:二次函数()221y x m x m =−++−. (1)求证:该抛物线与x(2)设抛物线与x 轴的两个交点是A B 、(A 在原点左边,B 在原点右边),且3AB =,求此时抛物线的解析式.26. 若直线5y x =−与y 轴交于点A ,与x 轴交于点B ,二次函数2y ax bx c =++的图象经过点A ,点B ,且与x 轴交于点()1,0C −.(1)求二次函数解析式;(2)若点P 为直线AB 下方抛物线上一点,连接PA ,PB ,求ABP 面积的最大值及此时点P 的坐标;是的2024-2025学年度第一学期第一次月考模拟试卷一、单选题1. 下列是一元二次方程的是( )A. 20ax bx c ++=B. 22x x −=C. ()222x x x −=−D. 11x x += 【答案】B【解析】【分析】本题主要考查了一元二次方程的识别.本题根据一元二次方程的定义解答.【详解】解:A 、当0a ≠时,20ax bx c ++=是一元二次方程,故本选项不符合题意; B 、22x x −=是一元二次方程,故本选项符合题意;C 、变形为22x =不是一元二次方程,故本选项不符合题意;D 、11x x+=含有分式,不是一元二次方程,故本选项不符合题意; 故选:B2. 一元二次方程2310x x −−=的根的情况为( )A. 无实数根B. 有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根【答案】D【解析】【分析】本题考查一元二次方程根的情况,涉及一元二次方程根的判别式,由题中一元二次方程得到判别式,即可判断答案,熟记一元二次方程根的情况与判别式符号关系是解决问题的关键.【详解】解:一元二次方程2310x x −−=, 3,1,1a b c ==−=−,()()21431∴∆−−××−112=+130=>,∴一元二次方程2310x x −−=的根的情况为有两个不相等的实数根,故选:D .3. 一元二次方程2430x x −+=配方后变形为( )A. ()241x −=B. ()221x −=C. ()241x +=D. ()221x +=【答案】B【解析】【分析】本题考查了解一元二次方程—配方法,掌握配方法是解题的关键.先把常数项移到方程右边,再把方程两边加上4,然后把方程左边写成完全平方形式即可.【详解】解:2430x x −+=,∴243x x −=−,∴24434x x −+=−+,即()221x −=.故选:B4. 若关于x 的一元二次方程2690kx x −+=有两个不相等的实数根,则k 的取值范围是( )A. 1k >B. 0k ≠C. 1k <D. 1k <且0k ≠ 【答案】D【解析】【分析】本题考查了一元二次方程的定义和一元二次方程根的判别式.根据一元二次方程根的判别式,即可求解.【详解】解:∵关于x 的一元二次方程2690kx x −+=有两个不相等的实数根,∴()26490k ∆=−−×>,且0k ≠,解得:1k <且0k ≠,即k 的取值范围是1k <且0k ≠.故选:D5. 将抛物线2y x =先向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线对应的函数解析式为( )A. ()223y x =−+B. ()232y x =−+ C. ()223y x =++ D. ()232y x =−− 【答案】B【解析】【分析】本题考查函数图象的平移,解题的关键是要熟练掌握函数的平移规律:“左加右减,上加下减”,根据函数图象平移规律即可得到答案.【详解】解:将抛物线2y x =先向上平移2个单位长度,得到22y x =+,再向右平移3个单位长度,得到()232y x =−+, 故选:B .6. 若()()()1232,,1,,2,A y B y C y −是抛物线()221y x a =−+上三点,则123,,y y y 为的大小关系为( )A. 123y y y >>B. 132y y y >>C. 321y y y >>D. 312y y y >>【答案】B【解析】【分析】本题主要考查了二次函数的性质,掌握当抛物线开口方向向上时,离对称轴越远,函数值越大成为解题的关键.先确定抛物线的对称轴,再确定抛物线开口向上,此时离对称轴越远,函数值越大,据此即可解答.【详解】解:∵()221y x a =−+,∴抛物线的对称轴为直线1x =,开口向上,∴离对称轴越远,函数值越大,∵点()12,A y −离对称轴最远,点()21,B y 在对称轴上,∴132y y y >>.故选:B .7. 若抛物线242y kx x =−−与x 轴有两个交点,则k 的取值范围为( )A. 2k >−B. 2k ≥−C. 2k >−且0k ≠D. 2k ≥−且0k ≠ 【答案】C【解析】【分析】本题主要考查了二次函数与一元二次方程之间的关系,二次函数的定义,二次函数与x 轴有两个交点,则与之对应的一元二次方程有两个不相等的实数根,据此利用判别式求出k 的取值范围,再结合二次项系数不为0即可得到答案.【详解】解:∵抛物线242y kx x =−−与x 轴有两个交点, 的∴()()2Δ44200k k =−−×−⋅> ≠ , ∴2k >−且0k ≠,故选:C .8. 二次函数2y ax bx c =++图象上部分点的对应值如下表则使0y <的x 的取值范围为( ) x 3− 2− 1− 01 2 3 4 y 60 4− 6− 6− 4− 0 6A. 0x <B. 12x >C. 23x −<<D. 2x <−或3x >【答案】C【解析】 【分析】本题主要考查了二次函数的性质,先求出二次函数的表达式,再根据与x 轴的交点即可求出0y <的x 的取值范围,解题的关键是求出二次函数2y ax bx c ++的表达式.【详解】解:由表格可知2y ax bx c ++经过()2,0−,()3,0,()0,6−,设解析式为()()23y a x x =+−∴()()02036a +−=−, 解得:1a =,∴抛物线解析式为()()2236y x x x x =+−=−−,∴抛物线图象开口向上,与x 轴的交点为()2,0−,()3,0,∴0y <时x 的取值范围是23x −<<,故选:C .二、填空题9. 已知m 是方程2520x x −−=的一个根,则22101m m −−=______. 【答案】3【解析】【分析】本题考查一元二次方程的根的定义、代数式求值,根据一元二次方程的根的定义,将m 代入2520x x −−=,求出252m m −=,即可求出22101m m −−的值.【详解】解:∵m 是方程2520x x −−=的一个根,∴252m m −=,∴()2221012512213,m m m m −−=−−=×−=故答案为:3. 10. 一元二次方程()2110x k x +++=有两个相等的实数根,那么k 的值为_____. 【答案】1或3−【解析】【分析】本题考查了根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.根据判别式的意义得到()2Δ1410k =+−×=,然后解关于k 的方程即可. 【详解】解:由题意得:()2Δ1410k =+−×=,即:()214k +=,解得:1k =或3−,故答案为:1或3−. 11. 若关于x 的一元二次方程()22240m x mx m −++−=有一个根是0,则m 的值为________ 【答案】2−【解析】【分析】此题考查了一元二次方程的定义及方程的解的定义,将0x =代入方程求出2m =±,再根据一元二次方程的定义求出2m ≠,由此得到答案,正确理解一元二次方程的定义及方程的解的定义是解题的关键.【详解】解:将0x =代入()22240m x mx m −++−=,得240m −=, 解得2m =±,∵20m −≠,∴2m ≠,∴2m =−,故答案为2−.12. 用一根长22cm 的铁丝围成面积是230cm 的矩形.假设矩形的一边长是cm x ,则可列出方程_____________________ 【答案】22=302x x −【解析】【分析】本题考查了一元二次方程的运用,要掌握运用长方形的面积计算公式S ab =来解题的方法.本题可根据长方形的周长可以用x 表示另一边长的值,然后根据面积公式即可列出方程.【详解】解:一边长为 c m x ,则另一边长为22cm 2x −, 得22=302x x −. 故答案为:22=302x x −. 13. 如图,已知抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点,则关于x 的不等式2ax bx c kx m ++≥+的解集是________.【答案】30x −≤≤【解析】【分析】本题考查了二次函数与不等式的关系,主要利用了数形结合的思想,解题关键在于对图象的理解,题目中的不等式的含义为:二次函数的图象在一次函数图象上方时,自变量x 的取值范围.根据图象,写出抛物线在直线上方部分的x 的取值范围即可.【详解】∵抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点, ∴由函数图象可得,不等式2ax bx c kx m ++≥+的解集是30x ≤≤﹣,故答案为:30x −≤≤.14. 抛物线()232y x =−−−的顶点坐标是________ . 【答案】()3,2− 【解析】【分析】本题考查了二次函数2()y a x h k =−+(a ,h ,k 为常数,0a ≠)性质,2()y a x h k =−+是抛物线的顶点式,a 决定抛物线的形状和开口方向,其顶点是(,)h k ,对称轴是直线x h =. 【详解】解:物线()232y x =−−−的顶点坐标是()3,2−.故答案为:()3,2−.15. 已知二次函数()214y x =+−,当02x ≤≤时,函数值y 的取值范围为__________ 【答案】35y −≤≤##53x ≥≥− 【解析】【分析】本题考查二次函数的图象与性质,根据题意得当1x >−时,y 随x 的增大而增大,求得当0x =时,=3y −;2x =时,5y =,即可求解.【详解】解:由题意得,10a =>,对称轴1x =−, ∴当1x >−时,y 随x 增大而增大, ∵当0x =时,=3y −;2x =时,5y =,∴当02x ≤≤时,函数值y 的取值范围为35y −≤≤, 故答案为:35y −≤≤.16. 飞机着陆后滑行的距离(米)关于滑行时间(秒)的函数解析式为260 1.5s t t =−,则飞机着陆后滑行_________秒才停下来. 【答案】20 【解析】【分析】本题主要考查二次函数的应用,飞机停下时,也就是滑行距离最远时,即在本题中需求出s 最大时对应的t 值,根据顶点坐标的实际意义可得答案. 【详解】∵()2260 1.5 1.520600s t t t =−=−−+, ∴当20t =时,s 取得最大值600, ∴飞机着陆后滑行20秒才停下来.的的故答案:20.17. 如图所示,,A B 分别为22(2)1y x =−−图象上的两点,且直线AB 垂直于y 轴,若2AB =,则点B 的纵坐标为________.【答案】1 【解析】【分析】本题主要考查二次函数图象的对称性,能够熟练运用对称轴求点的横坐标是解题关键.求出对称轴后根据对称性求点B 横坐标,再代入解析式即可解答. 【详解】解:∵()2221y x =−−, ∴抛物线对称轴为直线2x =, ∵2AB =,∴点B 横坐标为213+=,将3x =代入()2221y x =−−得1y =, ∴点B 的纵坐标为1. 故答案为:118. 如图,横截面为抛物线的山洞,山洞底部宽为8米,最高处高163米,现要水平放置横截面为正方形的箱子,其中两个顶点在抛物线上的大箱子,在大箱子的两侧各放置一个横截面为正方形的小箱子,则小箱子正方形的最大边长为______米.【解析】为【分析】本题主要考查了二次函数的实际应用,先建立解析中坐标系,则()4,0A ,设大小正方形的边长分别为2m ,n ,则点B 、C 的坐标分别为:()(),2,m m m n n +,,利用待定系数法求出抛物线解析式为211633y x =−+,再把B 、C 坐标代入求解即可.【详解】解:建立如下平面直角坐标系,则点()4,0A ,设大小正方形的边长分别为2m ,n ,则点B 、C 的坐标分别为:()(),2,m m m n n +,、设抛物线的表达式为:()21603y ax a =+≠, 将点A 的坐标代入上式得:160163a =+,解得13a =−,∴抛物线的表达式为:213y x =− 将点B 、C 的坐标代入上式得:()2211623311633m m n m n =−+ =−++①②,由①得1228m m ==−,(舍去),解得:2m n = = 或2m n = =(舍去),米.. 三、解答题19. 商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由. 【答案】(1)()40x −,2x(2)每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元; (3)不能,理由见解析 【解析】【分析】此题考查了一元二次方程的实际应用,解题的关键是正确分析题目中的等量关系. (1)设每套拖把降价x 元,根据题意列出代数式即可;(2)设每套拖把降价x 元,则每套的销售利润为()40x −元,平均每天的销售量为()202x +套,根据题意列出一元二次方程求解即可;(3)设每套拖把降价y 元,则每套的销售利润为()12080y −−元,平均每天的销售量为()202y +套,根据题意列出一元二次方程,然后依据判别式求解即可. 【小问1详解】解:设每套拖把降价x 元,则每天销售量增加2x 套,即每天销售()202x +套, 每套拖把盈利()1208040x x −−=−元.故答案为:()40x −,()202x +; 【小问2详解】解:设每套拖把降价x 元,则每套的销售利润为()40x −元,平均每天的销售量为()202x +套,依题意得:()()402021242x x −+=, 整理得:2302210x x −+=,解得:121317x x ==,. 又∵需要尽快减少库存,∴17x =.答:每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元; 【小问3详解】解:商家不能达到平均每天盈利1400元,理由如下:设每套拖把降价y 元,则每套的销售利润为()12080y −−元,平均每天的销售量为()202y +套,依题意得:()()120802021400y y −−+=, 整理得:2303000y y −+=. ∵()22Δ43041300300<0b ac =−=−−××=−, ∴此方程无实数解, 即不可能每天盈利1400元. 20. 解方程:(1)2(2x 1)9+=; (2)2x 2﹣4x =1(配方法); (3)22x 5x 10−+=;(4) ()2(x 3)4x 3x 0−−−=【答案】(1)121,2x x ==−;(2)1211x x ;(3)12x x ;(4)1233,5x x == 【解析】【分析】(1)直接开平方法解方程即可;(2)先方程两边除以2,将二次项系数化为1,再在方程两边同时加上1,配方开平方即可解答; (3)确定a 、b 、c ,求出△值,当判断方程有解时,带入公式求解即可; (4)整理方程,利用因式分解法解方程即可. 【详解】(1)2(2x 1)9+= 开平方,得:2x 13+=±, 解得:121,2x x ==−; (2)22x 41x −=,二次项系数化为1,得:21x 22x −=, 配方,得:21x 2112x −+=+, 即23(x 1)2−=,开方,得:1x −=解得:1211x x (3)22x 5x 10−+= ∵a=2,b=﹣5,c=1,∴△=224(5)42117b ac −=−−××=﹥0,∴x =,解得:12x x =(4)()2(x 3)4x 3x 0−−−= ()2(x 3)4x 30x +−−=(3)(53)0x x −−=∴30x −=或530x −=,解得:1233,5x x ==. 【点睛】本题考查解一元二次方程的方法,熟练掌握一元二次方程的各种解法的步骤和注意点,灵活选用解法是解答的关键.21. 随着科技的发展,某省正加快布局以5G 等为代表的新兴产业.据统计,目前该省5G 基站数量约为1.5万座,计划到今年底,全省5G 基站数是目前的4倍;到后年底,全省5G 基站数量将达到17.34万座.(1)计划在今年底,全省5G 基站数量是多少万座?(2)按照计划,从今年底到后年底,全省5G 基站数量的年平均增长率为多少? 【答案】(1)6万座 (2)70% 【解析】【分析】本题考查有理数乘法的应用,一元二次方程的实际应用:(1)根据计划到今年底,全省5G 基站数是目前的4倍,列出算式计算即可;(2)设全省5G 基站数量的年平均增长率为x ,根据题意,列出一元二次方程,进行求解即可 【小问1详解】解:由题意得:1.546×=(万座); 答:计划在今年底,全省5G 基站数量是6万座. 【小问2详解】解:设全省5G 基站数量的年平均增长率为x ,由题意得:()26117.34x +=,解得:120.7, 2.7x x ==−(不符合题意,舍去); 答:全省5G 基站数量的年平均增长率为70%.22. 如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的边AB 的长为多少米时,能围成一个面积为2640m 的羊圈?(2)羊圈的面积能达到2650m 吗?如果能,请你给出设计方案;如果不能,请说明理由. 【答案】(1)当羊圈的边AB 的长为16m 或20m 时,能围成一个面积为2640m 的羊圈 (2)羊圈的面积不能达到2650m ,理由见解析 【解析】【分析】本题考查了一元二次方程的应用,根据题意列出一元二次方程,解一元二次方程是解题的关键. (1)设羊圈的边AB 的长为m x ,则边BC 的长为()722m x -根据题意列出一元二次方程,解方程即可求解;(2)同(1)的方法建立方程,根据方程无实根即可求解. 【小问1详解】解:设羊圈的边AB 的长为m x ,则边BC 的长为()722m x -,根据题意,得()722640x x −=,化简,得2363200x x −+=,解方程,得116x =,220x =,当116x =时,72240x −=, 当220x =时,72232x −=.答:当羊圈的边AB 的长为16m 或20m 时,能围成一个面积为2640m 的羊圈. 【小问2详解】不能,理由如下:根据题意,得()722650x x −=, 化简,得2363250x x −+=,()22436432540b ac −=−×=−−< , ∴该方程没有实数根. ∴羊圈的面积不能达到2650m 23. 已知函数()214y x =−−+.(1)当x =____________时,抛物线有最大值,是____________. (2)当x ____________时,y 随x 的增大而增大.(3)该函数可以由函数2y x =−的图象经过怎样的平移得到?(4)该抛物线与x 轴交于点,与y 轴交于点____________.(写坐标) (5)在下面的坐标系中画出该抛物线的图象.【答案】(1)1;4 (2)1<(3)见解析 (4)(1,0)−和(3,0);(0,3) (5)见解析 【解析】【分析】本题考查了二次函数的性质、抛物线与x 轴的交点坐标、二次函数图象与几何变换以及二次函数的最值,熟练掌握二次函数的性质是解题的关键.(1)根据二次函数的顶点式找出抛物线的顶点坐标,再根据二次项系数为1−得出抛物线开口向下,由此即可得出结论;(2)根据抛物线开口方向结合抛物线的对称轴,即可找出单增区间;(3)找出函数2y x =−的顶点坐标,结合函数2(1)4y x =−−+的顶点坐标,即可找出平移的方法; (4)令0y =可得出关于x 的一元二次方程,解方程求出x 值,由此得出抛物线与x 轴的交点坐标;令0x =求出y 值,由此即可得出抛物线与y 轴的交点坐标;(5)列表,描点,连线即可画出该抛物线的图象. 【小问1详解】解: 函数解析式为2(1)4y x =−−+,∴抛物线的开口向下,顶点坐标为(1,4). ∴当1x =时,抛物线有最大值,是4.故答案为:1;4; 【小问2详解】解: 抛物线的开口向下,对称轴为1x =,∴当1x <时,y 随x 的增大而增大.故答案为:1<; 【小问3详解】解: 函数2y x =−的顶点坐标为(0,0),∴将函数2y x =−的图象先向右平移1个单位长度,再向上平移4个单位长度即可得出函数2(1)4y x =−−+的图象.【小问4详解】解:令0y =,则有2(1)40x −−+=, 解得:11x =−,23x =,∴该抛物线与x 轴的交点坐标为(1,0)−和(3,0).当0x =时,2(01)43y =−−+=, ∴该抛物线与y 轴的交点坐标为(0,3).故答案为:(1,0)−和(3,0);(0,3). 【小问5详解】 解:列表:x 1−0 1 2 3 y343描点,连线,该抛物线的图象如图:.24. 已知图象的顶点坐标是()2,1,且与x 轴的一个交点坐标是()3,0,求此二次函数的解析式. 【答案】()221y x =−−+ 【解析】【分析】本题主要考查了求二次函数解析式,先把解析式设顶点式,再利用待定系数法求解即可. 【详解】解:设此二次函数解析式为()()2210y a x a =−+≠,把()3,0代入()()2210y a x a =−+≠中得:()20321a =−+,解得1a =−,∴此二次函数解析式为()221y x =−−+. 25. 已知:二次函数()221y x m x m =−++−.(1)求证:该抛物线与x 轴一定有两个交点;(2)设抛物线与x 轴的两个交点是A B 、(A 在原点左边,B 在原点右边),且3AB =,求此时抛物线的解析式.【答案】(1)见解析 (2)2y x x 2−− 【解析】【分析】(1)根据()()22Δ2418m m m =+−−=+的符号,即可求解,为(2)由根与系数关系,列出()()2224A B A B A B AB x x x x x x =−=+−⋅,即可求解,本题考查了根的判别式,根据系数关系,解题的关键是:熟练掌握根的判别式,根据系数关系.【小问1详解】证明:()()22Δ2418m m m =+−−=+,20m ≥ ,2Δ880m ∴=+≥>,故抛物线与x 轴一定有两个交点,【小问2详解】解:令0y =,得()2210x m x m −++−=, 由(1)知Δ0>,2A B x x m ∴+=+,1A B x x m ⋅=−,()()()()22224241A B A B A B AB x x x x x x m m =−=+−⋅=+−−, ()()22419m m ∴+−−=,解得1m =±,A 在原点左边,B 在原点右边,10A B x x m ∴⋅=−<,1m ∴<,1m ∴=−,故抛物线的表达式为:2y x x 2−−.26. 若直线5y x =−与y 轴交于点A ,与x 轴交于点B ,二次函数2y ax bx c =++的图象经过点A ,点B ,且与x 轴交于点()1,0C −.(1)求二次函数的解析式;(2)若点P 为直线AB 下方抛物线上一点,连接PA ,PB ,求ABP 面积的最大值及此时点P 的坐标;【答案】(1)245y x x =−−(2)当52x =时,ABP S 最大,最大为1258,这时点P 的坐标为535,24 − 【解析】【分析】本题考查二次函数的综合应用,熟练掌握的图像和性质是解题的关键. (1)利用待定系数法求函数解析式即可;(2)过点P 作PQ x ⊥轴交AAAA 于点Q ,设点P 的坐标为()2,45x x x −−,则点Q 的坐标为(),5x x −,则25PQ x x =−+,然后根据ABPS PQ OB =⋅ 计算即可. 【小问1详解】解:当xx =0时,5y =−,∴点A 的坐标为()0,5−, 当0y =时,50x −=,解得5x =,∴点B 的坐标为()5,0,设抛物线的解析式为()()51y a x x =−+,代入()0,5−得:55a −=−,解得:1a =,∴二次函数的解析式为()()25145y x x x x =−+=−−; 【小问2详解】解:过点P 作PQ x ⊥轴交AAAA 于点Q ,设点P 的坐标为()2,45x x x −−,则点Q 的坐标为(),5x x −, ∴225(45)5PQ x x x x x =−−−−=−+, ∴()2211551255522228ABP S PQ OB x x x =⋅=×−+×==−−+ , 当52x =时,ABP S 最大,最大为1258,这时点P 的坐标为535,24 − .。
山西省大同市大同一中南校2024-2025学年上学期第一次月考九年级数学试卷
山西省大同市大同一中南校2024-2025学年上学期第一次月考九年级数学试卷一、单选题1.方程()()3240x x −−=的根是( ) A .13x =−,22x =− B .13x =,22x = C .13x =,22x =−D .13x =−,22x =2.抛物线2(3)5y x =−+的开口方向、顶点坐标分别是( ) A .开口向上;()3,5− B .开口向下;()3,5−− C .开口向上;()3,5D .开口向下;()3,5−3.解方程()()2513510x x x −−−=最适当的方法是( ) A .直接开平方法 B .配方法C .公式法D .因式分解法4.拋物线243y x x =−++的对称轴是( ) A .x =2B .2x =−C .4x =D .4x =−5.习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.我校为响应全民阅读活动,打造书香校园,在校园里建立了图书角。
据统计,八(10)班第一周阅读128人次,阅读人次每周增加,到第三周累计阅读608人次,若阅读人次的周平均增长率为x 可得方程( ) A .128(1+x)=608B .128(1+x )2=608C .128(1+x)+128(1+x)2=608D .128+128(1+x)+128(1+x)2=6086.关于x 的一元二次方程22210x ax a ++−=的根的情况是( ) A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .实数根的个数与实数a 的取值有关7.下表给出了二次函数()20y ax bx c a =++≠的自变量x 与函数值y 的部分对应值,则方程20ax bx c ++=的一个根的近似值可能是( )A .1.09B .1.19C .1.29D .1.398.若点()14A y −,,()21B y −,,3(1)C y ,在抛物线21(2)12y x =−+−上,则( ) A .132<y y y <B .213<<y y yC .321<y y y <D .312y y y <<9.二次函数y =ax 2+bx +c 的自变量x 与函数y 的对应值如下表:下列说法正确的是( ) A .抛物线的开口向下 B .当x >-3时,y 随x 的增大而增大C .二次函数的最小值是-2D .抛物线的对称轴是直线x =-5210.如图,抛物线()210:+=+L y ax bx c a ≠与x 轴只有一个公共点A (1,0),与y 轴交于点B(0,2),虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线2L ,则图中两个阴影部分的面积和为( )A .1B .2C .3D .4二、填空题11.方程32=2x x x ++()()的解为 .12.二次函数2=23y x x −−的顶点坐标是 ,与y 轴的交点坐标是 .13.汽车刹车后行驶的距离y (单位:m )关于行驶的时间x (单位:s )的函数解析式是:2156s x x =−,汽车刹车后前进了 米才能停下来.14.三角形的两边长分别是3和4,第三边长是方程x 2﹣13x+40=0的根,则该三角形的周长为 .15.如图,抛物线2824277y x x =−++与x 轴交于A 、B 两点,与y 轴交于C 点,P 为抛物线对称轴上动点,则PA PC +取最小值时,点P 坐标是 .三、解答题 16.解下列方程: (1)22480x x +−=; (2)262−+=−x ; (3)22530x x +−=17.已知关于x 的一元二次方程22240x mx m ++−=. (1)求证:无论m 为何值,该方程总有两个不相等的实数根. (2)若该方程的两个根为p 和q ,且满足0pq p q −−=,求m 的值.18.如图,直线12y x =−−交x 轴于点A ,交y 轴于点B ,抛物线22y ax bx c =++顶点为A ,且经过点B .(1)求该抛物线的解析式; (2)求当12y y ≥时,x 的取值范围.19.平安路上,多“盔”有你,在“交通安全宣传月”期间,某商店销售一批头盔,进价为每顶40元,售价为每顶68元,平均每周可售出100顶.商店计划将头盔降价销售,每顶售价不高于58元,经调查发现:每降价2元,平均每周可多售出40顶.设每顶头盔降价x 元,平均每周的销售量为y 顶.(1)每顶头盔降价x 元后,每顶头盔的利润是 元(用含x 的代数式表示); (2)平均每周的销售量y (顶)与降价x (元)之间的函数关系式是 ; (3)若该商店希望平均每周获得4000元的销售利润,则每顶头盔应降价多少?20.如图,利用一面墙(墙的长度不超过45m ),用79m 长的篱笆围成一个矩形场地,并且与墙平行的边留有1m 宽建造一扇门方便出入(用其他材料),设m AB x =,矩形ABCD 的面积为2m y .(1)请求出y 与x 之间的函数关系式,并写出x 的取值范围; (2)怎样围才能使矩形场地的面积为2750m ?(3)当x 为何值时,矩形场地的面积最大?最大值为多少平方米? 21.阅读与思考下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务:用函数观点认识一元二次方程根的情况,我们知道,一元二次方程()200ax bx c a ++=≠的根就是相应的二次函数()20y ax bx c a =++≠的图象与x 轴交点的横坐标.抛物线与x 轴的交点有三种情况:有两个交点、有一个交点、无交点.与此相对应,一元二次方程的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、无实数根.因此可用抛物线与x 轴的交点个数确定一元二次方程根的情况.下面根据抛物线的顶点坐标24,24b ac b aa ⎛⎫−− ⎪⎝⎭和一元二次方程根的判别式24Δb ac =−分别分0a >和0a <两种情况进行分析:(i )0a >时,拋物线开口向上:①当2Δ40b ac =−>时,有240ac b −<.0a >,∴顶点纵坐标2404ac b a−<.∴顶点在x 轴的下方,犹物线与x 轴有两个交点(如图①).∴—元二次方程()200ax bx c a ++=≠有两个不相等的实数根.②当2Δ40b ac =−=时,有240.−=ac b 0a >,∴顶点纵坐标2404ac b a−=.∴顶点在x 轴上,抛物线与x 轴有一个交点(如图②).∴—元二次方程()200ax bx c a ++=≠有两个相等的实数根.③当2Δ40b ac =−<时,L (ii )0a <时,抛物线开口向下:… 任务:(1)请参照小论文中当0a >时①②的分析过程,写出(ii )中当0a <,Δ0>时,一元二次方程根的情况的分析过程,并画出相应的示意图;(2)实际上,除一元二次方程外,初中数学还有一些知识也可以用函数观点来认识,例如:可用函数观点来认识一元一次方程的解,请你再举出一例22.如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12m ,宽是4m .按照图中所示的直角坐标系,抛物线可以用y =16−x 2+bx +c 表示,且抛物线上的点C 到OB 的水平距离为3m ,到地面OA 的距离为172m .(1)求抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?23.如图,已知二次函数23y ax bx =++的图象交x 轴于点()1,0A ,()3,0B ,交y 轴于点C .(1)求这个二次函数的解析式:(2)点P 是直线BC 下方抛物线上的一动点,求BCP 面积的最大值,并求出此时点P 的坐标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
星火中学九年级第一次月考试题
数学试卷
(全卷共四个大题,满分150分,考试时间120分钟)
亲爱的同学们:
这是你们进入九年级以来的第一次模拟考试,为了理想我们必须拼搏!
一个阶段的紧张学习,你们辛苦了!但前面的路还很长,还需要我们共同努力,面对今 天的考试,请你们认真、仔细,放下思想包袱,认真答好每一道题,如果你考好了,请你不要 骄傲,如果没考好,请你相信老师会做你的坚强后盾!
祝同学们考试成功!
一、选择题(共10小题, 1、
下列计算正确的是( )
A 、273+472=6^5
C 、V27-V3=3
2、 用配方法解方程扌-4x + 2 = 0
A 、(—2)2=2
B 、(X + 2)—2 每小题3分,计30分•) B 、V5-V2=V3 D 、J (-3尸=-3
下列配方正确的是( ) C (兀-2)2=-2
°、(兀-2尸=6
)
D 、J a 」(a > 0)
4. 下列方程是关于x 的一元二次方程的是( );
A 、ctx^ + bx + c = 0
B 、
C 、X 2
+ 2x = x 2
-1
D 、 5. 若4x +加$是完全平方式,则加的值是
(A ) x>2; (B ) xH2; (C ) xW2; (D ) ()WxV2; 7、若"二a ,折二,则丁丽的值用。
和"可表示为()
(A ) 6、化简
2 (B)-2 (C)±2 (D)以上都不对
口成立的条件是 3、 下列根式中属最简二次根式的是( A 、如+1 B 、石 C 、观
=+ — = 2
Q 兀
3(x + l)2 =2(x+l)
8、 若关于x 的一元二次方程fct*2-6x + 9 = 0有两个不相等的实数根,则k 的取值范围()
A.k<1 且 kHO
B. kHO
C. k<l
D. k>l 9、 血石是整数,则正整数兄的最小值是(
)
A. 4;
B. 5;
C. 6;
D. 7
10、 ____________________________________ 下列各式中,一定是二次根式的是 )
A 、
B 、
C 、+4
D 、厶-1
二、填罕题(共10小题,每小题3分,计30分) 11、 __________________________ 化简 J (3—龙)2 二
12、 ___________________________________________ 若P-2| + A /^3 + (C -4)2=0,则。
一方+ C = .
1 1 - + ---
13、 已知X 】和X?是方程方程3x (兀-1) = 5(兀+ 2)的两个根,则 兀 兀2 =
一; 14、 已知x = l 是方程ax 2
+x-2 = 0的一个根,则Q= _______________________ o
15、 生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了 182件,如 果全组有x 名同学,则根据题意得 ____________ 。
16、 关于兀的号程(加一VT )x 川T —X + 3 = 0是一元二次方程,则〃2= _______ ;
y! x — 3
17、 使代数式 一 有意义的x 的取值范围是 ;
x — 4 °
18、 、己知关于x 的一元二次方程x 2
-x-m =。
有两个不相等的实数根,则实数m 的取值范围是_ 19、 由于甲型H1N1流感(起初叫猪流感)的影响,在一个月内猪肉价格两次大幅下降.由原来每斤
16
列方程为 _______________
想的规律用含自然数n (n > 1)的代数式表示出来 __________________ . 三、解答题(解答应写岀必要的计算过程、推演步骤或文字说明,共40分)
ab
(A) I 。
;
b-a
a+b
(B)
10 ;
(C) I 。
;
b
(D) a ;
元下调到每斤9元,求平均每次下调的百分率是多少? 设平均每次下调的百分率为X,则根据题意可
20.观察下列各式:
…,请你将猜
2 1、计算下列各题(每小题5分,共1 5分)
(1)勺 + 6(7⑵(4\/2 — 3>/6) -J-2>/2
(3)
22、用适当的方法解下列方程(每小题6分,共18分)
(1)(3X-1)2=5(2)7x2 -4^x-5 = 0 (3) 3x (2x+1 )=4x+2
23、(7分)已知a=—,b=2+V3 ,求:/一戸的值.
2 + V3
四、解答题(解答应写出必要的计算过程、推演步骤或文字说明,共50分)
24、(1()分)已知:0 = 5 + 2乔,b = 5 — 2拆,求铅的值
25、(8分)己知等腰三角形底边长为8,腰长是方程9无+ 20 =()的一个根,求这个三角形的面积.
kx~ + 伙 + 2)x H—— 0
26、(本题满分10分)关于x的方程 4 有两个不相等的实数根.(1)求k的取值范
围。
(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由
27、(1()分)如图,在一幅矩形地毯的四周镶有宽度相同的花边.如图,地毯中央的矩形图案长8
米、宽6米,整个地毯的面积是8()平方米.求花边的宽.
28.(12分)阅读下面的例题,请参照例题解方程x2-|x-l|-l = 0o 解
方程兀2十卜2 = 0;
解:⑴当x>0时,原方程化为X2-X-2=0.
解得:兀1=2,无2=—1 (不合题意,舍去)
⑵当XVO时,原方程化为X2+X-2=0
解得:= -2 *2=1,(不合题意,舍去)
二原方程的解为兀]=2, x2 = -2。