高等数学1_期末复习题一

合集下载

四川大学网络教育《高等数学(理)(1)》复习资料期末考试复习题及参考答案

四川大学网络教育《高等数学(理)(1)》复习资料期末考试复习题及参考答案

之得
y
2xy 3 ey x2
.
1 etdt
11.求极限 lim x0
cos x
sin x2
.
解:由洛必达法则,
lim
x0
1 etdt
cos x
sin x2
sin xecos x lim
x0 2x
1 e. 2
12. 设 D 是 由 直 线 x y 1 与 x、y 轴 围 成 的 区 域 , 求 二 重 积 分
解:特征方程为 r2 5r 6 0 ,解之得特征根为 r1 2,r2 3 . 故原方 程的通解为
y C1e2x +C2 e3x, 其中 C1,C2 为任意常数. 10.求由方程 e y x2 y 3x 0 所确定的隐函数 y y(x) 的导数. 解:
方程 e y x2 y 3x 0 两边同时对 x 求导得,e y y 2xy x2 y 3 0,解
(A) 2x y 1 0
(B) 2x y 1 0
(C) x 1 0
(D) y 1 0
9. 设区域 D 为 x2 y2 1在第一象限部分,则 xy2dxdy =( C )
D
(A)
d
1sin cos2 r2dr
0
0
(B)
d
1sin cos2 r3dr
0
0
(C)
x0
x
x0
1
14.由方程 xy2 e y 5 0 可确定 y 是 x 的隐函数,求 dy . dx
解:方程 xy2 e y 5 0 两边同时对 x 求导得,
y2 2xyy e y y 0
解之得,
y
e
y
y2 2xy
.
15.求微分方程 y 3 y 4 y 0 的通解.

广西大学成人教育《高等数学1》期末考试复习题及参考答案

广西大学成人教育《高等数学1》期末考试复习题及参考答案

A B C D
正确答案: B
7
A
B
C
D
正确答案: B
8
A4 B3 C2 D1
正确答案: D
9
A3
B2
C1
D0

正确答案: A
10
A B
C
D

正确答案: D
11
A
0
B
1
C2
D3

正确答案: C
12
A B
C D
正确答案: D
13
A
B C
D

正确答案: D
14
A 单调增加
B 单调减少
C 图形上凹
D 图形上凸 正确答案: A
复习题一
一.单选题(共 14 题)
1
A 充分必要条件 B 充分条件 C 必要条件 D 无关条件 正确答案: C
2
A 连续且可导 B 不连续但可导 C 连续但不可导 D 不连续也不可导 正确答案: C
3
A B
高等数学(一)
C
D

正确答案: B
4
A B
C D
正确答案: A
5
A
B C D
正确答案: A
6
15
手写答题卡,拍照上传
三.证明题(共 3 题)
1
手写答题卡,拍照上传
2
手写答题卡,拍照上传
3
四.计算题(共 15 题)
1
2 3
4 5 6 7
8 9 10
11 12 13 14Fra bibliotek15五.应用题(共 4 题)
1
手写答题卡,拍照上传
2

高数期末考试题及答案大全

高数期末考试题及答案大全

高数期末考试题及答案大全试题一:极限的概念与计算问题:计算极限 \(\lim_{x \to 0} \frac{\sin x}{x}\)。

答案:根据洛必达法则,当分子分母同时趋向于0时,可以对分子分母同时求导,得到:\[\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cosx}{1} = \cos(0) = 1.\]试题二:导数的应用问题:设函数 \(f(x) = x^3 - 3x^2 + 2x\),求其在 \(x=1\) 处的切线方程。

答案:首先求导数 \(f'(x) = 3x^2 - 6x + 2\)。

在 \(x=1\) 处,导数值为 \(f'(1) = -1\),函数值为 \(f(1) = 0\)。

切线方程为 \(y - 0 = -1(x - 1)\),即 \(y = -x + 1\)。

试题三:不定积分的计算问题:计算不定积分 \(\int \frac{1}{x^2 + 1} dx\)。

答案:这是一个基本的三角换元积分问题,令 \(x = \tan(\theta)\),\(dx = \sec^2(\theta) d\theta\)。

则 \(\int \frac{1}{x^2 + 1} dx = \int \frac{1}{\tan^2(\theta) + 1} \sec^2(\theta) d\theta = \int \cos^2(\theta) d\theta\)。

利用二倍角公式,\(\cos^2(\theta) = \frac{1 +\cos(2\theta)}{2}\)。

积分变为 \(\int \frac{1}{2} d\theta + \frac{1}{2} \int\cos(2\theta) d\theta = \frac{\theta}{2} +\frac{\sin(2\theta)}{4} + C\)。

高数一期末试题及答案

高数一期末试题及答案

高数一期末试题及答案一、选择题(每题5分,共20分)1. 下列函数中,哪一个是奇函数?A. \( y = x^2 \)B. \( y = x^3 \)C. \( y = \sin(x) \)D. \( y = \cos(x) \)答案:C2. 极限 \( \lim_{x \to 0} \frac{\sin(x)}{x} \) 的值是多少?A. 0B. 1C. \( \frac{1}{2} \)D. \( \infty \)答案:B3. 微分方程 \( y'' - y = 0 \) 的通解是:A. \( y = e^x \)B. \( y = \sin(x) + \cos(x) \)C. \( y = e^{2x} \)D. \( y = x^2 \)答案:B4. 曲线 \( y = x^3 \) 在点 \( (1,1) \) 处的切线斜率是:B. 1C. 3D. 27答案:C二、填空题(每题5分,共20分)1. 设 \( f(x) = x^2 - 4x + 4 \),则 \( f'(x) =\_\_\_\_\_\_\_\_ \)。

答案:\( 2x - 4 \)2. 函数 \( y = \ln(x) \) 的不定积分是 \( \_\_\_\_\_\_\_\_ \)。

答案:\( x\ln(x) - x + C \)3. 曲线 \( y = x^2 \) 与直线 \( y = 2x \) 的交点坐标是\( \_\_\_\_\_\_\_\_ \)。

答案:\( (0,0) \) 和 \( (2,4) \)4. 函数 \( y = e^{3x} \) 的二阶导数是 \( \_\_\_\_\_\_\_\_ \)。

答案:\( 9e^{3x} \)三、计算题(每题15分,共30分)1. 计算定积分 \( \int_{0}^{1} (3x^2 - 2x + 1) dx \)。

\[\int_{0}^{1} (3x^2 - 2x + 1) dx = \left[ x^3 - x^2 + x\right]_{0}^{1} = (1 - 1 + 1) - (0 - 0 + 0) = 1\]2. 求函数 \( y = x^3 - 6x^2 + 9x + 1 \) 的极值。

高等数学高数期末总复习题

高等数学高数期末总复习题

高数第一学期总复习题函数、极限、连续选择题1、下列函数中为偶函数的是( )。

A.2x xey -= B. x x y cos 2+= C. 2x x e e y --= D. 21sin xx+ 2、下列各对函数中是相同函数的是( )。

A.22)(,x y x y ==; B.1,112+=--=x y x x y ; C.)sin (cos ,22x x x y x y +== D.x y x y lg 2,lg 2==3、=⎪⎩⎪⎨⎧>+=<-=→),则设x f x x x x x x f x (lim 0,10,00,1)(0( ) A. 1- B. 0 C.1 D. 不存在4、,0()1sin 1,0x e x f x x x x ⎧>⎪=⎨+<⎪⎩,则0lim ()x f x →= ( ) A .不存在 B . 1 C . 2 D . 0 5、=-→2102lim x x ( )A .0B .1C .∞+D .∞- 6、=+∞→xxx x sin lim( )A.0B. 1C.不存在D.∞7、=∞→xx x 1sinlim ( ) A .-1 B .0 C .1 D .不存在 8、下列等式正确的是( ) A .01sinlim =∞→x x x B .11sin lim =∞→xx x C .1sin 1lim =∞→x x x D .0sin 1lim 0=→x x x9、下列各式正确的是( )。

A.e x xx =+∞→1)1(lim B. e x xx =+→)1(lim 0 C. e xx x =+∞→)11(lim D. e x x x =+∞→1)11(lim10、=→x xx 2sin lim0( ) A .21B .0C .1D .211、的是时,下列函数为无穷小当+→0x ( )A. x x 1sin ;B. x e 1; C. x ln ; D. x xsin 1;12、在指定变化过程中,( )是无穷小A. )0(,1sin →x xB.)0(,1→x e x C. )0(),1ln(→+x x D. )3(,932→--x x x13、函数⎪⎩⎪⎨⎧=≠=0,,3sin 1)(x a x x x x f 在),(+∞-∞上是连续函数,则a=( )A. 0 ;B. 1 ;C. 31; D. 3 ;14、函数⎪⎩⎪⎨⎧=≠-+-=2,2,223)(2x a x x x x x f 在处x=2处连续,则a=( ) A. 0 ; B. 1 ; C.2; D. 任意值;15、函数)1ln(2)(x x x f ++-=的连续区间是( )A .]2,1[- B.]2,1(- C.)2,1(- D.)2,1[-2)2()(1611--=-x e x x f x 、的连续区间是( )A.),2()2,(+∞⋃-∞B. ),1()1,(+∞⋃-∞C.),2()2,1()1,(+∞⋃⋃-∞D. )2,1()1,(⋃-∞填空题1、已知2211xx x x f +=⎪⎭⎫ ⎝⎛+,则=)(x f 2、=====)(,tan ,,32x f y x v v u y u则复合函数 3、函数⎩⎨⎧>≤+=0cos 02)(x xx ax x f 在0=x 处连续,则=a4、设⎪⎩⎪⎨⎧=≠-+=0024)(x k x xx x f ,在0=x 处连续,则=k . 5、432lim 23=-+-→x k x x x 存在, 则k= ,6、2lim(1)xx x→∞-=7、=++-+∞→552lim 32x x x x x ,=++∞→424532lim x x x x8、=++-→11sin)1(lim 1x x x 9、函数)2)(1(2)(++-=x x x x f 的连续区间是__________.10、函数2312+--=x x x y 的间断点为 计算题1、1)1sin(lim 21+--→x x x2、x x x x x +-→20sin lim3、⎪⎭⎫ ⎝⎛+-+-→1311lim 31x x x 4、()x x x x x --++∞→22lim5、xx x 11lim 0--→ 6、x x xx tan cos 1lim 0-→ 7、521lim5---→x x x 8、 xx x 311lim ⎪⎭⎫⎝⎛+∞→9、()xx x 1051lim +→ 10、x x x 2)41(lim -∞→ 11、 1231lim +∞→⎪⎭⎫⎝⎛+x x x 12、 )2sin(11lim 0x x x -+→导数与微分选择题1、设函数)(x f 在0x x =处可导,且2)(0'=x f ,则hx f h x f h )()(lim000--→=( )A .21 B . 2 C . 21- D . 2- 2、曲线x y =在点(4 , 2)处的切线方程为( )A.044=+-y xB. 044=++y x C . 044=++y x D . 044=+-y x 3、若x x x f cos sin )(+=,则='])3([πf ( )A .21+23 B .0 C .21-+23 D .2123-4、设2cos y x =,则dy =( );A、22cos x x dx - B、22cos x x dx C、22sin x x dx - D、22sin x x dx 5、设函数=y )(2x f -,则=dy ( )A .dx x f )(2-'B .dx x f x )(22-' C .)(22x f x -'- D .dx x f x )(22-'-6、设函数12)(-=x ex f ,则f (x )在0=x 处的二阶导数)0(f ''为( )A .0B .1-eC .41-e D . e7、若)1ln()(2xex f -+=,则=')0(f ( )A .1-B .1C .21 D .21- 8、已知一质点作变速直线运动的位移函数223,tS t e t =+为时间,则在时刻2t =处的速度和加速度分别为( )A 、44122,64e e ++ B 、44122,122e e ++ C 、4464,64e e ++ D 、4412,6e e ++ 9、曲线x x y 32-=上一点(1,-2)处的切线方程为( )(A ) 01=+-y x (B )01=--y x (C ) 01=-+y x (D ) 01=++y x填空题1、曲线26322-+=x x y 上一点M 的切线斜率为15,则点M 的坐标为 . 2、曲线x y ln =上点(1,0)处切线方程为 . 3、曲线x e x y +=在x=0处的切线方程是 ; 4、已知处可导,在0)(x x f ,则 =∆-∆-→∆xx f x f x )()x (lim 000.5、已知y xe y -=1,则dx dy= . 6、已知函数2x e y -=,则该函数的微分dy =7、设ln ,xy e x =则_______;dy =8、当物体的温度高于周围介质的温度时,物体 就不断冷却若物体 的温度T 与时间t 的函数关系为T=T (t ),则该物体在时刻t 的冷却速度为_____; 9、设在[0,t]这段时间内通过导线横截面的电荷为Q=Q(t),则在0t 时刻的电流为 10、一个质量非均匀的细杆放在x 轴上,在[0,x]上的质量为kg x m 23=,则当x=1m 时的线密度为计算题 A 、求导数1.x x x y cos 413-+=, 2.1123+-=x y x , 3. 4cos tan 2π+=x x y 4. 23cos 2y x x =+5.3)(l n x y =,6、)ln(ln x y =,7、xy 1cos=,8、x e y x 5sin = , 9、21arcsin x x x y --= 10、)ln(3x x y +=, 11、210(25)y x x =-+ , 12、)2(tan 23+=x yB.求微分1、x x y 31+=2、x e y cos =3、x e x y 22=4、21xx y +=C. 求下列隐函数的导数y '1. 0922=+-xy y 2. yxe y -=1 3. y e y x xsin 2=- 4.已知076333=--++y xy x y ,求2=x dxdy导数的应用选择题1、函数21)(x xx f +=( ) A .在),(+∞-∞内单调增加 B .在),(+∞-∞内单调减少 C .在)1,1(-内单调增加 D .在)1,1(-内单调减少 2、的单调增加区间是函数)1ln()(2x x f +=( )A.)5,5(-B.)0,(-∞C. ),0(+∞D.).(∞+-∞ 3、函数()y f x =在点0x 处取极值,则必有( );A 、0()0f x '=,B 、 0)(≠'x f ,C 、0()0f x '=或0()f x '不存在,D 、0()f x '不存在4、若()f x 在(,)a b 内二阶可导,且()0,()0,f x f x '''><则()y f x =在(,)a b 内( ):5、A 、单调增加且凸 B 、单调增加且凹 C 、单调减少且凸 D 、单调减少且凹 曲线16)(23++-=x x x x f 的凹区间是( )A .(-∞,2)B .( 2,+∞)C .( -∞,-2)D .(-2,2)6、设函数()f x 在[1,2]上可导,且()0,f x '<(1)0,(2)0f f ><,则()f x 在(1,2) 内( )。

《高等数学》练习题库含答案(大学期末复习资料) (1) (1)

《高等数学》练习题库含答案(大学期末复习资料) (1) (1)

华中师范大学网絡教育学院 《高等数学》练习测试题库一.选捽题1,函数y=-J —是()X + 1A, 偶函数B,奇函数 C 单调函数 2•设 f(sin —)=cosx+l,则 f(Q 为( )2卜-列数列为单潤递増数列的有(6 limsincr-l)=(Il X -]AJ B,0C2IXI/27.设L*X=c h则 k=()AJ B 、2 C.6 DJ/68?'|x->l 时,下列与无穷小(x-1 )等价的无穷小是( A. x 2-! B. x ?-l C.(x-l)2D.sin(x-I)9. f(x)在点处有定义是f(x)在NXQ 处连续的() A,心要条件 B.充分条件 C.充分必要条件 D,无关条件 10、 当 |x <1 Ht, y= /】京(.)D 无界函数A 2x 2-2 B 2—2/ C I +/D l-x 2A. 0,9 t 0.99, 0,9991 0.9999B.—为奇数 I +n丄,网为偶数 U -科4, 数列有界是数列收敛的() A.充分条件 C.充要条件 5. 卜列命题正确的是( )A.发散数列必无界C.两发散数列之狷必发散C. {f(n)h 其中 f(n)=; B. D 必要条件 既非充分也非必要 R.D. 2N + 1 2tl两无界数列之和必无界 两收敛数列之用[必收A、是连续的无界函数C、有最大值勺最小值IL无最小值11、设函数f (x) = (1-xL要使f (x)在点:戸。

连续,则应补充定义1 (0) 为< )A、丄B、e 。

、-e D. _e 1e12、下列有跳跃间断点x=0的函数为()A-, sarctiinl /x B、 arctan 1/xC\ tetr 1 /x D、cosl/x13、设f (妇在点为连续,g(x)在点舔不连续,则下列结论成立是()A、f(X)-g(X)在点Xa必不连续B、f(x) Xg(x)在点为必不连续须冇C、复合函数f [g(x)]在点为必不连续*)D、gW在点为必不连续1 li1L设f (,x)= ]+@户在区间(1 8,+ 8)卜连续,冃J5f(x)=0,则a, h满足 ()A. a>0, b>0B. a>0h b<0C. a<0,b>0 Ik a<0, b<015、若函数「6)在点险连续,则下列复合函数在x*也连续的有( )A. K) B、貯3C、Un[f(x)]D、f[f(x)]16、函数f (x)=tanx能取最小最大值的区间是下列区向中的< )A、[0, ]B、『0,」)C、[- ■! /I, Ji /4] D* (-.'1/4:J]/4)17、在闭区间[a ,b]上连续是函数f(x)有界的()A,充分条件B、必要条件C、充要条件IX无关条件18、「(a)「(b) VQ是在[H,b] ±连续的函「(x)数在(a, b)内取零值的( )L 充分条件 B 、必要条件 C 、充要条件D 、无关条件19、 下列函数中能在区间(。

《高等数学(一)》期末复习题(答案)

《高等数学(一)》期末复习题(答案)

《高等数学(一)》期末复习题一、选择题1. 极限)x x →∞的结果是 ( C ).(A )0 (B ) ∞ (C ) 12(D )不存在 2. 设()xxx f +-=11ln,则)(x f 是 ( A ). (A )奇函数 (B) 偶函数 (C )非奇非偶函数 (D )既奇又偶函数 3. 极限21lim sinx x x→= ( A ) . (A )0 (B) 1 (C )+∞ (D )-∞ 4. 方程3310x x -+=在区间(0,1)内( B ).(A )无实根 (B )有唯一实根 (C )有两个实根 (D )有三个实根 5. 设()()ln 1f x x =+,g (x )=x ,则当0x →时,()f x 是()g x 的( A ).(A )等价无穷小 (B) 低阶无穷小(C )高阶无穷小 (D) 同阶但非等价无穷小 6. 下列变量中,是无穷小量的为( A ).(A ))1(ln →x x (B ))0(1ln +→x x (C )cos (0)x x → (D ))2(422→--x x x 7. 极限011lim(sinsin )x x x x x→- 的结果是( C ).(A )0 (B ) 1 (C ) 1- (D )不存在8. 下列函数中满足罗尔定理条件的是( D ).(A )()2,[0,1]f x x x =-∈ (B) 3(),[0,1]f x x x =∈ (C )(),[1,1]f x x x =∈- (D)4(),[1,1]f x x x =∈-9. 函数1cos sin ++=x x y 是( C ).(A )奇函数 (B )偶函数 (C )非奇非偶函数 (D )既是奇函数又是偶函数 10. 当0→x 时, 下列是无穷小量的是( B ).(A )1+x e (B) )1ln(+x (C) )1sin(+x (D) 1+x11. 当x →∞时,下列函数中有极限的是( A ).(A )211x x +- (B) cos x (C) 1xe(D)arctan x 12. 方程310(0)x px p ++=>的实根个数是 ( B ).(A )零个 (B )一个 (C )二个 (D )三个 13.21()1dx x '=+⎰( B ).(A )211x + (B )211C x++ (C ) arctan x (D ) arctan x c + 14. 定积分()f x dx ⎰是( A ).(A )一个函数族 (B )()f x 的的一个原函数 (C )一个常数 (D )一个非负常数15.函数(ln y x =+是( A ).(A )奇函数 (B )偶函数 (C ) 非奇非偶函数 (D )既是奇函数又是偶函数 16. 设函数在区间上连续,在开区间内可导,且,则( B ).(A) (B) (C) (D) 17. 设曲线221x y e-=-,则下列选项成立的是( C ). (A) 没有渐近线 (B) 仅有铅直渐近线 (C) 既有水平渐近线又有铅直渐近线 (D) 仅有水平渐近线 18. 设是的一个原函数,则等式( D )成立.(A )(B) (C ) (D)19. 设⎰+=C x dx x xf arcsin )(,则⎰=dx x f )(1( B ). (A )C x +--32)1(43 (B )C x +--32)1(31 (C )C x +-322)1(43 (D )C x +-322)1(32()f x []0,1()0,1()0f x '>()00f <()()10f f >()10f >()()10f f <F x ()f x ()dd d x f x x F x (())()⎰='=+⎰F x x f x c()()d '=⎰F x x F x ()()d dd d xf x x f x (())()⎰=20. 数列})1({nn n-+的极限为( A ).(A )1(B) 1-(C) 0(D) 不存在21. 下列命题中正确的是( B ).(A )有界量和无穷大量的乘积仍为无穷大量(B )有界量和无穷小量的乘积仍为无穷小量 (C )两无穷大量的和仍为无穷大量 (D )两无穷大量的差为零 22. 若()()f x g x ''=,则下列式子一定成立的有( C ).(A)()()f x g x = (B)()()df x dg x =⎰⎰(C)(())(())df x dg x ''=⎰⎰(D)()()1f x g x =+ 23. 下列曲线有斜渐近线的是 ( C ).(A)sin y x x =+ (B)2sin y x x =+ (C)1siny x x =+ (D)21sin y x x=+ 24. 函数)1,0(11)(≠>+-=a a a a x x f x x ( B ).(A )是奇函数 (B )是偶函数(C )既奇函数又是偶函数 (D )是非奇非偶函数 25. 下列函数中满足罗尔定理条件的是( D ).(A )]1,0[,1)(∈-=x x x f (B)]1,0[,)(2∈=x x x f (C )()sin ,[1,1]f x x x =∈- (D)]1,1[,)(2-∈=x x x f26. 若函数221)1(xx x x f +=+,则=)(x f ( B ). (A )2x (B )22-x (C )2)1(-x (D )12-x 27. 设函数,ln )(x x x f =则下面关于)(x f 的说法正确的是( A ).(A )在(0,e 1)内单调递减 (B)在(+∞,1e)内单调递减 (C )在(0,+∞)内单调递减 (D)(0,+∞)在内单调递增28. 设1)(+=x x f ,则)1)((+x f f =( D ).(A )x (B )x + 1 (C )x + 2 (D )x + 329. 已知0)1(lim 2=--+∞→b ax x x x ,其中a ,b 是常数,则( C ).(A )1,1==b a , (B )1,1=-=b a (C )1,1-==b a (D )1,1-=-=b a 30. 下列函数在指定的变化过程中,( B )是无穷小量.(A ) (B )(C ) (D )31. 设函数(),2x xe ef x -+=则下面关于)(x f 的说法正确的是( B ) .(A )在(0,)+∞内单调递减 (B)在(,0)-∞内单调递减 (C )在(,0)-∞内单调递增 (D)在(,)-∞+∞内单调递增32. 下列函数中,在给定趋势下是无界变量且为无穷大的函数是( C ).(A ))(1sin∞→=x xx y (B )())(1∞→=-n n y n (C ))0(ln +→=x x y (D ))0(1cos 1→=x xx y33. 设⎪⎩⎪⎨⎧≤>=0,0,1sin )(x x x xx x f ,则)(x f 在0=x 处( B ). (A )连续且可导(B )连续但不可导 (C )不连续但可导(D )既不连续又不可导34. 在下列等式中,正确的是( C ).(A )()()f x dx f x '=⎰ (B) ()()df x f x =⎰(C )()()df x dx f x dx=⎰ (D)[()]()d f x dx f x =⎰ 35. 曲线x x y -=3在点(1,0)处的切线是( A ).(A )22-=x y(B )22+-=x ye 1xx ,()→∞sin ,()xxx →∞ln(),()11+→x x x xx +-→110,()(C )22+=x y(D )22--=x y36. 已知441x y =,则y ''=( B ). (A ) 3x (B )23x (C )x 6 (D ) 6 37. 若x xf =)1(,则=')(x f ( D ).(A )x 1 (B )21x (C )x 1- (D )21x-38. 下列各组函数中,是相同的函数的是( B ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 39. 函数()()20ln 10x f x x a x ≠=+⎨⎪=⎩ 在0x =处连续,则a =( B ).(A )0 (B )14(C )1 (D )240. 曲线ln y x x =的平行于直线10x y -+=的切线方程为( A ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 41. 设函数()||f x x =,则函数在点0x =处( C ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 42. 设()f x 可微,则0()(2)limh f x f x h h→--=( D ).(A )()f x '- (B)1()2f x ' (C )2()f x '- (D)2()f x '43. 点0x =是函数4y x =的( D ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 44. 曲线1||y x =的渐近线情况是( C ). (A )只有水平渐近线 (B )只有垂直渐近线(C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线45.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( D ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭46.x x dxe e -+⎰的结果是( A ).(A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ (D )ln()x x e e C -++47. 下列各组函数中,是相同函数的是( C ).(A) ()f x x =和()g x =()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =48. 设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( D ).(A) 0 (B) 1 (C) 2 (D)不存在49. 设函数22456x y x x -=-+,则2x =是函数的( A ).(A) 可去间断点 (B) 跳跃间断点 (C) 无穷间断点 (D) 振荡间断点 50. 设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为( C ). (A) 0 (B)2π(C)锐角 (D)钝角 51. 曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( D ).(A) 12,ln2⎛⎫ ⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C) 1,ln 22⎛⎫ ⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭52. 函数2x y x e -=及图象在()1,2内是( B ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的 53. 以下结论正确的是( C ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.54. 设函数22132x y x x -=-+,则1x =是函数的( A ).(A )可去间断点 (B) 跳跃间断点 (C) 无穷间断点 (D) 振荡间断点 55. 设函数()y f x =的一个原函数为12x x e ,则()f x =( A ).(A) ()121x x e - (B)12xx e - (C) ()121x x e + (D) 12xxe56. 若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( D ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+57. 函数21,0e ,0xx x y x ⎧+<=⎨≥⎩在点0x =处( D ).(A )连续且可导 (B) 不连续且不可导 (C) 不连续但可导 (D) 连续但不可导 58. 函数 2)1ln(++-=x x y 的定义域是( C ).(A ) []1,2- (B ) [)1,2- (C )(]1,2- (D )()1,2- 59. 极限x x e ∞→lim 的值是( D ).(A )∞+ (B ) 0 (C )∞- (D )不存在 60. =--→211)1sin(limx x x ( C ).(A )1 (B ) 0 (C )21-(D )2161. 曲线 23-+=x x y 在点)0,1(处的切线方程是( B ).(A ) )1(2-=x y (B ))1(4-=x y (C )14-=x y (D ))1(3-=x y62. 函数, 0,0xx x y e x <⎧=⎨≥⎩在点0x =处( B ). (A )连续且可导 (B) 不连续且不可导 (C) 不连续但可导 (D) 连续但不可导 63. 下列各微分式正确的是( C ).(A ))(2x d xdx = (B ))2(sin 2cos x d xdx = (C ))5(x d dx --= (D )22)()(dx x d = 64. 设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( B ). (A )2sin x (B ) 2sin x - (C )C x +2sin (D )2sin 2x-65. 设()f x 可微,则0(2)()limh f x h f x h→+-=( D ).(A )()f x '- (B)1()2f x ' (C)2()f x '- (D)2()f x ' 66.⎰=+dx x xln 2( B ).(A )Cx x ++-22ln 212 (B )C x ++2)ln 2(21(C )C x ++ln 2ln (D )C xx++-2ln 1 67. 函数)1lg(12+++=x x y 的定义域是( B ).(A )()()+∞--,01,2 (B )()),0(0,1+∞- (C )),0()0,1(+∞- (D )),1(+∞-68. 设0tan 4()lim6sin x x f x x →+=,则0()lim x f x x→=( B ) .(A )1 (B )2 (C )6 (D )24 69. 下列各式中,极限存在的是( A ).(A ) x x cos lim 0→ (B )x x arctan lim ∞→ (C )x x sin lim ∞→ (D )x x 2lim +∞→70. =+∞→xx xx )1(lim ( D ). (A )e (B )2e (C )1 (D )e1 71. 设0sin 4()lim5sin x x f x x →+=,则0()lim x f x x→=( B ) .(A )0 (B )1 (C )5 (D )2572. 曲线x x y ln =的平行于直线01=+-y x 的切线方程是( C ).(A )x y = (B ))1)(1(ln --=x x y (C )1-=x y (D ))1(+-=x y73. 已知x x y 3sin = ,则=dy ( B ).(A )dx x x )3sin 33cos (+- (B )dx x x x )3cos 33(sin + (C )dx x x )3sin 3(cos + (D )dx x x x )3cos 3(sin + 74. 下列等式成立的是( C ).(A )⎰++=-C x dx x 111ααα (B )⎰+=C x a dx a x x ln (C )⎰+=C x xdx sin cos (D )⎰++=C xxdx 211tan 75. 极限01lim sinx x x→= ( A ) . (A ) 0 (B) 1 (C )+∞ (D) -∞ 76. 设()1cos f x x =-,()2g x x =,则当0x →时,()f x 是()g x 的( D ).(A )等价无穷小 (B) 低阶无穷小 (C ) 高阶无穷小 (D) 同阶但非等价无穷小 77. 计算⎰xdx x e x cos sin sin 的结果中正确的是( D ).(A )C e x +sin (B )C x e x +cos sin (C )C x e x +sin sin (D )C x e x +-)1(sin sin78. 5lg 1)(-=x x f 的定义域是( D ).(A )()),5(5,+∞∞- (B )()),6(6,+∞∞-(C )()),4(4,+∞∞- (D )())5,4(4, ∞- ()),6(6,5+∞79. 如果函数f (x )的定义域为[1,2],则函数f (x )+f (x 2)的定义域是( B ).(A )[1,2] (B )[1,2] (C )]2,2[- (D )]2,1[]1,2[ --80. 函数)1lg()1lg(22x x x x y -++++=( D ).(A )是奇函数,非偶函数 (B )是偶函数,非奇函数 (C )既非奇函数,又非偶函数 (D )既是奇函数,又是偶函数 81. 设()sin f x x x =,则)(x f 是( C ).(A )非奇非偶函数 (B) 奇函数 (C)偶函数 (D) 既奇又偶函数 82. 函数)10(1)(2≤≤--=x x x f 的反函数=-)(1x f( C ).(A )21x - (B )21x --(C ))01(12≤≤--x x (D ))01(12≤≤---x x 83. 下列数列收敛的是( C ).(A )1)1()(1+-=+n n n f n (B )⎪⎩⎪⎨⎧-+=为偶数为奇数n nn n n f ,11,11)((C )⎪⎩⎪⎨⎧+=为偶数为奇数n n n n n f ,11,1)( (D )⎪⎪⎩⎪⎪⎨⎧-+=为偶数为奇数n n n f nn n n ,221,221)(84. 设1111.0个n n y =,则当∞→n 时,该数列( C ).(A )收敛于0.1 (B )收敛于0.2 (C )收敛于91(D )发散 85. 下列极限存在的是( A ).(A )2)1(lim x x x x +∞→ (B )121lim -∞→x x (C )x x e 10lim → (D )x x x 1lim 2++∞→ 86. xx xx x x sin 2sin 2lim 22+-+∞→=( A ).(A )21(B )2 (C )0 (D )不存在 87. =--→1)1sin(lim 21x x x ( B ).(A )1 (B )2 (C )21(D )0 88. 下列极限中结果等于e 的是( B ).(A )xx x x x sin 0)sin 1(lim +→ (B )x xx x x sin )sin 1(lim +∞→ (C )xxx xxsin )sin 1(lim -∞→- (D )xxx xxsin 0)sin 1(lim +→89. 函数||ln 1x y =的间断点有( C )个. (A )1 (B )2 (C )3 (D )4 90. 下列结论错误的是( A ).(A )如果函数f (x )在点x =x 0处连续,则f (x )在点x =x 0处可导; (B )如果函数f (x )在点x =x 0处不连续,则f (x )在点x =x 0处不可导; (C )如果函数f (x )在点x =x 0处可导,则f (x )在点x =x 0处连续; (D )如果函数f (x )在点x =x 0处不可导,则f (x )在点x =x 0处也可能连续。

《高等数学一》期末复习题及答案

《高等数学一》期末复习题及答案

《高等数学(一)》期末复习题 一、选择题 1、极限2lim()xxxx 的结果是 ( C ) (A)0 (B) (C) 12 (D)不存在 2、方程3310xx在区间(0,1)内 ( B ) (A)无实根 (B)有唯一实根 (C)有两个实根 (D)有三个实根 3、)(xf是连续函数, 则 dxxf)(是)(xf的 ( C ) (A)一个原函数; (B) 一个导函数; (C) 全体原函数; (D) 全体导函数; 4、由曲线)0(sinxxy和直线0y所围的面积是 ( C ) (A)2/1 (B) 1 (C) 2 (D) 5、微分方程2xy满足初始条件2|0xy的特解是 ( D ) (A)3x (B)331x (C)23x (D)2313x 6、下列变量中,是无穷小量的为( A ) (A) )1(lnxx (B) )0(1lnxx (C) cos (0)xx (D) )2(422xxx 7、极限011lim(sinsin)xxxxx 的结果是( C ) (A)0 (B) 1 (C) 1 (D)不存在 8、函数arctanxyex在区间1,1上 ( A ) (A)单调增加 (B)单调减小 (C)无最大值 (D)无最小值 9、不定积分 dxxx12= ( D ) (A)2arctanxC (B)2ln(1)xC (C)1arctan2xC (D) 21ln(1)2xC 10、由曲线)10(xeyx和直线0y所围的面积是 ( A ) (A)1e (B) 1 (C) 2 (D) e
8、设sin1,yxx则()2f 1 9、 11(cos1)xxdx 2 10、 231dxx 3arctanxC 11、微分方程ydyxdx的通解为 22yxC 12、1415xdx 2 13、 sin2limxxxx 1 14、设2cosyx,则dy 22sinxxdx 15、设cos3,yxx则()f -1 16、不定积分xxdee Cx2e21 17、微分方程2xye的通解为 212xyeC 22222222222111120,201122xxxxxxxdyyyeyedyedxdxydyedxeCyyxyCeyey代入上式可得到所求的特解为或者 18、微分方程xyln的通解是 xyeC 19、xxx3)21(lim= 6e 20、,xyxy设函数则(ln1)xxx 21、)21(lim222nnnnn的值是 12

高数复习题(含答案)

高数复习题(含答案)

高等数学期末复习题一、选择题1. x x Y sin 2+=是 ( ) (A )偶函数 (B )奇函数(C )非奇非偶函数 (D )在01<<-x 时是奇函数,10<<x 时是偶函数 C2.xxx Y +-+=11ln2是 ( ) (A )偶函数 (B )奇函数(C )非奇非偶函数 (D )在01<<-x 时是奇函数,10<<x 时是偶函数 C3.函数)(x f y =与其反函数)(1x fy -=的图形关于直线_____对称 ( )(A ) 0=y (B ) 0=x (C ) x y = (D ) x y -= C4.如果函数1--=x y ,那么它的反函数是( )(A ) 12+=x y (B ) )0(12≤+=x x y (C ) )0(12≥+=x x y (D ) 不存在B5.无穷小量是( )(A ) 比零稍大一点的一个数 (B ) 一个很小很小的数 (C ) 以零为极限的一个变量 (D ) 数零 C 6.当0→x 时,x x sin 2较x 2sin 2是 ( )(A )等价无穷小量 (B ) 同阶无穷小量 (C ) 低阶无穷小量 (D ) 高阶无穷小量 A7.当0→x 时,2sin x x +与x 是 ( )(A )等价无穷小量 (B )同阶无穷小量 (C )低阶无穷小量 (D )高阶无穷小量 A8.当2→x 时,24x -较38x -是 ( )(A )等价无穷小量 (B ) 同阶无穷小量 (C )低阶无穷小量 (D )高阶无穷小量 B 9.x x x f sin )(-=在闭区间[0,1]上的最大值为 ( )(A ) 0 (B ) 1 (C ) 1sin 1- (D )2π C10.设x x f =)(,则)(x f 在点0x =0处( )(A ) 可导 (B ) 不连续 (C ) 连续但不可导 (D ) 可微 C11.设)(sin x f y =,则=dy ( ) (A )dx x f )(sin ' (B )xdx x f sin )(sin ' (C )xdx x f cos )(sin ' (D ) xdx x f cos )(sin '-C12.函数)(x f y =在某点0x 处有增量2.0=∆x ,对应函数增量的线性主部为0.8,则)(0x f '是 ( )(A ) 0.24 (B ) 4 (C ) 0.16 (D ) 1.6 B 13.曲线42246x x x y +-= 的凸区间为( )(A ) (-2,2) (B ) (-∞,0) (C )(0,+∞) (D )(-∞,+∞) A14.曲线()()的拐点个数为2231--=x x y ( )(A )0 (B) 1 (C ) 2 (D )3 C15.函数33)(3+-=x x x f 在( )(A ) ),(+∞-∞单调递增 (B ) ),(+∞-∞单调递减 (C ) )1,1(-单调递减,其余区间单调递增 (D ) )1,1(-单调递增,其余区间单调递减 C16.曲线54334+-=x x y 有 ( )(A ) 一个拐点 (B ) 二个拐点 (C ) 三个拐点 (D ) 无拐点 B 17.如果C x x dx x f +=⎰ln )(,则=)(x f ( )(A ) 1ln +x (B ) 1ln -x (C ) x x x +ln (D )x x x -lnA18.设⎰=xdx I arcsin ,则I = ( )(A )C x+-211(B )C x x x +-+21arcsin 2(C )C x x x +-+211arcsin (D ) C x x x +-+21arcsinD19.若等式dx d x 2)(=成立,那么应填入的函数是( )(A ) C x x +⋅-12 (B )C x x +++1211 (C )C x +2ln2 (D ) C x +2ln 2 C20.设⎰=xdx I 2sin ,则I = ( ) (A ) C x +-2cos 21 (B )C x +-2cos (C )C x +-2sin 21(D ) C x +2s i n A21.曲线2,,1===x x y x y 所围图形面积=A ( ) (A )⎰-21)1(dx x x (B )⎰-21)1(dx xx(C )⎰⎰-+-2121)2()12(dy y dy y (D )⎰⎰-+-2121)2()12(dx x dx xB22.设函数)(x f 在区间[]b a ,)(b a <上连续,且)('x F =)(x f 则当b x a <<时,(A ))(x F +C (B ))(x F (C ))(x f +C (D ))(x f D23.下列定积分中,值为0的是( ) (A )dx e e x x ⎰---222 (B )dx e e xx ⎰--+222(C )dx x ⎰-22cos ππ (D )()dx x x⎰--+ππ13A24.下列各式成立的是( )(C )e dx ex 22112≤≤⎰-- (D )0112<⎰--dx e xA25.设⎪⎭⎫ ⎝⎛+=x y x y x f 2ln ),(,则=')0,1(x f ( ) (A ) 1 (B ) 21(C ) 2 (D ) 不存在 A 26.若xy z =,则=∂∂==ey x yz 1 ( )(A )e (B )1-e (C )1 (D )0 C27.若)ln(y x z -=,则=∂∂+∂∂yz y x z x( ) (A )y x +(B )y x - (C )21(D )21-C28.若xy z =,则=dz ( ) (A )xdy y dx xy x x ln 1+-; (B )dy xy xdx y x x 1ln -+;(C )ydy y dx xy x x ln 1+-; (D )dy xy ydx y x x 1ln -+.D 29.⎰⎰x xdy y x f dx 240),(交换积分次序后得 ( )(A ) ⎰⎰yy dx y x f dy 42),(04(B )⎰⎰-42),(40y ydx y x f dy(C )⎰⎰14041),(dx y x f dy (D )⎰⎰yy dx y x f dy 42),(40D 30. ⎰⎰=x x dy y x f dx I 2),(10交换积分次序后得 ( ) (A )⎰⎰=10),(2dx y x f dy I x x (B )⎰⎰=y ydx y x f dy I ),(10(C ) ⎰⎰=y y dx y x f dy I 2),(10(D ) ⎰⎰=10),(dx y x f dy I y yB31. ⎰⎰=Dxyd I σ,x y D =2:及2-=x y 所围,则 ( ) (A ) ⎰⎰+=4022y y x y d y dx I (B ) ⎰⎰⎰⎰--+=41210x x x xxydy dx xydy dx I(C ) ⎰⎰-+=2122y y x y d x dy I (D ) ⎰⎰-+=2122y y xydy dx IC 32. dx y x dy I y 2102103⎰⎰-=,则交换积分次序后,得 ( )(A ) ⎰⎰-=1010223x dy y x dx I (B ) ⎰⎰-=y dy y x dx I 1010223(C ) ⎰⎰-=10102223x dy y x dx I (D ) ⎰⎰+=1102223x dy y x dx IC33.下列哪些函数是线性相关的 ( ) (A)x e x ,2 (B) x x 22cos 1,sin - (C) x x cos ,sin (D) x x e e -,B34.若微分方程x y y cot =',则x C y sin =( )(A) 是该方程的通解 (B) 不是该方程的解 (C) 是该方程的特解 (D) 不一定是方程的解 A35.方程0)1)(1(222=+++dy x y dx y x 是( )(A) 形如)(xy f y ='的齐次方程 (B) 可分离变量的微分方程(C) 贝努利方程 (D) 线性非齐次微分方程 B36.微分方程032=-'-''y y y 的通解是y=( )(A)321x C x C + (B) 321xC x C + (C) xx e C e C 321-+ (D) x x e C e C 321+-D37.=''⎰dx x f x )( ( ) (A ) ⎰-'dx x f x f x )()( (B ) C x f x f x +'-')()((C ) C x f x f x +-')()( (D ) C x f x x f +'-)()( C 38.若000=∂∂==y y x x xf ,000=∂∂==y y x x yf ,则),(y x f 在),(00y x ( )(A ) 连续且可微 (B ) 连续但不一定可微 (C ) 可微但不一定连续 (D ) 不一定可微也不一定连续40.方程02=-dx ydy 的通解是( )(A)C x y =-2(B) C x y =- (C) C x y += (D) C x y +-=A 二、填空题1. 已知2)1(lim 10=+→xx ax ,则a =_____2ln2. =+∞→xx x)311(lim ____________ 31e3. =-→)sin 2cos 1(lim 0xx xx ____________24. =→xx x 1sinlim 0____________ 05.=-→xx x 20)31(lim6-e6.=⎪⎭⎫ ⎝⎛+∞→x x x x x 1sin sin 1lim17.若23sinlim -=∞→xkx x ,则k =______ 32-4-9.设2sin x y =,则y '=______________2cos 2x x10.抛物线x y =在横坐标4=x 对应点的切线方程是_____________________044=--x y11.抛物线2x y =在横坐标2=x 对应点的切线方程是_____________________44-=x y12.设xe x y 2=,则y '=______________)2(x xe x +13.=x d 2sinxdx 2cos 214.=⎪⎭⎫⎝⎛+c x d 223 xdx 315.ddx x1=C x +216.设x e y xcos 2=,则dy =_________________________________________dx x x e x )sin (cos 2-17.函数59623++-=x x x y 在1=x 处取得极 值。

高等数学1期末试卷(5套)

高等数学1期末试卷(5套)

试卷(一)一、1、下列等式中成立的是( B ).(A) e n nn =⎪⎭⎫⎝⎛+∞→21lim (B) e n n n =⎪⎭⎫ ⎝⎛++∞→211lim (C) e n nn =⎪⎭⎫ ⎝⎛+∞→211lim (D) e n nn =⎪⎭⎫⎝⎛+∞→211lim2、函数()x f 在点0x 处连续是在该点处可导的( ).(A) 必要但不充分条件 (B) 充分但不必要条件 (C)充分必要条件 (D) 既非充分也非必要条件 3、设函数()x f 可导,并且下列极限均存在,则下列等式不成立的是( ).(A) ()()()00limf x f x f x '=-→ (B) ()()()0000lim x f x x x f x f x '=∆∆--→∆(C) ()()()a f h a f h a f h '=-+→2lim(D) ()()()00002lim x f xx x f x x f x '=∆∆--∆+→∆ 4、若(),00='x f 则点0x x =是函数()x f 的( ).(A) 极大值点 (B) .最大值点 (C) 极小值点 (D) 驻点5、曲线12+=x x y 的铅直渐近线是( ).(A )y =1 (B )y =0 (C )1-=x (D )x =0 6、设xe-是)(x f 的一个原函数,则⎰=dx x xf )(( ).(A )c x e x+--)1( (B )c x e x++-)1( (C )c x e x+--)1( (D ) c x e x++--)1( 二、1、当0x →时,(1cos )x -与2sin2xa 是等价无穷小,则常数a 应等于______ _. 2、若82lim =⎪⎭⎫⎝⎛-+∞→xx b x b x ,则=b .3、函数123++=x x y 的拐点是 .4、函数()x y y =是由方程y x y +=tan 给出,则='y ______________________.5、双曲线1xy =在点()1,1处的曲率为 .6、已知)(x f 在),(∞+-∞上连续,且2)0(=f ,且设2sin ()()x xF x f t dt =⎰,则(0)F '= .三、 1、求极限()xx x x x sin tan cos 1lim20-→ .2、设曲线的方程为33190x y (x )cos(y ),π++++=求此曲线在1x =-处的切线方程.3、求不定积分⎰++322x x xdx.4、求不定积分dx x x ⎰+31. 5、求定积分dx x x ⎰22cos π.6、求定积分⎰--+11242dx xx .四、1、求抛物线12+=x y 与直线1-=x y 所围成的图形. 2、设()f x ''连续,()1f π=,()()0sin 3f x f x xdx π''+=⎡⎤⎣⎦⎰,求()0f .试卷(二)一、1、=+→xx x 2)31(lim .2、当=k 时,⎪⎩⎪⎨⎧>+≤=00e)(2x kx x x f x 在0=x 处连续.3、设x x y ln +=,则=dydx. 4、曲线x e y x -=在点)1,0(处的切线方程是 .5、设两辆汽车从静止开始沿直线路径前进,下图中给出的两条曲线)(1t a a =和)(2t a a =分别是两车的速度曲线.那么位于这两条曲线和直线T t = )0(>T 之间的图形的面积A 所表示的物理意义是 .二、1、若函数xx x f =)(,则=→)(lim 0x f x ( ).A 、0B 、1-C 、1D 、不存在 2、下列变量中,是无穷小量的为( ).A 、 x 1ln(当+→0x ) B 、x ln (当1→x ) C 、x cos (当0→x ) D 、 422--x x (当2→x ) 3、满足关系式0)(='x f 的x 是函数)(x f y =的( ).A 、极大值点B 、极小值点C 、驻点D 、间断点 4、下列函数)(x f 在]1,1[-上适合罗尔中值定理条件的是( ).A 、32)(x x f =B 、x x x f 2)(=C 、32)(+=x x fD 、x x f sin )(= 5、下列无穷积分收敛的是( ).A 、⎰∞+ 0sin xdx B 、dx x ⎰∞+ 01C 、dx e x ⎰∞+- 0 2D 、dx x⎰∞+ 0 1三、1、求极限 xx x 2sin 24lim-+→ . 2、求极限 2cos 2cos 0lim x dte xx t x ⎰-→.3、设)1ln(25x x e y +++=,求y '.4、设)(x y f =由已知⎩⎨⎧=+=ty t x arctan )1ln(2,求22dx y d . 5、求不定积分dx xx x ⎰+)sin (ln 2.6、设⎪⎩⎪⎨⎧≥<+=-0011)(2x xe x x x f x , 求⎰-20d )1(x x f .四、1、设函数21)(xxx f +=,分别求其单调区间、极值、凹凸性与拐点. 2、设)(x f 在闭区间],[b a 上连续,在开区间),(b a 内可导)0(>a .试证在),(b a 内至少存在一点ξ满足:)(][)]()([2012201220122011ξξf a b a f b f '-=-.试卷(三)一、1.设)sin (cos )(x x x x f +=,则在0=x 处有( ).(A)2)0(='f (B) 1)0(='f (C) 0)0(='f (D) )(x f 不可导 2.设333)(,11)(x x xxx ⋅-=+-=βα,则当1→x 时( ). (A) )(x α与)(x β是同阶无穷小,但不是等价无穷小; (B) )(x α与)(x β是等价无穷小; (C) )(x α是比)(x β高阶的无穷小; (D) )(x β是比)(x α高阶的无穷小.3.函数2)4(121++=x xy 的图形( ). (A) 只有水平渐近线; (B) 有一条水平渐近线和一条铅直渐近线; (C) 只有铅直渐近线; (D) 无渐近线.4.设函数nn x xx f 211lim)(++=∞→,则下列结论正确的为( ).(A) 不存在间断点; (B) 存在间断点1=x ; (C) 存在间断点0=x ; (D) 存在间断点1-=x .5.设函数)(x f 是连续函数,且⎰+=1)(2)(dt t f x x f ,则)(x f = ( ).(A) 22x (B)222+x (C) 1-x (D) 2+x 6.广义积分)0( >⎰∞+a xdxap 当( )时收敛. (A) 1>p (B) 1<p (C) 1≥p (D) 1≤p二、1.=+→xx x sin 20)31(lim .2.曲线⎩⎨⎧=+=321ty t x 在t=2处的切线方程为 . 3.方程0162=-++x xy e y 确定隐函数)(x y y =,则)0(y '= .4.⎰--+2121 2211arcsin dx xx x = .5.已知x x cos 是)(x f 的一个原函数,则dx xxx f ⎰cos )(= . 6.=⎰→22 0sin lim2xtdt e xt x .三、1.(6分)已知tt t x x f ⎪⎪⎭⎫⎝⎛+=+∞→2sin 1lim )(,求)(x f '. 2.(6分)求不定积分dx xx⎰++cos 1sin 1. 3.(8分)设函数⎩⎨⎧≤<-≤=-1010)(2x x x xe x f x ,,,求dx x f ⎰-1 3 )(. 4.(8分)已知2)3(lim 2=++-∞→c bx ax x x ,求常数b a ,.5.(8分)求由曲线)1(2,4,22≥===x x y x y xy 所围图形的面积.6.(8分)由方程)ln(arctan22y x x y +=确定隐函数)(x f y =,求0=y dx dy . 7.(8分)设函数)(x f 在[0,1]上连续且单调递减,证明:对任意的],1,0[∈q ⎰⎰≥qdx x f q dx x f 01)()(.试卷(四)一、1.方程23cos2x y y y e x '''--=的特解形式为( )(A )cos 2xaxe x ; (B )cos 2sin 2xxaxe x bxe x +; (C )cos 2sin 2xxae x be x +; (D )22cos 2sin 2xxax e x bx e x +.2. 设a 不是π的整数倍,极限ax a x a x -→⎪⎭⎫⎝⎛1sin sin lim 的值是( ).(A ) 1 (B )e (C )a e cot (D )ae tan3. 函数⎪⎩⎪⎨⎧=≠-+=0 ,0 ,1sin )(2x a x xe x xf ax 在0=x 处连续,则=a ( ). (A )1 (B ) 0 (C )e (D )1-4. 设2()()lim1()x af x f a x a →-=--,则在x a =处有( ) (A )()f x 的导数存在,且()0f a '≠; (B )()f x 取得极大值; (C )()f x 取得极小值; (D )()f x 取得最大值.5. 设函数)(x f 在点0=x 的某个邻域内连续,且0)0(=f ,2cos 1)(lim0=-→xx f x ,则点0=x ( ).(A )是)(x f 的极大值点(B )是)(x f 的极小值点(C)不是)(x f 的驻点(D )是)(x f 的驻点但不是极值点二、1. 设tan 21, 0sin 2(), 0xx e x x f x ae x ⎧->⎪⎪=⎨⎪⎪≤⎩在0x =连续,则a =____________.2. 极限xaa x x ln )ln(lim0-+→(0>a )的值是 .3. 设()(1)(2)(99)f x x x x x =---L ,则(0)f '=____________.4. 曲线21x xe y =的铅直渐近线是 . 5. 函数)4ln(x x y -=的单调递增区间为 .三、1. 计算极限412921612lim 2332-+-+-→x x x x x x . 2. 求不定积分10arctan d x x x ⎰. 3. 求定积分⎰+41)1(x x dx . 4. 求函数122+=x xy 的极值与拐点.5. 求微分方程52d 2(1)d 1y y x x x -=++的通解. 6. 设1>a ,函数a a x x a x a x y +++=,求dxdy . 四、证明题(本题8分)证明:当02x <<时,有24ln 240x x x x --+>.试卷(五)一、 1. 下列各式正确的是( ).(A)1)11(lim 0=++→x x x (B) e x x x =++→)11(lim 0(C) e x x x -=-∞→)11(lim (D)e xxx =+-∞→)11(lim 2. 设()f x 可导,()()(1sin )F x f x x =+,若欲使()0F x x =在可导,则必有 ( ).(A )(0)0f '=(B )(0)0f = (C )(0)(0)0f f '+=(D )(0)(0)0f f '-=3.为,则 又设已知 )()20( d )()(21 110 )(12x F x t t f x F x x x x f x ⎰≤≤=⎩⎨⎧≤≤<≤=( ).⎪⎩⎪⎨⎧≤≤<≤21 10 31)(3x x x x A ⎪⎩⎪⎨⎧≤≤<≤-21 10 3131)(3x x x x B ⎪⎩⎪⎨⎧≤≤-<≤21 110 31)(3x x x x C ⎪⎩⎪⎨⎧≤≤-<≤-21 1103131)(3x x x x D 4.当0→x 时,与x ex cos 22-等价的无穷小是( ).(A )2x . (B )223x . (C )22x . (D )225x . 5.x e y y y x2cos 52=+'-''的一个特解应具有形式( ).(A )x Ae x2cos (B ))2sin 2cos (x B x A e x+(C ))2sin 2cos (x B x A xe x+ (D ))2sin 2cos (2x B x A e x x+ 二、1. 已知2sin ()d x f x x e C =+⎰,则()f x =____________.2.设函数22, 1()ln(1), 1a x x f x x x x ⎧+>-=⎨++≤-⎩在1x =-处连续,则a = . 3. 设),tan ln(sec x x y +=则='y .4. 设()f x 是连续函数,则dt t f a x x xaa x ⎰-→ )(lim= .5. 已知⎰+=C x dx x f arcsin )(,则=-⎰dx x f x )(12. 6. 由0 , 0)( , , =≥===y x f y b x a x 所围曲边梯形绕x 轴旋转而成的旋转体的体积公式为:V = . 则(应用你给的公式计算)由],[,)(22R R x x R x f y -∈-==与x 轴所围成的图形绕x 轴旋转而成的立体的体积=V . 三、1. (6分) 1.求函数22(,)(2)ln f x y x y y y =++的极值.2. (6分)设arctany x= 求dx dy .3.(6分)求微分方程满足初始条件的特解1,sin ==+=πx y xx x y dx dy . 4. (6分) 设由方程2cos()1x y e xy e +-=-确定y 是x 的函数,求d .0d yx x =5. (7分) 求函数22(,)(2)ln f x y x y y y =++的极值. 6 若函数)(x f 在]1,0[上连续,证明:=⎰π)(sin dx x xf ⎰)(sin 2ππdx x f ,并计算dx xxx ⎰+π2cos 1sin . 8. 过原点(0,0)O 作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成一平面图形,求此平面图形的面积.《高等数学》试卷6(下)一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ).A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有( ).A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3. 设有直线1158:121x y z L --+==-和26:23x y L y z -=⎧⎨+=⎩,则1L 与2L 的夹角为( ) (A )6π; (B )4π; (C )3π; (D )2π. 4.两个向量a 与b垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1-6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz =( ).A.22 B.22- C.2 D.2- 7. 级数1(1)(1cos ) (0)nn n αα∞=-->∑是( )(A )发散; (B )条件收敛; (C )绝对收敛; (D )敛散性与α有关.8.幂级数∑∞=1n n n x 的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x -11 B.x -22 C.x -12 D.x -21 二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z2_____________________________.4. 设L 为取正向的圆周:221x y +=,则曲线积分2(22)d (4)d Lxy y x xx y -+-=⎰Ñ____________.5. .级数1(2)nn x n ∞=-∑的收敛区间为____________.三.计算题(5分⨯6)1.设v e z usin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin ,其中22224:ππ≤+≤y x D . 4..计算1d d yxy x x⎰.试卷6参考答案一.选择题 CBCAD ACCBD 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()n n n n x ∑∞=+-0121. 5.()x e x C Cy 221-+= .三.计算题 1.()()[]y x y x y e x z xy +++=∂∂cos sin ,()()[]y x y x x e y z xy +++=∂∂cos sin . 2.12,12+=∂∂+-=∂∂z y y z z x x z . 3.⎰⎰=⋅πππρρρϕ202sin d d 26π-. 4.3316R . 5.x x e e y 23-=. 四.应用题1.长、宽、高均为m 32时,用料最省.2..312x y =《高数》试卷7(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21M M ( ). A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为( ). A.6π B.4π C.3π D.2π 3.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.6 4.若几何级数∑∞=0n nar是收敛的,则( ).A.1≤rB. 1≥rC.1<rD.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1- 9.级数∑∞=14sin n n na是( ). A.条件收敛 B.绝对收敛 C.发散 D.不能确定10. .考虑二元函数(,)f x y 的下列四条性质:(1)(,)f x y 在点00(,)x y 连续; (2)(,),(,)x y f x y f x y 在点00(,)x y 连续 (3)(,)f x y 在点00(,)x y 可微分; (4)0000(,),(,)x y f x y f x y 存在. 若用“P Q ⇒”表示有性质P 推出性质Q ,则有( )(A )(2)(3)(1)⇒⇒; (B )(3)(2)(1)⇒⇒ (C )(3)(4)(1)⇒⇒; (D )(3)(1)(4)⇒⇒ 二.填空题(4分⨯5)1. 级数1(3)nn x n ∞=-∑的收敛区间为____________.2.函数xye z =的全微分为___________________________.3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________.4.211x +的麦克劳林级数是______________________. 三.计算题(5分⨯6)1.设k j b k j i a32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4. 设∑是锥面1)z z =≤≤下侧,计算y z 2d d 3(1)d d xd d y z x z x y ∑++-⎰⎰四.应用题(10分⨯2) 试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.试卷7参考答案一.选择题 CBABA CCDBA. 二.填空题1.211212+=-=-z y x .2.()xdy ydx e xy +.3.488=--z y x .4.()∑∞=-021n n n x . 5.3x y =. 三.计算题1.k j i238+-.2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂ .3.22,z xy xz y z z xy yz x z +-=∂∂+-=∂∂. 4. ⎪⎭⎫ ⎝⎛-3223323πa . 5.xx e C e C y --+=221. 四.应用题 1.316. 2. 00221x t v gt x ++-=.《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分) 1、二阶行列式 2 -3 的值为( )4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为( ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( ) A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为( ) A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,225、设x 2+y 2+z 2=2Rx ,则yzx z ∂∂∂∂,分别为( ) A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π) A 、R 2A B 、2R 2A C 、3R 2A D 、A R 221 7、级数∑∞=-1)1(n nnn x 的收敛半径为( )A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是( )A 、一阶B 、二阶C 、三阶D 、四阶 10、微分方程y``+3y`+2y=0的特征根为( ) A 、-2,-1 B 、2,1 C 、-2,1 D 、1,-2 二、填空题(本题共5小题,每题4分,共20分) 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。

高等数学期末复习题

高等数学期末复习题

一、 选择题1. 函数112-=x y 的定义域是( ) A .(-1,1)B .[-1,1]C .(,1][1,)-∞-⋃+∞D .(,1)(1,)-∞-⋃+∞ 2. 函数1()ln(2)f x x =-的定义域是( ) A.(2,)+∞ B.(3,)+∞ C.(2,3)(3,)+∞ D.(,2)(2,)-∞+∞3.函数13lg(2)y x x =+++的定义域是( ) A.(3,2)(1,)--⋃-+∞ B.(2,1)(1,)--⋃-+∞C. (3,1)(1,)--⋃-+∞D.(2,)-+∞4.设⎪⎪⎩⎪⎪⎨⎧>≤≤---<+=1,011,11,21)(2x x x x x x f ,则)2(-f = ( )A .23- B .3- C .0 D .25 5. 若0lim x x → f (x )存在, 则f (x )在点x 0是( ) A . 一定有定义 B .一定没有定义C .可以有定义, 也可以没有定义D .以上都不对6. 极限223712lim 43x x x x x →-+-+=( )。

A .1 B . 12- C .12D .1- 7. 极限2201lim 22x x x x x →-++-= ( )A. 21B. 1C.0D. 12- 8. 311lim 1x x x →-=-( ) A.1 B.2 C.3 D.49.极限=-++-→221lim 221x x x x x ( ) A. 21B. 1 C .0D .∞ 10.函数11)(2--=x x x f ,当1→x 时的极是( )A.2-B. 2C. ∞D.极限不存在 11.函数21()1x f x x -=+,当1x →-时的极限( )A .2B . 2-C . ∞D .012.下列各式中,运算正确的是( ) A.0lim 0sin x xx →= B.sin lim 1x xx →∞= C.lim 0sin x xx →∞= D.0lim 1sin x xx →=13. 下列各式中正确的是( )A .0sin lim 0=→x xx B .1sin lim =∞→x xxC .0sin lim 1=→x xx D .1sin lim 0=→x xx14. 设0sin lim 7x axx →= 时,则a 的值是( )A. 17 B.1 C.5 D.715.函数x xx x f sin )(+=,当∞→x 时的极限( )A .0B . ∞C . -1D .116.函数22x+1x<0f(x)=x +a x 0⎧⎨≥⎩在x=0处连续,则a 的值是( ) A .3 B .2 C .1 D .017.函数22x+3x<0f(x)=3x +a x 0⎧⎨≥⎩在x=0处连续,则a 的值是( ) A. 3 B. 2 C. 1 D. 018. 函数y=ln (2 - x - x 2)的连续区间为( )A .(-1,2)B .(-2,1)C .(- ∞,1)∪(- ∞,1)D .(- ∞,-2)∪(1,+∞)19.下列导数计算正确的是( )A.x x e e 22sin sin )(='B.()2112ln ln -='-x x C .22211(arcsin )()x x '=- D .x x 2sin )(sin 2='20.下列导数计算正确的是( )A.sin sin ()x x e e '=B.21(2log )2ln 2ln 2x x x x '+=+C.1()1x x x '+=+D.211)2ln (ln +='+x x 21.设ln y x x =+,则dy dx=( ) A.1x x + B.1x x + C.1x x +- D.1x x-+ 22. 设y =x -2,则='y ( )A .x -2ln2B . x 12--xC .-x 12--xD .-x -2ln223设()y f x =-,则y '=( )A.()f x 'B.()f x '-C.()f x '-D.()f x '--24.设2()43f x x =-,则()1f '等于( )A.0B.-6C.-3D.325. 设函数在点x 0可导, 且f '(x 0) >0, 则曲线y = f (x )在点(x 0, f (x 0))处的切线的倾斜角是( )A .00B .锐角C .900D .钝角26.设函数在点0x 可导,且0()f x '<0,则曲线()y f x =在点00(,())x f x 处的切线的倾斜角是( )A .0B .锐角C .钝角D .9027. 设函数在点0x 可导,且3)(0-='x f ,则曲线)(x f y =在点0x x =处的切线的倾斜角是( ).A .0°B .90°C .锐角D .钝角28.曲线32y x x =+-在点(1,0)处的切线方程为( )A.2(1)y x =-B.4(1)y x =-C.41y x =-D.3(1)y x =-29.曲线y = ln x 上某点的切线平行于直线y = 2x -3, 该点的坐标是 ( )A .(2, ln21) B .(2,-ln 21) C .(21,-ln2) D .(21,ln2) 30.下列说法错误的是( ) A .可导一定连续 B .不可导的点不一定没有切线C .不可导的点一定不连续D .不连续的点一定不可导31.函数f (x )在点 x 0连续是函数在该点可导的( )A .充分条件但不是必要条件B .必要条件但不是充分条件C .充分必要条件D .既不是充分条件, 也不是必要条件32.||x y =在0x =处( )A.连续不可导B.可导不连续C.可导且连续D.既不连续也不可导33.2(1)y x =-在1x =处( )A.连续B.不连续C.不可导D.既不连续也不可导34.已知函数f (x )=,0,10,12⎩⎨⎧>+≤-x x x x 则在x =0处( ) A .间断 B .连续 C .f '(0) =-1 D .f '(0) =135. 设f (x )可微,则d(e f (x ) ) =( )A .f '(x )d xB .e f (x )d xC .f '(x ) e f (x )d xD .f '(x ) d(e f (x ) )36.半径为R 的金属圆片,加热后半径伸长了dR ,则面积S 的微分dS 是( )A .RdR πB .RdR π2C .dR πD .dR π237. 函数)1ln()(x x x f +-=的单调减少区间是( )A.),0(+∞B.)0,(-∞C.(0,1)D.(-1,0)38. 函数x x x f -+=)1ln()(的单调减少区间是( )A .),0(+∞B .)0,(-∞C .(0,1)D .(-1,0)39.函数()y f x =在0x x =处连续,且取得极值,则有( )A.0()0f x '=B.0()0f x ''<C.00()0()f x f x ''=或者不存在D.0()f x '不存在40. 若()00f x '=,则0x 是函数()f x 的( )A.极值点B.最值点C.驻点D.非极值点41. 函数()y f x =在0x x =处取得极值,则有( )A .0()0f x '=B .00()0()f x f x ''=或者不存在C .0()0f x ''<D .0()f x '不存在42. 函数x e x x f -=)(的极值是( )A . 0B . 1C . -1D . 243.若曲线弧位于其上任一点切线的下方,则该曲线弧是( )A.单调增加B.单调减少C.凹弧D.凸弧44. 曲线3(1)y x =-的拐点是( )A.(1,8)-B.(1,0)C.(0,1)-D.(2,1)45. 点 x = 0是函数y = x 2 的( )A .驻点但非极值点B .拐点C .驻点且是拐点D .驻点且是极值点46. 点0x =是函数3y x =的( )A .极值点但不是驻点B .驻点但不是极值点C .驻点且是极值点D .极值点且是拐点47.下列说法正确的是( )A.驻点一定是极值点B. 极值点一定是驻点或导数不存在的点C.极值点一定是拐点D. 拐点一定是极值点48.若在(,)a b 内,函数()f x 的一阶导数()f x '<0,二阶导数()f x ''>0,则函数()f x 在此区间内( ) A.单调减少,曲线是凹的 B.单调减少,曲线是凸的C.单调增加,曲线是凹的D.单调增加,曲线是凸的49.函数y = x 2e -x 及其图形在区间(1, 2)内是( )A .单调增加且是凸的B . 单调减少且是凸的C .单调增加且是凹的D .单调减少且是凹的50. 曲线()y f x =在区间[,]a b 上单调减少且为凸的,则( )A .()f x '>0或()0f x ''>B .()f x '>0或()0f x ''<C .()f x '<0且()0f x ''>D .()f x '<0且()0f x ''<51. 曲线()y f x =在区间[,]a b 上单调增加且为凹的,则( )A .()f x '>0,()0f x ''>B .()f x '<0,()0f x ''<C .()f x '>0,()0f x ''<D .()f x '<0,()0f x ''>52.若()(),F x f x '=则()f x dx ⎰=( )A.()f xB.()F xC.()F x C +D.()f x C + 53. 若()(),F x f x '=则()dF x ⎰=( )A.()f xB.()F xC.()F x C +D. ()f x C +54.导数等于21sin2x 的函数是( ) A .21sin 2x B .41cos2x C .21cos 2x D .1-21cos2x 55.⎰=dx x xf dxd )( ( ) A.)(21x f B.dx x f )(21 C .)(x xf D .dx x xf )( 56. 若c x x dx x f ++=⎰cos sin )(,则,=)(x f ( ) A.x x cos sin + B.x x cos sin - C.x x sin cos - D.x x cos sin -- 57.()23sin x e x dx -⎰=( )A. 23cos x e x c ++B. 23cos x e x +C. 23cos x e x -D. 158. 设⎰dx x f )(= 2cos2x + C ,则f (x ) =( ) A .sin2x B .-sin 2x C .sin 2x + C D .-2sin 2x 59.dxd 52x xe dx ⎰= ( ) A .42x x e B .52x x e dx C .42x x e dx D .52x x e60.dx xx f 211⎰⎪⎭⎫ ⎝⎛'= ( ) A .)1(x f -+ C B .-)1(x f -+ C C .)1(x f + C D .-)1(xf + C 61. 若: 10(2)2x k dx +=⎰,则k =( ) A .0 B .1- C . 1 D .1262. 若: 12 0(3)2x k dx +=⎰,则k =( ) A . 1- B . 0C .12 D . 1 63. 若 10(2)1x k dx +=⎰,则k =( ) A.0 B.-1 C.1 D.12 64. 已知 10()1x a x dx -=⎰,则常数a =( ) A.83 B.13 C.34 D.23 65.下列积分正确的是( ) A. 1211 11||02x dx x --==⎰ B. 22 02sin 2sin 2xdx xdx πππ-==⎰⎰ C. 22sin 0x dx ππ-=⎰ D. 1 122 1 04(1)2(1)3x dx x dx --=-=⎰⎰ 66. 曲线2,2y x y x ==+所围成的区域面积表成定积分为( )A . 22 1(2)x x dx ---⎰B . 12 2(2)x x dx --+⎰ C . 22 1(2)x x dx -+-⎰ D . 12 2(2)x x dx -+-⎰ 67.曲线ln y x =与直线x e =及0y =所围成的区域面积A=( )A .1B .-e 1C .e1 D .e 68. 曲线y =e x , y =e -x 与直线x =1所围成的区域面积A=( )A .e +1-eB .e -1-e -2C .e -1-eD .e + 1-e -2二、填空题1. 函数x y arcsin =的定义域为 .2.函数2112++-=x x y 的定义域为 . 3. 函数y =22x -+ arcsin x 的定义域为____________.5. 函数y=lnx 定义域为 .6.函数2211x y x-=+的奇偶性为 . 7.函数)1)(1(-+=x x x y 的奇偶性为 .8.设u y arcsin =,2v u =,1+=x v ,则复合函数=y .9.设arcsin y u =,v u a =,v x =,则复合函数y =____________.10. 可以将复合函数分解arcsin 2x y =为 .11. 函数2(arcsin3)y x =的复合过程是 .12. 设复合函数)(2sin 2-=x y ,则它的复合过程是 .13. 设复合函数2arcsin 1y x =(+),则它的复合过程是 . 14. =++→4-32-lim 220x x x x x . 15. 2323lim 54x x x x →-=-+ . 16.极限sin limx x x→+∞的值为____________. 17.极限x x x 1sin lim 0→的值为____________. 18.=∞→x x x arctan lim . 19.0sin lim x x x→= , sin lim x x x →∞= .20. 函数y=2x x -连续区间为 ..21.设()2xf x -=,当x → 时为无穷小量.22.设y =x 1-1,则当x →_____时,y 是无穷大量;当x →_____时,y 是无穷小量.23.设x y xe =,则y '= .24.已知)34cos(x y -=,求y '= ,=''y .25. 已知函数f (x )=x sin x , 则f '(π)=__________________.26. 已知函数x xe y -=,则y '= .27. 已知函数y = x x e -,则y '' =____________________.28. 设y = arctan x , 则y '=____________, y ''=____________.29曲线x y e =在点(0,1)处的切线方程为 .30. 若曲线y = ax 3+2在点x =1 处的切线与直线y =2x +1垂直,则a =__________.31. 曲线y = x 2-x 上过M (1,0)点的切线方程是__________________.32. 曲线x x +cos 2y =在点(0,2)处的切线方程为 .33. 函数在点x 0处可微的充要条件是___________________.34. d ( )= xdx . 35. ()21d x -=________________.d ( )=x e dx -.36. d ( )=dx , x de-= . 37.d =xdx sin , d =211dx x -. 38. ( )sin d xdx =; =-x de .39. 函数f (x )=sin x -x 在定义域内单调___________.40.函数22ln y x x =-的单调递增区间是 .41.f (x )=x 3-3x 2+7的极大值为________,极小值为__________.42. 函数)1ln()(2x x f +=在[-1,2]上的最大值为 ,最小值为 .43. 函数1)1()(32+-=x x f 在]1,2[-上的最大值是 ,最小值是 .44.函1)1()(32+-=x x f 数在]1,2[-上的最大值是 ,最小值是 .45.曲线f (x )=xe x 的拐点的坐标为____ ______.46.若2()x f x dx e C =+⎰,则()f x = . 47.dxd dx x xf ⎰)(2= ____ ______. 48. ⎰=xdx 2sin ;cos3x dx =⎰ . 49. xdx ⎰= ;⎰dx = . 50. 3x dx =⎰ .51.232 2sin x xdx -=⎰ . 52.b a dx =⎰ , 14 1sin x xdx -⎰= . 53. 13 1cos x xdx -=⎰ ; 132 1sin x xdx -=⎰ . 54. 曲线x y s i n =在[]0,π上和x 轴围成图形的面积用定积分表示为A= .55.178 1cos x xdx -⎰=___________________. 56.b a dx =⎰ . 57.=⎰xdx x sin 22-2 . 58.14 1sin x xdx -⎰= .三、计算题1. 求极限132123lim 22+---∞→x x x x x2. 求极限222372lim x x x x --+∞→3.求极限)1311(lim 31x x x ---→4.求极限x x x 5sin sin3lim 0→5. x x x x -→20sin lim6.求极限2cot 0lim(1tan )x x x →+ 7.求极限∞→x lim x x x ⎪⎭⎫ ⎝⎛+-31 8. 求极限x e x x 1lim 0-→ 9.已知arcsin y x =,求dy dx10.已知x x y 2sin 2=,求y ' 11.已知2ln 1y x =+ 求y ' 12.已知y =6sin 1322π+-⋅x x x ,求dx dy 13.已知y =(ln2x )cos3x ,求dx dy 14. 已知1010x y x +=,求y '' 15.已知x y arctan =,求dy 16.已知2ln(21)y x =- 求dy17. y=ln(5+3x ),求dy 18.已知22x y x e =,求dy 19. 求函数y =21ln x -的微分20.已知y =cos(3)x e x --,求dy 21. 求不定积分dx x x )2(-⎰22. 求不定积分dx x x x ⎰⎪⎭⎫ ⎝⎛+-3312 23.求不定积分⎰+dx x x cos 1sin 2 24.求定积分⎰+dx x x 1 25.求不定积分tan xdx ⎰ 26. 求不定积分211x dx x ++⎰27.求不定积分221x dx x +⎰ 28.求不定积分求tan xdx ⎰ 29.求定积分 20cos sin x xdx π⎰ 30. 求定积分 12 01x x dx -⎰ 31. 求定积分dx x x ⎰-1 021 32.求定积分dx x x ⎰+1 0 21arctan 33.求定积分 11||x dx -⎰ 34. 求定积分 21|1|x dx --⎰ 四、应用题1. 设有函数2sin y x x =+,求点(0,0)处的切线方程和法线方程.2.求函数x e x x f -+=)2()(在(0,2)点切线和法线方程.3.半径为15cm 的球,半径伸长2mm ,球的体积增加约多大?4.求函数y =x -ln(1+x )的极值.5. 求函数x e x x f -+=1)()(的极值.6.求曲线y =x 3-3x -2的单调区间,凹凸区间,拐点及极值.7.. 求曲线3231y x x =-+的单调区间,凹凸区间及极值.8.把一根半径为R 的圆木锯成矩形条木,问矩形的长和宽多大时,条木的截面积最大?9.某车间靠墙壁要盖一间长方形小屋,现有存砖只够砌20米长的墙壁,问应围成怎样的长方形才能使这间小屋的面积最大?10.要制造一个圆柱形有盖的油桶,若油桶的容积V 是常数,问底面半径r 和高h 之比等于多少时,才能使用料最省?11.欲做一个无盖圆柱形容器,其容积为V ,问当容器的底面半径为多少时,用料最少?12.曲线上任一点),(y x 切线的斜率为23x ,并且曲线经过)0,0(点,求此曲线方程13.计算由抛物线24y x =-和x 轴所围成图形的面积.14.求由直线23y x =+与曲线2y x =所围成平面图形的面积.15. 求由曲线12-=x y 与y=x+1所围成的平面图形面积. 16.求抛物线2x y =和直线x y =围成的平面图形的面积及该平面绕x 轴旋转而成的旋转体的体积.17. 求平面曲线2x y =、3x y =围成的平面图形绕x 轴旋转所生成的旋转体的体积.18.求由y =x 2与直线x+ y = 2轴所围成的平面图形绕x 轴旋转所形成的旋转体的体积.19.求由曲线x y =,x y =所围成的平面图形绕x 轴旋转所得的旋转体的体积.20.求由抛物线y =x 2与y 2 = x 所围成的平面图形绕x 轴旋转所形成的旋转体的体积.。

高等数学复习期末试题含答案

高等数学复习期末试题含答案

高等数学试题(一)(含答案)一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。

第1—10题,每小题1分,第11—20小题,每小题2分,共30分) 1.函数y=5-x +ln(x -1)的定义域是( )A. (0,5]B. (1,5]C. (1,5)D. (1,+∞) 2. limsin 2x xx →∞等于( ) A. 0 B. 1 C.12D. 23.二元函数f(x,y)=ln(x -y)的定义域为( ) A. x -y>0 B. x>0, y>0 C. x<0, y<0 D. x>0, y>0及x<0, y<04.函数y=2|x |-1在x=0处( ) A.无定义 B.不连续 C.可导 D.连续但不可导5.设函数f(x)=e 1-2x,则f(x)在x=0处的导数f ′(0)等于( ) A. 0 B. e C. –e D. -2e 6.函数y=x -arctanx 在[-1,1]上( ) A.单调增加 B.单调减少 C.无最大值 D.无最小值7.设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f ′(x)>0,则( ) A. f(0)<0 B. f(1)>0 C. f(1)>f(0) D. f(1)<f(0) 8.以下式子中正确的是( ) A. dsinx=-cosx B. dsinx=-cosxdx C. dcosx=-sinxdx D. dcosx=-sinx 9.下列级数中,条件收敛的级数是( )A. n nn n =∞∑-+111()B. n nn =∞∑-11()C.n nn=∞∑-111()D.n nn=∞∑-1211()10.方程y ′—y=0的通解为( )A. y=ce xB. y=ce -xC. y=csinxD. y=c 1e x +c 2e -x11.设函数f(x)=x x x kx +-≠=⎧⎨⎪⎩⎪4200,,在点x=0处连续,则k 等于( )A. 0B. 14C.12D. 212.设F(x)是f(x)的一个原函数,则∫e -x f(e -x )dx 等于( ) A. F(e -x )+c B. -F(e -x )+c C. F(e x )+c D. -F(e x )+c13.下列函数中在区间[-1,1]上满足罗尔中值定理条件的是( ) A. y=1xB. y=|x|C. y=1-x 2D. y=x -1 14.设f t dt x ()0⎰=a 2x -a 2,f(x)为连续函数,则f(x)等于( )A. 2a 2xB. a 2x lnaC. 2xa 2x -1D. 2a 2x lna 15.下列式子中正确的是( )A. e dx edx xx112⎰⎰≤B.e dx edx xx112⎰⎰≥C.e dx edx xx0112⎰⎰=D.以上都不对16.下列广义积分收敛的是( ) A. cos 1+∞⎰xdxB. sin 1+∞⎰xdxC.ln xdx1+∞⎰D.121xdx+∞⎰17.设f(x)=e x --21,g(x)=x 2,当x →0时( ) A. f(x)是g(x)的高阶无穷小 B. f(x)是g(x)的低阶无穷小C. f(x)是g(x)的同阶但非等价无穷小D. f(x)与g(x)是等价无穷小18.交换二次积分dy f x y dx yy (,)⎰⎰01的积分次序,它等于()A. dxf x y dyxx(,)⎰⎰1B. dxf x y dy xx (,)201⎰⎰C.dxf x y dy xx (,)⎰⎰1D.dxf x y dy xx(,)21⎰⎰19.若级数n n u =∞∑1收敛,记S n =i i u =∞∑1,则( )A. lim n n S →∞=0B.lim n n S S→∞=存在C.lim n nS →∞可能不存在D. {S n }为单调数列20.对于微分方程y ″+3y ′+2y=e -x ,利用待定系数法求其特解y *时,下面特解设法正确的是( )A. y *=ae -xB. y *=(ax+b)e -xC. y *=axe -xD. y *=ax 2e -x 二、填空题(每小题2分,共20分)1. lim x x x →∞+-⎛⎝ ⎫⎭⎪=121______。

大一高等数学期末考试试卷及复习资料详解

大一高等数学期末考试试卷及复习资料详解

大一高等数学期末考试试卷及复习资料详解大一高等数学期末考试试卷(一)一、选择题(共12分)1.(3分)若/3= 2XXV0,为连续函数,则d的值为().a+ x,x>0(A)I (B) 2 (C)3 (D)-I2.(3分)已知厂⑶=2,则Ii y "7⑶的值为().λ→0 2hOOl (B) 3 (C)-I (D)I23.(3分)定积分∫>Λ∕1-COS23Xdx的值为()•■⑷ 0 (B)-2 (C)I (D) 24.(3分)若/⑴在“勺处不连续,则/3在该点处()・(A)必不可导(B)—定可导(C)可能可导(D)必无极限二、填空题(共12分)1.(3分)平面上过点(0,1),且在任意一点(Λ∙,y)处的切线斜率为3疋的曲线方程为_________________________ .2.( 3 分)∫ ι(x2+x4 Sin XyIX = _______ 1-3.(3 分)IilnX2 Sin丄= ・.r→υX4.(3分)y = 2√ -3√的极大值为________________ —2 (6分)设尸冕,求*JT + 1三、计算题(共42分)1.(6 分)求Iim史S.∙*→υ Sin 3x^3.(6分)求不定积分JXIn(I+十)厶.x .v<ι4.(6 分)求J /(X-1)JΛ∖其中/(x)= < l + cosχ,e' +l,x> 1.5.(6分)设函数y = f(x)由方程JO e,M + [cos∕d∕ = 0所确定,求dy.6.( 6 分)设 f f{x)dx = Sin + C,求j + 3)dx.7.(6 分)求极限IinJI÷-Γn→30k 2/7 7四、解答题(共28分)1.(7 分)设,Γ(lnx) = l+x,且/(0) = 1,求32.(7分)求由曲线y = cosx[-^-<x<^及X轴所围成图形绕着X轴旋I 2 2)转一周所得旋转体的体积.3.(7分)求曲线y = x3-3√÷24x-19在拐点处的切线方程•4.(7分)求函数y = x + √∏7在[-5,1]上的最小值和最大值.五、证明题(6分)设厂(X)在区间[“]上连续,证明i a f^dx = ¥ [/(“) + f(b)]+1 [(X - a)(x - b)fj)dx.(二)一、填空题(每小题3分,共18分)1.设函数/(χ)= 2χ2~1 ,则"1是心)的第_________ 类间断点.X -3x + 23.=∙v→∞V X)4・ 曲线 V 在点(扣)处的切线方程 为 ・5 .函数J = 2X 3-3X 2在[-1,4]上的最大值 _________________ ,最小值 __________ .二、 单项选择题(每小题4分,共20分)1.数列&”}有界是它收敛的( )•(A)必要但非充分条件; (C)充分必要条件; 2.下列各式正确的是((B)充分但非必要条件; (D)无关条件.)・(A) je-χdx=e"x+C i(B) J In X(IX = _ + C ; (C)JI 2∕x=2hl (l 2x)+C ;(D) f —5—JX = Inlllx+ C ・' ,J XInX3-设/(x)在RM 上,广(x)>O 且厂(x)>0,则曲线y = f(x)在[“问上•6.∣∙arctanx J l +x 2(IX(小沿X轴正向上升且为凹(B)沿兀轴正向下降且为凹的;的;(D)沿X轴正向下降且为凸(C)沿兀轴正向上升且为凸的;的.则/(x)在兀=0处的导? :( )•4. 设/(*)=XInX ’⑷等于1;(C)等于O ;(D)不存在•5.已知Ihn/(x)= 2,以下结论正确的是()•G)函数在工=1处有定义且/(1)=2 ; (B)函数在;V = I处的某去心邻域内有定义;(C)函数在2 1处的左侧某邻域内有定义;(D)函数在21处的右侧某邻域内有定义.三、计算(每小题6分,共36分)1.求极限:HlnX2 sinx→0X2.已知y = ln(l + χ2),求几3.求函数J = >0)的导数.5.J X COS XdX ・丄 16.方程y x =X y确定函数y = f(x)f求八四、(H)分)已知/为/(X)的一个原函数,求∫x2∕(x}∕x.五、(6分)求曲线,=壮7的拐点及凹凸区间.六、(10 分)设J广(√∑)/X = X(e、' +1)+C ,求/(X)・(三)填空题(本题共5小题,每小题4分,共20分)・±J_(1)⅛(COSX)r = ________ 石________ .(2)曲线A = Xlnx上及直线X-y + l= °平行的切线方程为y =x-∖(3 )已知f f(e x) = xe~x,且/(D = O ,则大一高等数学期末考试试卷及复习资料详解/(X)= _________ /Cv)= 2(In X)________ .X 211(4)曲线V =3777的斜渐近线方程为 _______ V= 3Λ^9,二、选择题(本题共5小题,每小题4分,共20分)・(1)下列积分结果正确的是(D )(2)函数/W 在[恥]内有定义,其导数广⑴的图形如图1-1所示, 则(D ) •(A)刁宀都是极值点.⑻ g ,/3)),(£,/(£))都是拐点.(C) F 是极值点.,U 是拐点. (D) WJy))是拐点,勺是极值点.(3) 函数y = qe v ÷C 2e-÷A -e'满足的一个微分方程是(D ).(A) /-y-2>∙ = 3xe t . (B) /-y-2y = 3e v . (C) / + y-2y = 3Λ∙e c .(D) / + y~2y = 3e r .lim∕(⅞)-∕(⅞~z0 (4) 设/W 在%处可导,则I h 为(A ) •⑷ 广仇). (B) -f ,M.(C) O. (D)不存在.(5)下列等式中正确的结果是((A) (J* /(x)"∙χ)'Z=/W-(C) 町 /(χ)"χ]=/W -) 微分方程= (V+1)-的通解为三、计算J (本 共4小题,每小题6分,共24分).y =3 _5 "3 O(或令 √Γ+χ = r)四、解答题(本题共4小题,共29分)•1. (本题6分)解微分方程r-5∕÷6j = xe -.解:特征方程r 2-5r + 6 = 0 ------------- 1分 特征解斤=2,r 2 =3. ------------ 1分 3x大一高等数学期末考试试卷及复习资料详解 恤(丄—丄)1∙求极限j X-I In —X 11. xlnx-x+1Iim (—— _ ——)IIm ---------In XIUn I XTl x-1 I---- + In xh ∖x Iim x →,X -1 + xln1.1 + In X 1 IUn -------- =— j 1 + In X +1 2Λ = In Sin t2.方程尸COSWSinf 确定V 为X 的函数,dy y ,(f)-=-一 =∕sm∕, 解 JX 十⑴求dx 及Jx 2 .(3分) (6分)arctan JX3. 4.计算不定积分J石(1+『. arctanA∕√7—— (i + χ)=21 arctan √7t∕ arctan y ∕x ——解 Hatan 仇=2 J √x(l + x)=(arctan2+C ——「一 dx4.计算定积分如+曲.'3χ(l -VTTX) 0解 分)oT7⅛7_ V dx = 一J(:(I-、/i+x)〃X(6分)LL i∖l4/1 «\ ? r V 八2.(本题7分)一个横放着的圆柱形水桶(如图4-1),桶内盛有半桶水,设桶的底半径为R ,水的比重为乙计算桶的一端面上所受的压力.解:建立坐标系如图3.(本题8分)设/B在S】上有连续的导数,f(u) = f(b) = θ9且∫O∕2(X)JΛ =1^试求∫>∕ω∕解:J:Xf(X)f∖x)dx = £ Xf(X)df(x) 2 分= -∫n^^W ------------ 2 分=IV 2(Λ-)⅛-|£72(X)厶一一2 分4.(本题8分)过坐标原点作曲线>, = h^的切线,该切线及曲线y =lnx及X轴围成平面图形D.⑴(3) 求D的面积A;⑵(4) 求D绕直线X = e旋转一周所得旋转体的体积V.解:(1)设切点的横坐标为",则曲线y = In Λ在点(⅞Jn ⅞)处的切线方程y = Inx0 + —(X-X0).氐__I分由该切线过原点知山心-1 = 0,从而心=匕所以该切线的方程为1y = -X.平面图形D的面积1V = -X(2)切线"及X轴及直线Xe所围成的三角形绕直线Xe旋转V I = -7te1所得的圆锥体积为,3 2分曲线尸IZ及X轴及直线所围成的图形绕直线Xe旋转所得的旋转体体积为V2=(oπ(e-e>)2dy9】分因此所求旋转体的体积为V=V l-V2=-^2-e y)2dy = -(5e2-∖2e + 3).五、证明题(本题共1小题,共7分)•1.证明对于任意的实数Y , eJl + x.e x = l + x + —Λ2≥l + x2解法二设fM = e x-x~^则/(0) = 0.因为f f M = e x-∖. 1 分当Xno时,f,M≥o.f(χ)单调增加,/(χ)≥∕(θ)=o.当x≤0时,∕,ω≤0.∕(Λ∙)单调增加,/(X)≥/(0) =0. 所以对于任意的实数X, ∕3≥°∙即e'≥l + I 解法三:由微分中值定理得,R -1 = “ -60 =^(X-O) = ^Xt 其中§位于0 到X 之一1分2分A = V -ey)dy = ~e~^∙解法一:2分2分1分2分间。

《高等数学AI》期末复习题参考答案

《高等数学AI》期末复习题参考答案

《高等数学AI 》期末复习题一参考答案一、选择题:1. C ;2. C ;3. D ;4. B ;5. D ;二、填空题:1、[ 2,4 ];2、1;3、x = 1;4、y = x + 1;5、5272x ;6、单调增加;7、( - 1,6 );8、3;9、y = 1;10、C ln x a a+;1112、π2;13、3。

三、计算下列极限:1、解:原式 = 201cos lim x xx→- 2、解:原式 = 1lim (1)1xx x →∞++ = 22012lim x x x → =1111lim (1)(1)11x x x x +-→∞+⋅+++ =12。

= e 。

四、计算下列导数:1、解:y ′ = 22(1)(2)x x x +-++2、解:y ′ = cos 1sin xx+。

=21(2)x + d y = 21(2)x + d x 。

3、解:方程两边对x 求导:3 y 2 y ′ - 3 y ′ - 6 x 5 = 0,y ′ = 5221x y -。

五、计算下列积分:1、解:dx x x ⎰++2212=dx x x ⎰+++11122=dx x ⎰++)111(2=arctan C x x ++。

2、解:dx x x ⎰+2sin 1cos =)(sin sin 112x d x⎰+=arctan(sin )C x +。

3、解:原式 = ( x 3 – x 2 + x )|10 = 1。

4、解:原式 =111000||11x x x xe e d x e e e e -=-=-+=⎰。

5、解:令t=x = t 2 ,d x = 2 t d t ,原式 = 102cos t t dt ⎰ =11002(sin |sin )t t t dt -⎰102(sin1cos |)2(sin1cos11)t =+=+-。

六解:(1) 函数的定义域为:( - ∞,- 3 ) ∪ ( - 3,+ ∞)。

高等数学期末复习题库

高等数学期末复习题库

高等数学期末复习题库一、选择题1. 函数f(x)=x^2+3x-2在区间[-5, 4]上的最大值是:A. 0B. 2C. 10D. 162. 曲线y=x^3-6x^2+9x+1在点(2,5)处的切线斜率是:A. 1B. -1C. 3D. -33. 定积分∫(0,1) x^2 dx的值是:A. 1/3B. 1/4C. 1/2D. 14. 幂级数Σ(n=1 to ∞) x^n/n 收敛的区间是:A. (-1, 1)B. (-∞, ∞)C. [1, ∞)D. [0, 1]5. 函数f(x)=sin(x)+cos(x)的周期是:A. πB. 2πC. π/2D. π/4二、填空题6. 函数f(x)=x^3-2x^2+x-3在x=______处取得极小值。

7. 若f(x)=e^x,g(x)=ln(x),则f(g(x))=______。

8. 函数y=x^2-4x+3的图像与x轴的交点坐标是(1, 0)和(______, 0)。

9. 若定积分∫(a,b) f(x) dx = 5,且a=1,f(x)=x^2,则b=______。

10. 利用泰勒公式展开e^x在x=0处的前三项是______。

三、解答题11. 求函数f(x)=x^3-6x^2+11x-6在区间[1, 3]上的最大值和最小值。

12. 证明:对于任意的正整数n,有1^2 + 1/2^2 + 1/3^2 + ... +1/n^2 < 2。

13. 解微分方程dy/dx + 2y = x^2,初始条件为y(0)=1。

14. 求定积分∫(0,π/2) sin(x) dx。

15. 利用傅里叶级数展开函数f(x)=x^2在区间[-π, π]上的周期延拓。

四、证明题16. 证明函数f(x)=x^3在R上是严格递增的。

17. 证明定积分∫(0,1) x ln(x) dx = -1/4。

18. 证明级数Σ(n=1 to ∞) (1/n^2)是收敛的。

五、应用题19. 一个物体从静止开始,以初速度为0,加速度为常数a=2m/s^2,求物体在t=3秒时的位置。

高等数学上期末复习资料大全

高等数学上期末复习资料大全

例17. 求圆柱螺旋线

的切线方程和法平面方程.
解:
由于
对应的切向量为
切线方程 x R
T
y
(R, 0, R z 0
k )2 k
,
k


k y
x Rz R0
2
R
k
0
法平面方程
即 Rx
R
x
k
z
k (2zk22k0)
0
M
0
(0
,
R
,
2
k
)
z
o
x
y
例18计算由椭圆
所围图形绕 x 轴旋转而
,
其中系数A1、B1、C1与A2、B2、C2不成比例.
考虑三元一次方程:
A1xB1yC1zD1(A2xB2 yC2zD2)0,

(A1A2)x(B1B2)y(C1C1)zD1D20,
其中为任意常数.
上述方程表示通过定直线L的所有平面的全体, 称为平面
束.
1. 函数的极值问题 第一步 利用必要条件在定义域内找驻点.
2 3
(极大)
(拐点)
(极小)
极大值;
极小值:
拐点:
例15 计算两条抛物线 所围图形的面积 .
解: 由
得交点 (0, 0) , (1, 1)
1
AdA0
x x2 dx
1 3
在第一象限所围
y y2 x (1,1) y x2
o x x d x1 x
平面图形的面积
平面直角坐标下图形的面积
y
z Fy
xz
.
导时,将方程 F(x,y,z)=0中x,y,z

高等数学(同济版)上册期末复习题(含答案)

高等数学(同济版)上册期末复习题(含答案)

高等数学(同济版)上册期末复习题(含答案)一、填空题1.lim(e^3x-cos2x)/(3sin2x-2x^2) = 12.曲线y=xe的拐点是(2,2e)3.设f(x)在x=0处可导且f(0)=0,则lim(x→0) [f(x)/x] =f'(0)4.曲线y=(1-cos2x)/π+x在(-1,1)处的切线方程为y=x+15.曲线y=2x/(x^2-1)有垂直渐近线x=±1和水平渐近线y=06.设f(u)可导,y=sin[f(e)],则dy=sin2[f(e)]·f'(e)·e dx7.∫e^x dx = 2(e^2+1)8.若f'(x)=-3,则lim(h→0) [(f(x+h)-f(x))/h] = -39.若∫xp dx收敛,则p的范围是p<-110.lim(x→∞) [(2x+3)/(x+1)] = e11.设∫f(x)dx=F(x)+c,则∫f(2x)dx=F(2x)/2+c12.设f(x)的一个原函数是x ln x,则∫x f(x)dx = x^2 ln x - ∫x dx + C13.设f(x)={x^2.x>1.-x。

x≤1},则∫f(x)dx = -1614.过点(1,3)且切线斜率为2的曲线方程为y=x^2+115.已知函数f(x)={xsinx。

x≠a。

A。

x=a},则当x→∞时,函数f(x)是无穷小;当a=1时,函数f(x)在x=1处连续,否则x=a为函数的第一类间断点。

16.已知∫f(x)dx=F(x)+c,则∫f(arcsin x)dx=F(arcsin x)+c17.当x→0时,(1+ax)^(-1)与1-cosx是等价无穷小,则a=2/318.f(x)={x^3sin(1/x)。

x≠0.0.x=0}是连续函数,则a=1/319.f(x)在[0,1]上连续,且f(1)=1,[f(x)]dx=1,则∫0^1 xf(x)f'(x)dx = -1/220.Φ(x)=∫xe^tdt,则Φ(1)=e-1,Φ'(1)=e2.曲线y=f(x)在点(2,f(2))处的切线平行于直线y=3x+1,则f'(2)=33.设f(x)=arctanx,则当x→+∞时,lim f(x)=π/25.函数y=x的导数为y'=x(lnx+1)6.∫0+∞ xe^(-x) dx=27.∫-1^1 (x+2)/(√(1+x^2)(2+x)) dx=19.f(x)=x的积分曲线中过(1,-1)的那条曲线的方程为y=x^2-2x11.设s为曲线y=xlnx与x=1,x=e及x轴所围成的面积,则s=(e^2+1)/213.曲线y=ln(e^x)的全部渐近线为y=1,x=0,x=-1/e15.曲线y=x^2与y^2=x所围图形绕y轴旋转一周所成的旋转体体积为(π/5)(7-2√6)16.点(1,1,1)到平面2x+y-2z+2=0的距离为(√14)/318.设向量a=2i-j+k,b=4i-2j+λk,则当λ=-10时,a⊥b;当λ=2,a//b。

大一高数a1期末试题及答案

大一高数a1期末试题及答案

大一高数a1期末试题及答案一、选择题(每题4分,共20分)1. 已知函数f(x)=x^2-4x+4,求f(2)的值。

A. 0B. 4C. 8D. 12答案:A2. 计算极限lim(x→0) (sin x / x)。

A. 0B. 1C. 2D. ∞答案:B3. 求不定积分∫(3x^2-2x+1)dx。

A. x^3 - x^2 + x + CB. x^3 + x^2 - x + CC. x^3 - x^2 + x - CD. x^3 + x^2 + x - C答案:A4. 判断以下级数是否收敛:∑(n=1 to ∞) (1/n^2)A. 收敛B. 发散答案:A5. 求函数y=ln(x)的导数。

A. 1/xB. xC. ln(x)D. x^2答案:A二、填空题(每题5分,共20分)1. 已知等差数列的首项为2,公差为3,求第5项的值:______。

答案:172. 计算定积分∫(0 to 1) x^2 dx的值:______。

答案:1/33. 求函数f(x)=x^3-6x^2+11x-6的极值点。

答案:x=1, x=24. 判断函数f(x)=x^3-3x+1的单调性。

答案:在区间(-∞, 1)上单调递增,在区间(1, +∞)上单调递减。

三、解答题(共60分)1. 求函数f(x)=x^3-6x^2+11x-6的极值点,并说明极值类型。

(15分)答案:函数f(x)的导数为f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1, x=2。

通过二阶导数测试,f''(x)=6x-12,f''(1)=-6<0,f''(2)=6>0,所以x=1处为极大值点,x=2处为极小值点。

2. 计算定积分∫(0 to 2) (x^2-2x+1) dx,并求出原函数。

(15分)答案:原函数为F(x)=1/3x^3-x^2+x,定积分值为F(2)-F(0)=8/3-4+2=2/3。

高数(上)期末复习训练题

高数(上)期末复习训练题

高等数学(上)期末复习训练题第一部分 判断1. 无限个无穷小的和、乘积仍为无穷小. ( )2.不存在为常数的无穷小量( )3.函数xy =+的反函数是ln(1)y x =-.( )4.函数4x y =是基本初等函数.( )5. 当x →∞时,函数sin x x +与cos x x -等价.( )6. 无穷小量与无穷大量之积必定是无穷小量.( )7. 所有初等函数在其定义域内连续.( )8若00lim ()()x x f x f x →=,则函数()f x 在点0x 连续. ( )9.)(sin )()sin (''='x e x e x x .( )10.若函数()f x 在点0x 左右可导,则()f x 必在点0x 可导。

( ) 11.若()f x 在区间(,)a b 上单调可导,则'()f x 在(,)a b 上必定单调( ) 12. 函数)(x f 在点0x 可导的充要条件是)(x f 在点0x 可微. ( )13.函数)(x f 在[,]a b 上连续,且)()(b f a f =,则至少存在一点),(b a ∈ξ,使0)(='ξf . 14.对于一00型未定式,如果运用洛必达法则后确定极限不存在,则原极限一定不存在( ) 15. 函数2=y 在闭区间[,]a b 上最大值和最小值都是2. ( ) 16可导函数)(x f 在点0x 取极值,则必有0()0f x '=( )17.若函数)(x f 在区间(,)a b 内仅有一个驻点,则该点一定是函数的极值点. ( ) 18.在整个实数轴上有界的函数必具有水平渐近线. ( ) 19. 闭区间[],a b 上的连续函数()f x 在此区间上一定可积.( ) 20. 若()d ()f x x F x C =+⎰,则22=+⎰()d ()f x x F x C .( ) 21.若()0f x ≥,则当a b <时,有0 ()d b af x x ≥⎰.( )22.已知()f x 在),(+∞-∞上连续,且T 为其周期,则dx x f dx x f baTb Ta ⎰⎰=++)()(( )第二部分 选择1.函数arcsin 2y x =的定义域是( ).A) (,)-∞+∞ B)[1,1]- C)[1/2,1/2]- D) [2,2]- 2.0x →时 ,sin x 与2x 相比是( )无穷小.A) 等价 B) 同阶但不等价 C)高阶 D) 低阶3.∞→x 时,下列各式中有几个是无穷小量?( )xx 1sin xx s i n xx cos x1sinA )1B )2C )3D )4 4.∞→x 时,下列哪一个不是无穷小量? .A )xx 1sin B )xx sin C )xx cos D )x1sin5.下列不正确的是 ( ) (A )0sin lim1x x x→= (B )0lim1sin x x x→= (C )1lim sin1x x x→∞= (D )01lim sin1x x x→=6.若lim ()x af x →=∞,lim ()x ag x →=∞,则必有 ( )A .lim[()()]x af xg x →+=∞ B .lim[()()]x af xg x →-=∞C .1lim()()x af xg x →=+ D .lim ()()x ag x f x →=∞7. 下列各式正确的是( ). A. 0lim0x →= B. sin lim1x x x→∞=C. 01lim2x x→=D. 2lim sec x x π→=∞8.下列各式正确的是( ).A. lim12x xx e e-→∞+=. B. 01lim sin0x x x→=.C. 1lim 2x x →=∞. D. 01lim2x x→=9.下列式子中错误的是 ( )(A )lim 20xx →+∞= (B )lim 20xx →-∞= (C )1lim 02xx →+∞⎛⎫= ⎪⎝⎭ (D )1lim 02xx -→-∞⎛⎫= ⎪⎝⎭10.当0x →时,下列变量中为无穷大量的是 ( ) (A )ln x (B )x e - (C )1cos x(D )1sinx11.下列函数中为隐函数的是 ( ) (A )y e = (B )22221x y ab+= (C )21y x =- (D )()y F t c =+12.若()f u 可导,且()x y f e =,则有 ( )(A )()x dy f e dx '= (B )()x x dy f e de '= (C )[()]x x dy f e de '= (D )()dy f x dx '= 13.函数11=-()f x x 在点1x =处( ).A. 连续 B.可导 C. 间断 D.可微14.若()200()()2()f x x f x x o x +∆-=∆+∆,则函数在0x x =处( ) A)可微但不可导 B )连续但不可导 C )可微且2()dy x =∆ D )可导 15.设2()3ln f x x x =+,则(1)f ''= ( )(A )3 (B )2 (C )1- (D )1 16.下列命题不正确的是( )A.函数=>(),0x f x x x 是初等函数.B. 函数3()sin cos f x x x x =是偶函数.C. 无穷大量与常数的乘积必定是无穷大量.D. 连续函数必有原函数. 17.下列命题不正确的是( )A.两个无穷大量之和一定是无穷大量.B.可导函数的极值点必是驻点.C.函数()s i n f x x =的n 阶导数()()sin()2n f x x n π=+⋅. D.在区间I 上连续的函数必有原函数.18.函数sin y x =的微分是 ( )A .cos x B .sin x C .cos xdx D .sin xdx 19.函数21y x =+在区间[2,0]-上是 ( )(A )单调增加 (B )单调减少 (C )不增不减 (D )有增有减 20. 设()sin f x x =,()d f x x '⎰=( )A. sin x C +B. cos x C +C. d cos xD. sin d x x21.已知11()xx f x e dx e c =+⎰,则()f x = ( )A .1 B .1x- C .x D .21x-22.设()F x ,()G x 都是()f x 的原函数,则必定有 ( ) (A )()()0F x G x -= (B )()()0F x G x += (C )()()F x G x C -= (D )()()F x G x C += 23.广义积分=⎰∞+121dx x( )A ) 0 B )1 C )1- D )224.设210xa edx -=⎰,221xb edx -=⎰,则 ( )(A )a b = (B )a b > (C )a b < (D )不能确定 25.设2()cos d x x t t Φ=⎰,则()'Φx =( )A. 2cos x . B. 2sin x . C. 22sin x x . D. 22cos x x第三部分 填空1.1)函数()arccos f x x =的连续区间是 2)函数221()1xf x x +=-的连续区间是 .2. 201sec lim 1tan x xx →-+= .0sin lim (3)x x x x →+ = 21lim 1nn n →∞⎛⎫- ⎪⎝⎭= . 0sin lim 1tan →+x x x = 3.1)213tan 2n x y x ++=,则d y = 2)4arccos 4ln 4x y x =++,则d y = 4.函数3=y x 拐点坐标是 .凹凸区间分别是 5.1)曲线2sin 1x y x =-的竖直渐近线是 .2)曲线4122-+=x x y 的水平渐近线是6.201⎡⎤+⎢⎥⎣⎦⎰ d ()d d x t t x = sec d x x =⎰ ()='⎰dx x 3 . 7. 722cos d x x x ππ-=⎰2sin b ad x dxdx⎰=22ππ-=⎰x第四部分 计算1. 求极限mxnx x sin tan lim→,()xx x2cot21lim +→.2→-sin limtan x x x x x, ⎪⎭⎫⎝⎛--→111lim 0xx e xnx xx ln lim+∞→, ()x x x tan sec lim 2-→π2. 1)求由方程22221x y ab-=确定的隐函数()y y x =的导数xy '. 2)已知方程21(tan )y x y =+确定隐函数()y y x =,求x y '3. 1)求由方程2,12x at b y at bt =+⎧⎪⎨=+⎪⎩确定的函数的x y '.2)求由参数方程()⎩⎨⎧-=+=--tt et t y te x 221所表示曲线在0=t 处的切线方程和法线方程。

高等数学(1)专科 期末考试试题及参考答案

高等数学(1)专科 期末考试试题及参考答案

高等数学(1)(专科)复习题(一)一、填空题)1、设f(x)的定义域为(0,1),则)x 1(f 2-的定义域为0<|x|<1。

解:0<2x 1-<1⇒0<1-x 2<1⇒0<x 2<1⇒0<|x|<12、当x →0时,无穷小量1-cosx 与mx n 等价(其中m,n 为常数),则m=21,n=23、曲线y=xe -x 的拐点坐标是(2,2e -2)4、⎰-+-2121dx x 1x1ln =05、设⎰dx )x (f =F(x)+C ,则⎰--dx )e (f e x x =-F(e x )+C 。

解:⎰--dx )e (f e x x =C )e (F de )e (f x x x +-=----⎰二、计算下列极限1、⎪⎭⎫⎝⎛-→x sin x 1x 1sin x lim 0x =-12、求极限220x x tan )x sin 1ln(lim +→解:1x xsin lim x tan )x sin 1ln(lim220x 220x ==+→→3、4n412n 1lim 4n )n 21(lim 22n 22n =+⎪⎭⎫ ⎝⎛-=+-∞→∞→ 4、e x x x xx x x =⎪⎭⎫⎝⎛-=--∞→∞→11lim )1(lim三、求导数与微分1、设x arccos y =,求dy 解:dx xx 21dx x21x 11x d x11x arccos d dy 2--=⋅--=--==2、设y=e 2x sinx+e 2,求y ''.解:y '=2e 2x sinx+e 2x cosx,y "=4e 2x sinx+2e 2x cosx+2e 2x cosx+e 2x (-sinx)=e 2x (3sinx+4cosx) 3、求由方程ysinx-cos(x+y)=0所确定的隐函数y=y(x)的导数y '.解:0)dx dy1)(y x sin(x cos y x sin dx dy =++++)y x sin(x sin ))y x sin(x cos y (dx dy ++++-=4、设y=(1+x 2)sinx ,求dxdy 解:y=(1+x 2)sinx =)x 1ln(x sin 2e +⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡+++=+22x sin 222)x 1ln(x sin x 1x sin x 2)x 1ln(x cos )x 1(x 1x 2x sin )x 1ln(x cos e dx dy 2四、计算下列积分 1、C )x x (tan 21dx )1x (sec 21dx x 2cos 1x cos 122++=+=++⎰⎰2、求⎰π+20xdx cos )x cos 1(⎰⎰⎰ππππ++=+=202020220dx 2x2cos 1x sin x dx cos x dx cos =1+4π3、求⎰dx x sec x tan 25.解:⎰dx x sec x tan 25=C x tan 61x tan d x tan 65+=⎰[][]139444)42()24(|42||42|4245222025225225=+=-+-=-+-=-+-=-⎰⎰⎰⎰⎰x x x x dx x dx x dx x dx x dx x 、五、确定函数y=(x-1)3+1在其定义域内的增减性及凹凸区间,并求拐点坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学1 期末考试试卷(A 卷)一、填空题(本题共5个小题,每小题3分,满分15分)1、设 82lim =⎪⎭⎫⎝⎛-+∞→xx a x a x , 则 =a 。

2、设函数)2(1)(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点是 。

3、设)1ln(2x x y ++=,则=dy 。

4、设)(x f 是连续函数,且dt t f x x f )(2)(10⎰+=,则=)(x f 。

5、xdx arctan 1⎰= 。

二、单项选择题(本题共5个小题,每小题3分,满分15分)1、设数列n x 与数列n y 满足0lim =∞→n n n y x ,则下列断言正确的是( )。

(A )若n x 发散,则n y 必发散。

(B )若n x 无界,则n y 必无界。

(C )若n x 有界,则n y 必为无穷小。

(D )若nx 1为无穷小,则n y 必为无穷小。

2、设函数x x x f =)(,则)0(f '为( )。

(A ) 1。

(B )不存在。

(C ) 0。

(D ) -1。

3、若),()()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则)(x f 在),0(+∞内有( )。

(A )0)(,0)(<''>'x f x f 。

(B )0)(,0)(>''>'x f x f 。

(C )0)(,0)(<''<'x f x f 。

(D )0)(,0)(>''<'x f x f 。

4、设)(x f 是连续函数,且⎰-=dt t f x F x e x)()(,则)(x F '等于( )。

(A )())(x f e f e x x ----。

(B )())(x f e f e x x +---。

(C ) ())(x f e f e x x --- 。

(D )())(x f e f e x x +--。

5、设函数x x a x f 3sin 31sin )(+=在3π=x 处取得极值,则( )。

(A ))3(,1πf a =是极小值。

(B ))3(,1πf a =是极大值。

(C ))3(,2πf a =是极小值。

(D ))3(,2πf a =是极大值。

三、计算题(本题共7个小题,每小题6分,满分42分)1、求 )1ln(sin 1tan 1lim 30x xx x ++-+→2、设4lim 221=-++→xx b ax x x ,求 b a 、。

3、设)(x y y =由参数方程 ⎩⎨⎧+=+=tt y t x arctan )1ln(2 所确定,求 22dx yd dx dy 、。

4、设)(x f 在0=x 处的导数连续,求dxx df x )(sin lim 20+→ 。

5、求不定积分 dx xxx ⎰3cos sin 。

6、求定积分dx x ⎰cos 4。

7、设⎩⎨⎧≥<=-0sin )(22x xex xx f x , 求 ⎰-dx x f )2(31 。

四、证明下列不等式(本题10分) 1、)2,0(,sin 2ππ∈<<x x x x; 2、2sin 12ππ<<⎰dx x x 。

五、(本题10分)设 00)()(=≠⎪⎩⎪⎨⎧-=-x x xe x g xf x,其中)(x g 具有二阶连续导数,且1)0(,1)0(-='=g g 。

(1)求)(x f '; (2)讨论)(x f '在),(+∞-∞上的连续性。

六、(本题8分)设函数)(x f 在[]b a ,上可导,证明:存在)(b a ,∈ξ,使得 [])()()()(222ξξf a b a f b f '-=-。

(8分)答案一、填空题(本题共5个小题,每小题3分,满分15分)1、设 82lim =⎪⎭⎫⎝⎛-+∞→xx a x a x , 则 =a ln 2 。

2、设函数)2(1)(--=x x e x f x ,则函数的第一类间断0 ,第二类间断点是 2 。

3、设)1ln(2x x y ++=,则=dy。

4、设)(x f 是连续函数,且dt t f x x f )(2)(1⎰+=,则=)(x f1x - 。

5、xdx arctan 1⎰=4π-。

二、单项选择题(本题共5个小题,每小题3分,满分15分)1、设数列n x 与数列n y 满足0lim =∞→n n n y x ,则下列断言正确的是( D )。

(A )若n x 发散,则n y 必发散。

(B )若n x 无界,则n y 必无界。

(C )若n x 有界,则n y 必为无穷小。

(D )若nx 1为无穷小,则n y 必为无穷小。

2、设函数x x x f =)(,则)0(f '为( C )。

(A ) 1。

(B )不存在。

(C ) 0。

(D ) -1。

3、若),()()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则)(x f 在),0(+∞内有( C )。

(A )0)(,0)(<''>'x f x f 。

(B )0)(,0)(>''>'x f x f 。

(C )0)(,0)(<''<'x f x f 。

(D )0)(,0)(>''<'x f x f 。

4、设)(x f 是连续函数,且⎰-=dt t f x F x e x)()(,则)(x F '等于( A )。

(A )())(x f e f e x x ----。

(B )())(x f e f e x x +---。

(C ) ())(x f e f e x x --- 。

(D )())(x f e f e x x +--。

5、设函数x x a x f 3sin 31sin )(+=在3π=x 处取得极值,则( D )。

(A ))3(,1πf a =是极小值。

(B ))3(,1πf a =是极大值。

(C ))3(,2πf a =是极小值。

(D ))3(,2πf a =是极大值。

三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 )1ln(sin 1tan 1lim3x xx x ++-+→3300300lim lim2ln(1)1tan sin 1lim 24x x x x x x x x x →→→→=+-===解:(分)(6分)2、设4lim 221=-++→xx b ax x x ,求 b a 、。

212211lim()010,(1)(22lim lim 242, 3.(621x x x x ax b a b b a x ax b x a a a b x x x →→→++=⇒++==-++++==+=⇒==---解:分)分)3、设)(x y y =由参数方程 ⎩⎨⎧+=+=tt y t x arctan )1ln(2 所确定,求 22dx y d dx dy 、。

()()2222222223222(3112212(624dy t t tt t dx tt td y d t dtdx dtt dx t ++==++-+⎛⎫+==⎪⎝⎭解:分)分)4、设)(x f 在0=x 处的导数连续,求dxx df x )(sin lim 20+→ 。

22002(sin lim lim[(sin (4lim[(sin (0)(4x x x df f dx f f +++→→→'=''=解:分)=分)5、求不定积分 dx xxx ⎰3cos sin 。

233222sin (cos )1(cos )(2cos cos 211[][tan ](62cos cos 2cos x x xd x dx xd x x x x dx x x C x x x--===-=-+⎰⎰⎰⎰解:分)分)6、求定积分dx x ⎰cos 40。

422200,2,0,0;4, 2.22cos 2[sin sin ]2(2sin 2cos 21)t dx tdt x t x t t tdt t t tdt ======∴==-=+-⎰⎰⎰(分)(6分)7、设⎩⎨⎧≥<=-0sin )(22x xex xx f x , 求 ⎰-dx x f )2(31 。

22231012111111201002,,1,1;3, 1.21cos 2(2)()sin 21111()[sin 2]2222121[sin 2]4x x x x t dx dt x t x t xf x dx f t dt xdx xedx dx e d x x x e e--------====-==-∴-==+=--=--=-+⎰⎰⎰⎰⎰⎰解:令(分)(4分)(6分)四、证明下列不等式(本题10分) 1、)2,0(,sin 2ππ∈<<x x x x; 2、2sin 12ππ<<⎰dx x x 。

证明:设sin (0,)()21xx f x xx π⎧∈⎪=⎨⎪=⎩则函数在0x =处连续,且 22cos sin cos ()(tan )0,(0,)32x x x x f x x x x x x π-'==-<∈(分)所以,当(0,)2x π∈时,()f x 单调减少,2sin ()(0)162x f f x f x ππ⎛⎫⇒<<∴<< ⎪⎝⎭(分)220022sin sin ,(0,).110222xx x x x dx dx x πππππππ∴<<∈⇒=<<=⎰⎰(分)五、(本题10分)设 00)()(=≠⎪⎩⎪⎨⎧-=-x x xe x g xf x ,其中)(xg 具有二阶连续导数,且1)0(,1)0(-='=g g 。

(1)求)(x f '; (2)讨论)(x f '在),(+∞-∞上的连续性。

200000()0()(0)()1(0)lim lim lim ()()(0)1lim lim 222xxx x x x xx x g x e f x f g x e x f x x x g x e g x e g x --→→→--→→----'==='''''+--===解:()(3分) 222(())(()()()(1)()()()(1)0()(6)(0)102x x xxx g x e g x e xg x g x x e f x x x xg x g x x e x x f x g x ----''+---++'=='⎧-++≠⎪⎪'∴=⎨''-⎪=⎪⎩)分(2)当0x ≠时,()f x '连续.当0x =时,200()()(1)1lim ()lim [(0)1](0)2x x x xg x g x x e f x g f x -→→'-++''''==-= 所以, )(x f '在),(+∞-∞上都连续. (10分)六、(本题8分)11 设函数)(x f 在[]b a ,上可导,证明:存在)(b a ,∈ξ,使得 [])()()()(222ξξf a b a f b f '-=-。

相关文档
最新文档