《代入消元法》教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教案
消元——二元一次方程组的解法(代入消元法)教学设计思路
在前面已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法。讲解时以学生为主体,创设恰当的问题情境和铺设合适的台阶,尽可能激发学生通过自己的观察、比较、思考和归纳概括,发现和总结出消元化归的思想方法。
知识目标
通过探索,领会并总结解二元一次方程组的方法。根据方程组的情况,能恰当地应用“代入消元法”解方程组;
会借助二元一次方程组解简单的实际问题;
提高逻辑思维能力、计算能力、解决实际问题的能力。
能力目标
通过大量练习来学习和巩固这种解二元一次方程组的方法。
情感目标
体会解二元一次方程组中的“消元”思想,即通过消元把解二元一次方程组转化成解两个一元一次方程。由此感受“划归”思想的广泛应用。
教学重点难点疑点及解决办法
重点是用代入法解二元一次方程组。
难点是代入法的灵活运用,并能正确地选择恰当方法(代入法)解二元一次方程组。
疑点是如何“消元”,把“二元”转化为“一元”。
解决办法是一方面复习用一个未知量表示另一个未知量的方法,另一方面学会选择用一个系数较简单的方程进行变形。
教学方法:引导发现法,谈话讨论法,练习法,尝试指导法
课时安排:1课时。
教具学具准备:电脑。
教学过程
含一个未知数的式子表示另一个未知数,从而实现消元。和理解概
念
握得更加完整。
(三)例题教学
例1 用代入法解方程组
分析:方程①中x的系数是1,用含y的式子表示x,比
较简便。
解:由①,得x=y+3。③
把③代入②,得 ([5]把③代入①可以吗?试试看。)
3(y十3)一8y=14。
解这个方程,得y=一1。
把y=-l代入③,得 ([6]把y=-1代入①或②可以吗?)
x=2
所以这个方程组的解是
[5]由于方程③是由方程①得到的,所以它只能代入方程
②,而不能代入①。为使学生认识到这一点,可以让其试试把
③代入①会出现什么结果。
[6]得到一个未知数的值后,把它代入方程①②③都能得
到另一个未知数的值。其中代入方程③最简捷。为使学生认识到这一点,可以让其试试各种代入法。
例2 根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250 g)两种产品的销售数量比(按瓶计算)为2:5。[7]某厂每
天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶装
两种产品各多少瓶?
[7]两种产品的销售数量比为2:5,即销售的大瓶数目与小瓶数目的比为2:5。这里的数目以瓶为单位。
分析:问题中包含两个条件:
大瓶数:小瓶数=2:5,
大瓶所装消毒液+小瓶所装消毒液=总生产量。
解:设这些消毒液应分装x大瓶和y小瓶。
根据大、小瓶数的比以及消毒液分装量与总生产量的相等思考
独立完成
老师与个
别学生互
动适时指
导
同桌交流
选同学分
析和回答
解题过程
同学回答
正确适当
表扬后提
问[5]
[6]学生
尝试并给
出回答
学生自由
读题,分
析条件,
列出方程
组并解答
用展台展
示几个具
培养学生思考
及解决问题的
能力
检验学生对知
识的掌握程度。
通过总结,再次
加深学生对知
识的掌握程度,
给学生充分发
挥的空间。
在学生形成解
题思维之后,放
手让学生完成,
给学生自我展
示的空间。
揭露学生可能
出现的问题和
关系,得
由①,得
把③代入②,得
解这个方程,得x=20 000。
把x=20 000代入③,得y=50 000,
这个方程组的解是
答:这个工厂一天应生产20 000大瓶和50 000小瓶消毒液。
(四)代入法解题步骤
上面解方程组的过程可以用下面的框图表示:
这个框图以用代入法解一个具体的二元一次方程组的过程为例,展示了代入法的解题步骤,以及各步骤的作用。它可以作为代入法解二元一次方程组的一般步骤的典型。
讨论
解这个方程时,可以先消去x吗?试试看。
(五)巩固练习
课本P98-99 1、3
(六)小结有典型性
的同学的
解答过
程,讲解
时注重思
路和格
式.
注意代入
原方程组
检验
教师用课
件展示思
维和解题
流程,学
生注意观
察和理
解.
学生观察
集全评议
动手实践
独立完成
交流答案
谈谈本节
遇到的障碍,并
及时更正,使学
生少走弯路。
通过总结,再次
加深学生对知
识的掌握程度。
培养学生思考
及解决问题的
能力。
巩固检验对知
识的理解
体现本节课的