全国中考数学压轴题精选精析(陕西)
最新陕西中考数学压轴题归类
《第25题几何压轴题归类》考点:类型一:线段最值问题(从定点入手,利用轴对称思想解决)考点二:利用隐形圆探究满足特殊角的点问题(常见的题目有:求一个固定的角,求最大角,求二倍角等)类型三:等分面积问题(难点是不规则图形的面积等分,有时会牵涉到既等分周长又等分面积)类型四:面积最值问题(利用二次函数思想解决较常见,也有利用极值思想解决的,还有利用圆的知识求解,面积最大周长最小也会考)类型一:线段最值问题1.如图,在△ABC中,AB=AC=5,BC=6,若点P在AC上移动,则PB的最小值是_____.3.如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边中点,E是AB上一动点,则EC+ED 的最小值为_____.4.如图,在矩形ABCD中, AB=6,BC=8,连接AC,点M是AC上一动点,点N是BC上的一动点,则BN+MN 的最小值为________.5.如图,在四边形ABCD中,AD∥BC,BE平分∠ABC,且BE⊥CD于E,P是BE上一动点.若BC=6,CE=2DE,则|PC-PA|的最大值是______.6.如图①,已知:△OAB中,OB=3,将△OAB绕点O逆时针旋转90°得△OA´B´,连接BB´,则BB´=_______.问题探究:4的等边三角形,以BC为边向外作等边△BCD.P为△ABC 如图②,已知△ABC为边长为3内一点,将线段CP绕点C逆时针旋转60°,P的对应点为Q,连接DQ、BP.(1)求证△DCQ≌△BCP;(2)求PA+PB+PC的最小值.实际应用如图③,某货运场为一个矩形场地ABCD,其中AB=500米,AD=800米,顶点A、D为两个出口,现在想在货运场内建一个货物堆放平台P,在BC边上(含B、C两点)开一个货物入口M,并修建三条专用车道PA、PD、PM.若修建每米专用车道的费用为10000元,当M、P建在何处时,修建专用车道的费用最少?最少费用为多少?7.小明在学习轴对称的时候,老师留了这样一道思考题:如图,已知在直线l的同侧有A、B两点,请你在直线l上确定一点P,使得PA+PB的值最小.小明通过独立思考,很快得出了解决这个问题的正确方法,他的作法是这样的:①作点A关于直线l的对称点A′.②连接A′B,交直线l于点P.则点P为所求.请你参考小明的作法解决下列问题:(1)如图1,在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使得△PDE的周长最小.①在图1中作出点P.(三角板、刻度尺作图,保留作图痕迹,不写作法)②请直接写出△PDE周长的最小值______.(2)如图2在矩形ABCD中,AB=4,BC=6,G为边AD的中点,若E、F为边AB上的两个动点,点E在点F左侧,且EF=1,当四边形CGEF的周长最小时,请你在图2中确定点E、F 的位置.(三角板、刻度尺作图,保留作图痕迹,不写作法),并直接写出四边形CGEF周长的最小值______.类型二:利用隐形圆探究满足特殊角的点问题例1.问题探究(1)如图①,在边长为3的正方形ABCD内(含边)画出使∠BPC=90°的一个点P,保留作图痕迹;(2)如图②,在边长为3的正方形ABCD内(含边)画出使∠BPC=60°的所有的点P,保留作图痕迹并简要说明作法;问题解决如图③,已知矩形ABCD,AB=3,BC=4,在矩形ABCD内(含边)画出使∠BPC=60°,且使△BPC的面积最大的所有点P,并求出△BPC的面积的最大值及此时AP的长,保留作图痕迹.练习1.问题探究(1)如图①,在矩形ABCD中,AB=2,BC=4,如果BC边上存在一点P,使△APD为直角三角形,那么请画出满足条件的一个直角三角形,并求出此时AP的长;(2)如图②,在四边形ABCD中,AB∥CD,∠B=90°,AD=10,AB=7,CD=1,点P在边BC 上,且∠APD=90°,求BP的长.问题解决(3)如图③,在平面直角坐标系中,点A、B、C分别是某单位的门房及两个仓库,其中OA=100m,AB=200m,OC=300m,单位负责人想选一点P安装监控装置,用来监控AB,使△APB的面积最大,且∠APB=2∠ACB,是否存在满足条件的点P?若存在,请求出点P的坐标;若不存在,请说明理由.例4.问题探究:(1)如图①,AB为⊙O的弦,点C是⊙O上的一点,在直线AB上方找一个点D,使得∠ADB=∠ACB,画出∠ADB,并说明理由(2)如图②,AB 是⊙O的弦,点C是⊙O上的一个点,在过点C的直线l上找一点P,使得∠APB<∠ACB,画出∠APB,并说明理由问题解决(3)如图③,已知足球门宽AB约为B点C 点(点A 、B 、C 均在球场的底线上),沿与AC 成45°的CD 方向带球.试问,该球员能否在射线CD 上找一点P ,使得点P 最佳射门点(即∠APB 最大)?若能找到,求出这时点P 与点C 的距离;若找不到,请说明理由.练习 问题探究(1)请在图①的正方形ABCD 内,画出使∠APB=90°的一个点P ,并说明理由;(2)请在图②的正方形ABCD 内(含边),画出使∠APB=60°的所有的点P ,并说明理由; 问题解决(3)如图③,现有一块矩形钢板ABCD ,AB=4,BC=3,工人师傅想用它裁出两块全等的、面积最大的△APB 和△CP ′D 钢板,且∠APB=∠CP ′D=60°,请你在图③中画出符合要求的点P 和P ′,并求出△APB 的面积。
2018年全国各地中考数学压轴题汇编:几何综合(西北专版)(解析卷)
2018年全国各地中考数学压轴题汇编(西北专版)几何综合参考答案与试题解析一.选择题(共10小题)1.(2018•陕西)如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为()A.B.2C.D.3解:∵AD⊥BC,∴∠ADC=∠ADB=90°.在Rt△ADC中,AC=8,∠C=45°,∴AD=CD,∴AD=AC=4.在Rt△ADB中,AD=4,∠ABD=60°,∴BD=AD=.∵BE平分∠ABC,∴∠EBD=30°.在Rt△EBD中,BD=,∠EBD=30°,∴DE=BD=,∴AE=AD﹣DE=.故选:C.2.(2018•兰州)如图,矩形ABCD中,AB=3,BC=4,EF∥DF且BE与DF之间的距离为3,则AE的长是()A.B.C.D.解:如图所示:过点D作DG⊥BE,垂足为G,则GD=3.∵∠A=∠G,∠AEB=∠GED,AB=GD=3,∴△AEB≌△GED.∴AE=EG.设AE=EG=x,则ED=4﹣x,在Rt△DEG中,ED2=GE2+GD2,x2+32=(4﹣x)2,解得:x=.故选:C.3.(2018•陕西)如图,在菱形ABCD中.点E、F、G、H分别是边AB、BC、CD和DA 的中点,连接EF、FG、GH和HE.若EH=2EF,则下列结论正确的是()A.AB=EF B.AB=2EF C.AB=EF D.AB=EF解:连接AC、BD交于O,∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,OB=OD,∵点E、F、G、H分别是边AB、BC、CD和DA的中点,∴EF=AC,EF∥AC,EH=BD,EH∥BD,∴四边形EFGH是矩形,∵EH=2EF,∴OB=2OA,∴AB==OA,∴AB=EF,故选:D.4.(2018•兰州)如图,将▱ABCD沿对角线BD折叠,使点A落在点E处,交BC于点F,若∠ABD=48°,∠CFD=40°,则∠E为()A.102°B.112°C.122°D.92°解:∵AD∥BC,∴∠ADB=∠DBC,由折叠可得∠ADB=∠BDF,∴∠DBC=∠BDF,又∵∠DFC=40°,∴∠DBC=∠BDF=∠ADB=20°,又∵∠ABD=48°,∴△ABD中,∠A=180°﹣20°﹣48°=112°,∴∠E=∠A=112°,故选:B.5.(2018•陕西)如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,则∠DBC的大小为()A.15°B.35°C.25°D.45°解:∵AB=AC、∠BCA=65°,∴∠CBA=∠BCA=65°,∠A=50°,∵CD∥AB,∴∠ACD=∠A=50°,又∵∠ABD=∠ACD=50°,∴∠DBC=∠CBA﹣∠ABD=15°,故选:A.6.(2018•白银)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A.5 B.C.7 D.解:∵把△ADE顺时针旋转△ABF的位置,∴四边形AECF的面积等于正方形ABCD的面积等于25,∴AD=DC=5,∵DE=2,∴Rt△ADE中,AE==.故选:D.7.(2018•青海)小桐把一副直角三角尺按如图所示的方式摆放在一起,其中∠E=90°,∠C=90°,∠A=45°,∠D=30°,则∠1+∠2等于()A.150°B.180°C.210°D.270°解:如图:∵∠1=∠D+∠DOA,∠2=∠E+∠EPB,∵∠DOA=∠COP,∠EPB=∠CPO,∴∠1+∠2=∠D+∠E+∠COP+∠CPO=∠D+∠E+180°﹣∠C=30°+90°+180°﹣90°=210°,故选:C.8.(2018•新疆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.3cm D.2cm解:∵沿AE对折点B落在边AD上的点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1是正方形,∴BE=AB=6cm,∴CE=BC﹣BE=8﹣6=2cm.故选:D.9.(2018•白银)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°解:连接DC,∵C(,0),D(0,1),∴∠DOC=90°,OD=1,OC=,∴∠DCO=30°,∴∠OBD=30°,故选:B.10.(2018•新疆)如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.B.1 C.D.2解:如图,作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N 的长.∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,又∵N是BC边上的中点,∴AM′∥BN,AM′=BN,∴四边形ABNM′是平行四边形,∴M′N=AB=1,∴MP+NP=M′N=1,即MP+NP的最小值为1,故选:B.二.填空题(共7小题)11.(2018•陕西)如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为72°.解:∵五边形ABCDE是正五边形,∴∠EAB=∠ABC==108°,∵BA=BC,∴∠BAC=∠BCA=36°,同理∠ABE=36°,∴∠AFE=∠ABF+∠BAF=36°+36°=72°,故答案为:72°.12.(2018•兰州)如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为6,则线段CF 的最小值是3﹣3.解:如图,在正方形ABCD中,AD=BC=CD,∠ADC=∠BCD,∠DCE=∠BCE,在Rt△ADM和Rt△BCN中,,∴Rt△ADM≌Rt△BCN(HL),∴∠DAM=∠CBN,在△DCE和△BCE中,,∴△DCE≌△BCE(SAS),∴∠CDE=∠CBE∴∠DCM=∠CDE,∵∠ADF+∠CDE=∠ADC=90°,∴∠DAM+∠ADF=90°,∴∠AFD=180°﹣90°=90°,取AD的中点O,连接OF、OC,则OF=DO=AD=3,在Rt△ODC中,OC==3根据三角形的三边关系,OF+CF>OC,∴当O、F、C三点共线时,CF的长度最小,最小值=OC﹣OF=3﹣3.故答案为:3﹣3.13.(2018•青海)如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且=,则=.解:∵四边形ABCD与四边形EFGH位似,其位似中心为点O,且=,∴=,则==.故答案为:.14.(2018•陕西)如图,点O是▱ABCD的对称中心,AD>AB,E、F是AB边上的点,且EF=AB;G、H是BC边上的点,且GH=BC,若S1,S2分别表示△EOF和△GOH的面积,则S1与S2之间的等量关系是=.解:∵==,==,∴S1=S△AOB,S2=S△BOC.∵点O是▱ABCD的对称中心,=S△BOC=S▱ABCD,∴S△AOB∴==.即S1与S2之间的等量关系是=.故答案为=.15.(2018•白银)如图,分别以等边三角形的每个顶点为圆心、以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为πa.解:如图.∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a,∴的长=的长=的长==,∴勒洛三角形的周长为×3=πa.故答案为πa.16.(2018•青海)如图,用一个半径为20cm,面积为150πcm2的扇形铁皮,制作一个无底的圆锥(不计接头损耗),则圆锥的底面半径r为7.5cm.解:解:设铁皮扇形的半径和弧长分别为R、l,圆锥形容器底面半径为r,则由题意得R=20,由Rl=150π得l=15π;由2πr=15π得r=7.5cm.故答案是:7.5cm.17.(2018•新疆)如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部分的面积是.解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是=π,故答案为:三.解答题(共15小题)18.(2018•陕西)如图,已知:在正方形ABCD中,M是BC边上一定点,连接AM.请用尺规作图法,在AM上作一点P,使△DPA∽△ABM.(不写作法,保留作图痕迹)解:如图所示,点P即为所求:∵DP⊥AM,∴∠APD=∠ABM=90°,∵∠BAM+∠PAD=90°,∠PAD+∠ADP=90°,∴∠BAM=∠ADP,∴△DPA∽△ABM.19.(2018•宁夏)已知:AB为⊙O的直径,延长AB到点P,过点P作圆O的切线,切点为C,连接AC,且AC=CP.(1)求∠P的度数;(2)若点D是弧AB的中点,连接CD交AB于点E,且DE•DC=20,求⊙O的面积.(π取3.14)解:(1)连接OC,∵PC为⊙O的切线,∴∠OCP=90°,即∠2+∠P=90°,∵OA=OC,∴∠CAO=∠1,∵AC=CP,∴∠P=∠CAO,又∵∠2是△AOC的一个外角,∴∠2=2∠CAO=2∠P,∴2∠P+∠P=90°,∴∠P=30°;(2)连接AD,∵D为的中点,∴∠ACD=∠DAE,∴△ACD∽△EAD,∴=,即AD2=DC•DE,∵DC•DE=20,∴AD=2,∵=,∴AD=BD,∵AB是⊙O的直径,∴Rt△ADB为等腰直角三角形,∴AB=2,∴OA=AB=,=π•OA2=10π=31.4.∴S⊙O20.(2018•陕西)如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,分别与AC、BC交于点M、N.(1)过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.证明:(1)连接ON,如图,∵CD为斜边AB上的中线,∴CD=AD=DB,∴∠1=∠B,∵OC=ON,∴∠1=∠2,∴∠2=∠B,∴ON∥DB,∵NE为切线,∴ON⊥NE,∴NE⊥AB;(2)连接DN,如图,∵CD为直径,∴∠CMD=∠CND=90°,而∠MCB=90°,∴四边形CMDN为矩形,∴DM=CN,∵DN⊥BC,∠1=∠B,∴CN=BN,∴MD=NB.21.(2018•宁夏)已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CN⊥BE,垂足为M,交AB于点N.(1)求证:△ABE≌△BCN;(2)若N为AB的中点,求tan∠ABE.(1)证明:∵四边形ABCD为正方形∴AB=BC,∠A=∠CBN=90°,∠1+∠2=90°∵CM⊥BE,∴∠2+∠3=90°∴∠1=∠3在△ABE和△BCN中∴△ABE≌△BCN(ASA);(2)∵N为AB中点,∴BN=AB又∵△ABE≌△BCN,∴AE=BN=AB在Rt△ABE中,tan∠ABE═.22.(2018•兰州)如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.解:(1)∵E是AC的中点,∴AE=CE,∵AB∥CD,∴∠AFE=∠CDE,在△AEF和△CED中,∵,∴△AEF≌△CED(AAS),∴AF=CD,又AB∥CD,即AF∥CD,∴四边形AFCD是平行四边形;(2)∵AB∥CD,∴△GBF∽△GCD,∴=,即=,解得:CD=,∵四边形AFCD是平行四边形,∴AF=CD=,∴AB=AF+BF=+=6.23.(2018•白银)已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.解:(1)∵点F,G,H分别是BC,BE,CE的中点,∴FH∥BE,FH=BE,FH=BG,∴∠CFH=∠CBG,∵BF=CF,∴△BGF≌△FHC,(2)当四边形EGFH是正方形时,可得:EF⊥GH且EF=GH,∵在△BEC中,点,H分别是BE,CE的中点,∴GH=,且GH∥BC,∴EF⊥BC,∵AD∥BC,AB⊥BC,∴AB=EF=GH=a,∴矩形ABCD的面积=.24.(2018•陕西)问题提出(1)如图①,在△ABC中,∠A=120°,AB=AC=5,则△ABC的外接圆半径R的值为5.问题探究(2)如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM 的最大值.问题解决(3)如图③所示,AB、AC、是某新区的三条规划路,其中AB=6km,AC=3km,∠BAC=60°,所对的圆心角为60°,新区管委会想在路边建物资总站点P,在AB,AC路边分别建物资分站点E、F,也就是,分别在、线段AB和AC上选取点P、E、F.由于总站工作人员每天都要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.为了快捷、环保和节约成本.要使得线段PE、EF、FP 之和最短,试求PE+EF+FP的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)解:(1)设O是△ABC的外接圆的圆心,∴OA=OB=OC,∵∠A=120°,AB=AC=5,∴△ABO是等边三角形,∴AB=OA=OB=5,(2)当PM⊥AB时,此时PM最大,连接OA,由垂径定理可知:AM=AB=12,∵OA=13,∴由勾股定理可知:OM=5,∴PM=OM+OP=18,(3)设连接AP,OP分别以AB、AC所在直线为对称轴,作出P关于AB的对称点为M,P关于AC的对称点为N,连接MN,交AB于点E,交AC于点F,连接PE、PF,∴AM=AP=AN,∵∠MAB=∠PAB,∠NAC=∠PAC,∴∠BAC=∠PAB+∠PAC=∠MAB+∠NAC=60°,∴∠MAN=120°∴M、P、N在以A为圆心,AP为半径的圆上,设AP=r,易求得:MN=r,∵PE=ME,PF=FN,∴PE+EF+PF=ME+EF+FN=MN=r,∴当AP最小时,PE+EF+PF可取得最小值,∵AP+OP≥OA,∴AP≥OA﹣OP,即点P在OA上时,AP可取得最小值,设AB的中点为Q,∴AQ=AC=3,∵∠BAC=60°,∴AQ=QC=AC=BQ=3,∴∠ABC=∠QCB=30°,∴∠ACB=90°,∴由勾股定理可知:BC=3,∵∠BOC=60°,OB=OC=3,∴△OBC是等边三角形,∴∠OBC=60°,∴∠ABO=90°∴由勾股定理可知:OA=3,∵OP=OB=3,∴AP=r=OA﹣OP=3﹣3,∴PE+EF+PF=MN=r=3﹣9∴PE+EF+PF的最小值为(3﹣9)km.25.(2018•兰州)如图,AB为⊙O的直径,C为⊙O上一点,D为BA延长线上一点,∠ACD=∠B.(1)求证:DC为⊙O的切线;(2)线段DF分别交AC,BC于点E,F且∠CEF=45°,⊙O的半径为5,sinB=,求CF 的长.(1)证明:连接OC,∵AB为⊙O的直径,∴∠ACB=∠BCO+∠OCA=90°,∵OB=OC,∴∠B=∠BCO,∵∠ACD=∠B,∴∠ACD=∠BCO,∴∠ACD+∠OCA=90°,即∠OCD=90°,∴DC为⊙O的切线;(2)解:Rt△ACB中,AB=10,sinB=,∴AC=6,BC=8,∵∠ACD=∠B,∠ADC=∠CDB,∴△CAD∽△BCD,∴,设AD=3x,CD=4x,Rt△OCD中,OC2+CD2=OD2,52+(4x)2=(5+3x)2,x=0(舍)或,∵∠CEF=45°,∠ACB=90°,∴CE=CF,设CF=a,∵∠CEF=∠ACD+∠CDE,∠CFE=∠B+∠BDF,∴∠CDE=∠BDF,∵∠ACD=∠B,∴△CED∽△BFD,∴,∴,a=,∴CF=.26.(2018•青海)如图,在平行四边形ABCD中,E为AB边上的中点,连接DE并延长,交CB的延长线于点F.(1)求证:AD=BF;(2)若平行四边形ABCD的面积为32,试求四边形EBCD的面积.解:(1)∵E是AB边上的中点,∴AE=BE.∵AD∥BC,∴∠ADE=∠F.在△ADE和△BFE中,∠ADE=∠F,∠DEA=∠FEB,AE=BE,∴△ADE≌△BFE.∴AD=BF.(2)过点D作DM⊥AB与M,则DM同时也是平行四边形ABCD的高.=•AB•DM=AB•DM=×32=8,∴S△AED=32﹣8=24.∴S四边形EBCD27.(2018•白银)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sinA=时,求AF的长.解:(1)连接OE,BE,∵DE=EF,∴∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O与边AC相切于点E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA===∴r=∴AF=5﹣2×=28.(2018•青海)如图△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上一点,且AP=AC.(2)若PD=,求⊙O的直径.解:(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴PD=OA,∵PD=,∴2OA=2PD=2.∴⊙O的直径为2.29.(2018•新疆)如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(2)若BD=EF,连接EB,DF,判断四边形EBFD的形状,并说明理由.(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,在△DEO和△BOF中,∴△DOE≌△BOF.(2)解:结论:四边形EBFD是矩形.理由:∵OD=OB,OE=OF,∴四边形EBFD是平行四边形,∵BD=EF,∴四边形EBFD是矩形.30.(2018•青海)请认真阅读下面的数学小探究系列,完成所提出的问题:(1)探究1:如图1,在等腰直角三角形ABC中,∠ACB=90°,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD.求证:△BCD的面积为a2.(提示:过点D作BC 边上的高DE,可证△ABC≌△BDE)(2)探究2:如图2,在一般的Rt△ABC中,∠ACB=90°,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD.请用含a的式子表示△BCD的面积,并说明理由.(3)探究3:如图3,在等腰三角形ABC中,AB=AC,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD.试探究用含a的式子表示△BCD的面积,要有探究过程.解:(1)如图1,过点D作DE⊥CB交CB的延长线于E,∴∠BED=∠ACB=90°,由旋转知,AB=AD,∠ABD=90°,∴∠ABC+∠DBE=90°,∵∠A+∠ABC=90°,∴∠A=∠DBE,在△ABC和△BDE中,,∴△ABC≌△BDE(AAS)∴BC=DE=a.=BC•DE∵S△BCD=;∴S△BCD(2)△BCD的面积为.理由:如图2,过点D作BC的垂线,与BC的延长线交于点E.∴∠BED=∠ACB=90°,∵线段AB绕点B顺时针旋转90°得到线段BE,∴AB=BD,∠ABD=90°.∴∠ABC+∠DBE=90°.∵∠A+∠ABC=90°.∴∠A=∠DBE.在△ABC和△BDE中,,∴△ABC≌△BDE(AAS)∴BC=DE=a.=BC•DE∵S△BCD=;∴S△BCD(3)如图3,过点A作AF⊥BC与F,过点D作DE⊥BC的延长线于点E,∴∠AFB=∠E=90°,BF=BC=a.∴∠FAB+∠ABF=90°.∵∠ABD=90°,∴∠ABF+∠DBE=90°,∴∠FAB=∠EBD.∵线段BD是由线段AB旋转得到的,∴AB=BD.在△AFB和△BED中,,∴△AFB≌△BED(AAS),∴BF=DE=a.∵S△BCD=BC•DE=•a•a=a2.∴△BCD 的面积为.31.(2018•宁夏)空间任意选定一点O,以点O为端点,作三条互相垂直的射线ox、oy、oz.这三条互相垂直的射线分别称作x轴、y轴、z轴,统称为坐标轴,它们的方向分别为ox(水平向前)、oy(水平向右)、oz(竖直向上)方向,这样的坐标系称为空间直角坐标系.将相邻三个面的面积记为S1、S2、S3,且S1<S2<S3的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体S1所在的面与x轴垂直,S2所在的面与y轴垂直,S3所在的面与z轴垂直,如图1所示.若将x轴方向表示的量称为几何体码放的排数,y轴方向表示的量称为几何体码放的列数,z轴方向表示的量称为几何体码放的层数;如图2是由若干个单位长方体在空间直角坐标内码放的一个几何体,其中这个几何体共码放了1排2列6层,用有序数组记作(1,2,6),如图3的几何体码放了2排3列4层,用有序数组记作(2,3,4).这样我们就可用每一个有序数组(x,y,z)表示一种几何体的码放方式.(1)如图4是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为(2,3,2),组成这个几何体的单位长方体的个数为12个;(2)对有序数组性质的理解,下列说法正确的是①②⑤;(只填序号)①每一个有序数组(x,y,z)表示一种几何体的码放方式.②有序数组中x、y、z的乘积就表示几何体中单位长方体的个数.③有序数组不同,所表示几何体的单位长方体个数不同.④不同的有序数组所表示的几何体的体积不同.⑤有序数组中x、y、z每两个乘积的2倍可分别确定几何体表面上S1、S2、S3的个数.(3)为了进一步探究有序数组(x,y,z)的几何体的表面积公式S(x,y,z),某同学针对若干个单位长方体进行码放,制作了下列表格:几何体有序数组单位长方体的个数表面上面积为S1的个数表面上面积为S2的个数表面上面积为S3的个数表面积(1,1,1) 1 2 2 2 2S1+2S2+2S3(1,2,1) 2 4 2 4 4S1+2S2+4S3(3,1,1) 3 2 6 6 2S1+6S2+6S3(2,1,2) 4 4 8 4 4S1+8S2+4S3(1,5,1) 5 10 2 10 10S1+2S2+10S3(1,2,3) 6 12 6 4 12S1+6S2+4S3(1,1,7)7 14 14 2 14S1+14S2+2S3(2,2,2)8 8 8 8 8S1+8S2+8S3………………根据以上规律,请写出有序数组(x,y,z)的几何体表面积计算公式S(x,y,z);(用x、y、z、S1、S2、S3表示)(4)当S1=2,S2=3,S3=4时,对由12个单位长方体码放的几何体进行打包,为了节约外包装材料,对12个单位长方体码放的几何体表面积最小的规律进行探究,根据探究的结果请写出使几何体表面积最小的有序数组,并用几何体表面积公式求出这个最小面积.(缝隙不计)解:(1)这种码放方式的有序数组为(2,3,2),组成这个几何体的单位长方体的个数为2×3×2=12个,故答案为(2,3,2),12;(2)正确的有①②⑤.故答案为①②⑤;(3)S(x,y,z)=2yzS1+2xzS2+2xyS3=2(yzS1+xzS2+xyS3).(4)当S1=2,S2=3,S3=4时S(x,y,z)=2(yzS1+xzS2+xyS3)=2(2yz+3xz+4xy)欲使S(x,y,z)的值最小,不难看出x、y、z应满足x≤y≤z(x、y、z为正整数).在由12个单位长方体码放的几何体中,满足条件的有序数组为(1,1,12),(1,2,6),(1,3,4),(2,2,3).而S(1,1,12)=128,S(1,2,6)=100,S(1,3,4)=96,S(2,2,3)=92所以,由12个单位长方体码放的几何体表面积最小的有序数组为:(2,2,3),最小面积为S(2,2,3)=92.。
2021年全国各地中考数学压轴题分类汇编(通用版)函数(二)(含答案与解析)
2021年全国各地中考数学压轴题分类汇编(通用版)函数(二)参考答案与试题解析一.选择题(共7小题)1.(2021•丹东)如图,点A在曲线到y1=(x>0)上,点B在双曲线y2=(x<0)上,AB//x 轴,点C是x轴上一点,连接AC、BC,若△ABC的面积是6,则k的值()A.﹣6B.﹣8C.﹣10D.﹣12解:如图,连接OA,OB,AB与y轴交于点M,∵AB∥x轴,点A在曲线到y1=(x>0)上,点B在双曲线y2=(x<0)上,∴S△AOM=×|2|=1,S△BOM=×|k|=﹣k,∵S△ABC=S△AOB=6,∴1﹣k=6,∴k=﹣10.故选:C.2.(2021•丹东)已知抛物线y=ax2+bx+c(a>0),且a+b+c=﹣,a﹣b+c=﹣.判断下列结论:①abc<0;②2a+2b+c>0;③抛物线与x轴正半轴必有一个交点;④当2≤x≤3时,y最小=3a;⑤该抛物线与直线y=x﹣c有两个交点,其中正确结论的个数()A.2B.3C.4D.5解:∵a+b+c=﹣,a﹣b+c=﹣,∴两式相减得b=,两式相加得c=﹣1﹣a,∴c<0,∵a>0,b>0,c<0,∴abc<0,故①正确;∴2a+2b+c=2a+2×﹣1﹣a=a>0,故②正确;∵当x=1时,则y=a+b+c=﹣,当x=﹣1时,则有y=a﹣b+c=﹣,∴当y=0时,则方程ax2+bx+c=0的两个根一个小于﹣1,一个根大于1,∴抛物线与x轴必有一个交点,故③正确;由题意知抛物线的对称轴为直线x==,∴当2≤x≤3时,y随x的增大而增大,∴当x=2时,有最小值,即为y=4a+2b+c=4a+1﹣1﹣a=3a,故④正确;联立抛物线y=ax2+bx+c及直线y=x﹣c可得:x﹣c=ax2+bx+c,整理得:,∴Δ=,∴该抛物线与直线y=x﹣c有两个交点,故⑤正确;∴正确的个数有5个;故选:D.3.如图,在平面直角坐标系中,点A、B在函数y=(k>0,x>0)的图象上,过点A作x轴的垂线,与函数y=﹣(x>0)的图象交于点C,连结BC交x轴于点D.若点A的横坐标为1,BC =3BD,则点B的横坐标为()A.B.2C.D.3解:作BE⊥x轴于E,∴AC∥BE,∴△CDF∽△BDE,∴==,∵BC=3BD,∴==,∴CF=2BE,DF=2DE,设B(,b),∴C(1,﹣2b),∵函数y=﹣(x>0)的图象交于点C,∴﹣k=1×(﹣2b)=﹣2b,∴k=2b,∴B的横坐标为==2,故选:B.4.(2021•营口)如图,在平面直角坐标系中,菱形ABCD的边BC与x轴平行,A,B两点纵坐标分别为4,2,反比例函数y=经过A,B两点,若菱形ABCD面积为8,则k值为()A.﹣8B.﹣2C.﹣8D.﹣6解:∵四边形ABCD是菱形,∴AB=BC,AD∥BC,∵A、B两点的纵坐标分别是4、2,反比例函数y=经过A、B两点,∴x B=,x A=,即A(,4),B(,2),∴AB2=(﹣)2+(4﹣2)2=+4,∴BC=AB=,又∵菱形ABCD的面积为8,∴BC×(y A﹣y B)=8,即×(4﹣2)=8,整理得=4,解得k=±8,∵函数图象在第二象限,∴k<0,即k=﹣8,故选:A.5.(2021•陕西)在平面直角坐标系中,若将一次函数y=2x+m﹣1的图象向左平移3个单位后,得到一个正比例函数的图象,则m的值为()A.﹣5B.5C.﹣6D.6解:将一次函数y=2x+m﹣1的图象向左平移3个单位后,得到y=2(x+3)+m﹣1,把(0,0)代入,得到:0=6+m﹣1,解得m=﹣5.故选:A.6.(2021•本溪)如图,在矩形ABCD中,BC=1,∠ADB=60°,动点P沿折线AD→DB运动到点B,同时动点Q沿折线DB→BC运动到点C,点P,Q在矩形边上的运动速度为每秒1个单位长度,点P,Q在矩形对角线上的运动速度为每秒2个单位长度.设运动时间为t秒,△PBQ的面积为S,则下列图象能大致反映S与t之间函数关系的是()A.B.C.D.解:∵四边形ABCD是矩形,∴AD=BC=1,∠A=∠C=90°,AD∥BC,∴∠ADB=∠DBC=60°,∴∠ABD=∠CDB=30°,∴BD=2AD=2,当点P在AD上时,S=•(2﹣2t)•(1﹣t)•sin60°=(1﹣t)2(0<t<1),当点P在线段BD上时,S=(4﹣2t)•(t﹣1)=﹣t2+t﹣(1<t≤2),观察图象可知,选项D满足条件,故选:D.7.(2021•陕西)下表中列出的是一个二次函数的自变量x与函数y的几组对应值:x…﹣2013…y…6﹣4﹣6﹣4…下列各选项中,正确的是()A.这个函数的图象开口向下B.这个函数的图象与x轴无交点C.这个函数的最小值小于﹣6D.当x>1时,y的值随x值的增大而增大解:设二次函数的解析式为y=ax2+bx+c,由题知,解得,∴二次函数的解析式为y=x2﹣3x﹣4=(x﹣4)(x+1)=(x﹣)2﹣,∴(1)函数图象开口向上,(2)与x轴的交点为(4,0)和(﹣1,0),(3)当x=时,函数有最小值为﹣,(4)函数对称轴为直线x=,根据图象可知当x>时,y的值随x值的增大而增大,故选:C.二.填空题(共2小题)8.(2021•长春)如图,在平面直角坐标系中,点A(2,4)在抛物线y=ax2上,过点A作y轴的垂线,交抛物线于另一点B,点C、D在线段AB上,分别过点C、D作x轴的垂线交抛物线于E、F 两点.当四边形CDFE为正方形时,线段CD的长为﹣2+2.解:把A(2,4)代入y=ax2中得4=4a,解得a=1,∴y=x2,设点C横坐标为m,则CD=CE=2m,∴点E坐标为(m,4﹣2m),∴m2=4﹣2m,解得m=﹣1﹣(舍)或m=﹣1+.∴CD=2m=﹣2+2.故答案为:﹣2+2.9.(2021•陕西)若A(1,y1),B(3,y2)是反比例函数y=(m<)图象上的两点,则y1、y2的大小关系是y1<y2.(填“>”、“=”或“<”)解:∵2m﹣1<0(m<),∴图象位于二、四象限,在每一个象限内,y随x的增大而增大,又∵0<1<3,∴y1<y2,故答案为:<.三.解答题(共16小题)10.(2021•吉林)如图,在平面直角坐标系中,一次函数y=x﹣2的图象与y轴相交于点A,与反比例函数y=在第一象限内的图象相交于点B(m,2),过点B作BC⊥y轴于点C.(1)求反比例函数的解析式;(2)求△ABC的面积.解:(1)∵B点是直线与反比例函数交点,∴B点坐标满足一次函数解析式,∴,∴m=3,∴B(3,2),∴k=6,∴反比例函数的解析式为;(2)∵BC⊥y轴,∴C(0,2),BC∥x轴,∴BC=3,令x=0,则y=,∴A(0,﹣2),∴AC=4,∴,∴△ABC的面积为6.11.(2021•陕西)已知抛物线y=﹣x2+2x+8与x轴交于点A、B(点A在点B的左侧),与y轴交于点C.(1)求点B、C的坐标;(2)设点C′与点C关于该抛物线的对称轴对称.在y轴上是否存在点P,使△PCC′与△POB 相似,且PC与PO是对应边?若存在,求出点P的坐标;若不存在,请说明理由.解:(1)∵y=﹣x2+2x+8,取x=0,得y=8,∴C(0,8),取y=0,得﹣x2+2x+8=0,解得:x1=﹣2,x2=4,∴B(4,0);(2)存在点P,设P(0,y),若CC'是斜边,则PC>PO,不合题意,舍去,∵CC'∥OB,且PC与PO是对应边,∴,即:,解得:y1=16,,∴P(0,16)或P(0,).12.(2021•长春)在平面直角坐标系中,抛物线y=2(x﹣m)2+2m(m为常数)的顶点为A.(1)当m=时,点A的坐标是(,1),抛物线与y轴交点的坐标是(0,);(2)若点A在第一象限,且OA=,求此抛物线所对应的二次函数的表达式,并写出函数值y 随x的增大而减小时x的取值范围;(3)当x≤2m时,若函数y=2(x﹣m)2+2m的最小值为3,求m的值;(4)分别过点P(4,2)、Q(4,2﹣2m)作y轴的垂线,交抛物线的对称轴于点M、N.当抛物线y=2(x﹣m)2+2m与四边形PQNM的边有两个交点时,将这两个交点分别记为点B、点C,且点B的纵坐标大于点C的纵坐标.若点B到y轴的距离与点C到x轴的距离相等,直接写出m 的值.解:(1)当m=时,y=2(x﹣)2+1,∴顶点A(,1),令x=0,得y=,∴抛物线与y轴交点的坐标为(0,),故答案为:(,1),(0,);(2)∵点A(m,2m)在第一象限,且OA=,∴m2+(2m)2=()2,且m>0,解得:m=1,∴抛物线的解析式为y=2(x﹣1)2+2,当x<1时,函数值y随x的增大而减小;(3)∵当x≤2m时,若函数y=2(x﹣m)2+2m的最小值为3,∴分两种情况:2m<m,即m<0时,或2m>m,即m>0时,①当m<0时,2(2m﹣m)2+2m=3,解得:m=(舍)或m=﹣,②当m>0时,2(m﹣m)2+2m=3,解得:m=,综上所述,m的值为或﹣;(4)如图1,当m>0时,∵P(4,2)、Q(4,2﹣2m),∴M(m,2),N(m,2﹣2m),抛物线y=2(x﹣m)2+2m与四边形PQNM的边有两个交点,若点B在PM边上,点C在MN边上,∴令y=2,则2=2(x﹣m)2+2m,∴x=m+或x=m﹣(不合题意,应舍去),∴B(m+,2),C(m,2m),根据题意,得2m=m+,解得:m=或m=(不合题意,应舍去);若点B在PM边上,点C在NQ边上,则2﹣2m=m+,解得:m=,经检验,m=不符合题意,舍去,∴m=,若点B在PQ边上,点C在NQ边上,则4=2﹣2m,解得:m=﹣1<0,不合题意,舍去;当m<0时,如图2,若点B在NQ边上,点C在PM边上,则2﹣2m=2(x﹣m)2+2m,∴x=m+或x=m﹣(舍去),∴|m+|=2,当m+=2时,得m2﹣2m+3=0,∵Δ=(﹣2)2﹣4×1×3=﹣8<0,∴该方程无解;当m+=﹣2时,得m2﹣6m+3=0,解得:m=3﹣或m=3+,∵m<0,∴均不符合题意;若点B在NQ边上,点C在MN边上,则|m+|=|2m|,∴m+=﹣2m或m+=2m,∵m<0,∴m=﹣或m=﹣1﹣,经验证,m=﹣时,不符合题意;∴m=﹣1﹣;若点B在PQ边上,点C在PM边上,显然点B到y轴的距离为4,点C到x轴的距离为2,不符合题意;综上所述,m的值为或或﹣1﹣.13.(2021•丹东)某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本.(1)求该商品每月的销售量y(件)与销售单价x(元)之间的函数关系式;(不需要求自变量取值范围)(2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?(3)超市的销售人员发现:当该商品每月销售量超过某一数量时,会出现所获利润反而减小的情况,为了每月所获利润最大,该商品销售单价应定为多少元?解:(1)∵依题意,得:y=50+(100﹣x)××10=﹣5x+550,∴y与x的函数关系式为y=﹣5x+550;(2)∵依题意得:y(x﹣50)=4000,即(﹣5x+550)(x﹣50)=4000,解得:x1=70,x2=90,∵70<90,∴当该商品每月销售利润为4000,为使顾客获得更多实惠,销售单价应定为70元;(3)设每月总利润为w,依题意得w=y(x﹣50)=(﹣5x+550)(x﹣50)=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500,∵﹣5<0,此图象开口向下,∴当x=80时,w有最大值为4500元,∴为了每月所获利润最大,该商品销售单价应定为80元.14.(2021•吉林)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象经过点A(0,﹣),点B(1,).(1)求此二次函数的解析式;(2)当﹣2≤x≤2时,求二次函数y=x2+bx+c的最大值和最小值;(3)点P为此函数图象上任意一点,其横坐标为m,过点P作PQ∥x轴,点Q的横坐标为﹣2m+1.已知点P与点Q不重合,且线段PQ的长度随m的增大而减小.①求m的取值范围;②当PQ≤7时,直接写出线段PQ与二次函数y=x2+bx+c(﹣2≤x<)的图象交点个数及对应的m的取值范围.解:(1)将A(0,﹣),点B(1,)代入y=x2+bx+c得:,解得,∴y=x2+x﹣.(2)∵y=x2+x﹣=(x+)2﹣2,∵抛物线开口向上,对称轴为直线x=﹣.∴当x=﹣时,y取最小值为﹣2,∵2﹣(﹣)>﹣﹣(﹣2),∴当x=2时,y取最大值22+2﹣=.(3)①PQ=|﹣2m+1﹣m|=|﹣3m+1|,当﹣3m+1>0时,PQ=﹣3m+1,PQ的长度随m的增大而减小,当﹣3m+1<0时,PQ=3m﹣1,PQ的长度随m增大而增大,∴﹣3m+1>0满足题意,解得m<.②∵0<PQ≤7,∴0<﹣3m+1≤7,解得﹣2≤m<,如图,当x=﹣时,点P在最低点,PQ与图象有1交点,m增大过程中,﹣<m<,点P与点Q在对称轴右侧,PQ与图象只有1个交点,直线x=关于抛物线对称轴直线x=﹣对称后直线为x=﹣,∴﹣<m<﹣时,PQ与图象有2个交点,当﹣2≤m≤﹣时,PQ与图象有1个交点,综上所述,﹣2≤m≤﹣或﹣≤m时,PQ与图象交点个数为1,﹣<m<﹣时,PQ 与图象有2个交点.15.(2021•大连)某电商销售某种商品一段时间后,发现该商品每天的销售量y(单位:千克)和每千克的售价x(单位:元)满足一次函数关系(如图所示),其中50≤x≤80.(1)求y关于x的函数解析式;(2)若该种商品的成本为每千克40元,该电商如何定价才能使每天获得的利润最大?最大利润是多少?解:(1)设y=kx+b,将(50,100)、(80,40)代入,得:,解得:∴y=﹣2x+200 (50≤x≤80);(2)设电商每天获得的利润为w元,则w=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,∵﹣2<0,且对称轴是直线x=70,又∵50≤x≤80,∴当x=70时,w取得最大值为1800,答:该电商售价为70元时获得最大利润,最大利润是1800元.16.(2021•丹东)如图,已知点A(﹣8,0),点B(﹣5,﹣4),直线y=2x+m过点B交y轴于点C,交x轴于点D,抛物线y=ax2+x+c经过点A、C、D,连接AB、AC.(1)求抛物线的表达式;(2)判断△ABC的形状,并说明理由;(3)E为直线AC上方的抛物线上一点,且tan∠ECA=,求点E的坐标;(4)N为线段AC上的动点,动点P从点B出发,以每秒1个单位长度的速度沿线段BN运动到点N,再以每秒个单位长度的速度沿线段NC运动到点C,又以每秒1个单位长度的速度沿线段CO向点O运动,当点P运动到点O后停止,请直接写出上述运动时间的最小值及此时点N的坐标.解:(1)∵直线y=2x+m过点B(﹣5,4),交y轴于点C,∴﹣4=2×(﹣5)+m,解得:m=6,∴C(0,6),将A(﹣8,0)、C(0,6)代入,得:,解得:,∴抛物线的表达式为;(2)△ABC为直角三角形,且∠BAC=90°,理由如下:∵点A(﹣8,0),点B(﹣5,﹣4),点C(0,6),∴AB2=(﹣8+5)2+(0+4)2=25,AC2=(﹣8+0)2+(0﹣6)2=100,BC2=(﹣5+0)2+(﹣4﹣6)2=125,∴AC2+AB2=BC2,∴△ABC为直角三角形,且∠BAC=90°;(3)由(2)知AB=5,AC=10,∴tan∠BCA==tan∠ECA,∴∠BCA=∠ECA,如图1,延长BA至F,使AF=AB,连接CF,则点B、F关于点A对称,∴F(﹣11,4),∵∠BAC=∠F AC=90°,AF=AB,AC=AC,∴△F AC≌△BAC(SAS),∴∠BCA=∠FCA,∴点E为直线CF与抛物线的交点,设直线CF的解析式为y=kx+b,则,解得:,∴直线CF的解析式为,联立方程组,解得:或(舍去),故点E坐标为(,);(4)过N作MN⊥BC于M,过F作FM'⊥BC交AC于N',连接FN,则FN=BN,∵AB=5,BC=,∴sin∠BCA=,∴MN=,又CO=6,∴点P运动时间t==BN+MN+6=FN+MN+6≥FM'+6,当F、N、M三点共线时,t最小,∵AC=10,BC=,∴sin∠ABC=,∴FM'=,∴点P运动时间t的最小值为,由直线BC的表达式y=2x+6得点D坐标为(﹣3,0),∵FD=,∴点D与点M'重合,则点N(即N')为直线FD与直线AC的交点,由点A(﹣8,0)和C(0,6)得直线AC的表达式为,由点F(﹣11,4)和D(﹣3,0)得直线FD的表达式为,联立方程组,解得:,∴此时N坐标为(﹣6,).17.(2021•营口)某商家正在热销一种商品,其成本为30元/件,在销售过程中发现随着售价增加,销售量在减少.商家决定当售价为60元/件时,改变销售策略,此时售价每增加1元需支付由此产生的额外费用150元.该商品销售量y(件)与售价x(元/件)满足如图所示的函数关系(其中40≤x≤70,且x为整数).(1)直接写出y与x的函数关系式;(2)当售价为多少时,商家所获利润最大,最大利润是多少?解:(1)设线段AB的表达式为:y=kx+b(40≤x≤60),将点(40,300)、(60,100)代入上式得:,解得:,∴函数的表达式为:y=﹣10x+700(40≤x≤60),设线段BC的表达式为:y=mx+n(60<x≤70),将点(60,100)、(70,150)代入上式得:,解得:,∴函数的表达式为:y=5x﹣200(60<x≤70),∴y与x的函数关系式为:y=;(2)设获得的利润为w元,①当40≤x≤60时,w=(x﹣30)(﹣10x+700)=﹣10(x﹣50)2+4000,∵﹣10<0,∴当x=50时,w有值最大,最大值为4000元;②当60<x≤70时,w=(x﹣30)(5x﹣200)﹣150(x﹣60)=5(x﹣50)2+2500,∵5>0,∴当60<x≤70时,w随x的增大而增大,∴当x=70时,w有最大,最大值为:5(70﹣50)2+2500=4500(元),综上,当售价为70元时,该商家获得的利润最大,最大利润为4500元.18.(2021•大连)已知函数y=,记该函数图象为G.(1)当m=2时,①已知M(4,n)在该函数图象上,求n的值;②当0≤x≤2时,求函数G的最大值.(2)当m>0时,作直线x=m与x轴交于点P,与函数G交于点Q,若∠POQ=45°时,求m 的值;(3)当m≤3时,设图象与x轴交于点A,与y轴交与点B,过点B作BC⊥BA交直线x=m于点C,设点A的横坐标为a,C点的纵坐标为c,若a=﹣3c,求m的值.解:(1)当m=2时,y=,①∵M(4,n)在该函数图象上,∴n=42﹣2×4+2=10;②当0≤x<2时,y=﹣x2+x+2=﹣(x﹣)2+2,∵﹣<0,∴当x=时,y有最大值是2,当x=2时,y=22﹣2×2+2=2,∵2<2,∴当0≤x≤2时,函数G的最大值是2;(2)分两种情况:①如图1,当Q在x轴上方时,由题意得:OP=m,∵∠POQ=45°,∠OPQ=90°,∴△POQ是等腰直角三角形,∴OP=PQ,∴m=﹣+m+m,解得:m1=0,m2=6,∵m>0,∴m=6;②当Q在x轴下方时,同理得:m=﹣﹣m 解得:m1=0,m2=14,∵m>0,∴m=14;综上,m的值是6或14;(3)分两种情况:①如图2,当0≤m≤3时,过点C作CD⊥y轴于D,当x=0时,y=m,∴OB=m,∵CD=m,∴CD=OB,∵AB⊥BC,∴∠ABC=∠ABO+∠CBD=90°,∵∠CBD+∠BCD=90°,∴∠ABO=∠BCD,∵∠AOB=∠CDB=90°,∴△ABO≌△BCD(ASA),∴OA=BD,当x<m时,y=0,即﹣x2+x+m=0,x2﹣x﹣2m=0,解得:x1=,x2=,∴OA=,且﹣≤m≤3,∵点A的横坐标为a,C点的纵坐标为c,若a=﹣3c,∴OD=c=﹣a,∴BD=m﹣OD=m+a,∵OA=BD,∴=m+,解得:m1=0(此时,A,B,C三点重合,舍),m2=;②当m<0时,如图3,过点C作CD⊥y轴于D,同理得:OA=BD,当x≥m时,y=0,则x2﹣mx+m=0,解得:x1=,m2=(舍),∴OA==a,∴=c﹣m=﹣a﹣m,解得:m1=0,m2=﹣;综上,m的值是或﹣.19.(2021•营口)如图,在平面直角坐标系xOy中,抛物线y=3x2+bx+c过点A(0,﹣2),B(2,0),点C为第二象限抛物线上一点,连接AB,AC,BC,其中AC与x轴交于点E,且tan∠OBC =2.(1)求点C坐标;(2)点P(m,0)为线段BE上一动点(P不与B,E重合),过点P作平行于y轴的直线l与△ABC的边分别交于M,N两点,将△BMN沿直线MN翻折得到△B′MN,设四边形B′NBM的面积为S,在点P移动过程中,求S与m的函数关系式;(3)在(2)的条件下,若S=3S△ACB′,请直接写出所有满足条件的m值.解:(1)∵抛物线y=3x2+bx+c过点A(0,﹣2),B(2,0),∴,解得,∴抛物线的解析式为y=3x2﹣5x﹣2,如图1中,设BC交y轴于D.∵tan∠OBD=2=,OB=2,∴OD=4,∴D(0,4),设直线BD的解析式为y=kx+b,则有,解得,∴直线BD的解析式为y=﹣2x+4,由,解得(即点B)或,∴C(﹣1,6).(2)∵A(0,﹣2),B(2,0),C(﹣1,6),∴直线AB的解析式为y=x﹣2,直线AC的解析式为y=﹣8x﹣2,∴E(﹣,0),当0<m<2时,∵P(m,0),∴M(m,﹣2m+4),N(m,m﹣2),∴MN=﹣2m+4﹣m+2=﹣3m+6,∴S=•BB′•MN=×2(2﹣m)×(﹣3m+6)=3m2﹣12m+12.当﹣<m≤0时,如图2中,∵P(m,0),∴M(m,﹣2m+4),N(m,﹣8m﹣2),∴MN=﹣2m+4+8m+2=6m+6,∴S=•BB′•MN=×2(2﹣m)×(6m+6)=﹣6m2+6m+12.综上所述,S=.(3)∵直线AC交x轴于(﹣,0),B′(2m﹣2),当﹣6m2+6m+12=3××|2m﹣2+|×8,解得m=或(都不符合题意舍弃),当3m2﹣12m+12=3××|2m﹣2+|×8,解得m=1或11(舍弃)或﹣2+或﹣2﹣(舍弃),综上所述,满足条件的m的值为1或﹣2+.20.(2021•本溪)某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x元,每星期销售量为y个.(1)请直接写出y(个)与x(元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?解:(1)由题意,得:y=100﹣2(x﹣60)=﹣2x+220,∴y=﹣2x+220;(3)W=﹣2x2+300x﹣8800=﹣2(x﹣75)2+2450,∵﹣2<0,∴当x=75时,W有最大值,最大值为2450元,答:每件定价为75元时利润最大,最大利润为2450元.21.(2021•吉林)疫苗接种,利国利民.甲、乙两地分别对本地各40万人接种新冠疫苗.甲地在前期完成5万人接种后,甲、乙两地同时以相同速度接种,甲地经过a天后接种人数达到25万人,由于情况变化,接种速度放缓,结果100天完成接种任务,乙地80天完成接种任务,在某段时间内,甲、乙两地的接种人数y(万人)与各自接种时间x(天)之间的关系如图所示.(1)直接写出乙地每天接种的人数及a的值;(2)当甲地接种速度放缓后,求y关于x的函数解析式,并写出自变量x的取值范围;(3)当乙地完成接种任务时,求甲地未接种疫苗的人数.解:(1)乙地接种速度为40÷80=0.5(万人/天),0.5a=25﹣5,解得a=40.(2)设y=kx+b,将(40,25),(100,40)代入解析式得:,解得,∴y=x+15(40≤x≤100).(3)把x=80代入y=x+15得y=×80+15=35,40﹣35=5(万人).22.(2021•山西)综合与探究如图,抛物线y=x2+2x﹣6与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.(1)求A、B,C三点的坐标并直接写出直线AC,BC的函数表达式.(2)点P是直线AC下方抛物线上的一个动点,过点P作BC的平行线l,交线段AC于点D.①试探究:在直线l上是否存在点E,使得以点D,C,B,E为顶点的四边形为菱形,若存在,求出点E的坐标,若不存在,请说明理由;②设抛物线的对称轴与直线l交于点M,与直线AC交于点N.当S△DMN=S△AOC时,请直接写出DM的长.解:(1)当y=0时,x2+2x﹣6=0,解得x1=﹣6,x2=2,∴A(﹣6,0),B(2,0),当x=0时,y=﹣6,∴C(0,﹣6),∵A(﹣6,0),C(0,﹣6),∴直线AC的函数表达式为y=﹣x﹣6,∵B(2,0),C(0,﹣6),∴直线BC的函数表达式为y=3x﹣6;(2)①存在:设点D的坐标为(m,﹣m﹣6),其中﹣6<m<0,∵B(2,0),C(0,﹣6),∴BD2=(m﹣2)2+(m+6)2,BC2=22+62=40,DC2=m2+(﹣m﹣6+6)2=2m2,∵DE∥BC,∴当DE=BC时,以点D,C,B,E为顶点的四边形为平行四边形,分两种情况:如图,当BD=BC时,四边形BDEC为菱形,∴BD2=BC2,∴(m﹣2)2+(m+6)2=40,解得:m1=﹣4,m2=0(舍去),∴点D的坐标为(﹣4,﹣2),∴点E的坐标为(﹣6,﹣8);如图,当CD=CB时,四边形CBED为菱形,∴CD2=CB2,∴2m2=40,解得:m1=﹣2,m2=2(舍去),∴点D的坐标为(﹣2,2﹣6),∴点E的坐标为(2﹣2,2);综上,存在点E,使得以点D,C,B,E为顶点的四边形为菱形,点E的坐标为(﹣6,﹣8)或(2﹣2,2);②设点D的坐标为(m,﹣m﹣6),其中﹣6<m<0,∵A(﹣6,0),B(2,0),∴抛物线的对称轴为直线x=﹣2,∵直线BC的函数表达式为y=3x﹣6,直线l∥BC,∴设直线l的解析式为y=3x+b,∵点D的坐标(m,﹣m﹣6),∴b=﹣4m﹣6,∴M(﹣2,﹣4m﹣12),∵抛物线的对称轴与直线AC交于点N.∴N(﹣2,﹣4),∴MN=﹣4m﹣12+4=﹣4m﹣8,∵S△DMN=S△AOC,∴(﹣4m﹣8)(﹣2﹣m)=×6×6,整理得:m2+4m﹣5=0,解得:m1=﹣5,m2=1(舍去),∴点D的坐标为(﹣5,﹣1),∴点M的坐标为(﹣2,8),∴DM==3,答:DM的长为3.23.(2021•本溪)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点C(﹣1,0),与y轴交于点B(0,3),连接AB,BC,点P是抛物线第一象限上的一动点,过点P作PD⊥x轴于点D,交AB于点E.(1)求抛物线的解析式;(2)如图1,作PF⊥PD于点P,使PF=OA,以PE,PF为邻边作矩形PEGF.当矩形PEGF 的面积是△BOC面积的3倍时,求点P的坐标;(3)如图2,当点P运动到抛物线的顶点时,点Q在直线PD上,若以点Q、A、B为顶点的三角形是锐角三角形,请直接写出点Q纵坐标n的取值范围.解:(1)由题意得:,解得,故抛物线的表达式为y=﹣x2+x+3;(2)对于y=﹣x2+x+3,令y=﹣x2+x+3=0,解得x=4或﹣1,故点A的坐标为(4,0),则PF=2,由点A、B的坐标得,直线AB的表达式为y=﹣x+3,设点P的坐标为(x,﹣x2+x+3),则点E(x,﹣x+3),则矩形PEGF的面积=PF•PE=2×(﹣x2+x+3+x﹣3)=3S△BOC=3××BO•CO=×3×1,解得x=1或3,故点P的坐标为(1,)或(3,3);(3)由抛物线的表达式知,其对称轴为x=,故点Q的坐标为(,n),当∠ABQ为直角时,如图2﹣1,设BQ交x轴于点H,由直线AB的表达式知,tan∠BAO=,则tan∠BHO=,故设直线BQ的表达式为y=x+t,该直线过点B(0,3),故t=3,则直线BQ的表达式为y=x+3,当x=时,y=x+3=5,即n=5;②当∠BQA为直角时,过点Q作直线MN交y轴于点N,交过点A与y轴的平行线于点M,∵∠BQN+∠MQA=90°,∠MQA+∠MAQ=90°,∴∠BQN=∠MAQ,∴tan∠BQN=tan∠MAQ,即,则,解得n=;24.(2021•陕西)在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1min后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回.“鼠”、“猫”距起点的距离y(m)与时间x(min)之间的关系如图所示.(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是1m/min;(2)求AB的函数表达式;(3)求“猫”从起点出发到返回至起点所用的时间.解:(1)由图象知:“鼠”6min跑了30m,∴“鼠”的速度为:30÷6=5(m/min),“猫”5min跑了30m,∴“猫”的速度为:30÷5=6(m/min),∴“猫”的平均速度与“鼠”的平均速度的差是1(m/min),故答案为:1;(2)设AB的解析式为:y=kx+b,∵图象经过A(7,30)和B(10,18),把点A和点B坐标代入函数解析式得:,解得:,∴AB的解析式为:y=﹣4x+58;(3)令y=0,则﹣4x+58=0,∴x=14.5,∵“猫”比“鼠”迟一分钟出发,∴“猫”从起点出发到返回至起点所用的时间为14.5﹣1=13.5(min).答:“猫”从起点出发到返回至起点所用的时间13.5min.25.(2021•长春)《九章算术》中记载,浮箭漏(图①)出现于汉武帝时期,它由供水壶和箭壶组成,箭壶内装有箭尺,水匀速地从供水壶流到箭壶,箭壶中的水位逐渐上升,箭尺匀速上浮,可通过读取箭尺读数计算时间.某学校STEAM小组仿制了一套浮箭漏,并从函数角度进行了如下实验探究:【实验观察】实验小组通过观察,每2小时记录一次箭尺读数,得到如表:供水时间x(小时)02468箭尺读数y(厘米)618304254【探索发现】①建立平面直角坐标系,如图②,横轴表示供水时间x.纵轴表示箭尺读数y,描出以表格中数据为坐标的各点.②观察上述各点的分布规律,判断它们是否在同一条直线上,如果在同一条直线上,求出这条直线所对应的函数表达式,如果不在同一条直线上,说明理由.【结论应用】应用上述发现的规律估算:①供水时间达到12小时时,箭尺的读数为多少厘米?②如果本次实验记录的开始时间是上午8:00,那当箭尺读数为90厘米时是几点钟?(箭尺最大读数为100厘米)解:【探索发现】①如图②,②观察上述各点的分布规律,可得它们是否在同一条直线上,设这条直线所对应的函数表达式为y=kx+b,则,解得:,∴y=6x+6;【结论应用】应用上述发现的规律估算:①x=12时,y=6×12+6=78,∴供水时间达到12小时时,箭尺的读数为78厘米;②y=90时,6x+6=90,解得:x=14,∴供水时间为14小时,∵本次实验记录的开始时间是上午8:00,8:00+14=22:00,∴当箭尺读数为90厘米时是22点钟.。
陕西2023中考数学最后一道压轴题的典型例题讲解
陕西2023中考数学最后一道压轴题的典型例题讲解1. 引言陕西2023年中考数学考试备受关注,其中最后一道压轴题更是备受瞩目。
本文将对这一典型例题进行全面讲解,以帮助同学们更好地理解题目背后的数学原理。
2. 题目描述题目如下:已知一元二次方程\(3x^2+4x-5=0\)的一个根是\(\alpha\),求\(\alpha\)的一个确定值。
3. 排除法解题这道题的解法可以有多种,其中一种比较简单的方法是使用排除法。
通过对一元二次方程的解的性质进行分析,我们可以排除一些不符合条件的根的取值,从而得到\(\alpha\)的确定值。
一元二次方程\(ax^2+bx+c=0\)的根可以通过求根公式得到:\[x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\]由于给定的一元二次方程为\(3x^2+4x-5=0\),所以\(a=3, b=4, c=-5\)。
根据求根公式,我们可以得到两个根:\[x=\frac{-4\pm\sqrt{4^2-4*3*(-5)}}{2*3}=\frac{-4\pm\sqrt{16+60}}{6}=\frac{-4\pm\sqrt{76}}{6}\]显然,给定的一元二次方程的根不满足问题中给定的条件,所以我们可以排除掉这组根。
进过排除法,我们知道\(\alpha\)的确定值不在\(\frac{-4\pm\sqrt{76}}{6}\)中。
4. 求和乘积解题除了排除法外,我们还可以利用一元二次方程根的特性进行解题。
根据一元二次方程的根与系数的关系,我们可以得到一元二次方程的两个根的和和积分别为:\(x_1+x_2=\frac{-b}{a}, x_1x_2=\frac{c}{a}\)将给定的一元二次方程\(3x^2+4x-5=0\)的系数代入上面的公式,可以得到:\(x_1+x_2=\frac{-4}{3}, x_1x_2=-\frac{5}{3}\)根据题目要求,已知一元二次方程\(3x^2+4x-5=0\)的一个根是\(\alpha\),所以另一个根可以表示为\(\frac{-4}{3}-\alpha\)根据这两根的特性,我们可以得到以下的等式:\(\alpha+\frac{-4}{3}-\alpha=\frac{-4}{3}\)\(\alpha*\frac{-4}{3}=-\frac{5}{3}\)通过解以上方程组,可以得到\(\alpha=-\frac{1}{3}\)5. 总结与回顾通过以上的讲解,我们可以得出一元二次方程的根的确定值为\(\alpha=-\frac{1}{3}\)。
2021年全国各地中考数学压轴题分类汇编(通用版)几何综合(二)(含答案与解析)
2021年全国各地中考数学压轴题分类汇编(通用版)几何综合(二)参考答案与试题解析一.选择题(共4小题)1.(2021•长春)在△ABC中,∠BAC=90°,AB≠AC.用无刻度的直尺和圆规在BC边上找一点D,使△ACD为等腰三角形.下列作法不正确的是()A.B.C.D.解:A、由作图可知AD是△ABC的角平分线,推不出△ADC是等腰三角形,本选项符合题意.B、由作图可知CA=CD,△ADC是等腰三角形,本选项不符合题意.C、由作图可知DA=CD,△ADC是等腰三角形,本选项不符合题意.D、由作图可知BD=CD,推出AD=DC=BD,△ADC是等腰三角形,本选项不符合题意.故选:A.2.(2021•丹东)如图,在矩形ABCD中,连接BD,将△BCD沿对角线BD折叠得到△BDE,BE 交AD于点O,BE恰好平分∠ABD,若AB=2,则点O到BD的距离为()A.B.2C.D.3解:如图,作OF⊥BD于点F,则OF的长为点O到BD的距离.∵四边形ABCD为矩形,∴∠A=∠ABC=90°,∵将△BCD沿对角线BD折叠得到△BDE,∴∠EBD=∠CBD,∵BE平分∠ABD,∴∠ABO=∠EBD,OA=OF,∴∠EBD=∠CBD=∠ABO,∴∠ABO=30°,∵AB=2,∴OF=OA=AB•tan30°=2×=2,故选:B.3.(2021•大连)如图,在△ABC中,∠ACB=90°,∠BAC=α,将△ABC绕点C顺时针旋转90°得到△A'B'C,点B的对应点B'在边AC上(不与点A,C重合),则∠AA'B'的度数为()A.αB.α﹣45°C.45°﹣αD.90°﹣α解:∵将△ABC绕点C顺时针旋转90°得到△A'B'C,∴AC=A'C,∠BAC=∠CA'B',∠ACA'=90°,∴△ACA'是等腰直角三角形,∴∠CA'A=45°,∵∠BAC=α,∴∠CA'B'=α,∴∠AA'B'=45°﹣α.故选:C.4.(2021•本溪)如图,在△ABC中,AB=BC,由图中的尺规作图痕迹得到的射线BD与AC交于点E,点F为BC的中点,连接EF,若BE=AC=2,则△CEF的周长为()A.+1B.+3C.+1D.4解:由图中的尺规作图得:BE是∠ABC的平分线,∵AB=BC,∴BE⊥AC,AE=CE=AC=1,∴∠BEC=90°,∴BC===,∵点F为BC的中点,∴EF=BC=BF=CF,∴△CEF的周长=CF+EF+CE=CF+BF+CE=BC+CE=+1,故选:C.二.填空题(共8小题)5.(2021•丹东)如图,在△ABC中,∠B=45°,AB的垂直平分线交AB于点D,交BC于点E(BE >CE),点F是AC的中点,连接AE、EF,若BC=7,AC=5,则△CEF的周长为8.解:∵DE是AB的垂直平分线,∴∠BAE=∠ABE=45°,BE=AE,∴∠BEA=90°,∵BC=7,∴BE+CE=7,∴AE+CE=7,AE=7﹣CE,又∵AC=5,在△AEC中,AE2+CE2=AC2,(7﹣CE)2+CE2=52,解得:CE=3,又∵点F是AC的中点,∴,∴△CEF的周长=CF+CE+FE=.故答案为:8.6.(2021•大连)如图,在菱形ABCD中,∠BAD=60°,点E在边BC上,将△ABE沿直线AE翻折180°,得到△AB′E,点B的对应点是点B′.若AB′⊥BD,BE=2,则BB′的长是2.解:∵菱形ABCD,∴AB=AD,AD∥BC,∵∠BAD=60°,∴∠ABC=120°,∵AB′⊥BD,∴∠BAB'=,∵将△ABE沿直线AE翻折180°,得到△AB′E,∴BE=B'E,AB=AB',∴∠ABB'=,∴∠EBB'=∠ABE﹣∠ABB'=120°﹣75°=45°,∴∠EB'B=∠EBB'=45°,∴∠BEB'=90°,在Rt△BEB'中,由勾股定理得:BB'=,故答案为:2.7.(2021•丹东)如图,在矩形ABCD中,连接BD,过点C作∠DBC平分线BE的垂线,垂足为点E,且交BD于点F;过点C作∠BDC平分线DH的垂线,垂足为点H,且交BD于点G,连接HE,若BC=2,CD=,则线段HE的长度为.解:∵BE平分∠DBC,∴∠CBE=∠FBE,∵CF⊥BE,∴∠BEC=∠BEF=90°,又∵BE=BE,∴△BEC≌△BEF(ASA),∴CE=FE,BF=BC=2,同理:CH=GH,DG=CD=,∴HE是△CGF的中位线,∴HE=,在矩形ABCD中,,,由勾股定理得:BD=,∴GF=BF+DG﹣BD=,∴HE=,故答案为:.8.(2021•营口)如图,DE是△ABC的中位线,F为DE中点,连接AF并延长交BC于点G,若S=1,则S△ABC=24.△EFG解:∵DE是△ABC的中位线,∴D、E分别为AB、BC的中点,如图过D作DM∥BC交AG于点M,∵DM∥BC,∴∠DMF=∠EGF,∵点F为DE的中点,∴DF=EF,在△DMF和△EGF中,,∴△DMF≌△EGF(ASA),∴S△DMF=S△EGF=1,GF=FM,DM=GE,∵点D为AB的中点,且DM∥BC,∴AM=MG,∴FM=AM,∴S△ADM=2S△DMF=2,∵DM为△ABG的中位线,∴=,∴S△ABG=4S△ADM=4×2=8,∴S梯形DMGB=S△ABG﹣S△ADM=8﹣2=6,∴S△BDE=S梯形DMGB=6,∵DE是△ABC的中位线,∴S△ABC=4S△BDE=4×6=24,故答案为:24.9.(2021•本溪)如图,将正方形纸片ABCD沿PQ折叠,使点C的对称点E落在边AB上,点D 的对称点为点F,EF交AD于点G,连接CG交PQ于点H,连接CE.下列四个结论中:①△PBE~△QFG;②S△CEG=S△CBE+S四边形CDQH;③EC平分∠BEG;④EG2﹣CH2=GQ•GD,正确的是①③④(填序号即可).解:①∵四边形ABCD是正方形,∴∠A=∠B=∠BCD=∠D=90°.由折叠可知:∠GEP=∠BCD=90°,∠F=∠D=90°.∴∠BEP+∠AEG=90°,∵∠A=90°,∴∠AEG+∠AGE=90°,∴∠BEP=∠AGE.∵∠FGQ=∠AGE,∴∠BEP=∠FGQ.∵∠B=∠F=90°,∴△PBE~△QFG.故①正确;②过点C作CM⊥EG于M,由折叠可得:∠GEC=∠DCE,∵AB∥CD,∴∠BEC=∠DCE,∴∠BEC=∠GEC,在△BEC和△MEC中,,∴△BEC≌△MEC(AAS).∴CB=CM,S△BEC=S△MEC.∵CG=CG,∴Rt△CMG≌Rt△CDG(HL),∴S△CMG=S△CDG,∴S△CEG=S△BEC+S△CDG>S△BEC+S四边形CDQH,∴②不正确;③由折叠可得:∠GEC=∠DCE,∵AB∥CD,∴∠BEC=∠DCE,∴∠BEC=∠GEC,即EC平分∠BEG.∴③正确;④连接DH,MH,HE,如图,∵△BEC≌△MEC,△CMG≌△CDG,∴∠BCE=∠MCE,∠MCG=∠DCG,∴∠ECG=∠ECM+∠GCM=∠BCD=45°,∵EC⊥HP,∴∠CHP=45°.∴∠GHQ=∠CHP=45°.由折叠可得:∠EHP=∠CHP=45°,∴EH⊥CG.∴EG2﹣EH2=GH2.由折叠可知:EH=CH.∴EG2﹣CH2=GH2.∵CM⊥EG,EH⊥CG,∴∠EMC=∠EHC=90°,∴E,M,H,C四点共圆,∴∠HMC=∠HEC=45°.在△CMH和△CDH中,,∴△CMH≌△CDH(SAS).∴∠CDH=∠CMH=45°,∵∠CDA=90°,∴∠GDH=45°,∵∠GHQ=∠CHP=45°,∴∠GHQ=∠GDH=45°.∵∠HGQ=∠DGH,∴△GHQ∽△GDH,∴.∴GH2=GQ•GD.∴GE2﹣CH2=GQ•GD.∴④正确;综上可得,正确的结论有:①③④.故答案为:①③④.10.(2021•营口)如图,矩形ABCD中,AB=5,BC=4,点E是AB边上一点,AE=3,连接DE,点F是BC延长线上一点,连接AF,且∠F=∠EDC,则CF=6.解:如图,连接EC,过点D作DH⊥EC于H.∵四边形ABCD是矩形,∴∠BAD=∠BCD=90°,AD=BC=4,AB=CD=5,∵AE=3,∴DE===5,∴DE=DC,∵DH⊥EC,∴∠CDH=∠EDH,∵∠F=∠EDC,∠CDH=∠EDC,∴∠CDH=∠F,∵∠BCE+∠DCH=90°,∠DCH+∠CDH=90°,∴∠BCE=∠CDH,∴∠BCE=∠F,∴EC∥AF,∴=,∴=,∴CF=6,故答案为:6.11.(2021•山西)如图,在△ABC中,点D是AB边上的一点,且AD=3BD,连接CD并取CD的中点E,连接BE,若∠ACD=∠BED=45°,且CD=6,则AB的长为4.解:如图,取AD中点F,连接EF,过点D作DG⊥EF于G,DH⊥BE于H,设BD=a,∴AD=3BD=3a,AB=4a,∵点E为CD中点,点F为AD中点,CD=6,∴DF=a,EF∥AC,DE=3,∴∠FED=∠ACD=45°,∵∠BED=45°,∴∠FED=∠BED,∠FEB=90°,∵DG⊥EF,DH⊥BE,∴四边形EHDG是矩形,DG=DH,∴四边形DGEH是正方形,∴DE=DG=3,DH∥EF,∴DG=DH=3,∵DH∥EF,∴△BDH∽△BFE,∴,∴=,∴BH=2,∴BD===,∴AB=4,故答案为:4.12.(2021•陕西)如图,正方形ABCD的边长为4,⊙O的半径为1.若⊙O在正方形ABCD内平移(⊙O可以与该正方形的边相切),则点A到⊙O上的点的距离的最大值为3+1.解:当⊙O与CB、CD相切时,点A到⊙O上的点Q的距离最大,如图,过O点作OE⊥BC于E,OF⊥CD于F,∴OE=OF=1,∴OC平分∠BCD,∵四边形ABCD为正方形,∴点O在AC上,∵AC=BC=4,OC=OE=,∴AQ=OA+OQ=4﹣+1=3+1,即点A到⊙O上的点的距离的最大值为3+1,故答案为3+1.三.解答题(共18小题)13.(2021•吉林)如图①,在Rt△ABC中,∠ACB=90°,∠A=60°,CD是斜边AB上的中线,点E为射线BC上一点,将△BDE沿DE折叠,点B的对应点为点F.(1)若AB=a.直接写出CD的长(用含a的代数式表示);(2)若DF⊥BC,垂足为G,点F与点D在直线CE的异侧,连接CF,如②,判断四边形ADFC 的形状,并说明理由;(3)若DF⊥AB,直接写出∠BDE的度数.解:(1)如图①,在Rt△ABC中,∠ACB=90°,∵CD是斜边AB上的中线,AB=a,∴CD=AB=a.(2)四边形ADFC是菱形.理由如下:如图②∵DF⊥BC于点G,∴∠DGB=∠ACB=90°,∴DF∥AC;由折叠得,DF=DB,∵DB=AB,∴DF=AB;∵∠ACB=90°,∠A=60°,∴∠B=90°﹣60°=30°,∴AC=AB,∴DF=AC,∴四边形ADFC是平行四边形;∵AD=AB,∴AD=DF,∴四边形ADFC是菱形.(3)如图③,点F与点D在直线CE异侧,∵DF⊥AB,∴∠BDF=90°;由折叠得,∠BDE=∠FDE,∴∠BDE=∠FDE=∠BDF=×90°=45°;如图④,点F与点D在直线CE同侧,∵DF⊥AB,∴∠BDF=90°,∴∠BDE+∠FDE=360°﹣90°=270°,由折叠得,∠BDE=∠FDE,∴∠BDE+∠BDE=270°,∴∠BDE=135°.综上所述,∠BDE=45°或∠BDE=135°.14.(2021•长春)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=4,BD=8,点E在边AD上,AE=AD,连结BE交AC于点M.(1)求AM的长.(2)tan∠MBO的值为.解:(1)在菱形ABCD中,AD∥BC,AD=BC,∴△AEM∽△CBM,∴=,∵AE=AD,∴AE=BC,∴==,∴AM=CM=AC=1.(2)∵AO=AC=2,BO=BD=4,AC⊥BD,∴∠BOM=90°,AM=OM=AO=1,∴tan∠MBO==.故答案为:.15.(2021•吉林)如图,在矩形ABCD中,AB=3cm,AD=cm.动点P从点A出发沿折线AB ﹣BC向终点C运动,在边AB上以1cm/s的速度运动;在边BC上以cm/s的速度运动,过点P 作线段PQ与射线DC相交于点Q,且∠PQD=60°,连接PD,BD.设点P的运动时间为x(s),△DPQ与△DBC重合部分图形的面积为y(cm2).(1)当点P与点A重合时,直接写出DQ的长;(2)当点P在边BC上运动时,直接写出BP的长(用含x的代数式表示);(3)求y关于x的函数解析式,并写出自变量x的取值范围.解:(1)如图,在Rt△PDQ中,AD=,∠PQD=60°,∴tan60°==,∴DQ=AD=1.(2)点P在AB上运动时间为3÷1=3(s),∴点P在BC上时PB=(x﹣3).(3)当0≤x≤3时,点P在AB上,作PM⊥CD于点M,PQ交AB于点E,作EN⊥CD于点N,同(1)可得MQ=AD=1.∴DQ=DM+MQ=AP+MQ=x+1,当x+1=3时x=2,∴0≤x≤2时,点Q在DC上,∵tan∠BDC==,∴∠DBC=30°,∵∠PQD=60°,∴∠DEQ=90°.∵sin30°==,∴EQ=DQ=,∵sin60°==,∴EN=EQ=(x+1),∴y=DQ•EN=(x+1)×(x+1)=(x+1)2=x2+x+(0≤x≤2).当2<x≤3时,点Q在DC延长线上,PQ交BC于点F,如图,∵CQ=DQ﹣DC=x+1﹣3=x﹣2,tan60°=,∴CF=CQ•tan60°=(x﹣2),∴S△CQF=CQ•CF=(x﹣2)×(x﹣2)=x2﹣2x+2,∴y=S△DEQ﹣S△CQF=x2+x+﹣(x2﹣2x+2)=﹣x2+x﹣(2<x≤3).当3<x≤4时,点P在BC上,如图,∵CP=CB﹣BP=﹣(x﹣3)=4﹣x,∴y=DC•CP=×3(4﹣x)=6﹣x(3<x≤4).综上所述,y=16.(2021•长春)实践与探究操作一:如图①,已知正方形纸片ABCD,将正方形纸片沿过点A的直线折叠,使点B落在正方形ABCD的内部,点B的对应点为点M,折痕为AE,再将纸片沿过点A的直线折叠,使AD与AM重合,折痕为AF,则∠EAF=45度.操作二:如图②,将正方形纸片沿EF继续折叠,点C的对应点为点N.我们发现,当点E的位置不同时,点N的位置也不同.当点E在BC边的某一位置时,点N恰好落在折痕AE上,则∠AEF=60度.在图②中,运用以上操作所得结论,解答下列问题:(1)设AM与NF的交点为点P.求证:△ANP≌△FNE;(2)若AB=,则线段AP的长为2﹣2.操作一:解:∵四边形ABCD是正方形,∴∠C=∠BAD=90°,由折叠的性质得:∠BAE=∠MAE,∠DAF=∠MAF,∴∠MAE+∠MAF=∠BAE+∠DAF=∠BAD=45°,即∠EAF=45°,故答案为:45;操作二:解:∵四边形ABCD是正方形,∴∠B=∠C=90°,由折叠的性质得:∠NFE=∠CFE,∠ENF=∠C=90°,∠AFD=∠AFM,∴∠ANF=180°﹣90°=90°,由操作一得:∠EAF=45°,∴△ANF是等腰直角三角形,∴∠AFN=45°,∴∠AFD=∠AFM=45°+∠NFE,∴2(45°+∠NFE)+∠CFE=180°,∴∠NFE=∠CFE=30°,∴∠AEF=90°﹣30°=60°,故答案为:60;(1)证明:∵△ANF是等腰直角三角形,∴AN=FN,∵∠AMF=∠ANF=90°,∠APN=∠FPM,∴∠NAP=∠NFE=30°,在△ANP和△FNE中,,∴△ANP≌△FNE(ASA);(2)由(1)得:△ANP≌△FNE,∴AP=FE,PN=EN,∵∠NFE=∠CFE=30°,∠ENF=∠C=90°,∴∠NEF=∠CEF=60°,∴∠AEB=60°,∵∠B=90°,∴∠BAE=30°,∴BE=AB=1,∴AE=2BE=2,设PN=EN=a,∵∠ANP=90°,∠NAP=30°,∴AN=PN=a,AP=2PN=2a,∵AN+EN=AE,∴a+a=2,解得:a=﹣1,∴AP=2a=2﹣2,故答案为:2﹣2.17.(2021•丹东)如图,⊙O是△ABC的外接圆,点D是的中点,过点D作EF//BC分别交AB、AC的延长线于点E和点F,连接AD、BD,∠ABC的平分线BM交AD于点M.(1)求证:EF是⊙O的切线;(2)若AB:BE=5:2,AD=,求线段DM的长.解:(1)证明:连接OD,如图,∵点D是的中点,∴,∴OD⊥BC,∵BC∥EF,∴OD⊥EF,∴EF为⊙O的切线;(2)设BC、AD交于点N,∵AB:BE=5:2,,EF∥BC,∴,∴DN=,∵点D是的中点,∴∠BAD=∠CAD=∠CBD,又∵∠BDN=∠ADB,∴△BDN∽△ADB,∴,即:,∴BD=2,∵∠ABC的平分线BM交AD于点M,∴∠ABM=∠CBM,∴∠ABM+∠BAD=∠CBM+∠CBD,即:∠BMD=∠DBM,∴DM=BD=2.18.(2021•长春)如图,在△ABC中,∠C=90°,AB=5,BC=3,点D为边AC的中点.动点P 从点A出发,沿折线AB﹣BC以每秒1个单位长度的速度向点C运动,当点P不与点A、C重合时,连结PD.作点A关于直线PD的对称点A′,连结A′D、A′A.设点P的运动时间为t秒.(1)线段AD的长为2;(2)用含t的代数式表示线段BP的长;(3)当点A′在△ABC内部时,求t的取值范围;(4)当∠AA′D与∠B相等时,直接写出t的值.解:(1)在Rt△ABC中,由勾股定理得:AC==4,∴AD=AC=2.故答案为:2.(2)当0<t≤5时,点P在线段AB上运动,PB=AB﹣AP=5﹣t,当5<t<8时,点P在BC上运动,PB=t﹣5.综上所述,PB=.(3)如图,当点A'落在AB上时,DP⊥AB,∵AP=t,AD=2,cos A=,∴在Rt△APD中,cos A===,∴t=.如图,当点A'落在BC边上时,DP⊥AC,∵AP=t,AD=2,cos A=,∴在Rt△APD中,cos A===,∴t=.如图,点A'运动轨迹为以D为圆心,AD长为半径的圆上,∴<t<时,点A'在△ABC内部.(4)如图,0<t<5时,∵∠AA'D=∠B=∠A'AD,∠ADP+∠A'AD=∠BAC+∠B=90°,∴∠ADP=∠BAC,∴AE=AD=1,∵cos A===,∴t=.如图,当5<t<8时,∵∠AA'B=∠B=∠A'AD,∠BAC+∠B=90°,∴∠BAC+∠A'AD=90°,∴PE∥BA,∴∠DPC=∠B,∵在Rt△PCD中,CD==2,CP=8﹣t,tan∠DPC=,∴tan∠DPC===,∴t=.综上所述,t=或.19.(2021•大连)如图1,△ABC内接于⊙O,直线MN与⊙O相切于点D,OD与BC相交于点E,BC∥MN.(1)求证:∠BAC=∠DOC;(2)如图2,若AC是⊙O的直径,E是OD的中点,⊙O的半径为4,求AE的长.(1)证明:连接OB,如图1,∵直线MN与⊙O相切于点D,∴OD⊥MN,∵BC∥MN,∴OD⊥BC,∴=,∴∠BOD=∠COD,∵∠BAC=∠BOC,∴∠BAC=∠COD;(2)∵E是OD的中点,∴OE=DE=2,在Rt△OCE中,CE===2,∵OE⊥BC,∴BE=CE=2,∵AC是⊙O的直径,∴∠ABC=90°,∴AB===4,在Rt△ABE中,AE===2.20.(2021•丹东)已知,在正方形ABCD中,点M、N为对角线AC上的两个动点,且∠MBN=45°,过点M、N分别作AB、BC的垂线相交于点E,垂足分别为F、G,设△AFM的面积为S1,△NGC 的面积为S2,△MEN的面积为S3.(1)如图(1),当四边形EFBG为正方形时,①求证:△AFM≌△CGN;②求证:S3=S1+S2.(2)如图(2),当四边形EFBG为矩形时,写出S1,S2,S3三者之间的数量关系,并说明理由;(3)在(2)的条件下,若BG:GC=m:n(m>n),请直接写出AF:FB的值.解:(1)①在正方形ABCD和正方形EFBG中,AB=CB,BF=BG,∠F AM=∠GCN=45°,∠AFM=∠CGN=90°,∴AB﹣BF=CB﹣BG,即AF=CG,∴△AFM≌△CGN(ASA)②如图1,连接BD,则BD过点E,且BD⊥AC,∠ABD=∠CBD=45°,由①知△AFM≌△CGN,∴AM=CN,∵∠BAM=∠BCN,AB=BC,∴△ABM≅△CBN(SAS),∴BM=BN,∠ABM=∠CBN,∵∠MBN=45°=∠ABD,∴∠FBM+∠MBO=∠MBO+∠OBN,∴∠FBM=∠OBN,∵∠BFM=∠BON=90°,∴△FBM≅△OBN(AAS),∴FM=ON,∵∠AFM=∠EON=90°,∠F AM=∠OEN=45°,∴△AFM≅△EON(AAS),同理△CGN≌△EOM(AAS),∴S△EOM=S△CGN,S△EON=S△AFM,∵S3=S△MEN=S△EOM+S△EON=S△CGN+S△AFM,∴S3=S1+S2.(2)S3=S1+S2,理由如下:如图2,连接BD交AC于点O,∵四边形ABCD是正方形,四边形EFBG为矩形,∴BD⊥AC,∠BFM=∠BON=90°,∠ABD=∠CBD=45°,AC=BD=2OB,∵∠MBN=45°,∠FBM=∠OBN=45°﹣∠MBO,∴△FBM∽△OBN,∴,同理△BOM∽△BGN,∴,∴,∴OB2=BF⋅BG,∵,S矩形EFBG=BF⋅BG,∴S矩形EFBG=S△ABC,∴S1+S2=S△ABC﹣S五边形MFBGN,S3=S矩形EFBG﹣S五边形MFBGN,∴S3=S1+S2.(3)根据题意可设BG=mx,GC=nx,AB=BC=(m+n)x,∴,即,∴BF===,∴,∴AF:BF=:=(m﹣n):(m+n).21.(2021•大连)如图,四边形ABCD为矩形,AB=3,BC=4,P、Q均从点B出发,点P以2个单位每秒的速度沿BA﹣AC的方向运动,点Q以1个单位每秒的速度沿BC﹣CD运动,设运动时间为t秒.(1)求AC的长;(2)若S△BPQ=S,求S关于t的解析式.解:(1)∵四边形ABCD为矩形,∴∠B=90°,在Rt△ABC中,由勾股定理得:AC=,∴AC的长为5;(2)当0<t≤1.5时,如图,S=;当1.5<t≤4时,如图,作PH⊥BC于H,∴CP=8﹣2t,∵sin∠BCA=,∴,∴,∴S==﹣;当4<t≤7时,如图,点P与点C重合,S=.综上所述:S=.22.(2021•营口)如图,AB是⊙O直径,点C,D为⊙O上的两点,且=,连接AC,BD交于点E,⊙O的切线AF与BD延长线相交于点F,A为切点.(1)求证:AF=AE;(2)若AB=8,BC=2,求AF的长.(1)证明:连接AD,∵AB是⊙O直径,∴∠ADB=∠ADF=90°,∴∠F+∠DAF=90°,∵AF是⊙O的切线,∴∠F AB=90°,∴∠F+∠ABF=90°,∴∠DAF=∠ABF,∵=,∴∠ABF=∠CAD,∴∠DAF=∠CAD,∴∠F=∠AEF,∴AF=AE;(2)解:∵AB是⊙O直径,∴∠C=90°,∵AB=8,BC=2,∴AC===2,∵∠C=∠F AB=90°,∠CEB=∠AEF=∠F,∴△BCE∽△BAF,∴=,即=,∴CE=AF,∵AF=AE,∴CE=AE,∵AE+CE=AC=2,∴AE=,∴AF=AE=.23.(2021•大连)已知AB=BD,AE=EF,∠ABD=∠AEF.(1)找出与∠DBF相等的角并证明;(2)求证:∠BFD=∠AFB;(3)AF=kDF,∠EDF+∠MDF=180°,求.解:(1)如图1,∠BAE=∠DBF,证明:∵∠DBF+∠ABF=∠ABD,∠ABD=∠AEF,∴∠DBF+∠ABF=∠AEF,∵∠AEF=∠BAE+∠ABF,∴∠BAE+∠ABF=∠DBF+∠ABF,∴∠BAE=∠DBF.(2)证明:如图2,连接AD交BF于点G,∵AB=BD,AE=EF,∴,∵∠ABD=∠AEF,∴△ABD∽△AEF,∴∠BDG=∠AFB,∵∠BGD=∠AGF,∴△BGD∽△AGF,∴,∴,∵∠AGB=∠FGD,∴△AGB∽△FGD,∴∠BAD=∠BFD,∵∠BAD=∠BDG=∠AFB,∴∠BFD=∠AFB.(3)如图3,作点D关于直线BF的对称点D′,连接MD′、DD′,作EH∥MD′交AC于点H,则BF垂直平分DD′,∴D′F=DF,D′M=DM,∵MF=MF,∴△D′MF≌△DMF,∴∠EHF=∠MD′F=∠MDF,∵∠EDF+∠MDF=180°,∠EHA+∠EHF=180°,∴∠EDF=∠EHA,∵∠EFD=∠AFB=∠EAH,EF=AE,∴△EFD≌△EAH(AAS),∴DF=AH,∵,D′F=DF,∴,∵AF=kDF,∴,∴.24.(2021•本溪)如图,在Rt△ABC中,∠ACB=90°,延长CA到点D,以AD为直径作⊙O,交BA的延长线于点E,延长BC到点F,使BF=EF.(1)求证:EF是⊙O的切线;(2)若OC=9,AC=4,AE=8,求BF的长.证明:(1)连接OE,∵OA=OE,∴∠OEA=∠OAE,在Rt△ABC中,∠ACB=90°,∴∠BAC+∠B=90°,∵BF=EF,∴∠B=∠BEF,∵∠OAE=∠BAC,∴∠OEA=∠BAC,∴∠OEF=∠OEA+∠BEF=∠BAC+∠B=90°,∴OE⊥EF,∵OE是⊙O的半径,∴EF是⊙O的切线;(2)解:连接DE,∵OC=9,AC=4,∴OA=OC﹣AC=5,∵AD=2OA,∴AD=10,∵AD是⊙O的直径,∴∠AED=90°,在Rt△ADE中,∵DE===6,∴cos∠DAE===,在Rt△ABC中,cos∠BAC==,∵∠BAC=∠DAE,∴=,∴AB=5,∴BE=AB+AE=5+8=13,∵OD=OE,∴∠ODE=∠OED,∵EF是⊙O的切线,∴∠FEO=90°,∵∠OED+∠OEA=90°,∠FEB+∠OEA=90°,∴∠FEB=∠OED,∴∠B=∠FEB=∠OED=∠ODE,∴△FBE∽△ODE,∴=,∴=,∴BF=.25.(2021•营口)如图,△ABC和△DEF都是等腰直角三角形,AB=AC,∠BAC=90°,DE=DF,∠EDF=90°,D为BC边中点,连接AF,且A、F、E三点恰好在一条直线上,EF交BC于点H,连接BF,CE.(1)求证:AF=CE;(2)猜想CE,BF,BC之间的数量关系,并证明;(3)若CH=2,AH=4,请直接写出线段AC,AE的长.(1)证明:连接AD.∵AB=AC,∠BAC=90°,BD=CD,∴AD⊥CB,AD=DB=DC.∵∠ADC=∠EDF=90°,∴∠ADF=∠CDE,∵DF=DE,∴△ADF≌△CDE(SAS),∴AF=CE.(2)结论:CE2+BF2=BC2.理由:∵△ABC,△DEF都是等腰直角三角形,∴AC=BC,∠DFE=∠DEF=45°,∵△ADF≌△CDE(SAS),∴∠AFD=∠DEC=135°,∠DAF=∠DCE,∵∠BAD=∠ACD=45°,∴∠BAD+∠DAF=∠ACD+∠DCE,∴∠BAF=∠ACE,∵AB=CA,AF=CE,∴△BAF≌△ACE(SAS),∴BF=AE,∵∠AEC=∠DEC﹣∠DEF=135°﹣45°=90°,∴AE2+CE2=AC2,∴BF2+CE2=BC2.(3)解:设EH=m.∵∠ADH=∠CEH=90°,∠AHD=∠CHE,∴△ADH∽△CEH,∴====2,∴DH=2m,∴AD=CD=2m+2,∴EC=m+1,在Rt△CEH中,CH2=EH2+CE2,∴22=m2+(m+1)2,∴2m2+2m﹣3=0,∴m=或(舍弃),∴AE=AH+EH=,∴AD=1+,∴AC=AD=+.26.(2021•本溪)在▱ABCD中,∠BAD=α,DE平分∠ADC,交对角线AC于点G,交射线AB于点E,将线段EB绕点E顺时针旋转α得线段EP.(1)如图1,当α=120°时,连接AP,请直接写出线段AP和线段AC的数量关系;(2)如图2,当α=90°时,过点B作BF⊥EP于点,连接AF,请写出线段AF,AB,AD之间的数量关系,并说明理由;(3)当α=120°时,连接AP,若BE=AB,请直接写出△APE与△CDG面积的比值.解:(1)方法一:如图1,连接PB,PC,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AD=BC,∵α=120°,即∠BAD=120°,∴∠B=∠ADC=60°,∴∠BEP=60°=∠B,由旋转知:EP=EB,∴△BPE是等边三角形,∴BP=EP,∠EBP=∠BPE=60°,∴∠CBP=∠ABC+∠EBP=120°,∵∠AEP=180°﹣∠BEP=120°,∴∠AEP=∠CBP,∵DE平分∠ADC,∴∠ADE=∠CDE=30°,∴∠AED=∠CDE=30°=∠ADE,∴AD=AE,∴AE=BC,∴△APE≌△CPB(SAS),∴AP=CP,∠APE=∠CPB,∴∠APE+∠CPE=∠CPB+∠CPE,即∠APC=∠BPE=60°,∴△APC是等边三角形,∴AP=AC;方法二:如图1,延长PE交CD于点Q,连接AQ,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∵α=120°,即∠BAD=120°,∴∠B=∠ADC=60°,∴∠BEP=60°=∠B,∴PE∥BC∥AD,∴四边形ADQE和四边形BCQE是平行四边形,∵DE平分∠ADC,∴∠ADE=∠CDE=30°,∴∠AED=∠CDE=30°=∠ADE,∴AD=AE,∴四边形ADQE是菱形,∴∠EAQ=∠AEQ=60°,∴△AEQ是等边三角形,∴AE=AQ,∠AQE=60°,∵四边形BCQE是平行四边形,∴PE=BE=CQ,∠B=∠CQE=60°,∵∠AEP=120°,∠AQC=∠AQE+∠CQE=120°,∴∠AEP=∠AQC,∴△AEP≌△AQC(SAS),∴AP=AC;(2)AB2+AD2=2AF2,理由:如图2,连接CF,在▱ABCD中,∠BAD=90°,∴∠ADC=∠ABC=∠BAD=90°,AD=BC,∵DE平分∠ADC,∴∠ADE=∠CDE=45°,∴∠AED=∠ADE=45°,∴AD=AE,∴AE=BC,∵BF⊥EP,∴∠BFE=90°,∵∠BEF=α=∠BAD=×90°=45°,∴∠EBF=∠BEF=45°,∴BF=EF,∵∠FBC=∠FBE+∠ABC=45°+90°=135°,∠AEF=180°﹣∠FEB=135°,∴∠CBF=∠AEF,∴△BCF≌△EAF(SAS),∴CF=AF,∠CFB=∠AFE,∴∠AFC=∠AFE+∠CFE=∠CFB+∠CFE=∠BFE=90°,∴∠ACF=∠CAF=45°,∵sin∠ACF=,∴AC====AF,在Rt△ABC中,AB2+BC2=AC2,∴AB2+AD2=2AF2;(3)方法一:由(1)知,BC=AD=AE=AB﹣BE,∵BE=AB,AB=CD,∴AB=CD=2BE,设BE=a,则PE=AD=AE=a,AB=CD=2a,①当点E在AB上时,如图3,过点G作GM⊥AD于点M,作GN⊥CD于点N,过点C作CK⊥AD于点K,过点A作AH⊥PE的延长线于点H,当α=120°时,∠B=∠ADC=60°,∵DE平分∠ADC,GM⊥AD,GN⊥CD,∴GM=GN,∵S△ACD=AD•CK=a•2a•sin60°=a2,====2,∴S△CDG=2S△ADG,∴S△CDG=S△ACD=a2,由(1)知PE∥BC,∴∠AEH=∠B=60°,∵∠H=90°,∴AH=AE•sin60°=a,∴S△APE=PE•AH=a•a=a2,∴==.②如图4,当点E在AB延长线上时,由①同理可得:S△CDG=•S△ACD=××2a××3a=a2,S△APE=PH•AE=×a×3a=a2,∴==,综上所述,△APE与△CDG面积的比值为或.方法二:如图3,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴△AEG∽△CDG,∴=()2,=,①当点E在AB上时,∵BE=AB,∴AE=BE=AB=CD,∴=()2=,又∵==,∴=,即=3,∴==3,当α=120°时,∠B=∠ADC=60°,∵DE平分∠ADC,∴∠ADE=30°,∴∠AED=180°﹣∠BAD﹣∠ADE=30°=∠ADE,∴AE=AD,∵EP=EB=AE,EP∥AD,∴EP=AD=AE,∠AEP=∠DAE=120°,∴△AED≌△EAP(SAS),∴S△AED=S△EAP,∴=•=•=3×=;②如图4,当点E在AB延长线上时,∵BE=AB,∴AE=AB=CD,由①知,AD=AE=CD,∵EP=BE=AE=AD,EP∥AD,∴==,∵==,∴=,∴==,∵=()2=()2=,∴=••=××=;综上所述,△APE与△CDG面积的比值为或.27.(2021•山西)阅读与思考请阅读下列科普材料,并完成相应的任务.图算法图算法也叫诺模图,是根据几何原理,将某一已知函数关系式中的各变量,分别编成有刻度的直线(或曲线),并把它们按一定的规律排列在一起的一种图形,可以用来解函数式中的未知量.比如想知道10摄氏度相当于多少华氏度,我们可根据摄氏温度与华氏温度之间的关系:F=C+32得出,当C=10时,F=50.但是如果你的温度计上有华氏温标刻度,就可以从温度计上直接读出答案,这种利用特制的线条进行计算的方法就是图算法.再看一个例子:设有两只电阻,分别为5千欧和7.5千欧,问并联后的电阻值是多少?我们可以利用公式求得R的值,也可以设计一种图算法直接得出结果:我们先来画出一个120°的角,再画一条角平分线,在角的两边及角平分线上用同样的单位长度进行刻度,这样就制好了一张算图.我们只要把角的两边刻着7.5和5的两点连成一条直线,这条直线与角平分线的交点的刻度值就是并联后的电阻值.图算法得出的数据大多是近似值,但在大多数情况下是够用的,那些需要用同一类公式进行计算的测量制图人员,往往更能体会到它的优越性.任务:(1)请根据以上材料简要说明图算法的优越性;(2)请用以下两种方法验证第二个例子中图算法的正确性:①用公式计算:当R1=7.5,R2=5时,R的值为多少;②如图,在△AOB中,∠AOB=120°,OC是△AOB的角平分线,OA=7.5,OB=5,用你所学的几何知识求线段OC的长.解:(1)图算法方便、直观,不用公式计算即可得出结果;(答案不唯一).(2)①当R1=7.5,R2=5时,,∴R=3.②过点A作AM∥CO,交BO的延长线于点M,如图∵OC是∠AOB的角平分线,∴∠COB=∠COA=∠AOB=×120°=60°.∵AM∥CO,∴∠MAO=∠AOC=60°,∠M=∠COB=60°.∴∠MAO=∠M=60°.∴OA=OM.∴△OAM为等边三角形.∴OM=OA=AM=7.5.∵AM∥CO,∴△BCO∽△BAM.∴.∴.∴OC=3.综上,通过计算验证第二个例子中图算法是正确的.28.(2021•陕西)如图,AB是⊙O的直径,点E、F在⊙O上,且=2,连接OE、AF,过点B作⊙O的切线,分别与OE、AF的延长线交于点C、D.(1)求证:∠COB=∠A;(2)若AB=6,CB=4,求线段FD的长.(1)证明:取的中点M,连接OM、OF,∵=2,∴==,∴∠COB=∠BOF,∵∠A=∠BOF,∴∠COB=∠A;(2)解:连接BF,如图,∵CD为⊙O的切线,∴AB⊥CD,∴∠OBC=∠ABD=90°,∵∠COB=∠A,∴△OBC∽△ABD,∴=,即=,解得BD=8,29.(2021•山西)综合与实践问题情境:数学活动课上,老师出示了一个问题:如图①,在▱ABCD中,BE⊥AD,垂足为E,F 为CD的中点,连接EF,BF,试猜想EF与BF的数量关系,并加以证明.独立思考:(1)请解答老师提出的问题;实践探究:(2)希望小组受此问题的启发,将▱ABCD沿着BF(F为CD的中点)所在直线折叠,如图②,点C的对应点为C′,连接DC′并延长交AB于点G,请判断AG与BG的数量关系,并加以证明.问题解决:(3)智慧小组突发奇想,将▱ABCD沿过点B的直线折叠,如图③,点A的对应点为A′,使A′B⊥CD于点H,折痕交AD于点M,连接A′M,交CD于点N.该小组提出一个问题:若此▱ABCD的面积为20,边长AB=5,BC=2,求图中阴影部分(四边形BHNM)的面积.请你思考此问题,直接写出结果.解:(1)结论:EF=BF.理由:如图①中,作FH∥AD交BE于H.∵四边形ABCD是平行四边形,∴AD∥BC,∵FH∥AD,∴DE∥FH∥CB,∵DF=CF,∴==1,∴EH=HB,∴BE⊥AD,FH∥AD,∴FH⊥EB,∴EF=BF.(2)结论:AG=BG.理由:如图②中,连接CC′.∵△BFC′是由△BFC翻折得到,∴BF⊥CC′,FC=FC′,∵DF=FC,∴DF=FC=FC′,∴∠CC′D=90°,∴CC′⊥GD,∴DG∥BF,∵DF∥BG,∴四边形DFBG是平行四边形,∴DF=BG,∵AB=CD,DF=CD,∴BG=AB,∴AG=GB.(3)如图③中,过点D作DJ⊥AB于J,过点M作MT⊥AB于T.∵S平行四边形ABCD=AB•DJ,∴DJ==4,∵四边形ABCD是平行四边形,∴AD=BC=2,AB∥CD,∴AJ===2,∵A′B⊥AB,DJ⊥AB,∴∠DJB=∠JBH=∠DHB=90°,∴四边形DJBH是矩形,∴BH=DJ=4,∴A′H=A′B﹣BH=5﹣4=1,∵tan A===2,设AT=x,则MT=2x,∵∠ABM=∠MBA′=45°,∴MT=TB=2x,∴3x=5,∴x=,∴MT=,∵tan A=tan A′==2,∴NH=2,∴S△ABM=S△A′BM=×5×=,∴S四边形BHNM=S△A′BM﹣S△NHA′=﹣×1×2=.30.(2021•陕西)问题提出(1)如图1,在▱ABCD中,∠A=45°,AB=8,AD=6,E是AD的中点,点F在DC上,且DF=5,求四边形ABFE的面积.(结果保留根号)问题解决(2)某市进行河滩治理,优化美化人居生态环境.如图2所示,现规划在河畔的一处滩地上规划一个五边形河畔公园ABCDE.按设计要求,要在五边形河畔公园ABCDE内挖一个四边形人工湖OPMN,使点O、P、M、N分别在边BC、CD、AE、AB上,且满足BO=2AN=2CP,AM=OC.已知五边形ABCDE中,∠A=∠B=∠C=90°,AB=800m,BC=1200m,CD=600m,AE=900m.为满足人工湖周边各功能场所及绿化用地需要,想让人工湖面积尽可能小.请问,是否存在符合设计要求的面积最小的四边形人工湖OPMN?若存在,求四边形OPMN面积的最小值及这时点N到点A的距离;若不存在,请说明理由.解:(1)如图1,过点A作AH⊥CD交CD的延长线于H,过点E作EG⊥CH于G,∴∠H=90°,∵四边形ABCD是平行四边形,∴CD=AB=8,AB∥CD,∴∠ADH=∠BAD=45°,在Rt△ADH中,AD=6,(2)存在,如图2,分别延长AE与CD,交于点K,则四边形ABCK是矩形,∴AK=BC=1200米,AB=CK=800米,设AN=x米,则PC=x米,BO=2x米,BN=(800﹣x)米,AM=OC=(1200﹣2x)米,∴MK=AK﹣AM=1200﹣(1200﹣2x)=2x米,PK=CK﹣CP=(800﹣x)米,∴S四边形OPMN=S矩形ABCK﹣S△AMN﹣S△BON﹣S△OCP﹣S△PKM=800×1200﹣x(1200﹣2x)﹣•2x(800﹣x)﹣x(1200﹣2x)﹣•2x(800﹣x)=4(x﹣350)2+470000,∴当x=350时,S四边形OPMN最小=470000(平方米),AM=1200﹣2x=1200﹣2×350=500<900,CP=x=350<600,∴符合设计要求的四边形OPMN面积的最小值为470000平方米,此时,点N到点A的距离为350米.。
陕西省西安市中考数学压轴题总复习(附答案解析)
2021年陕西省西安市中考数学压轴题总复习中考数学压轴题是想获得高分甚至满分必须攻破的考题,得分率低,需要引起重视。
从近10年中考压轴题分析可得中考压轴题主要考查知识点为二次函数,圆,多边形,相似,锐角三角形等。
预计2021年中考数学压轴题依然主要考查这些知识点。
1.定义:点P(a,b)关于原点的对称点为P',以PP'为边作等边△PP'C,则称点C为P 的“等边对称点”;
(1)若P(1,√3),求点P的“等边对称点”的坐标.
(2)若P点是双曲线y=2
x(x>0)上一动点,当点P的“等边对称点”点C在第四象
限时,
①如图(1),请问点C是否也会在某一函数图象上运动?如果是,请求出此函数的解析式;如果不是,请说明理由.
②如图(2),已知点A(1,2),B(2,1),点G是线段AB上的动点,点F在y轴上,若以A、G、F、C这四个点为顶点的四边形是平行四边形时,求点C的纵坐标y c的取值范围.
2.如图,抛物线y=ax2+9
4x+c交x轴于A,B两点,交y轴于点C.直线y=−
3
4x+3经过
点B,C.
(1)求抛物线的解析式;
(2)点P从点O出发以每秒2个单位的速度沿OB向点B匀速运动,同时点E从点B 出发以每秒1个单位的速度沿BO向终点O匀速运动,当点E到达终点O时,点P停止运动,设点P运动的时间为t秒,过点P作x轴的垂线交直线BC于点H,交抛物线于点Q,过点E作EF⊥BC于点F.
①当PQ=5EF时,求出t值;
②连接CQ,当S△CBQ:S△BHQ=5:2时,请直接写出点Q的坐标.。
陕西省咸阳市,2020~2021年中考数学压轴题精选解析
陕西省咸阳市,2020~2021年中考数学压轴题精选解析陕西省咸阳市中考数学压轴题精选~~第1题~~(2020乾.中考模拟) 问题提出(1)如图,是的中线,则 ________ ;(填“ ”“ ”或“ ”)(2)如图,在矩形中,,点E为的中点,点F为上任意一点,当的周长最小时,求的长;(3)如图,在矩形中,,点O为对角线的中点,点P为上任意一点,点Q为上任意一点,连接,是否存在这样的点Q,使折线的长度最小?若存在,请确定点Q的位置,并求出折线的最小长度;若不存在,请说明理由.~~第2题~~(2020咸阳.中考模拟) 如图,OA,OD是⊙O半径.过A作⊙O的切线,交∠AOD的平分线于点C,连接CD,延长AO交⊙O于点E,交CD的延长线于点B.(1)求证:直线CD是⊙O的切线;(2)如果D点是BC的中点,⊙O的半径为 3cm,求的长度.(结果保留π)~~第3题~~(2020乾.中考模拟) 问题提出(1)如图①,AD是△ABC的中线,则AB+AC 2AD;(填“>”“<”或“=”)(2)问题探究如图②,在矩形ABCD中,CD=3,BC=4,点E为BC的中点,点F为CD上任意一点,当△AEF的周长最小时,求CF 的长;(3)问题解决如图③,在矩形ABCD中,AC=4,BC=2,点O为对角线AC的中点,点P为AB上任意一点,点Q为AC上任意一点,连接PO、PQ、BQ,是否存在这样的点Q,使折线OPQB的长度最小?若存在,请确定点Q的位置,并求出折线OPQB的最小长度;若不存在,请说明理由。
陕西省咸阳市中考数学压轴题答案解析~~第1题~~答案:解析:答案:解析:~~第3题~~答案:解析:。
2022中考数学压轴题-陕西卷
2022中考数学压轴题-陕西卷
这题就是一道送分题,成绩不错的同学考试中应该几分钟就解决了。
(1)△APC等腰,顶角∠PAC=30°
无脑计算可得∠APC=75°
(2)根据条件不难发现,如果连接PC,则△PAC就是一个等边三角形
PE其实就是BC的垂直平分线
∴四边形OECA的面积割补法随便用
如果仔细观察,会发现如果过C向AB作垂线,连接OC,会将△ABC分成几个部分,可得△OBE的面积为△ABC的六分之一则只需要搞定△OBE的面积,即可得四边形OECA的面积
不能搞定△OBE的面积=(3√3)/2
则四边形OECA的面积=(15√3)/2
(3)这一小题刚开始的时候可能会吓人一跳,不过仔细一看就是让证明∠BAP=15°的,那么只需要∠PAC=30°即可
根据条件,我们知道∠ACD=90°,
只需要过P向AC作垂线,假设垂足为F,如图
则PECF为矩形,PF=CE=CD/2=AC/2=AP/2
∴△APF其实就是含30°角的直角三角形
则∠PAF=30°
∴∠BAP=15°
符合要求
题目确实很简单,所以有时候最后一道题可能真的是来送分的。
初三中考数学压轴题精选100题(含答案)
初三中考数学压轴题精选100题(含答案)一、中考压轴题1.在△ABC中,AB=BC,将△ABC绕点A沿顺时针方向旋转得△A1B1C1,使点C1落在直线BC上(点C1与点C不重合),(1)如图,当∠C>60°时,写出边AB1与边CB的位置关系,并加以证明;(2)当∠C=60°时,写出边AB1与边CB的位置关系(不要求证明);(3)当∠C<60°时,请你在如图中用尺规作图法作出△AB1C1(保留作图痕迹,不写作法),再猜想你在(1)、(2)中得出的结论是否还成立并说明理由.【分析】(1)AB1∥BC.因为等腰三角形,两底角相等,再根据平行线的判定,内错角相等两直线平行,可证明两直线平行.(2)当∠C=60°时,写出边AB1与边CB的位置关系也是平行,证明方法同(1)题.(3)成立,根据旋转变换的性质画出图形.利用三角形全等即可证明.【解答】解:(1)AB1∥BC.证明:由已知得△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(5分)(2)如图1,∠C=60°时,AB1∥BC.(7分)(3)如图,当∠C<60°时,(1)、(2)中的结论还成立.证明:显然△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∴∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(13分)【点评】考查图形的旋转,等腰三角形的性质,平行线的判定.本题实质是考查对图形旋转特征的理解,旋转前后的图形是全等的.2.我们学习了利用函数图象求方程的近似解,例如:把方程2x﹣1=3﹣x的解看成函数y =2x﹣1的图象与函数y=3﹣x的图象交点的横坐标.如图,已画出反比例函数y=在第一象限内的图象,请你按照上述方法,利用此图象求方程x2﹣x﹣1=0的正数解.(要求画出相应函数的图象;求出的解精确到0.1)【分析】根据题意可知,方程x2﹣x﹣1=0的解可看做是函数y=和y=x﹣1的交点坐标,所以根据图象可知方程x2﹣x﹣1=0的正数解约为1.1.【解答】解:∵x≠0,∴将x2﹣x﹣1=0两边同时除以x,得x﹣1﹣=0,即=x﹣1,把x2﹣x﹣1=0的正根视为由函数y=与函数y=x﹣1的图象在第一象限交点的横坐标.如图:∴正数解约为1.1.【点评】主要考查了反比例函数和一元二次方程之间的关系.一元二次方程的解都可化为一个反比例函数和一次函数的交点问题求解.3.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2005年盈利1500万元,到2007年盈利2160万元,且从2005年到2007年,每年盈利的年增长率相同.(1)该公司2006年盈利多少万元?(2)若该公司盈利的年增长率继续保持不变,预计2008年盈利多少万元?【分析】(1)需先算出从2005年到2007年,每年盈利的年增长率,然后根据2005年的盈利,算出2006年的利润;(2)相等关系是:2008年盈利=2007年盈利×每年盈利的年增长率.【解答】解:(1)设每年盈利的年增长率为x,根据题意得1500(1+x)2=2160解得x1=0.2,x2=﹣2.2(不合题意,舍去)∴1500(1+x)=1500(1+0.2)=1800答:2006年该公司盈利1800万元.(2)2160(1+0.2)=2592答:预计2008年该公司盈利2592万元.【点评】本题的关键是需求出从2005年到2007年,每年盈利的年增长率.等量关系为:2005年盈利×(1+年增长率)2=2160.4.如图,△ABC内接于⊙O,AB=6,AC=4,D是AB边上一点,P是优弧BAC的中点,连接P A、PB、PC、PD.(1)当BD的长度为多少时,△P AD是以AD为底边的等腰三角形?并证明;(2)在(1)的条件下,若cos∠PCB=,求P A的长.【分析】(1)根据等弧对等弦以及全等三角形的判定和性质进行求解;(2)过点P作PE⊥AD于E.根据锐角三角函数的知识和垂径定理进行求解.【解答】解:(1)当BD=AC=4时,△P AD是以AD为底边的等腰三角形.∵P是优弧BAC的中点,∴=.∴PB=PC.又∵∠PBD=∠PCA(圆周角定理),∴当BD=AC=4,△PBD≌△PCA.∴P A=PD,即△P AD是以AD为底边的等腰三角形.(2)过点P作PE⊥AD于E,由(1)可知,当BD=4时,PD=P A,AD=AB﹣BD=6﹣4=2,则AE=AD=1.∵∠PCB=∠P AD(在同圆或等圆中,同弧所对的圆周角相等),∴cos∠P AD=cos∠PCB=,∴P A=.【点评】综合运用了等弧对等弦的性质、全等三角形的判定和性质、锐角三角函数的知识以及垂径定理.5.广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?【分析】(1)根据题意设平均每次下调的百分率为x,列出一元二次方程,解方程即可得出答案;(2)分别计算两种方案的优惠价格,比较后发现方案①更优惠.【解答】解:(1)设平均每次下调的百分率为x,则6000(1﹣x)2=4860,解得:x1=0.1=10%,x2=1.9(舍去),故平均每次下调的百分率为10%;(2)方案①购房优惠:4860×100×(1﹣0.98)=9720(元);方案②可优惠:80×100=8000(元).故选择方案①更优惠.【点评】本题主要考查一元二次方程的实际应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,属于中档题.6.如图,已知直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,连接PC并延长PC交y轴于点D(0,3).(1)求证:△POD≌△ABO;(2)若直线l:y=kx+b经过圆心P和D,求直线l的解析式.【分析】(1)首先连接PB,由直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,可求得∠APB=∠DPO=60°,∠ABO=∠POD=90°,即可得△P AB是等边三角形,可得AB=OP,然后由ASA,即可判定:△POD≌△ABO;(2)易求得∠PDO=30°,由OP=OD•tan30°,即可求得点P的坐标,然后利用待定系数法,即可求得直线l的解析式.【解答】(1)证明:连接PB,∵直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,∴∠APB=∠DPO=×180°=60°,∠ABO=∠POD=90°,∵P A=PB,∴△P AB是等边三角形,∴AB=P A,∠BAO=60°,∴AB=OP,∠BAO=∠OPD,在△POD和△ABO中,∴△POD≌△ABO(ASA);(2)解:由(1)得△POD≌△ABO,∴∠PDO=∠AOB,∵∠AOB=∠APB=×60°=30°,∴∠PDO=30°,∴OP=OD•tan30°=3×=,∴点P的坐标为:(﹣,0)∴,解得:,∴直线l的解析式为:y=x+3.【点评】此题考查了圆周角定理、全等三角形的判定与性质、直角三角形的性质、等边三角形的判定与性质以及待定系数法求一次函数的解析式.此题综合性较强,难度适中,注意准确作出辅助线,注意数形结合思想的应用.7.如图1,在直角坐标系中,点A的坐标为(1,0),以OA为边在第四象限内作等边△AOB,点C为x轴的正半轴上一动点(OC>1),连接BC,以BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.(1)试问△OBC与△ABD全等吗?并证明你的结论;(2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由;(3)如图2,以OC为直径作圆,与直线DE分别交于点F、G,设AC=m,AF=n,用含n的代数式表示m.【分析】(1)由等边三角形的性质知,OBA=∠CBD=60°,易得∠OBC=∠ABD,又有OB=AB,BC=BD故有△OBC≌△ABD;(2)由1知,△OBC≌△ABD⇒∠BAD=∠BOC=60°,可得∠OAE=60°,在Rt△EOA 中,有EO=OA•tan60°=,即可求得点E的坐标;(3)由相交弦定理知1•m=n•AG,即AG=,由切割线定理知,OE2=EG•EF,在Rt△EOA中,由勾股定理知,AE==2,故建立方程:()2=(2﹣)(2+n),就可求得m与n关系.【解答】解:(1)两个三角形全等.∵△AOB、△CBD都是等边三角形,∴OBA=∠CBD=60°,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD;∵OB=AB,BC=BD,△OBC≌△ABD;(2)点E位置不变.∵△OBC≌△ABD,∴∠BAD=∠BOC=60°,∠OAE=180°﹣60°﹣60°=60°;在Rt△EOA中,EO=OA•tan60°=,或∠AEO=30°,得AE=2,∴OE=∴点E的坐标为(0,);(3)∵AC=m,AF=n,由相交弦定理知1•m=n•AG,即AG=;又∵OC是直径,∴OE是圆的切线,OE2=EG•EF,在Rt△EOA中,AE==2,()2=(2﹣)(2+n)即2n2+n﹣2m﹣mn=0解得m=.【点评】命题立意:考查圆的相交弦定理、切线定理、三角形全等等知识,并且将这些知识与坐标系联系在一起,考查综合分析、解决问题的能力.8.我国年人均用纸量约为28公斤,每个初中毕业生离校时大约有10公斤废纸;用1吨废纸造出的再生好纸,所能节约的造纸木材相当于18棵大树,而平均每亩森林只有50至80棵这样的大树.(1)若我市2005年4万名初中毕业生能把自己离校时的全部废纸送到回收站使之制造为再生好纸,那么最少可使多少亩森林免遭砍伐?(2)我市从2000年初开始实施天然林保护工程,大力倡导废纸回收再生,如今成效显著,森林面积大约由2003年初的50万亩增加到2005年初的60.5万亩.假设我市年用纸量的20%可以作为废纸回收、森林面积年均增长率保持不变,请你按全市总人口约为1000万计算:在从2005年初到2006年初这一年度内,我市因回收废纸所能保护的最大森林面积相当于新增加的森林面积的百分之几?(精确到1%)【分析】(1)因为每个初中毕业生离校时大约有10公斤废纸,用1吨废纸造出的再生好纸,所能节约的造纸木材相当于18棵大树,而平均每亩森林只有50至80棵这样的大树,所以有40000×10÷1000×18÷80,计算出即可求出答案;(2)森林面积大约由2003年初的50万亩增加到2005年初的60.5万亩,可先求出森林面积年均增长率,进而求出2005到2006年新增加的森林面积,而因回收废纸所能保护的最大森林面积=1000×10000×28×20%÷1000×18÷50,然后进行简单的计算即可求出答案.【解答】解:(1)4×104×10÷1000×18÷80=90(亩).答:若我市2005年4万名初中毕业生能把自己离校时的全部废纸送到回收站使之制造为再生好纸,那么最少可使90亩森林免遭砍伐.(2)设我市森林面积年平均增长率为x,依题意列方程得50(1+x)2=60.5,解得x1=10%,x2=﹣2.1(不合题意,舍去),1000×104×28×20%÷1000×18÷50=20160,20160÷(605000×10%)≈33%.答:在从2005年初到2006年初这一年度内,我市因回收废纸所能保护的最大森林面积相当于新增加的森林面积的33%.【点评】本题以保护环境为主题,考查了增长率问题,阅读理解题意,并从题目中提炼出平均增长率的数学模型并解答的能力;解答时需仔细分析题意,利用方程即可解决问题.9.一个不透明的口袋里有红、黄、绿三种颜色的球(除颜色外其余都相同),其中红球有2个,黄球有1个,任意摸出一个黄球的概率为.(1)试求口袋里绿球的个数;(2)若第一次从口袋中任意摸出一球(不放回),第二次任意摸出一球,请你用树状图或列表法,求出两次都摸到红球的概率.【分析】(1)根据概率的求解方法,利用方程求得绿球个数;(2)此题需要两步完成,所以采用树状图法或者列表法都比较简单,解题时要注意是放回实验还是不放回实验,此题为不放回实验.【解答】解:(1)设口袋里绿球有x个,则,解得x=1.故口袋里绿球有1个.(2)红一红二黄绿红一红二,红一黄,红一绿,红一红二红一,红二黄,红一绿,红二黄红一,黄红二,黄绿,黄绿红一,绿红二,绿黄,绿故,P(两次都摸到红球)=.【点评】(1)解题时要注意应用方程思想;(2)列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.10.如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.(1)当PQ∥AD时,求x的值;(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围.【分析】(1)根据已知条件,证明四边形APQD是矩形,再根据矩形的性质和AP=CQ 求x即可;(2)连接EP、EQ,则EP=EQ,设BE=y,列出等式(8﹣x)2+y2=(6﹣y)2+x2然后根据函数的性质来求x的取值范围;(3)由图形的等量关系列出方程,再根据函数的性质来求最值.【解答】解:(1)当PQ∥AD时,则∠A=∠APQ=90°,∠D=∠DQP=90°,又∵AB∥CD,∴四边形APQD是矩形,∴AP=QD,∵AP=CQ,AP=CD=,∴x=4.(2)如图,连接EP、EQ,则EP=EQ,设BE=y.∴(8﹣x)2+y2=(6﹣y)2+x2,∴y=.∵0≤y≤6,∴0≤≤6,∴≤x≤.(3)S△BPE=•BE•BP=••(8﹣x)=,S△ECQ==•(6﹣)•x=,∵AP=CQ,∴S BPQC=,∴S=S BPQC﹣S△BPE﹣S△ECQ=24﹣﹣,整理得:S==(x﹣4)2+12(),∴当x=4时,S有最小值12,当x=或x=时,S有最大值.∴12≤S≤.【点评】解答本题时,涉及到了矩形的判定、矩形的性质、勾股定理以及二次函数的最值等知识点,这是一道综合性比较强的题目,所以在解答题目时,一定要把各个知识点融会贯通,这样解题时才会少走弯路.11.某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A 类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.【分析】(1)这是一个分段函数,分别求出其函数关系式;(2)①当2≤x<8时及当x≥8时,分别求出w关于x的表达式.注意w=销售总收入﹣经营总成本=w A+w B﹣3×20;②若该公司获得了30万元毛利润,将30万元代入①中求得的表达式,求出A类杨梅的数(3)本问是方案设计问题,总投入为132万元,这笔132万元包括购买杨梅的费用+A类杨梅加工成本+B类杨梅加工成本.共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,分别求出当2≤x<8时及当x≥8时w关于x的表达式,并分别求出其最大值.【解答】解:(1)①当2≤x<8时,如图,设直线AB解析式为:y=kx+b,将A(2,12)、B(8,6)代入得:,解得,∴y=﹣x+14;②当x≥8时,y=6.所以A类杨梅平均销售价格y与销售量x之间的函数关系式为:y=;(2)设销售A类杨梅x吨,则销售B类杨梅(20﹣x)吨.①当2≤x<8时,w A=x(﹣x+14)﹣x=﹣x2+13x;w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=w A+w B﹣3×20=(﹣x2+13x)+(108﹣6x)﹣60=﹣x2+7x+48;当x≥8时,w A=6x﹣x=5x;w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=w A+w B﹣3×20=(5x)+(108﹣6x)﹣60=﹣x+48.∴w关于x的函数关系式为:w=.②当2≤x<8时,﹣x2+7x+48=30,解得x1=9,x2=﹣2,均不合题意;当x≥8时,﹣x+48=30,解得x=18.∴当毛利润达到30万元时,直接销售的A类杨梅有18吨.(3)设该公司用132万元共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,则购买费用为3m万元,A类杨梅加工成本为x万元,B类杨梅加工成本为[12+3(m﹣x)]∴3m+x+[12+3(m﹣x)]=132,化简得:x=3m﹣60.①当2≤x<8时,w A=x(﹣x+14)﹣x=﹣x2+13x;w B=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=w A+w B﹣3×m=(﹣x2+13x)+(6m﹣6x﹣12)﹣3m=﹣x2+7x+3m﹣12.将3m=x+60代入得:w=﹣x2+8x+48=﹣(x﹣4)2+64∴当x=4时,有最大毛利润64万元,此时m=,m﹣x=;②当x≥8时,w A=6x﹣x=5x;w B=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=w A+w B﹣3×m=(5x)+(6m﹣6x﹣12)﹣3m=﹣x+3m﹣12.将3m=x+60代入得:w=48∴当x>8时,有最大毛利润48万元.综上所述,购买杨梅共吨,其中A类杨梅4吨,B类吨,公司能够获得最大毛利润,最大毛利润为64万元.【点评】本题是二次函数、一次函数的综合应用题,难度较大.解题关键是理清售价、成本、利润三者之间的关系.涉及到分段函数时,注意要分类讨论.12.⊙O1与⊙O2相交于A、B两点,如图(1),连接O2O1并延长交⊙O1于P点,连接P A、PB并分别延长交⊙O2于C、D两点,连接CO2并延长交⊙O2于E点.已知⊙O2的半径为R,设∠CAD=α.(1)求CD的长(用含R、α的式子表示);(2)试判断CD与PO1的位置关系,并说明理由;(3)设点P’为⊙O1上(⊙O2外)的动点,连接P’A、P’B并分别延长交⊙O2于C’、D’,请你探究∠C’AD’是否等于α?C’D’与P’O1的位置关系如何?并说明(注:图(2)与图(3)中⊙O1和⊙O2的大小及位置关系与图(1)完全相同,若你感到继续在图(1)中探究问题(3),图形太复杂,不便于观察,可以选择图(2)或图(3)中的一图说明理由).【分析】(1)作⊙O2的直径CE,连接DE.根据圆周角定理的推论,得∠E=∠CAD=α,再利用解直角三角形的知识求解;(2)连接AB,延长PO1与⊙O1相交于点E,连接AE.根据圆内接四边形的性质,得∠ABP′=∠C′,根据圆周角定理的推论,得∠ABP′=∠E,∠EAP′=90°,从而证明∠AP′E+∠C′=90°,则CD与PO1的位置关系是互相垂直;(3)根据同弧所对的圆周角相等,则说明∠C’AD’等于α;根据(2)中的证明过程,则可以证明C’D’与P’O1的位置关系是互相垂直.【解答】解:(1)连接DE.根据圆周角定理的推论,得∠E=∠CAD=α.∵CE是直径,∴∠CDE=90°.∴CD=CE•sin E=2R sinα;(2)CD与PO1的位置关系是互相垂直.理由如下:连接AB,延长PO1与⊙O1相交于点E,连接AE.∵四边形BAC′D′是圆内接四边形,∴∠ABP′=∠C′.∵P′E是直径,∴∠EAP′=90°,∴∠AP′E+∠E=90°.又∠ABP′=∠E,∴∠AP′E+∠C′=90°,即CD与PO1的位置关系是互相垂直;(3)根据同弧所对的圆周角相等,则说明∠C’AD’等于α;根据(2)中的证明过程,则可以证明C’D’与P’O1的位置关系是互相垂直.【点评】此题综合运用了圆周角定理及其推论、直角三角形的性质、圆内接四边形的性质.注意:连接两圆的公共弦、构造直径所对的圆周角都是圆中常见的辅助线.13.已知⊙O1与⊙O2相交于A、B两点,点O1在⊙O2上,C为⊙O2上一点(不与A,B,O1重合),直线CB与⊙O1交于另一点D.(1)如图(1),若AD是⊙O1的直径,AC是⊙O2的直径,求证:AC=CD;(2)如图(2),若C是⊙O1外一点,求证:O1C丄AD;(3)如图(3),若C是⊙O1内的一点,判断(2)中的结论是否成立?【分析】(1)连接C01,利用直径所对圆周角等于90度,以及垂直平分线的性质得出即可;(2)根据已知得出四边形AEDB内接于⊙O1,得出∠ABC=∠E,再利用=,得出∠E=∠AO1C,进而得出CO1∥ED即可求出;(3)根据已知得出∠B=∠EO1C,又∠E=∠B,即可得出∠EO1C=∠E,得出CO1∥ED,即可求出.【解答】(1)证明:连接C01∵AC为⊙O2直径∴∠AO1C=90°即CO1⊥AD,∵AO1=DO1∴DC=AC(垂直平分线的性质);(2)证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵四边形AEDB内接于⊙O1,∴∠E+∠ABD=180°,∵∠ABC+∠ABD=180°,∴∠ABC=∠E,又∵=,∴∠ABC=∠AO1C,∴∠E=∠AO1C,∴CO1∥ED,又AE为⊙O1的直径,∴ED⊥AD,∴O1C⊥AD,(3)(2)中的结论仍然成立.证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵∠B+∠AO1C=180°,∠EO1C+∠AO1C═180°,∴∠B=∠EO1C,又∵∠E=∠B,∴∠EO1C=∠E,∴CO1∥ED,又ED⊥AD,∴CO1⊥AD.【点评】此题主要考查了圆周角定理以及相交两圆的性质和圆内接四边形的性质,根据圆内接四边形的性质得出对应角之间的关系是解决问题的关键.14.如图,已知△BEC是等边三角形,∠AEB=∠DEC=90°,AE=DE,AC,BD的交点为O.(1)求证:△AEC≌△DEB;(2)若∠ABC=∠DCB=90°,AB=2 cm,求图中阴影部分的面积.【分析】(1)在△AEC和△DEB中,已知AE=DE,BE=CE,且夹角相等,根据边角边可证全等.(2)由图可知,在连接EO并延长EO交BC于点F,连接AD之后,整个图形是一个以EF所在直线对称的图形.即△AEO和△DEO面积相等,只要求出其中一个即可,而三角形AEO面积=•OE•FB,所以解题中心即为求出OE和FB,有(1)中结论和已知条件即可求解.【解答】(1)证明:∵∠AEB=∠DEC=90°,∴∠AEB+∠BEC=∠DEC+∠BEC,即∠AEC=∠DEB,∵△BEC是等边三角形,∴CE=BE,又AE=DE,∴△AEC≌△DEB.(2)解:连接EO并延长EO交BC于点F,连接AD.由(1)知AC=BD.∵∠ABC=∠DCB=90°,∴∠ABC+∠DCB=180°,∴AB∥DC,AB==CD,∴四边形ABCD为平行四边形且是矩形,∴OA=OB=OC=OD,又∵BE=CE,∴OE所在直线垂直平分线段BC,∴BF=FC,∠EFB=90°.∴OF=AB=×2=1,∵△BEC是等边三角形,∴∠EBC=60°.在Rt△AEB中,∠AEB=90°,∠ABE=∠ABC﹣∠EBC=90°﹣60°=30°,∴BE=AB•cos30°=,在Rt△BFE中,∠BFE=90°,∠EBF=60°,∴BF=BE•cos60°=,EF=BE•sin60°=,∴OE=EF﹣OF==,∵AE=ED,OE=OE,AO=DO,∴△AOE≌△DOE.∴S△AOE=S△DOE∴S阴影=2S△AOE=2וEO•BF=2×××=(cm2).【点评】考查综合应用等边三角形、等腰三角形、解直角三角形、直角三角形性质,进行逻辑推理能力和运算能力.15.经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.【分析】(1)当20≤x≤220时,设车流速度v与车流密度x的函数关系式为v=kx+b,根据题意的数量关系建立方程组求出其解即可;(2)由(1)的解析式建立不等式组求出其解即可;(3)设车流量y与x之间的关系式为y=vx,当x<20和20≤x≤220时分别表示出函数关系由函数的性质就可以求出结论.【解答】解:(1)设车流速度v与车流密度x的函数关系式为v=kx+b,由题意,得,解得:,∴当20≤x≤220时,v=﹣x+88,当x=100时,v=﹣×100+88=48(千米/小时);(2)由题意,得,解得:70<x<120.∴应控制大桥上的车流密度在70<x<120范围内;(3)设车流量y与x之间的关系式为y=vx,当0≤x≤20时y=80x,∴k=80>0,∴y随x的增大而增大,∴x=20时,y最大=1600;当20≤x≤220时y=(﹣x+88)x=﹣(x﹣110)2+4840,∴当x=110时,y最大=4840.∵4840>1600,∴当车流密度是110辆/千米,车流量y取得最大值是每小时4840辆.【点评】本题考查了车流量=车流速度×车流密度的运用,一次函数的解析式的运用,一元一次不等式组的运用,二次函数的性质的运用,解答时求出函数的解析式是关键.16.如图,菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等.(1)设菱形相邻两个内角的度数分别为m°和n°,将菱形的“接近度”定义为|m﹣n|,于是|m﹣n|越小,菱形越接近于正方形.①若菱形的一个内角为70°,则该菱形的“接近度”等于40;②当菱形的“接近度”等于0时,菱形是正方形.(2)设矩形相邻两条边长分别是a和b(a≤b),将矩形的“接近度”定义为|a﹣b|,于是|a﹣b|越小,矩形越接近于正方形.你认为这种说法是否合理?若不合理,给出矩形的“接近度”一个合理定义.【分析】(1)根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,相似图形的“接近度”相等.所以若菱形的一个内角为70°,则该菱形的“接近度”等于|m﹣n|;当菱形的“接近度”等于0时,菱形是正方形;(2)不合理,举例进行说明.【解答】解:(1)①∵内角为70°,∴与它相邻内角的度数为110°.∴菱形的“接近度”=|m﹣n|=|110﹣70|=40.②当菱形的“接近度”等于0时,菱形是正方形.(2)不合理.例如,对两个相似而不全等的矩形来说,它们接近正方形的程度是相同的,但|a﹣b|却不相等.合理定义方法不唯一.如定义为,越接近1,矩形越接近于正方形;越大,矩形与正方形的形状差异越大;当时,矩形就变成了正方形,即只有矩形的越接近1,矩形才越接近正方形.【点评】正确理解“接近度”的意思,矩形的“接近度”|a﹣b|越小,矩形越接近于正方形.这是解决问题的关键.17.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2;③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.【分析】(1)将三角形的各顶点,向x轴作垂线并延长相同长度得到三点的对应点,顺次连接;(2)将三角形的各顶点,绕原点O按逆时针旋转90°得到三点的对应点.顺次连接各对应点得△A2B2C2;(3)从图中可发现成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,做它的垂直平分线;(4)成中心对称图形,画出两条对应点的连线,交点就是对称中心.【解答】解:如下图所示:(3)成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,作它的垂直平分线,或连接A1C1,A2C2的中点的连线为对称轴.(4)成中心对称,对称中心为线段BB2的中点P,坐标是(,).【点评】本题综合考查了图形的变换,在图形的变换中,关键是找到图形的对应点.18.如图,矩形ABCD的边AD、AB分别与⊙O相切于点E、F,(1)求的长;(2)若,直线MN分别交射线DA、DC于点M、N,∠DMN=60°,将直线MN沿射线DA方向平移,设点D到直线的距离为d,当时1≤d≤4,请判断直线MN与⊙O的位置关系,并说明理由.【分析】(1)连接OE、OF,利用相切证明四边形AFOE是正方形,再根据弧长公式求弧长;(2)先求出直线M1N1与圆相切时d的值,结合1≤d≤4,划分d的范围,分类讨论.【解答】解:(1)连接OE、OF,∵矩形ABCD的边AD、AB分别与⊙O相切于点E、F,∴∠A=90°,∠OEA=∠OF A=90°∴四边形AFOE是正方形∴∠EOF=90°,OE=AE=∴的长==π.(2)如图,将直线MN沿射线DA方向平移,当其与⊙O相切时,记为M1N1,切点为R,交AD于M1,交BC于N1,连接OM1、OR,∵M1N1∥MN∴∠DM1N1=∠DMN=60°∴∠EM1N1=120°∵MA、M1N1切⊙O于点E、R∴∠EM1O=∠EM1N1=60°在Rt△EM1O中,EM1===1∴DM1=AD﹣AE﹣EM1=+5﹣﹣1=4.过点D作DK⊥M1N1于K在Rt△DM1K中DK=DM1×sin∠DM1K=4×sin∠60°=2即d=2,∴当d=2时,直线MN与⊙O相切,当1≤d<2时,直线MN与⊙O相离,当直线MN平移到过圆心O时,记为M2N2,点D到M2N2的距离d=DK+OR=2+=3>4,∴当2<d≤4时,MN直线与⊙O相交.【点评】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d 与圆半径大小关系完成判定.19.如图,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP交AC于点O,E为AC上一点,且AE=OC.(1)求证:AP=AO;(2)求证:PE⊥AO;(3)当AE=AC,AB=10时,求线段BO的长度.【分析】(1)根据等角的余角相等证明即可;(2)过点O作OD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CO=DO,利用“SAS”证明△APE和△OAD全等,根据全等三角形对应角相等可得∠AEP=∠ADO=90°,从而得证;(3)设C0=3k,AC=8k,表示出AE=CO=3k,AO=AP=5k,然后利用勾股定理列式求出PE=4k,BC=BD=10﹣4k,再根据相似三角形对应边成比例列式求出k=1然后在Rt △BDO中,利用勾股定理列式求解即可.【解答】(1)证明:∵∠C=90°,∠BAP=90°∴∠CBO+∠BOC=90°,∠ABP+∠APB=90°,又∵∠CBO=∠ABP,∴∠BOC=∠APB,∵∠BOC=∠AOP,∴∠AOP=∠APB,∴AP=AO;(2)证明:如图,过点O作OD⊥AB于D,∵∠CBO=∠ABP,∴CO=DO,∵AE=OC,∴AE=OD,∵∠AOD+∠OAD=90°,∠P AE+∠OAD=90°,∴∠AOD=∠P AE,在△AOD和△P AE中,,∴△AOD≌△P AE(SAS),∴∠AEP=∠ADO=90°∴PE⊥AO;(3)解:设AE=OC=3k,∵AE=AC,∴AC=8k,∴OE=AC﹣AE﹣OC=2k,∴OA=OE+AE=5k.由(1)可知,AP=AO=5k.如图,过点O作OD⊥AB于点D,∵∠CBO=∠ABP,∴OD=OC=3k.在Rt△AOD中,AD===4k.∴BD=AB﹣AD=10﹣4k.∵OD∥AP,∴,即解得k=1,∵AB=10,PE=AD,∴PE=AD=4K,BD=AB﹣AD=10﹣4k=6,OD=3在Rt△BDO中,由勾股定理得:BO===3.【点评】本题考查了全等三角形的判定与性质,角平分线上的点到角的两边的距离相等的性质,勾股定理,相似三角形的判定与性质,(2)作辅助线构造出过渡线段DO并得到全等三角形是解题的关键,(3)利用相似三角形对应边成比例求出k=1是解题的关键.20.下框中是小明对一道题目的解答以及老师的批改.题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1,在温室内,沿前侧内墙保留3m的空地,其他三侧内墙各保留1m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288m2?解:设矩形蔬菜种植区域的宽为xm,则长为2xm,根据题意,得x•2x=288.解这个方程,得x1=﹣12(不合题意,舍去),x2=12所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)答:当温室的长为28m,宽为14m时,矩形蔬菜种植区域的面积是288m2.我的结果也正确!小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程:变化一下会怎样…(2)如图,矩形A′B′C′D′在矩形ABCD的内部,AB∥A′B′,AD∥A′D′,且AD:AB=2:1,设AB与A′B′、BC与B′C′、CD与C′D′、DA与D′A′之间的距离分别为a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d应满足什么条件?请说明理由.。
2024陕西中考数学试卷压轴题
2024陕西中考数学试卷压轴题题目描述在高中阶段的最后一年,学生们都将面临着重要的中考。
为了帮助陕西省的考生更好地复习和应对数学考试,陕西教育部门特别设计了一道压轴题。
这道题目将涉及到中学数学的各个知识点,对考生的综合能力提出了挑战。
接下来,让我们来看一下这个压轴题的具体内容。
题目要求考虑函数f(x) = x2 - 4ax + b,其中a和b为实数。
已知函数f(x)在区间[-1, 3]上的最小值为4,并且函数图像与x轴交于两个点。
求a和b的值,并说明为什么函数f(x)在区间[-1, 3]上的最小值为4。
解题过程第一步:确定函数的最小值点题目中给出了函数f(x)在区间[-1, 3]上的最小值为4,我们可以利用这个信息来推导a和b的值。
最小值点的x坐标可以通过求导数为零求得。
因此,我们对函数f(x)求导数得到f’(x) = 2x - 4a。
将求导得到的表达式置为零,我们可以得到2x - 4a = 0。
解这个一次方程可以得到x = 2a。
由于函数图像与x轴交于两个点,说明最小值点是一个抛物线的顶点。
根据对称性,最小值点的横坐标与两个交点的平均值相等,即-x1/2 = 2a。
将x = 2a代入函数f(x),我们可以得到函数f(x)在最小值点的函数值:f(2a) = (2a)2 - 4a(2a) + b。
根据题目给出的信息,我们知道最小值为4,因此可以得到方程:(2a)2 -4a(2a) + b = 4。
第二步:求解方程现在我们需要解这个方程以求得a和b的值。
将方程展开,我们得到4a2 -8a2 + b = 4,化简得-b = 4a2 - 4。
进一步整理为b = 4 - 4a2。
第三步:解释为什么函数f(x)在区间[-1, 3]上的最小值为4已知最小值点为函数的顶点,因此可以证明在最小值点处函数的二阶导数大于0。
对函数f(x)再次求导得到f’‘(x) = 2。
显然,f’’(x)大于0。
因此,根据二阶导数的正负性,我们可以得知函数f(x)在最小值点处取得最小值,并且最小值为正数。
2024年中考数学压轴题重难点知识剖析及训练—求函数的解析式(含解析)
2024年中考数学压轴题重难点知识剖析及训练—求函数的解析式(含解析)通用的解题思路:求一次函数解析式:①老方法:已知两个点的坐标,一令b kx y +=,二代:将两个点的坐标代入,计算出b k 、,三作答;②压轴题中的新方法,用求k 公式2121x x y y k --=来先求出k ,再代入一个点来求出b ,当求垂线的解析式或者点的坐标含参数时,用新方法更合适。
求二次函数解析式:①一般式:c bx ax y ++=2,压轴题中一般不用一般式来求二次函数解析式;②顶点式:()k h x a y +-=2,告诉二次函数的顶点时,优先选用顶点式;③一般式:()()21x x x x a y --=,告诉二次函数与x 轴的两交点时,优先选用交点式。
1.(长沙中考)若抛物线L :y=ax 2+bx+c (a ,b ,c 是常数,abc≠0)与直线l 都经过y 轴上的一点P ,且抛物线L 的顶点Q 在直线l 上,则称此直线l 与该抛物线L 具有“一带一路”关系.此时,直线l 叫做抛物线L 的“带线”,抛物线L 叫做直线l 的“路线”.(1)若直线y=mx+1与抛物线y=x 2﹣2x+n 具有“一带一路”关系,求m ,n 的值;(2)若某“路线”L 的顶点在反比例函数y=6x的图象上,它的“带线”l 的解析式为y=2x ﹣4,求此“路线”L 的解析式;(3)当常数k 满足12≤k≤2时,求抛物线L :y=ax 2+(3k 2﹣2k+1)x+k 的“带线”l 与x 轴,y 轴所围成的三角形面积的取值范围.【详解】解:(1)令直线y=mx+1中x=0,则y=1,即直线与y 轴的交点为(0,1);将(0,1)代入抛物线y=x 2﹣2x+n 中,得n=1.∵抛物线的解析式为y=x 2﹣2x+1=(x ﹣1)2,∴抛物线的顶点坐标为(1,0).将点(1,0)代入到直线y=mx+1中,得:0=m+1,解得:m=﹣1.(2)将y=2x﹣4代入到y=6x中有,2x﹣4=6x,即2x2﹣4x﹣6=0,解得:x1=﹣1,x2=3.∴该“路线”L的顶点坐标为(﹣1,﹣6)或(3,2).令“带线”l:y=2x﹣4中x=0,则y=﹣4,∴“路线”L的图象过点(0,﹣4).设该“路线”L的解析式为y=m(x+1)2﹣6或y=n(x﹣3)2+2,由题意得:﹣4=m(0+1)2﹣6或﹣4=n(0﹣3)2+2,解得:m=2,n=﹣2 3.∴此“路线”L的解析式为y=2(x+1)2﹣6或y=﹣23(x﹣3)2+2.(3)令抛物线L:y=ax2+(3k2﹣2k+1)x+k中x=0,则y=k,即该抛物线与y轴的交点为(0,k).抛物线L:y=ax2+(3k2﹣2k+1)x+k的顶点坐标为(﹣23212k ka-+,()2243214ak k ka--+),设“带线”l的解析式为y=px+k,∵点(﹣23212k ka-+,()2243214ak k ka--+)在y=px+k上,∴()2243214ak k ka--+=﹣p23212k ka-++k,解得:p=23212k k-+.∴“带线”l的解析式为y=23212k k-+x+k.令∴“带线”l:y=23212k k-+x+k中y=0,则0=23212k k-+x+k,解得:x=﹣22k3k2k1-+.即“带线”l与x轴的交点为(﹣22k3k2k1-+,0),与y轴的交点为(0,k).∴“带线”l与x轴,y轴所围成的三角形面积S=12|﹣22k3k2k1-+|×|k|,∵12≤k≤2,∴12≤1k≤2,∴S=222 211==321211312 kk kk k k-+⎛⎫⎛⎫-+-+⎪ ⎪⎝⎭⎝⎭,当1k=1时,S有最大值,最大值为12;当1k=2时,S有最小值,最小值为13.故抛物线L:y=ax2+(3k2﹣2k+1)x+k的“带线”l与x轴,y轴所围成的三角形面积的取值范围为13≤S≤12.2.(青竹湖)规定:我们把一个函数关于某条直线或者某点作对称后形成的新函数,称之为原函数的“对称函数”.(1)已知一次函数y=﹣2x+3的图象,求关于直线y=﹣x的对称函数的解析式;(2)已知二次函数y=ax2+4ax+4a﹣1的图象为C1;①求C1关于点R(1,0)的对称函数图象C2的函数解析式;②若两抛物线与y 轴分别交于A 、B 两点,当AB =16时,求a 的值;(3)若直线y =﹣2x ﹣3关于原点的对称函数的图象上的存在点P ,不论m 取何值,抛物线y =mx 2+(m ﹣23)x ﹣(2m ﹣38)都不通过点P ,求符合条件的点P 坐标.【详解】(1)取y =-2x +3上两点(0,3),(32,0)两点关于y =-x 对称点为(-3,0),(0,-32)设y =x +b ,则0332k b b =-+⎧⎪⎨=-⎪⎩,解得1232k b ⎧=-⎪⎪⎨⎪=-⎪⎩,则1322y x =--,(2)①设C 2上的点为(x ,y ),其关于(1,0)的对称点为(2-x ,-y ),(2-x ,-y )在C 1上,则()()224241y a x a x a -=-+-+-,C2:28161y ax ax a =-+-+,②C 1关于y 轴交于(0,4a -1),C 2关于y 轴交于(0,-16a +1),AB =|(4a -1)-(-16a +1)|=16,|2a -2|=16,解得a =910或-710,(3)y =-2x -3关于原点对称函数为y =-2x +3,抛物线:()222323223838y mx m x m x x m x ⎛⎫⎛⎫=+---=+--+ ⎪ ⎪⎝⎭⎝⎭,令220x x +-=,得x 1=1,x 2=-1,则抛物线经过(1,7-24),(-2,4124),令x =1,y =-2x -3=1,令x =-2,y =-2x +3=7,点(1,1)(-2,7)在y =-2x +3上,由于函数值的唯一性,上述两点不可能在抛物线上,故P 为(1,1)或(-2,7).3.(青竹湖)定义:将点P 关于原点对称的点绕原点顺时针旋转90︒后得到的点'P 称为P 的反转点,连接'PP 形成的直线称为反转线,当直线'PP 与函数L 的图象有交点时的反转线称为完美直线,它们的交点Q 叫完美点.(1)已知函数L 的觝析式为6y x=,点P 的坐标为(5,0),试求出点P 变换后得到的反转线;(2)已知函数L 的解析式为8y x =+,点P 为x 轴上异于原点的一点,经过变换后可以得到完美直线,且完美点Q与原点间的距离为(3)已知P 为直线3y x =上一动点,函数L 的解析式为213122y x x =+-,点P 经过变换后得到的反转线是完美直线,且有两个完美点1Q ,2Q ,当12Q Q 时,求点P 横坐标的取值范围.【解答】解:(1)∵点P 的坐标为(5,0),关于原点的对称点坐标是(﹣5,0),∴点P 的反转点P ′的坐标是(0,5),设反转线的解析式是y =kx +b ,把P (5,0),P ′(0,5)代入y =kx +b ,得,∴,∴点P 变换后得到的反转线的解析式是y =﹣x +5.(2)设P (m ,0)(m ≠0)则它的反转点P ′(0,m ),∴直线PP ′的解析式是y =﹣x +m ,解方程组得,∴点Q 的坐标是(,),∴+=OQ 2==40,∴m =4或m =﹣4,∴完美直线的解析式是y =﹣x +4或y =﹣x ﹣4.(3)∵P 是直线y =3x 上的一点,∴设P (n ,3n )(n ≠0),∴P ′的坐标是(﹣3n ,n ),设完美直线PP ′的解析式是y =ux +v ,把P (n ,3n ),P ′(﹣3n ,n )代入得,∴,∴PP ′的解析式是y =x +n ,由得x 2+2x ﹣2﹣5n =0,∵P 经过变换后得到的反转线是完美直线,且有两个完美点Q 1,Q 2,∴Δ=22﹣4×(﹣2﹣5n )=12+20n>0,∴n >﹣,设Q 1(x 1,y 1),Q 2(x 2,y 2),∴x 1+x 2=﹣2,x 1x 2=﹣2﹣5n ,y 1﹣y 2=(x 1﹣x 2),∴Q 1Q 2===,∴Q 1Q 2==,∵≤Q 1Q 2≤2,∴≤≤2,∴﹣≤n ≤,∴点P 横坐标的取值范围是﹣≤n ≤.4.(博才)规定:我们把直线:l y ax b =+叫做抛物线2:L y ax bx =+的“温暖直线”.若该直线与该抛物线的图象还有两个不同的交点,则两个交点叫做“幸福点”,并且称直线l 与抛物线L 具备“温暖而幸福关系”,否则称直线l 与抛物线L 不具备“温暖而幸福关系”.(1)已知直线:4l y ax =-是抛物线2:2L y x bx =+的“温暖直线”,请判断直线l 与抛物线L 是否具备“温暖而幸福关系”,若具备,请求出“幸福点”的坐标,若不具备,请说明理由;(2)已知直线:l y ax b =+与抛物线2:L y ax bx =+不具备“温暖而幸福关系”,当02x ≤≤时,抛物线2:L y ax bx =+的最小值是6-,求直线l 的解析式;(3)已知直线:l y ax b =+是抛物线L 的“温暖直线”.将抛物线L 进行左右平移得到新抛物线1L ,抛物线1L 满足:对于抛物线上的任意两点()11,M x y ,()22,N x y ,若1255022x x ⎛⎫⎛⎫--> ⎪⎪⎝⎭⎝⎭,则12y y ≠始终成立.抛物线1L 与直线l 相交于()1,1A ,B 两点,若以AB 为直径的圆恰好与x 轴相切,求a 的值.【解答】解:(1)∵直线l :y =ax ﹣4是抛物线L :y =2x 2+bx 的“温暖直线”,∴a =2,b =﹣4,∴直线l :y =2x ﹣4,抛物线L :y =2x 2﹣4x ,由2x ﹣4=2x 2﹣4x ,得:x =1或x =2,∴“幸福点”的坐标为(1,﹣2),(2,0);(2)∵直线l 与抛物线L 不具备“温暖而幸福关系”,∴方程ax +b =ax 2+bx ,即ax 2+(b ﹣a )x ﹣b =0无解或有两个相等的实数根,∴(b ﹣a )2+4ab =(a +b )2≤0,∴b =﹣a ,∴直线l :y =ax ﹣a ,抛物线L :y =ax 2﹣ax =a (x ﹣)2﹣a ,当a >0时,抛物线开口向上,∴当0≤x <时,y 随x 的增大而减小,当<x ≤2时,y 随x 的增大而增大,∴﹣a =﹣6,解得:a =24,∴b =﹣24,∴直线l 的解析式为y =24x ﹣24;当a <0时,抛物线开口向下,∴当0≤x <时,y 随x 的增大而增大,当<x ≤2时,y 随x 的增大而减小,∴当x =2时,y 最小值=4a ﹣2a =﹣6,解得:a =﹣3,∴b =3,∴直线l 的解析式为y =﹣3x +3;∴直线l 的解析式为y =24x ﹣24或y =﹣3x +3;(3)∵(x 1﹣)(x 2﹣)>0,则y 1≠y 2始终成立,∴x =是L 1的对称轴,∵y =ax 2+bx =a (x +)2﹣,平移后变为y =a (x ﹣)2﹣,将点A (1,1)代入y =a (x ﹣)2﹣,∴a ﹣=1①,∵A (1,1)在直线y =ax +b 上,∴a +b =1②,由①②解得设B (c ,d ),联立方程组,∴ax 2﹣6ax +a ﹣b ﹣=0,∴6=1+c ,∴c =5,∴d =5a +b ,∵A (1,1),B (5,5a +b ),∴AB 的中点(3,),AB ==,∵以AB为直径的圆恰好与x轴相切,∴=,∴5a+b=4,∵5a+b=a(5﹣)2﹣,∴a﹣=4②,联立①②得a=.5.(2022•庐阳区三模)在数学活动课上,小明兴起小组对二次函数的图象进行了深入的探究,如果将二次函数,y=ax2+bx+c(a≠0)图象上的点A(x,y)的横坐标不变,纵坐标变为A点的横、纵坐标之和,就会得到的一个新的点A1(x,x+y).他们把这个点A:定义为点A的“简朴”点.他们发现:二次函数y =ax2+bx+c(a≠0)所有简朴点构成的图象也是一条抛物线,于是把这条抛物线定义为y=ax2+bx+c(a≠0)的“简朴曲线”.例如,二次函数y=x2+x+1的“简朴曲线”就是y=x2+x+1+x=x2+2x+1,请按照定义完成:(1)点P(1,2)的“简朴”点是;(2)如果抛物线y=ax2﹣7x+3(a≠0)经过点M(1,﹣3),求该抛物线的“简朴曲线”;(3)已知抛物线y=x2+bx+c图象上的点B(x,y)的“简朴点”是B1(﹣1,1),若该抛物线的“简朴曲线”的顶点坐标为(m,n),当0≤c≤3时,求n的取值范围.【解答】解:(1)由题意得点P(1,2)的“简朴”点是(1,1+2),即(1,3),故答案为:(1,3).(2)将(1,﹣3)代入y=ax2﹣7x+3得﹣3=a﹣7+3,解得a=1,∴y=x2﹣7x+3,∴抛物线y=x2﹣7x+3的“简朴曲线”为y=x2﹣7x+3+x=x2﹣6x+3.(3)∵点B(x,y)的“简朴点”是B(﹣1,1),∴,解得,∴点B坐标为(﹣1,2),∴1﹣b+c=2,即b=c﹣1,∴y=x2+(c﹣1)x+c,∴该抛物线的“简朴曲线”为y=x2+cx+c=(x+)2+c﹣,∵该抛物线的“简朴曲线”的顶点坐标为(m,n),∴m=﹣,n=c﹣=﹣(c﹣2)2+1,∴c=2时,n=1为最大值,把c=0代入n=c﹣得n=0,把c=3代入n=c﹣得n=,∴当0≤c≤3时,0≤n≤1.6.(2022•岳麓区校级模拟)我们定义:若点P在一次函数y=ax+b(a≠0)图象上,点Q在反比例函数(c≠0)图象上,且满足点P与点Q关于y轴对称,则称二次函数y=ax2+bx+c为一次函数y=ax+b与反比例函数的“衍生函数”,点P称为“基点”,点Q称为“靶点”.(1)若二次函数y=x2+2x+1是一次函数y=ax+b与反比例函数的“衍生函数”,则a=,b=,c=;(2)若一次函数y=x+b和反比例函数的“衍生函数”的顶点在x轴上,且“基点”P的横坐标为1,求“靶点”的坐标;(3)若一次函数y=ax+2b(a>b>0)和反比例函数的“衍生函数”经过点(2,6).①试说明一次函数y=ax+2b图象上存在两个不同的“基点”;②设一次函数y=ax+2b图象上两个不同的“基点”的横坐标为x1、x2,求|x1﹣x2|的取值范围.【解答】解:(1)由定义可知,a=1,b=2,c=1,故答案为:1,2,1;(2)由题意可知,“衍生函数”为y=x2+bx+c,∵顶点在x轴上,∴4c=b2,∴一次函数为y=x+b,∵“基点”P的横坐标为1,∴P(1,1+b),∵点P与点Q关于y轴对称,∴Q(﹣1,1+b),∵反比例函数为y=,∴﹣b2=1+b,解得b=﹣2,∴“靶点”的坐标(﹣1,﹣1);(3)证明:①由题意可知“衍生函数”为y=ax2+2bx﹣2,∵经过点(2,6),∴a+b=2,∵a>b>0,∴a>2﹣a>0,∴1<a<2,设“靶点”Q(t,﹣),则P(﹣t,﹣),∴﹣=at+2(2﹣a),整理得at2﹣4t+2at﹣2=0,∴Δ=4(a﹣1)2+12>0,∴方程有两个不同的实数根,∴一次函数y=ax+2b图象上存在两个不同的“基点”;②解:由①可知,at2﹣4t+2at﹣2=0,∴x1+x2=﹣2,x1•x2=﹣,∴|x1﹣x2|==,∵1<a<2,∴2<<4,∴2<|x1﹣x2|<2.8.定义:将函数C1的图象绕点P(m,0)旋转180o,得到新的函数C2的图象,我们称函数C2是函数C1关于点P的相关函数.例如:当m=1时,函数y=(x﹣3)2+9关于点P(1,0)的相关函数为y=﹣(x+1)2﹣9.(1)当m=0时,①一次函数y=﹣x+7关于点P的相关函数为.②点A(5,﹣6)在二次函数y=ax2﹣2ax+a(a≠0)关于点P的相关函数的图象上,求a的值.(2)函数y=(x﹣2)2+6关于点P的相关函数是y=﹣(x﹣10)2﹣6,则m=.(3)当m﹣1≤x≤m+2时,函数y=x2﹣6mx+4m2关于点P(m,0)的相关函数的最大值为8,求m的值.【解答】解:(1)①根据相关函数的定义,y=﹣x+7关于点P(0,0)旋转变换可得相关函数为y=﹣x﹣7,故答案为:y=﹣x﹣7;②y=ax2﹣2ax+a=a(x﹣1)2,∴y=ax2﹣2ax+a关于点P(0,0)的相关函数为y=﹣a(x+1)2,∵点A(5,﹣6)在二次函数y=﹣a(x+1)2的图象上,∴﹣6=﹣a(5+1)2,解得:a=;(2)y=(x﹣2)2+6的顶点为(2,6),y=﹣(x﹣10)2﹣66的顶点坐标为(10,﹣6);∵两个二次函数的顶点关于点P(m,0)成中心对称,∴m==6,故答案为:6;(3)y=x2﹣6mx+4m2=(x﹣3m)2﹣5m2,∴y=x2﹣6mx+4m2关于点P(m,0)的相关函数为y=﹣(x+m)2+5m2.①当﹣m≤m﹣1,即m≥时,当x=m﹣1时,y有最大值为8,∴﹣(m﹣1+m)2+5m2=8,解得m1=﹣2﹣(不符合题意,舍去),m2=﹣2+;②当m﹣1<﹣m≤m十2,即﹣1≤m<时,当x=﹣m时,y有最大值为8,∴5m2=8,解得:m=±(不合题意,舍去);③当﹣m>m+2,即m<﹣1时,当x=m+2,y有最大值为8,∴﹣(m+2+m)2+5m2=8,解得:m=4﹣2或,m=4+2(不符合题意,舍去),综上,m的值为﹣2+或4﹣2.9.(2022•武侯区校级模拟)【阅读理解】定义:在平面直角坐标系xOy中,对于一个动点P(x,y),若x,y都可以用同一个字母表示,那么点P 的运动路径是确定的.若根据点P坐标求出点P运动路径所对应的关系式是函数,则称由点坐标求函数表达式的过程叫做将点“去隐”.例如,将点M(m+1,﹣m+1)(m为任意实数)“去隐”的方法如下:设x=m+1①,y=﹣m+1②由①得m=x﹣1③将③代入②得y=﹣(x﹣1)+1,整理得y=﹣x+2则直线y=﹣x+2是点M的运动路径.【迁移应用】在平面直角坐标系xOy中,已知动点Q(﹣a,﹣a2﹣a+3)(a为任意实数)的运动路径是抛物线.(1)请将点Q“去隐”,得到该抛物线表达式;(2)记(1)中抛物线为W(如图),W与x轴交于点A,B(A在B的左侧),其顶点为点C,现将W 进行平移,平移后的抛物线W'始终过点A,点C的对应点为C'.ⅰ)试确定点C'运动路径所对应的函数表达式;ⅱ)在直线x=﹣2的左侧,是否存在点C',使△ACC'为等腰三角形?若存在,求出点C'的坐标;若不存在,请说明理由.【解答】解:(1)设x=﹣a①,y=﹣a2﹣a+3②,由①得a=﹣x③,∴y=﹣x2+x+3;(2)∵y=﹣x2+x+3=﹣(x﹣2)2+4,∴C(2,4),令y=0,则﹣x2+x+3=0,解得x=﹣2或x =6,∴A(﹣2,0),B(6,0),ⅰ)设抛物线W '的解析式为y =﹣(x ﹣h )2+k ,∴C '(h ,k ),∵经过点A (﹣2,0),∴k =(2+h )2,令x =h ,y =k =(2+h )2,∴y =(x +2)2;ⅱ)存在点C ',使△ACC '为等腰三角形,理由如下:∵C (2,4)在y =(x +2)2上,∴C 点关于直线x =﹣2的对称点为C '(﹣6,4),此时AC =AC ',△ACC '为等腰三角形;设C '(m ,m 2+m +1),当AC '=CC '时,(m +2)2+(m 2+m +1)2=(m ﹣2)2+(m 2+m +1﹣4)2,解得m =﹣4﹣2或m =﹣4+2(舍),∴C (﹣4﹣2,6+2);当CA =CC '时,C '只能在x =﹣2右侧,此时不符合题意;综上所述:(﹣6,4)或(﹣4﹣2,6+2).10.(立信)关于x 的方程20ax bx c ++=(0a ≠)两根分别为x 1和x 2,若一个根是另一个根的两倍,则称这样的方程为“立信二倍方程”,若直线l 与抛物线C 相交于A 、B 两点,其中一点的横坐标等于另一点横坐标的2倍,则称这样的直线l 与抛物线C 互为“立信二倍函数”.(1)若(1)(2)0x x k +-=是“立信二倍根方程”,求k 的值;(2)直线l :1y mx =+与抛物线22y x mx m =-+互为“立信二倍函数”求抛物线的解析式;(3)直线l :y tx d =+与抛物线L :22y x px q =++(q d ≠)互为“立信二倍函数”,若直线l 与抛物线L 相交于1(A x ,1)y 、2(B x ,2)y 两点,且2222233t AB t ++ ,求||p t -的取值范围.【解答】解:(1)11x =-,212x k =,当122x x =时,即1122k -=⨯,解得:1k =-,当212x x =时,即()1221k =⨯-,解得:4k =-,故1k =-或-4;(2)由题意得:221x mx m mx -+=+,整理得:22012x mx m --+=,则11x m =+,21x m =-,①当122x x =,解得:3m =,抛物线解析式为239y x x =-+.①当212x x =,解得:3m =,抛物线解析式为239y x x =++(3)22tx d x px q +=++,整理得:22()()0x p t x q d +-+-=,121()2x x t p +=-,121()2x x q d =-,设:122x x x ==,整理得:6t p x -=,24q d x -=,11y tx d =+,22y tx d =+,则222221212()()(1)AB x x y y x t =-+-=+,2222233t AB t ++ ,即223x ,即22(36t p - ,即||p t -。
陕西省聚焦中考数学--压轴题
(2)设过点A(-1,2),B(4,2),O(0,0)的抛物线为y=ax2+bx+
c,∴
a-b+c=2, 16a+4b+c=2, c=0,
解得
a=12, b=-32, c=0,
∴所求抛物线的表达式为y=
1 2
x2-32x
(3)由题意,知AB∥x轴,设抛物线上符合条件的点P到AB的距
离为d,则S△ABP=
5,∵m>0,∴m=1+2
5,∴F(3+2
5,1+2
5),∵点E,F关于
直线x=1对称,∴E的坐标为(1-2
5,1+2
5 )
【点评】本题是二次函数的综合题,题中涉及等腰直角三角形的 证明和性质等知识点,解题时要注意数形结合数学思想的运用, 是各地中考的热点和难点.
[对应训练] 1.如图,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的 坐标是(-1,2). (1)求点B的坐标; (2)求过点A,O,B的抛物线的表达式; (3)连接AB,在(2)中的抛物线上求出点P,使得S△ABP=S△ABO.
=-45t+4,则G(t,-45t+4),此时:NG=-45t+4-(45t2-254t+4)=-45t2
+4t,∵AD+CF=CO=5,∴S△ACN=S△ANG+S△CGN=
1 2
OF×NG+
1 2
NG×
CF=
1 2
NG·OC=
1 2
×(-
4 5
t2+4t)×5=-2t2+10t=-2(t-
5 2
,∴P(3,
8 5
)
(3)在直线AC的下方的抛物线上存在点N,使
△NAC面积最大.设N点的横坐标为t,此时点N(t,45t2-254t+4)(0<t< 5),如图2,
陕西中考数学压轴题2023
陕西中考数学压轴题2023陕西中考数学压轴题2023是每年都备受关注的一项考试内容,它对于考生来说具有重要的指导意义和备考价值。
通过对该题目的分析和解答,我们可以了解到中考数学试题的难度和要求,对于提高数学成绩和顺利通过中考有着重要的帮助。
下面将从题目背景、题目要求和解题思路等方面对陕西中考数学压轴题2023进行详细的阐述和分析。
题目背景:今年的陕西中考数学压轴题重点突出了几何学的知识点。
该题目涉及到了平行线的性质和相关定理,以及与平行线有关的角的性质。
这些知识点是中考数学试题中常见的内容,对于学生来说具有一定的基础性。
通过解答该题目,可以检验学生对于这些知识点的掌握和应用能力。
题目要求:题目要求考生根据所给的图形,计算出相关角度的数值,并填写在对应的位置上。
要求考生熟练运用平行线的性质和相关定理,准确地进行计算。
同时,要求考生注意解题过程的合理性,保证解题思路的清晰和正确性。
解题思路:在解答陕西中考数学压轴题2023时,我们可以采取以下步骤来解答。
第一步,观察图形并分析题目所给的条件。
通过观察图形,我们可以看到有多组平行线和相关角度,同时还有一些已知条件的数值。
第二步,根据已知条件和相关性质写出等式。
根据题目给定的条件,我们可以运用平行线及其相关定理,写出相关角度之间的等式。
这些等式将成为解题的关键。
第三步,根据等式解方程,计算出所求的角度数值。
根据前面所得到的等式,我们可以设立方程,并进行求解,最终得到所求角度的数值。
第四步,检查解答结果的合理性。
在得到解答结果后,我们需要对结果进行检查,确保计算过程和答案的准确性。
同时,我们还需要根据题目的要求,确认是否填写到正确的位置上。
从解题步骤中我们可以看出,陕西中考数学压轴题2023注重的是对平行线和角度性质的理解和应用能力。
通过这道题目的解答,考生可以加深对于平行线及其相关定理的理解,提高解决几何问题的能力。
总结:陕西中考数学压轴题2023围绕平行线和角度性质展开,要求考生能够准确地应用相关知识和定理,进行解题。
2023陕西数学中考压轴题考点
2023陕西数学中考压轴题考点陕西数学中考压轴题考点单项式与多项式仅含有一些数和字母的乘法(包括乘方)运算的式子叫做单项式单独的一个数或字母也是单项式。
单项式中的数字因数叫做这个单项式(或字母因数)的数字系数,简称系数。
当一个单项式的系数是1或-1时,“1”通常省略不写。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如果在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数都是同类项。
1、多项式有有限个单项式的代数和组成的式子,叫做多项式。
多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。
单项式可以看作是多项式的特例把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。
在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。
2、多项式的值任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。
3、多项式的恒等对于两个一元多项式f(x)、g(x)来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即f(a)=g(a),那么,这两个多项式就称为是恒等的记为f(x)==g(x),或简记为f(x)=g(x)。
性质1如果f(x)==g(x),那么,对于任一个数值a,都有f(a)=g(a)。
性质2如果f(x)==g(x),那么,这两个多项式的个同类项系数就一定对应相等。
4、一元多项式的根一般地,能够使多项式f(x)的值等于0的未知数x的值,叫做多项式f(x)的根。
多项式的加、减法,乘法1、多项式的加、减法2、多项式的乘法单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的指数作为积的一个因式。
3、多项式的乘法多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加。
2021年陕西中考数学压轴题24题
2021 年陕西中考数学压轴题 24 题二次函数与几何图形综合题【第一讲】二次函数与图形面积问题基础技能1、如图,在平面直角坐标系中,已知A(-2,0)、B(2,0)、C(-1,3),求△A BC 的面积.2、如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A(-1,1)、B(2,-1)、C(3,2),求△ABC 的面积.13、如图,在平面直角坐标系中,四边形 OABC 的边 OA、OC 分别在 x轴、y 轴上,且A(4,0)、B(3,2)、C(0,3),求四边形OABC 的面积.4、如图,抛物线y =-x2 +bx +c 与x 轴交于点 A、B(1,0)两点,与 y轴交于点 C,且对称轴为直线 x=-1,连接 AC、BC,点 P 是抛物线上一点(不与C 重合),若S ABP=S ABC,求点P 的坐标.25、如图,已知抛物线y =x2 - 2x - 3 与x 轴正半轴交于点 A,与 y 轴交于点 B,点 P 是第四象限内抛物线上一动点,连接 AP、BP、AB,△ABP的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.3针对演练1、抛物线y=ax2+bx+c经过点A(-1,0)、B(4,0)、C(0,2),点D(x,y)为抛物线上第一象限内一动点.(1)求抛物线的表达式;(2)当△BCD 面积为 3 时,求点 D 的坐标.2、在平面直角坐标系中,已知抛物线L 经过(6,0)、(-2,0)、(0,-6)三点.(1)求抛物线 L 关于原点 O 对称的抛物线 L1 的函数表达式;(2)设抛物线L1 与x 轴交于A、B 两点(点A 在点B 的左侧),与y轴交于点 C,该抛物线上是否存在点 P,使得△PCA的面积为 12?若存在,请求出 P 点的坐标;若不存在,请说明理由.43、已知抛物线y=ax2+bx+3与x 轴交于点A(-1,0)、B(3,0)两点,与 y 轴交于点 C.(1)求抛物线的表达式;(2)点 P 是第一象限内抛物线上的一个动点,连接 AP 交 BC 与点 D,连接 AC、CP,设△CDP 面积为 S ,△ACD 的面积为 S ,求S1 的最大值.1 2S24、在平面直角坐标系中,抛物线y =mx2 + 2mx +n 经过点 A(-4,0)和点 B(0,3).(1)求抛物线的表达式;(2)向右平移上述抛物线,若平移后的抛物线仍经过点 B,求平移后抛物线的表达式;(3)在(2)的条件下,记平移后点 A 的对应点为 A′,点 B 的对应点为 B′,试问:在平移后的抛物线上是否存在一点 P,使△OA′P的面积与四边形AA′B′B的面积相等?若存在,求出点 P 的坐标;若不存在,请说明理由.5。
陕西中考数学填空题压轴2023
陕西中考数学填空题压轴2023数学是中学阶段考试中的重中之重,尤其是在陕西中考中,数学填空题一直是考生们最为头疼的一部分。
因此,2023年的陕西中考数学填空题必然是备受关注的焦点。
下面我将给大家分享一道陕西中考数学填空题压轴题,并且带着大家一起解题探究。
题目:已知直线k过点A(2,1),且k的斜率为-2/3。
点B在k上,且点B关于点A对称。
若线段AB的长为5个单位长度,则点B的坐标为________。
解题思路:首先,我们来分析题意。
题目给出了直线k过点A(2,1),且斜率为-2/3。
由直线的斜率可以推断出直线的方程为y=(−2/3)x+b,其中b 为直线的截距。
将点A(2,1)代入直线的方程,可以求出b的值。
将x = 2,y = 1代入方程:1 = (-2/3) × 2 + b解得b = 7/3所以,直线k的方程为y = (-2/3)x + 7/3。
接下来,题目告诉我们点B在直线k上,且点B关于点A对称。
这意味着点A、B、和k上的另一点C构成一个等腰三角形。
由于线段AB的长度为5,且点A和点B关于点C对称,所以线段AC的长度也为5。
设点C的坐标为(x,y)。
根据点对称的性质可知,点C的坐标为(x,y) = (4,-2)。
由于斜率为-2/3,我们可以根据直线斜率的定义来求直线上两点之间的距离。
由于AC和BC的长度相等,我们可以使用勾股定理来求得点B的坐标。
根据勾股定理,有AC^2 = AB^2 + BC^2代入AC和AB的长度,可以得到5^2 = AB^2 + BC^2化简得25 = AB^2 + (y - 1)^2 (由于点A的坐标为(2,1))将点C的坐标代入,得25 = AB^2 + (-2 - 1)^2化简后得25 = AB^2 + 9移项得AB^2 = 25 - 9AB^2 = 16取正平方根,得AB = 4所以,点B与点A的距离为4个单位长度。
将点B与点C的横坐标相加,除以2可以得到点B的横坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009 年全国中考数学压轴题精选精析(陕西)
1.(2009 年陕西)25.(本题满分12 分)
问题探究
(1)请在图①的正方形ABCD内,画出使APB 90°的一.个.点P,并说明理由.
(2)请在图②的正方形ABCD内(含边),画出使APB 60°的所.有.的点P,并说明理由.
问题解决
(3)如图③,现在一块矩形钢板ABCD,AB 4,BC 3.工人师傅想用它裁出两块全等的、面积最大的△APB和△CP D 钢板,且APB CP D 60°.请你在图③中画
出符合要求的点P 和P,并求出△APB的面积(结果保留根号).
D C D C D C
A B A B A B
③
②
①
(第25 题图)
(2009 年陕西25 题解析)解:(1)如图①,
连接AC、BD 交于点P,则APB 90°.
D C
P
点
P为所求.···········································(3 分)A B (2)如图②,画法如下:
①
1)以AB 为边在正方形内作等边△ABP;D C
P
E F
2)作△ABP的外接圆⊙O,分别与AD、BC 交于点E、F .
Q 在⊙O中,弦AB 所对的?A P B上的圆周角均为60°,O
A B
?
EF 上的所有点均为所求的点P .②E
(3)如图③,画法如下:D C
P
G
1)连接AC ;
2)以AB 为边作等边△ABE; A P
O
B 3)作等边△ABE 的外接圆⊙O,交A
C 于点P;
4)在AC 上截取AP CP .
则点P、P 为所求.
③
(第25 题答案图)
(评卷时,作图准确,无画法的不扣分)
过点
B 作B G⊥A
C ,交AC 于点G .
Q 在Rt△ABC 中,AB 4,BC 3.
2 2 5 AC
AB BC .
BG A BgBC
AC
12
5
.·········································································(10 分)
在
R t△ABG中,AB 4,
2 2 16
AG AB BG .
5 在
R t△BPG中,BPA 60°,
PG
BG
12 3 4 3
tan 60 5 3 5
°
.
16 4 3
AP AG PG .
5 5
1 1 16 4 3 1
2 96 24 3
S△AP g BG .··························(12 分)APB
2 2 5 5 5 25。