(完整)(用一)整式的乘法(知识点+例题),推荐文档

合集下载

(完整版)第十四章--整式乘除及因式分解(知识点+题型分类练习),推荐文档

(完整版)第十四章--整式乘除及因式分解(知识点+题型分类练习),推荐文档

C. ﹣2(3x﹣1)=﹣6x﹣2
D. ﹣2(3x﹣1)=﹣6x+2
2.( 2015•济宁)化简 ﹣16( x﹣0.5)的结果是( )
A. ﹣16x﹣0.5
B. ﹣16x+0.5
C. 16x﹣8
3.(2016·佛山)化简 m n (m n) 的结果是( ).
D. ﹣16x+8
A. 0
B. 2m
C.0.2a2b 与﹣ a2b D.a2b3 与﹣a3b2
4.(2015•柳州)在下列单项式中,与 2xy 是同类项的是( )
A.2x2y2
B.3y
C.xy
D.4x
5.(2014•毕节)若 2 am b4 与 5 an2 b2mn 可以合并成一项,则 mm 的值是( )
A.2
B. 0
C.﹣1
D.1
C. x·x2= x4 C.(-x2)3=-x6 C.(a2)3=a6
D.(2x2)2=6x6 D.(x3)2=x5
D.a6÷a3=a2
8.下列运算正确的是 ( )
A. 3 = 3
9.下列计算正确的是 (
B. ( 1 ) 1 22
)
A.a3·a2=a6
B.a2+a4=2a2
10.下列计算正确的是( )
A. 6a-5a=1
B. a+2a2=3a3
) C.-(a-b)=-a+b
D.2(a+b)=2a+b
7.(2012•浙江)化简: 2(a 1) a _______ .
考点 3、根据题意列代数式
1.(2014•盐城)“x 的 2 倍与 5 的和”用代数式表示为

2.(2010·嘉兴)用代数式表示“a、b 两数的平方和”,结果为_______。

整式乘除知识点

整式乘除知识点

整式乘除知识点在数学的学习中,整式乘除是一个重要的部分,它不仅是后续学习代数运算的基础,也在解决实际问题中有着广泛的应用。

下面就让我们一起来深入了解整式乘除的相关知识点。

一、整式的乘法(一)单项式乘以单项式法则:把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

例如:3x²y × 5xy³= 15x³y⁴(二)单项式乘以多项式法则:用单项式去乘多项式的每一项,再把所得的积相加。

例如:2x(3x² 5x + 1) = 6x³ 10x²+ 2x(三)多项式乘以多项式法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

例如:(x + 2)(x 3) = x² 3x + 2x 6 = x² x 6二、整式的除法(一)单项式除以单项式法则:把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

例如:18x⁴y³z² ÷ 3x²y²z = 6x²yz(二)多项式除以单项式法则:先把这个多项式的每一项分别除以这个单项式,然后把所得的商相加。

例如:(9x³y 18x²y²+ 3xy³) ÷ 3xy = 3x² 6xy + y²三、乘法公式(一)平方差公式(a + b)(a b) = a² b²例如:(3x + 2)(3x 2) = 9x² 4(二)完全平方公式(a + b)²= a²+ 2ab + b²(a b)²= a² 2ab + b²例如:(x + 5)²= x²+ 10x + 25四、整式乘除的应用(一)几何图形中的应用在求解长方形、正方形等图形的面积和周长时,经常会用到整式的乘除。

(完整版)整式的乘法与因式分解--知识点和例题

(完整版)整式的乘法与因式分解--知识点和例题

整式的乘法与因式分解1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。

如:bc a 22-的 系数为2-,次数为4,单独的一个非零数的次数是0。

2、多项式:几个单项式的和叫做多项式。

多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。

如:122++-x ab a ,项有2a 、ab 2-、x 、1,二次项为2a 、ab 2-,一次项为x ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。

3、整式:单项式和多项式统称整式。

注意:凡分母含有字母代数式都不是整式。

也不是单项式和多项式。

4、多项式按字母的升(降)幂排列: 如:1223223--+-y xy y x x按x 的升幂排列:3223221x y x xy y +-+-- 按y 的升幂排列:3223221y y x xy x --++- 按x 的降幂排列:1223223--+-y xy y x x按y 的降幂排列:1223223-++--x xy y x y一、 整式的乘法 (一)幂的乘法运算 1、同底数幂相乘:=•nma a 推广:n n n n n n n n n n a a a a aΛΛ+++=⋅⋅3213211(n n n n n ,,,,321Λ都是正整数)2、幂的乘方:()=nma推广:[]321321)(n n n n n na a =(321,,n n n 都是正整数)3、积的乘方:()=nab推广:nm n n n n m a a a a a a a a ΛΛ321321)(=⋅⋅, 如:(523)2z y x -=5101555253532)()()2(z y x z y x -=•••-10=a ,即任何不等于零的数的零次方等于1。

p p aa 1=-(p a ,0≠是正整数),即一个不等于零的数的p -次方等于这个数的p 次方的倒数。

word完整版整式的乘法知识点总结推荐文档

word完整版整式的乘法知识点总结推荐文档

八年级14.1整式的乘法知识点总结【知识点一】整式的混合运算例题一、计算:-a3?a4? a [ a4]23例题二、计算:3x2 2y |y2 ? 2xy例题三、计算:3x 2y 2x 3y x 3y 3x 4y【知识点二】利用幕的运算法则解决问题例题一、已知10a 5,10b 6,求102a 3b的值例题二、解方程:32x 2 32x 1486例题三、已知2x 5y 3 0,求4x?32y的值【知识点三】整式除法的运用例题一、已知 3 2 3-2x3y21 n 22Xy mx7y P,求n,m,p 的值。

例题二、已知一个多项式与单项式-7x5y4的积为21x5y728x7y47y 2x3y2,求这个多项【知识点四】整式化简求值例题一、先化简,再求值:2 2x x 6x 9 x x 8x 15 2x 3 x,其中x例题二、先化简,再求值:2x y x y 2x 2x 3y 6x x,其中x1, y 2.【知识点五】开放探求题例题一、若多项式X2 mx n x2 3x 4展开后不含有x3项和x2项,试求m,n的值例题二、甲乙二人共同计算一道整式乘法:2x a 3x b,由于甲抄错了第一个多项式中a的符号,得到的结果为6x2 11x 10 ;由于乙漏抄了第二个多项式中x的系数, 得到的结果为2x2 9x 10。

(1)你能知道式子中a,b的值各是多少吗?(2)请你计算出这道整式乘法的正确结果。

3 2例题三、若x是整数’求证匕亍是整数。

【知识点六】整式乘除法在实际问题中的应用例题一、某中学扩建教学楼,测量地基时,量得地基长为2a m,宽为(2a-24 ) m ,试用a表示地基的面积,并计算当a=25时地基的面积例题二、大庆市环保局欲将一个长为2 X103dm ,宽为4 X102dm ,高为8 x iOdm的长方体废水池中的满池废水注入正方体贮水池净化,(1)__________________________________________________________ 请你考虑一下,这些废水能否刚好装满一个正方体贮水池____________________________ •(请填“能”或“不能”)(2)______________________________________ 若能,贝y该正方体贮水池的棱长_______________________________________________ dm(3)若不能,你能说出理由吗?(不要求作答)例题三、太阳可以近似的看作是球体,如果用V、R分别代表球的体积和半径,那么V3 n R3,太阳的半径约为6X105千米,它的体积大约是多少立方千米?5取3)。

整式的乘除知识点及题型复习.docx

整式的乘除知识点及题型复习.docx

整式运算考点 1、幂的有关运算①a m a n② ( am )n③ ( ab) n④a m a n⑤a 0⑥ ap(m 、 n 都是正整数) (m 、 n 都是正整数) (n 是正整数)( a ≠ 0, m 、n 都是正整数,且 m>n )(a ≠0)(a ≠0,p 是正整数)幂的乘方法则:幂的乘方,底数不变,指数相乘。

积的乘方法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。

同底数幂相除,底数不变,指数相减。

例:在下列运算中,计算正确的是( )(A ) a 3 a 2 a 6( B ) ( a 2 )3 a 5(C ) a 8 a 2 a 4( D ) (ab 2 ) 2a 2b 4练习:10x 3________.1、x2、a 10 310 a 32。

aa 6 =123、3 3 =。

24、23(3)2=。

5、下列运算中正确的是()A . x 3y3x 6; B . (m 2 ) 3m 5 ; C . 2x21; . ( a)6( a)3a 32x 2D6、计算 amanpa 8的结果是()A 、 amnp8B 、 amn p 8C 、 a mp np 8D 、 a mn p 87、下列计算中,正确的有( )① a 3 a 2 a 5 ② ab 422③ a 3a 2 a a 2 7a 2 。

ab abab 2 ④ aa 5 A 、①②B 、①③C 、②③D 、②④8、在① x x 5② x 7 y xy ③x 2 3④ x 2 y 3y 3 中结果为 x 6 的有()A 、①B 、①②C 、①②③④D 、①②④提高点 1:巧妙变化幂的底数、指数例:已知: 2a3 , 32b 6 ,求 23 a 10 b 的值;1、 已知 xa2 , xb3 ,求 x2 a 3b的值。

2、 已知 3m 6 , 9n 2 ,求 32m 4n 1的值。

3、 若 am4 , an8 ,则 a 3m 2n__________。

七年级下整式的乘法知识点

七年级下整式的乘法知识点

七年级下整式的乘法知识点整式是由常数、变量及其积与和组成的代数式,整式的乘法是七年级下学习中重要的知识点之一。

本文将详细介绍七年级下整式的乘法知识点,帮助同学们更好地掌握这一知识。

一、整式的乘方在整式的乘法中,有时需要将整式自乘若干次,这就涉及到整式的乘方。

整式a的n次方表示连乘n个a:a^n=a×a×……×a(n个a)例如,(2x+y)^2=2x×2x+2x×y+y×2x+y×y=4x^2+4xy+y^2。

二、同类项的乘法同类项指变量的指数相同的项,例如2x和3x就是同类项。

在计算整式的乘法时,同类项的乘积可以简单地计算出来。

例如:3x(2x+4y)=6x^2+12xy三、异类项的乘法异类项指变量的指数不同的项,例如2x和3x^2就是异类项。

在计算异类项的乘积时,可以采用分配律,即将一个整式分别乘以另一个整式中的每一项,再将结果相加。

例如:(2x+3)(4x^2+5y)=2x×4x^2+2x×5y+3×4x^2+3×5y=8x^3+10xy+12x^2 +15y四、多项式的乘法如果有两个多项式相乘,则可以将每个项分别乘以另一个多项式中的每一个项,再将所得乘积相加。

这与异类项的乘法方法相同。

例如:(x+2)(x^2+3x+1)=x×x^2+x×3x+x×1+2×x^2+2×3x+2×1=x^3+5x^2+7 x+2五、乘法公式有些整式的乘法比较繁琐,需要采用乘法公式可以简化计算。

常见的乘法公式有平方差公式、完全平方公式和积和差公式。

本文只介绍最常用的两个公式:1、平方差公式如下:(a+b)(a-b)=a^2-b^2例如,(3x+2)(3x-2)=9x^2-4。

2、完全平方公式如下:a^2+2ab+b^2=(a+b)^2a^2-2ab+b^2=(a-b)^2例如,(x+2)^2=x^2+4x+4,(x-2)^2=x^2-4x+4。

(完整版)初二数学—整式的乘法知识点归纳及练习

(完整版)初二数学—整式的乘法知识点归纳及练习

解析《整式乘法》知识点五、同底数幂的乘法a 相乘,记作 a n ,读作 a 的 n 次方(幂),其中 a 为底数, n 为指数, a n 的结果叫做幂。

1、n 个同样因式(或因数) 2、底数同样的幂叫做同底数幂。

a m ﹒a n =a m+n 。

3、同底数幂乘法的运算法规:同底数幂相乘,底数不变,指数相加。

即:4、此法规也能够逆用,即: m+nmna = a ﹒ a 。

5、开始底数不同样的幂的乘法,若是能够化成底数同样的幂的乘法,先化成同底数幂再运用法规。

八、同底数幂的除法a m ÷ a n =a m-n ( a ≠0)。

1、同底数幂的除法法规:同底数幂相除,底数不变,指数相减,即:2、此法规也能够逆用,即: m-nmna = a÷ a ( a ≠ 0)。

十、负指数幂1、任何不等于零的数的― p 次幂,等于这个数的 p 次幂的倒数。

注:在同底数幂的除法、零指数幂、负指数幂中底数不为 0。

十一、整式的乘法(一)单项式与单项式相乘1、单项式乘法法规:单项式与单项式相乘,把它们的系数、同样字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

2、系数相乘时,注意符号。

3、同样字母的幂相乘时,底数不变,指数相加。

5、单项式乘以单项式的结果仍是单项式。

6、单项式的乘法法规对于三个或三个以上的单项式相乘同样适用。

(二)单项式与多项式相乘1、单项式与多项式乘法法规:单项式与多项式相乘,就是依照分配率用单项式去乘多项式中的每一项,再把所得的积相加。

即: m(a+b+c)=ma+mb+mc 。

2、运算时注意积的符号,多项式的每一项都包括它前面的符号。

3、积是一个多项式,其项数与多项式的项数同样。

4、混杂运算中,注意运算序次,结果有同类项时要合并同类项,从而获取最简结果。

(三)多项式与多项式相乘1、多项式与多项式乘法法规:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

整式的乘除知识点总结及针对练习题精编版

整式的乘除知识点总结及针对练习题精编版

思维辅导整式的乘除知识点及练习基础知识:1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。

如:bc a 22-的 系数为2-,次数为4,单独的一个非零数的次数是0。

2、多项式:几个单项式的和叫做多项式。

多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。

如:122++-x ab a ,项有2a 、ab 2-、x 、1,二次项为2a 、ab 2-,一次项为x ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。

3、整式:单项式和多项式统称整式。

注意:凡分母含有字母代数式都不是整式。

也不是单项式和多项式。

4、多项式按字母的升(降)幂排列:如:1223223--+-y xy y x x按x 的升幂排列:3223221x y x xy y +-+--按x 的降幂排列:1223223--+-y xy y x x知识点归纳:一、同底数幂的乘法法则:nm n m a a a +=∙(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。

注意底数可以是多项式或单项式。

如:532)()()(b a b a b a +=+∙+【基础过关】1.下列计算正确的是( )A .y 3·y 5=y 15B .y 2+y 3=y 5C .y 2+y 2=2y 4D .y 3·y 5=y 82.下列各式中,结果为(a+b )3的是( )A .a 3+b 3B .(a+b )(a 2+b 2)C .(a+b )(a+b )2D .a+b (a+b )23.下列各式中,不能用同底数幂的乘法法则化简的是( )A .(a+b )(a+b )2B .(a+b )(a -b )2C .-(a -b )(b -a )2D .(a+b )(a+b )3(a+b )24.下列计算中,错误的是( )A .2y 4+y 4=2y 8B .(-7)5·(-7)3·74=712C .(-a )2·a 5·a 3=a 10D .(a -b )3(b -a )2=(a -b )5【应用拓展】5.计算:(1)64×(-6)5 (2)-a 4(-a )4(3)-x 5·x 3·(-x )4 (4)(x -y )5·(x -y )6·(x -y )76.已知a x =2,a y =3,求a x+y 的值.7.已知4·2a ·2a+1=29,且2a+b=8,求a b 的值.知识点归纳:二、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。

第14章-《整式的乘法与因式分解》知识点及考点典例精选全文完整版

第14章-《整式的乘法与因式分解》知识点及考点典例精选全文完整版

可编辑修改精选全文完整版第十四章 《整式的乘法与因式分解》知识点及考点典例重点知识回顾:一、整式的乘法:),(都是正整数n m a a a n m n m +=• ),(都是正整数)(n m a a mn n m =)()(都是正整数n b a ab n n n = 22))((b a b a b a -=-+2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-注意:(1)单项式乘单项式的结果仍然是单项式。

(2)单项式与多项式相乘,结果是一个_______,其项数与因式中多项式的项数______。

(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。

(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。

(5)公式中的字母可以表示数,也可以表示单项式或多项式。

二、整式的除法: nm n m a a a -=÷ ()0≠a 10=a()0≠a单项式÷单项式 多项式÷单项式三、因式分解 1、把一个多项式化成几个_________的形式,叫做把这个多项式因式分解。

2、因式分解的常用方法(1)提公因式法:)(c b a ac ab +=+(2)运用公式法:))((22b a b a b a -+=-222)(2b a b ab a +=++ 222)(2b a b ab a -=+-(3)分组分解法:))(()()(d c b a d c b d c a bd bc ad ac ++=+++=+++(4)十字相乘法:))(()(2q a p a pq a q p a ++=+++3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提取公因式。

(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:二项式可以尝试运用________公式分解因式;三项式可以尝试运用______________、__________分解因式;四项式及四项式以上的可以尝试______________分解因式(3)分解因式必须分解到每一个因式都不能再分解为止。

整式的乘除知识点总结及针对练习题

整式的乘除知识点总结及针对练习题

思维辅导整式的乘除知识点及练习基础知识:一、单项式的概念:由数与字母的乘积组成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。

如:bc a 22-的 系数为2-,次数为4,单独的一个非零数的次数是0。

二、多项式:几个单项式的和叫做多项式。

多项式中每一个单项式叫多项式的项,次数最高项的次数叫多项式的次数。

如:122++-x ab a ,项有2a 、ab 2-、x 、1,二次项为2a 、ab 2-,一次项为x ,常数项为1,各项次数别离为2,2,1,0,系数别离为1,-2,1,1,叫二次四项式。

3、整式:单项式和多项式统称整式。

注意:凡分母含有字母代数式都不是整式。

也不是单项式和多项式。

4、多项式按字母的升(降)幂排列:如:1223223--+-y xy y x x按x 的升幂排列:3223221x y x xy y +-+--按x 的降幂排列:1223223--+-y xy y x x知识点归纳:一、同底数幂的乘法法那么:n m n m a a a +=•(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。

注意底数能够是多项式或单项式。

如:532)()()(b a b a b a +=+•+1.以下计算正确的选项是( )A .y 3·y 5=y 15B .y 2+y 3=y 5C .y 2+y 2=2y 4D .y 3·y 5=y 82.以下各式中,结果为(a+b )3的是( )A .a 3+b 3B .(a+b )(a 2+b 2)C .(a+b )(a+b )2D .a+b (a+b )23.以下各式中,不能用同底数幂的乘法法那么化简的是( )A .(a+b )(a+b )2B .(a+b )(a -b )2C .-(a -b )(b -a )2D .(a+b )(a+b )3(a+b )24.以下计算中,错误的选项是( )A .2y 4+y 4=2y 8B .(-7)5·(-7)3·74=712C .(-a )2·a 5·a 3=a 10D .(a -b )3(b -a )2=(a -b )5【应用拓展】5.计算:(1)64×(-6)5 (2)-a 4(-a )4(3)-x 5·x 3·(-x )4 (4)(x -y )5·(x -y )6·(x -y )76.已知a x=2,a y=3,求a x+y的值.7.已知4·2a ·2a+1=29,且2a+b=8,求a b 的值.知识点归纳:二、幂的乘方式那么:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。

整式的乘法知识点汇总

整式的乘法知识点汇总

整式的乘法知识点汇总&练习1. 同底数幂相乘,底数不变,指数相加。

a n.a m =a m+n (m,n 是正整数).底数可以是数字或字母,可以是单项式,也可以是多项式,若是多项式,应该把多项式看做一个整体。

幂之间是乘法关系,指数之间是相加关系。

2. 幂的乘方,底数不变,指数相乘。

(a n )m =a mn (m,n 是正整数)。

注意负数的奇数次幂为负,负数的偶数次幂为正。

3. 积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

(ab)n =a n b n (n 是正整数)。

底数必须是积的形式,当底数中有多个因式时,切勿漏掉系数因式的乘方。

当底数中有“-”时,应将视为-1,作为系数因式进行乘方。

4. 单项式与单项式相乘,把它们的系数、同底数幂分别相乘。

积的系数等于各单项式系数的积,应先确定积的符号,在计算积的绝对值。

相同字母的指数相加。

有乘方的先算乘方,再算乘法。

5. 单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加。

a (m+n )=am+an 。

单项式乘以多项式的每一项,注意符号变化,能合并同类项的要合并同类项。

6. 多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加。

(a+b )(m+n )=am+an+bm+bn 。

7. 平方差公式,即两个数的和与这两个数的差的积等于这两个数的平方差。

(a+b )(a -b )=a 2-b 2有一组符号相同,有一组符号相反,用相同数的平方减去相反数的平方。

每一组数的绝对值都相同。

8. 完全平方公式,即两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍。

(a+b )2=a 2+2ab+b 2,(a -b )2=a 2-2ab+b 2首平方,尾平方,积的两倍在中央。

9. 公式的灵活变形:(a+b )2+(a -b )2=2a 2+2b 2,(a+b )2-(a -b )2=4ab ,a 2+b 2=(a+b )2-2ab ,a 2+b 2=(a -b )2+2ab ,(a+b )2=(a -b )2+4ab,(a -b )2=(a+b )2-4ab=====-=-=+-+-=--+-=+•=-•=++=+=-+=++=÷===••-+n m n m n m a a a a a a x y y x x y y x b a a bc a ab x x y x b a b a a a b b b a a a a a ,,8,2)()2())(())((2)2(3)4)(5()3()2)(2()2)(32()2()(85222584233253求已知)(因式分解知识点&练习1.把一个多项式表示成若干个多项式的乘积的形式,称为把这个多项式因式分解。

整式乘法(教师版)知识点+经典例题+题型归纳

整式乘法(教师版)知识点+经典例题+题型归纳

整式的乘法 基础知识 22222()(,,)()()()():()()()2m n m n m n mn n n n a a a a a m n a b ab a b m a b ma mbm n a b ma mb na nb a b a b a b a b a ab b +⎧⎫⋅⎪⎪=⎨⎬⎪⎪=⋅⎩⎭⨯⎧⎪⨯+=+⨯++=+++⎨⎧+-=-⎪−−−→⎨±=±+⎪⎩特殊的=幂的运算法则为正整数,可为一个单项式或一个式项式单项式单项式单项式多项式:多项式多项式:整式的乘法平方差公式 乘法公式完全平方公式:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩互逆 一、幂的运算经典例题【例1】(正确处理运算中的“符号”)【点评】由(1)、(2)可知互为相反数的同偶次幂相等;互为相反数的同奇次幂仍互为相反数.【例2】下列各式计算正确的是( )A 、()66322b a b a =-B 、()5252b a b a -=-C 、124341b a ab =⎪⎭⎫ ⎝⎛-D 、462239131b a b a =⎪⎭⎫ ⎝⎛- 【答案】D【例3】()()1333--⋅+-m m 的值是( )A 、1B 、-1C 、0D 、()13+-m【答案】C 【例4】(1)m m 8812÷+; (2)252m ÷(51)1-2m 【答案】(1)18m + ;(2)215n +二、整式的乘法【例1】(1)()()25434x y xy -= 。

(2)()2004200324-⨯= 。

整式的乘法【答案】(1)131716x y - ;(2)60102【例2】()()22323225x yx y z xy z -⨯+= 。

【答案】74552420x y z x y z +【例3】a 2 (a +b)(a -2) 。

【答案】433222a a a b a b -+-【例4】()72=+b a ,()42=b a —,求22b a +和ab 的值. 【答案】112,32【例5】计算()()11a b a b +-++的值【答案】2221a ab b ++-【例6】已知:15a a +=,则221a a+= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的乘除与因式分解复习
一、整式的乘法
1.同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。

即:m n m n a a a
+⋅=(m ,n 都是正整数)。

例1:计算 (1)821010⨯;(2)23x x ⋅-(-)();(3)n 2n 1n a
a a a ++⋅⋅⋅(4)()()103x x -⨯-=;(5)322(3)---⨯-
(6)23132--⎛⎫-+ ⎪⎝⎭
= 。

例2:计算 (1)35b 2b 2b 2+⋅+⋅+()()();(2)
23
x 2y y x -⋅()(2-) 例3:已知x 22m +=,用含m 的代数式表示x 2。

例4已知2a x =,3b x =,求23a b x -的值。

例5已知36m =,92n =,求2413
m n --的值。

1整式的除法运算
例:()()()32101036a a a a -÷-÷-÷ = 。

例2:已知32214369
m n a b a b b ÷=,则m 、n 的取值为( ) A 、 4,3m n == B 、4,1m n == C 、1,3m n == D 、2,3m n ==
例3若5320x y --=,则531010x y ÷=_________。

例4若3129
327m m +÷=,则m =__________。

2.幂的乘方(重点)幂的乘方是指几个相同的幂相乘,如
53a ()是三个5a 相乘,读作a 的五次幂的三次方。

幂的乘方法则:幂的乘方,底数不变,指数相乘。


m n mn a a =()(m ,n 都是正整数)。

例4:计算
(1)m 2a ();(2)()4
3m ⎡⎤-⎣⎦
;(3)3m 2a -() 3.积的乘方(重点)积的乘方的意义:指底数是乘积形式的乘方。

如:()()()()3
ab ab ab ab =⋅⋅ 积的乘方法则:积的乘方,等于把积得每一个因式分别乘方,再把所得的幂相乘。

如:
n n n ab a b ⋅()= 例5:计算
(1)()()2332x x -⋅-;(2)()4xy -;(3)()3
233a b -
例6:已知a b
105,106==,求2a 3b 10+的值。

例7:计算(1)201120109910010099⎛⎫⎛⎫⨯ ⎪ ⎪⎝⎭⎝⎭;(2)()315150.1252⨯
4.单项式与单项式相乘(重点)
法则:单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式例含有的字母,则连同它的指数作为积的一个因式。

例8:计算
(1)2213ab a b 2abc 3⎛⎫⋅-⋅ ⎪⎝⎭; (2) ()()n 1n 212x
y 3xy x z 2+⎛⎫-⋅-⋅- ⎪⎝⎭; (3) ()()32
221
6m n x y mn y x 3-⋅-⋅⋅- 5.单项式与多项式相乘(重点)
法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

用式子表示为
()m a b c ma mb mc ++=++(m ,a ,b ,c 都是单项式)。

例9:计算
(1)22324xy x y 4xy y 233⎛⎫⎛⎫-⋅-+ ⎪ ⎪⎝⎭⎝⎭; (2)2
243116mn 2mn mn 32⎛⎫⎛⎫⋅-+- ⎪ ⎪⎝⎭⎝⎭
题型一:整式乘法与逆向思维
若8a 7=,7b 8=,则56
56=___________(用含a ,b 的代数式表示) 例:已知:23a =,326b =,求3102
a b +的值;
题型二:解不等式或方程 求出使()()()()3x 23x 4x-2x 3+->+9成立的非负整数解。

题型四:整体变化求值
已知2x 5y 30+-=,求x y
432⋅的值。

题型五:整式乘法的综合应用
已知2x 3x 3++与2x 3x k -+的乘积中不含2x 项,求k 的值。

二、乘法公式
1.平方差公式(重点)
平方差公式:()()22
a b a b a b +-=- 即两个数的和与这两个数的差的积,等于这两个数的平方差。

这个公式叫做平方差公式。

例:下列两个多项式相乘,哪些可用平方差公式,哪些不能?能用平方差公式计算的,写出计算结果。

(1)()()2a 3b 3b 2a --;(2)()()2a 3b 2a 3b -++;(3)()()2a 3b 2a 3b -+--;
(4)()()2a 3b 2a 3b +-;(5)()()2a 3b 2a 3b ---; (6)()()2a+3b 2a 3b --
2.完全平方公式(重点)
完全平方公式()()222222a b a 2ab b a b a 2ab b ⎧⎫+=++⎪⎪⎨⎬-=-+⎪⎪⎩⎭
即两数和(或差)的平方,等于它们的平方和,加(或减)它们的积得2倍。

这两个公式叫做(乘法的)完全平方公式
例10:化简
()2a 3b +(1)()()()()22
2x 3y 3m n 42x+32x 3-+----;();();()。

例11:计算 221999922011();()
3.添括号(难点)
法则:添括号时,如果括号前面是正号。

括到括号里的各项都不改变符号;如果括号前面是负号,括到括号里的各项都改变符号。

例12:按要求把多项式332
5a b 2ab 3ab 2b -+-添上括号:
(1) 把前两项括到前面带有“+”的括号里,后两项括到前面带有“-”的括号里;
(2) 把后三项括到前面带有“-”的括号里;
(3) 把四次项括到前面带有“+”的括号里,把二次项括到前面带有“-”的括号里。

例13:运用乘法公式计算: ()()()()()()()2
1a b c a b c 22x y 1y 12x 3x y z 42a 3b 112a 3b -++--+-+-++---();();();()
题型一:乘法公式在解方程和不等式组中的应用
解方程:()()()()()()2x 12x 13x 2x 27x 1x 1+-+-+=+-
题型二:应用完全平方公式求值
设m+n=10,mn=24,求()2
22m n m n +-和的值。

题型三:巧用乘法公式简算
计算:(1)()()()24832121211++++; (2)9910110001⨯⨯
题型四:利用乘法公式证明
对任意整数n ,整式()()()()3n 13n 13n 3n +---+是不是10的倍数?为什么?
题型五:乘法公式在几何中的应用
已知△ABC 的三边长a ,b ,c 满足222a b c ab bc ac 0++---=,试判断△ABC 的形状。

相关文档
最新文档