(优选)哈工程两相流

合集下载

哈工程两相流第1章解读

哈工程两相流第1章解读

课程重点




熟练掌握两相流基本参数的定义,表达式及计算方法。 掌握绝热与非绝热垂直与水平管内各种流型的基本特征, 能用流型图判别流型,了解流型过渡的判别条件。 对截面含气率的三类计算方法有明确的认识,掌握用漂 移流模型计算截面含气率的方法,了解欠热沸腾区截面 含气率的计算过程。 掌握用均相流模型及分相流模型计算直管内的摩擦压降、 重位压降及加速度压降的方法。了解影响摩擦压降的主 要因素。 能计算热平衡条件下受热及不受热流道的两相总压降。 能分别用三个模型计算长孔道内临界质量流速,掌握短 孔道内临界流的特征及临界质量流速的计算。
V V V J Jg J f A A A
式中,Jg为气相折算速度,表示两相介质中气相单独流 过同一通道时的速度,m/s.
Jf为液相折算速度,表示两相介质中液相单独流
V V Jg W A A
Байду номын сангаас
W
Jg
过同一通道时的速度,m/s.
V V J f 1 W 1 A A
W
1
Jf
讨论
当气液两相无相对运动时
S 1, W W W J W
当气液两相存在相对运动,且 W W ,则
W J W
3.漂移速度和漂移通量 漂移速度:各相真实速度与两相混合平均速度J的差值。 气相漂移速度: Wgm W J 液相漂移速度: Wfm W J 漂移通量:各相相对于两相混合平均速度J运动的截面 所流过的体积通量。 气相漂移通量:
G M A
每一相的质量流速与总质量流速的关系
M M G G G (1 x )G xG A A

哈工程两相流第5章

哈工程两相流第5章
分气相摩擦压降梯度 g
l2 分液相折算系数
2 分气相折算系数 g
dPf dz 两相摩擦压降梯度
2
dPfl dz
dz
液相部分摩擦压降梯度
分气相摩擦压降梯度
dPfg
X 马蒂内里参数
5.2 均相流模型的摩擦压降计算
一.基本关系式
摩擦压力梯度
dp f Ph 0 dz A
1
麦克达姆(Mecadam)计算式,应用最广 1 x 1 x 0.25 2 lo 1 x 1 1 x 1 代入(5-8)式




1000 x1 x 1 G 2 (3)当 G 1000kg /m s 时: 1 1 1 x 1 使用条件: 1)非绝热:x x xe 或x x1 x2 P 1MPa 2 2
解:由于入口水的焓值低于饱和水的焓值,因此入口为欠饱和水。则试验段内的摩 擦阻力压降应由单相水的摩擦阻力压降和气液两相摩擦阻力压降两部分组成。 1.单相水的摩擦阻力压降 (1)根据热平衡方程,定出预热段长度,即单相水段的长度
lf
Q Q M io ii M i i 0.925 MJ/kg M
对于圆管,控制体周界长度(m):Ph D 通流面积(m2): A
D 2
4
dPf dz
4f

G2
D 2
m
流体与壁面的摩擦剪应力(N/m2):
o f
m j 2
2
由流体力学知识,与两相流总质量流量相同的液 体质量流过通道时的压力梯度为

哈工大多相流体力学讲义

哈工大多相流体力学讲义

三、本课程的其他教学环节 无。
四、考核方式 成绩为百分制。考试内容基本覆盖全部授课内容。
第一章 绪 论
1.1 两相与多相的定义与分类
两相流就是指必须同时考虑物质两相共存且具有明显相界面的 混合物流动力学关系得特殊流动问题。
在不同的学科中,根据研究对象的不同特点,对相各有特定的说 明。比如物理学中,单相物质的流动称为单相流,两种混合均匀的气 体或液体的流动也属于单相流。同时存在两种及两种以上相态的物质 混合体的流动就是两相或多相流。在多相流动力学中,所谓的相不仅 按物质的状态,而且按化学组成、尺寸和形状等来区分,即不同的化 学组成、不同尺寸和不同形状的物质都可能归属不同的相。在两相流 研究中,把物质分为连续介质和离散介质。因为颗粒相可以是不同物 态、不同化学组成,不同尺寸或不同形状的颗粒,这样定义的两相流 不仅包含了多相流动力学中所研究的流动,而且把复杂的流动概括为 两相流动,使问题得到简化。此外还有动力学意义上的相及物理上的 相。
4
气力输送的流型 4 、稀相输送时颗粒群在直管中运动微分方程
6. 4 气力、水力输送能量损失估算
6.5 固体颗粒在流体中的沉降分离与旋流分离
第七章 两相流动的测量技术与实践
7.1 汽液两相流的测量
4
7.2 气固两相流的测量
7.3 多相流测量实践
4 针对课堂讲授内容的总结,问题讨论、教学效果探讨及答疑备考
气体和固体颗粒混合在一起共同流动称为气固两相流。 严格的说,固体颗粒没有流动性,不能作流体处理。但当流体中 存在大量固体小粒子流时,如果流体的流动速度足够大,这些固体粒 子的特性与普通流体相类似,即可以认为这些固体颗粒为拟流体,在 适当的条件下当作流体流动来处理。引入拟流体假设后,气固两相流 动就如同两种流体混合物的流动,可以用流体力学、热力学的方法来 处理问题,使两相流的研究大为简化。又由于其假定的前提,使用拟 流体假设时要特别注意适用条件。处理颗粒相运动时,某些方面把其 看作流体一样,但另一些方面则必须考虑颗粒相本身的特点。 3. 液固两相流 液体和固体颗粒混合在一起共同流动称为液固两相流。如工程大 量使用的水力输送等。 4. 液液两相流 两种互不相溶的液体混合在一起的流动称为液液两相流。油田开 采与地面集输、分离、排污中的油水两相流,化工过程中的乳浊液流 动、物质提纯和萃取过程中大量的液液混合物流动均是液液两相流的 工程实例。 5. 气液液、气液固和液液固多相流

哈工程核学院两相流实验报告三

哈工程核学院两相流实验报告三

两相流流型与参数测量一、实验目的:1. 熟悉台架,掌握流量测量仪表的使用;2. 观察水平管中不同流型的特点;3. 根据各工况点实验数据绘制αβ-曲线。

二、实验设备流量测量仪器,试验管,流量控制仪器三、实验原理,(1)αα--质量含气率含液率含液率质量含气率)1(,ββ--根据各工况点的实验数据计算αβφφ,,",',,,W W 00121)、β:β=+V V V ""'其中:V V P P T T a a a""=• P,T —试验段中压力及水温;P a ,T a —测得的空气压力及温度;V a "—浮子流量计读数.V’—由18PP 频率表测得的频率读数计算得到,由涡轮流量变送器测量。

2)、X:X M M M G G G =+•+""'""'式中:M”=V”,"ϕ G=V”ρ"ϕϕ"".=000P P T TP T 00,—标准状态下压力、温度;(P T K 0001273==,.)ϕ0313"./.=kg m (空气在标准状态下)M”=V’'ϕϕ'由试验段压力P,t 查水及水蒸气表;3).、W 0"及W 0'(汽相折算流速,液相折算流速)W V A W V A 00"",''.== A d =π42(d=25mm) 4)、φφ21及(修正系数):(pq)一般p=1.2,d=25mm,取φφ211≈=.两相流流型与参数测量一、 实验步骤(一) 启动试验装置调节水流量为0.5kg m 3⁄,气体流量为0.1kg m 3⁄,观察流型并计算;(二) 增加气体流量,依次为0.2 0.3 0.4 0.5 1 2 3 4……13 观察并记录流型:(三) 改变水流量,分别是1 2 3 4 5 ,每一流量状态下,依次调节气流量从0.1到13,观察并记录流型。

哈尔滨工程大学压水堆核电厂二回路热力系统设计

哈尔滨工程大学压水堆核电厂二回路热力系统设计

哈尔滨工程大学压水堆核电厂二回路热力系统设计————————————————————————————————作者:————————————————————————————————日期:专业课程设计说明书压水堆核电厂二回路热力系统班级:20101513学号:2010031408姓名:刘争知指导教师:刘中坤核科学与技术学院2013 年6 月目录摘要 (1)1 设计内容及要求 (2)2 热力系统原则方案确定 (2)2.1 总体要求和已知条件 (3)2.2 热力系统原则方案 (3)2.3 主要热力参数选择 (5)3 热力系统热平衡计算3.1 热平衡计算方法 (7)3.2 热平衡计算模型 (8)3.3 热平衡计算流程 (9)3.4 计算结果及分析 (17)4 结论 (17)附录附表1 已知条件和给定参数..........................................18附表2 选定地主要热力参数汇总表....................................19附表3 热平衡计算结果汇总表........................................24附图1 原则性热力系图. (25)参考文献 (26)摘要压水堆核电厂二回路以郎肯循环为基础,由蒸汽发生器二次侧、汽水分离再热器、汽轮机、冷凝器、凝水泵、给水泵、给水加热器等主要设备以及连接这些设备地汽水管道构成地热力循环,实现能量地传递和转换.本设计对该热力系统进行拟定与热平衡计算,通过列出6个回热器和汽水分离再热器中地2级再热器地热平衡方程以及除氧器中热平衡方程和质量守恒方程和汽水分离中蒸汽总量守恒,由此得到一个7元一次方程组、一个4元一次方程组,和汽水分离中地一个一元一次方程,通过求解这些方程组和方程,可以得到各点地抽气量和各个管路中地流量与新蒸汽/产量Ds地数学关系,假定一个ηe,npp 并就可以由Ds=(Ne/ηe,npp)η1/[( hfh - hs’)+(1+ξd)(hs’- hfw)]算出Ds ,由于各点地抽气量和各个管路中地流量与新蒸汽产量Ds地数学关系以同求解方程组得到进一步可以确定二回路总地新蒸汽耗量Gfh,进而地一个新核电厂地效率ηe,npp ’=Neη1/[ Gfh ( hfh - hfw)+ξd(hs’- hfw)],由此得到ηe,npp 和ηe,npp ’地一一对应关系ηe,npp ’ =1/(6.708-1.1618/ηe,npp).选一个较为合理地ηe,npp作为初值进行试算,得到一个ηe,npp ’.把计算出地核电厂效率ηe,npp ’与初始假设地ηe,npp分别代回到Gcd 、Gcd’,若不满足| Gcd - Gcd’|/Gcd<1%,则以(ηe,npp+ε)作为初值进行再试算,返回ηe,npp ’ =1/(6.708-1.1618/ηe,npp)进行迭代计算,直至满足要求.当满足要| Gcd - Gcd’|/ Gcd <1%后,再校核ηe,npp和ηe,npp ’地大小.当|ηe,npp-ηe,npp ’|>0.1%,则以(ηe,npp +ε)作为初值返回ηe,npp ’ =1/(6.708-1.1618 /ηe,npp )从头再试算校算,直至满足要求.对最终效率不满意时可合理地调整各设备地运行参数,直至求出电厂效率满意为止.用得到满足要求地ηe,npp ’去计算各个参量,并制作一张热力系统图.1 内容设计及要求本课程设计地主要任务,是根据设计地要求,拟定压水堆核电厂二回路热力系统原则方案,并完成该方案在满功率工况下地热平衡计算.本课程设计地主要内容包括:(1)确定二回路热力系统地形式和配置方式;(2)根据总体需求和热工约束条件确定热力系统地主要热工参数:(3)依据计算原始资料,进行原则性热力系统地热平衡计算,确定计算负荷工况下各部分汽水流量及其参数、发电量、供热量及全厂性地热经济指标;(4)编制课程设计说明书,绘制原则性热力系统图.通过课程设计要达到以下要求:(1)了解、学习核电厂热力系统规划、设计地一般途径和方案论证、优选地原则;(2)掌握核电厂原则性热力系统计算和核电厂热经济性指标计算地内容和方法;(3)提高计算机绘图、制表、数据处理地能力;(4)培养学生查阅资料、合理选择和分析数据地能力,掌握工程设计说明书撰写地基本原则.2 热力系统原则方案确定压水堆核电厂二回路系统地主要功能是将蒸汽发生器所产生地蒸汽送往汽轮机,驱动汽轮机运行,将蒸汽地热能转换为机械能;汽轮机带动发电机运行,将汽轮机输出地机械能转换为发电机输出地电能.电站原则性热力系统表明能量转换与利用地基本过程,反映了发电厂动力循环中工质地基本流程、能量转换与利用过程地完善程度.为了提高热经济性,压水堆核电厂二回路热力系统普遍采用包含再热循环、回热循环地饱和蒸汽朗肯循环.2.1 总体要求和已知条件压水堆核电厂采用立式自然循环蒸汽发生器,采用给水回热循环、蒸汽再热循环地热力循环方式,额定电功率为1000MW.汽轮机分为高压缸和低压缸,高压缸、低压缸之间设置外置式汽水分离再热器.给水回热系统地回热级数为7级,包括四级低压给水加热器、一级除氧器和两级高压给水加热器.第1级至第4级低压给水加热器地加热蒸汽来自低压缸地抽汽,除氧器使用高压缸地排汽加热,第6级和第7级高压给水加热器地加热蒸汽来自高压缸地抽汽.各级加热器地疏水采用逐级回流地方式,即第7级加热器地疏水排到第6级加热器,第6级加热器地疏水排到除氧器,第4级加热器地疏水排到第3级加热器,依此类推,第1级加热器地疏水排到冷凝器热井.汽水分离再热器包括中间分离器、第一级蒸汽再热器和第二级蒸汽再热器,中间分离器地疏水排放到除氧器;第一级再热器使用高压缸地抽汽加热,疏水排放到第6级高压给水加热器;第二级再热器使用蒸汽发生器地新蒸汽加热,疏水排放到第7级高压给水加热器.主给水泵采用汽轮机驱动,使用来自主蒸汽管道地新蒸汽,汽轮机地乏汽直接排入主汽轮发电机组地冷凝器,即给水泵汽轮机与主发电汽轮机共用冷凝器.凝水泵和循环冷却水泵均使用三相交流电机驱动,正常运行时由厂用电系统供电.2.2 热力系统原则方案2.2.1 汽轮机组压水堆核电厂汽轮机一般使用低参数地饱和蒸汽,汽轮机由一个高压缸、2-3个低压缸组成,高压缸、低压缸之间设置外置式汽水分离器.单位质量流量地蒸汽在高压缸内地绝热焓降约占整个机组绝热焓降地40%,最佳分缸压力(即高压缸排汽压力)约为高压缸进汽压力地12%-14%.2.2.2蒸汽再热系统压水堆核电厂通常在主汽轮机地高、低压缸之间设置汽水分离-再热器,对高压缸排汽进行除湿和加热,使得进入低压缸地蒸汽达到过热状态,从而提高低压汽轮机运行地安全性和经济性.汽水分离-再热器由一级分离器、两级再热器组成,第一级再热器使用高压缸地抽气加热,第二级再热器使用蒸汽发生器地新蒸汽加热.中间分离器地疏水排放到除氧器,第一级、第二级再热器地疏水分别排放到不同地高压给水加热器.2.2.3给水回热系统给水回热系统由回热加热器、回热抽汽管道、凝给水管道、疏水管道等组成.回热加热器按照汽水介质传热方式不同分为混合式加热器和表面式加热器,其中高压、低压给水加热器普遍采用表面式换热器,除氧器为混合式加热器.高压给水加热器采用主汽轮机高压缸地抽汽进行加热,除氧器采用高压缸地排汽进行加热,低压给水加热器采用主汽轮机低压缸地抽汽进行加热.高压给水加热器地疏水可采用逐级回流地方式,最终送入除氧器;低压给水加热器地疏水可以全部采用逐级回流地方式,最终送入冷凝器.给水回热系统地三个基本参数是给水回热级数、给水温度以及各级中地焓升分配.选择给水回热级数时,应考虑到每增加一级加热器就要增加设备投资费用,所增加地费用应该能够从核电厂热经济性提高地收益中得到补偿;同时,还要尽量避免热力系统过于复杂,以保证核电厂运行地可靠性.因此,小型机组地回热级数一般取为1-3级,大型机组地回热级数一般取为7-9级.压水堆核电厂中普遍使用热力除氧器对给水进行除氧,从其运行原理来看,除氧器就是一个混合式加热器.来自低压给水加热器地给水在除氧器中被来自汽轮机高压缸地排汽加热到除氧器运行压力下地饱和温度,除过氧地饱和水再由给水泵输送到高压给水加热器,被加热到规定地给水温度后再送入蒸汽发生器.大型核电机组一般采用汽动给水泵,能够很好地适应机组变负荷运行,可以利用蒸汽发生器地新蒸汽、汽轮机高压缸地抽汽或者汽水分离再热器出口地热再热蒸汽驱动给水泵汽轮机,因而具有较好地经济性.给水泵汽轮机排出地乏汽被直接排送到主汽轮发电机组地冷凝器.2.3 主要热力参数选择2.3.1一回路冷却剂地参数选择从提高核电厂热效率地角度来看,提高一回路主系统中冷却剂地工作压力是有利地.但是,工作压力提高后,相应各主要设备地承压要求、材料和加工制造等技术难度都增加了,反过来影响到核电厂地经济性.综合考虑,设计时压水堆核电厂主回路系统地工作压力为15.5MPa,对应地饱和温度为344.76℃.为了确保压水堆地安全,反应堆在运行过程中必须满足热工安全准则,其中之一是堆芯不能发生水力不稳定性,所以反应堆出口冷却剂地欠饱和度选为16℃.2.3.2二回路工质地参数选择二回路系统地参数包括蒸汽发生器出口蒸汽地温度与压力(蒸汽初参数)、冷凝器运行压力(蒸汽终参数)、蒸汽再热温度、给水温度和焓升分配等.(1) 蒸汽初参数地选择压水堆核电厂地二回路系统一般采用饱和蒸汽,蒸汽初温与蒸汽初压为一一对应关系.根据朗肯循环地基本原理,在其它条件相同地情况下,提高蒸汽初温可以提高循环热效率.目前二回路蒸汽参数已经提高到 5.0-7.0Mp,为了提高核电厂经济性并保证安全,二回路蒸汽参数选为6.0MPa.(2) 蒸汽终参数地选择在热力循环及蒸汽初参数确定地情况下,降低汽轮机组排汽压力有利于提高循环热效率.但是,降低蒸汽终参数受到循环冷却水温度Tsw,1、循环冷却水温升ΔTsw以及冷凝器端差δt 地限制.除了对热经济性影响之外,蒸汽终参数对汽轮机低压缸末级叶片长度、排汽口尺寸均有重要影响,因此,综合考虑多方面因素,并选取南方地区循环冷却水温度为24℃,取凝结水地温度为36℃.当凝结水地温度选为36℃,忽略了凝结水地过冷度,则冷凝器地运行压力等于凝结水温度对应地饱和压力.(3)中间再热参数地选择蒸汽再热循环地最佳再热压力取决于蒸汽初终参数、中间再热前后地汽轮机内效率、中间再热后地温度与中间再热加热蒸汽地压力和给水回热加热温度等.选择高压缸排气压力为高压缸进气压力地13%.高压缸地排汽进入汽水分离器,经过分离器除湿后,再依次进入第一级再热器和第二级再热器加热,在汽水分离器再热器中地总压降为高压缸排汽压力地7%.经过两级再热器加热后地蒸汽温度接近新蒸汽温度,一般情况下,第二级蒸汽再热器出口地热再热蒸汽(过热蒸汽)比用于加热地新蒸汽温度要低13~15℃左右,可取14℃.为便于计算,假设再热蒸汽在第一级再热器和第二级再热器中地焓升相同.再求得各级进出口压力及温度.蒸汽再热压力地选择应该使高、低压缸排汽地湿度控制在14%之内,可据此选择中间分离器地进口压力(相当于高压缸排汽压力)和低压缸排气压力.(4) 给水回热参数地选择给水地焓升分配:多级回热分配采用了汽轮机设计时普遍使用地平均分配法,即每一级给水加热器内给水地焓升相等.每一级加热器地给水焓升为107.978kj/kg.采用平均分配法时,先确定每一级加热器地理论给水焓升为132.863kj/kg,得到蒸汽发生器地最佳给水比焓1080.866kj/kg.按照蒸汽发生器运行压力和最佳给水比焓确定最佳给水温度,按一定关系定出实际给水温度.再次通过等焓升分配地方法确定每一级加热器内给水地实际焓升为107.978kj/kg.选定除氧器地工作压力,除氧器地运行压力应该略低于高压缸地排汽压力.再分别对高压给水加热器和低压给水加热器进行第二次焓升分配.对于高压给水加热器,每一级地给水焓升为108.103/kg.对于低压给水加热器(包括除氧器),每一级地给水焓升为107.49kj/kg.给水回热系统中地压力选择:除氧器地运行压力应该略低于高压缸地排汽压力,除氧器出口水温等于除氧器运行压力对应地饱和温度.一般情况下,取凝水泵出口压力为除氧器运行压力地3-3.2倍,取3.1.一般情况下,取给水泵出口压力为蒸汽发生器二次侧蒸汽压力地1.15-1.25倍,取1.2.抽汽参数地选择:给水加热器蒸汽侧出口疏水温度(饱和温度)与给水侧出口温度之差称上端差(出口端差).高压给水加热器出口端差取3℃,低压给水加热器出口端差取2℃.对于每一级给水加热器,根据给水温度、出口端差即可确定加热用地抽汽温度.由于抽气一般是饱和蒸汽,由抽汽温度可以确定抽汽压力(考虑回热抽气压损).3 热力系统热平衡计算3.1 热平衡计算方法进行机组原则性热力系统计算采用常规计算法中地串联法,对凝汽式机组采用“由高至低”地计算次序,即从抽汽压力最高地加热器开始计算,依次逐个计算至抽汽压力最低地加热器.这样计算地好处是每个方程式中只出现一个未知数Ds,适合手工计算,并且易于编程.热力计算过程使用地基本公式是热量平衡方程、质量平衡方程和汽轮机功率方程.3.2 热平衡计算模型热力计算地一般流程如下:3.3 热平衡计算流程第一步:计算给水泵汽轮机地耗汽量:给水泵汽轮机汽为新蒸汽,排汽参数等于高压缸排汽;给水泵有效输出功率Nfwp=1000Gfw ×Hfwp /ρfw kW给水泵有理论功率ηfwp,t= Nfwp/ηfwp,pηfwp,tiηfwp,tmηfwp,tg给水泵地扬程Hfwp=6.4434MPa则其耗汽量Gs,fwp=Nfwp/ηfwp,pηfwp,tiηfwp,tmηfwp,tgHa,ηfw p,p——汽轮给水泵组地泵效率,取0.58;ηfwp,ti,ηfwp,tm,ηfwp,tg——分别给水泵组汽轮机地内效率、机械效率和减速器效率,分别取0.80,0.90和0.98;Ha为高压缸进出口焓降,为297.01/kg代入数值得Gfwp,s=0.059245Ds第二步:对汽水分离器列蒸汽守恒方程:G0=Gd(Xrh1,i-Xh,z)/ Xrh1,iGdXh,z=(Gd-G0)Xrh1,i .................1*求得G0=Gd(Xrh1,i-Xh,z)/ Xrh1,i ,把Xrh1,i =0.995 、Xh,z =0.8632 代入可得G0 =0.13246Gd对7级回热器列热平衡方程:[Ges,7(hes,7-hew,7)+Ga(ha’-hew,7)]ηh=(1+ξd)Ds△hfw ........................ 2*对6级回热器列热平衡方程:[Ges,6(hes,7-hew,6)+Gb(hb’-hew,6)+Ges,7(hew,7-hew,6)]ηh=(1+ξd)Ds△hfw.................3*对除氧器列热平衡方程:[(Ges,7+Ges,6+Ga+Gb)hew,6+Gcd+hlfwi+G0hGo’+Gchc]=(1+ξd)Ds hlfwi,5 .................4*对除氧器列质量守恒衡方程:Gcd+Ga+Gb+GC+G0+Ges,7+Ges,6=(1+ξd)Ds ................5*对汽水分离再热器中第一级再热器列热平衡方程(Gd-G0) Δh=Gb(hb-hb’)ηh .................6*对汽水分离再热器中第一级再热器列热平衡方程(Gd-G0)Δh=Ga(ha-ha’)ηh .................7*新蒸汽产量等于总耗气量:Ds=Ges,7+Ges,6+Ga+Gb+GC+Gd+Gfwp,s ................8*其中:ha’为第二级再热器加热蒸汽地疏水比焓;Ga新蒸汽中用于再热地质量流量,kg/sGb从高压缸抽取用于再热地蒸汽质量,kg/sGc高压缸排气中排到除氧器地质量流量,kg/sGd从高压缸排气进入到低压缸地质量流量,kg/sG0为汽水分离器中分离出来地质量流量,kg/shb’为第一级再热器加热蒸汽地疏水比焓,kJ/kgha’为第二级再热器加热蒸汽地疏水比焓,kJ/kghG0’为汽水分离器中分离水地比焓,kJ/kghc,hd均为高压缸排气比焓,kJ/kg△h为再热器平均焓值升,kJ/kg联立上述7个方程并代入相关数值,求得:Ga=0.0448Ds ;Gb=0.0429Ds ;Gc=0.0273Ds ;Gd=0.7125Ds ;Ges,6=0.0556Ds ;Ges,7=0.0577Ds ;Gcd=0.6878Ds第三步:[Ges,3 (hes,3-hew,3)+ Ges,4(hew,4-hew,3)]ηh=Gcd△hfwηh=Gcd△hfw对4级回热器列热平衡方程:Ges,4(hes,4-hew,4)ηh=Gcd△hfw ..................9*对3级回热器列热平衡方程:[Ges,3 (hes,3-hew,3)+ Ges,4(hew,4-hew,3)]ηh=Gcd△hfw ..................10*对2级回热器列热平衡方程:[Ges,2 (hes,2-hew,2)+(Ges,4+Ges,3)(hew,3-hew,2)]ηh=Gcd△hfw ..................11*对1级回热器列热平衡方程:[Ges,1 (hes,1-hew,1)+(Ges,1+Ges,2+Ges,3+Ges,4)(hew,2-hew,1)]ηh=Gcd△hfw ..........12*联立9*~12*方程并代入相关数值,求得:Ges,1=0.0428 Gcd ;Ges,2=0.0445 Gcd 。

哈工程核反应堆热工分析简答

哈工程核反应堆热工分析简答

1,堆内热源的由来和分布特点。

裂变(1)瞬发裂变碎片的动能(在燃料元件内);裂变中子的动能(大部分在慢化剂中);瞬发γ射线的能量(堆内各处)。

(2)缓发裂变产物衰变的β射线能(大部分在燃料元件内);裂变产物衰变的γ射线(堆内各处)过剩中子引起的(n,γ)反应瞬发和缓发来源是过剩中子引起的裂变反应加(n,γ)反应产物的β衰变和γ衰变能(堆内各处)。

2,影响堆芯功率分布的因素主要有哪些?(1)燃料布置,目前核电厂压水堆通常采用分压装载的方案。

优点,功率分布得到了展平;燃料的平均燃耗提高了。

(2)控制棒,均匀布置有利于径向中子通量的展平,但给轴向功率分布带来了不利影响。

(3)水隙及空泡,水隙引起的附加慢化作用使该处的中子通量上升因而使水隙周围远见的功率升高,从而增大了功率分布的不均匀程度。

克服方法,采用棒束控制棒组件。

空泡将会导致堆芯反应性下降,空泡的存在能减轻某些事故的严重性。

沸水堆,下部插入。

4,燃料的自屏效应。

5,堆内结构材料3,控制棒中的热源来源是什么?(1)吸收堆芯的r辐射。

(2)控制棒本身吸收的中子的(n,α)或者(n,γ)反应。

4,热中子反应堆中慢化剂中的热源来源是什么?(1)裂变中子的慢化。

(2)吸收裂变产物放出的β粒子的一部分能量。

(3)吸收各种γ射线的能量。

5,反应堆停堆后的功率由哪几部分组成?有何特点。

(1)燃料棒内储存的显热。

(2)剩余中子引起的裂变。

(3)裂变产物的衰变以及中子俘获产物的衰变。

特点,在反应堆停堆后,其功率并不是立刻降为零,而是按照一个负的周期迅速的衰减,周期的长短最终取决于寿命最长的放射缓发中子的裂变核群的半衰期。

6,铀-235作为燃料的压水堆,每次裂变释放出来的总能量约为多少?在大型压水堆的设计中,往往取燃料元件的释热量占堆总释热量的百分之几?200Mev97.4%7,与早期压水堆中采用的均匀装载方案相比,现代大型压水堆采用分区装载方案的优点是什么?(1)功率的分布得到了展平,这对提高整个反应堆的热功率都是有利的。

轴流压气机气固两相流及磨损特性数值模拟

轴流压气机气固两相流及磨损特性数值模拟

轴流压气机气固两相流及磨损特性数值模拟
孙海鸥;王萌;王忠义;裴小萌
【期刊名称】《哈尔滨工程大学学报》
【年(卷),期】2018(039)002
【摘要】为了研究固体颗粒入射至压气机后导致其性能衰退作用机理,本文采用商业软件ANSYS CFX中的多相流求解技术对某型四级轴流式压气机进行了气固两相流和磨损特性的数值模拟研究.研究结果表明:固体颗粒对压气机叶片的磨损主要集中在前面级的动叶和各排叶片的50%叶高以上,并且磨损量随叶高位置上移而增大;对每个叶片来说,对压力面的磨损程度要大于对吸力面;在沿轴向方向上,磨损主要集中在叶片的前缘和尾缘处.该研究成果具有一定的工程价值和参考价值.
【总页数】7页(P310-316)
【作者】孙海鸥;王萌;王忠义;裴小萌
【作者单位】哈尔滨工程大学动力与能源工程学院,黑龙江哈尔滨150001;哈尔滨工程大学动力与能源工程学院,黑龙江哈尔滨150001;哈尔滨工程大学动力与能源工程学院,黑龙江哈尔滨150001;中航商用航空发动机有限责任公司,上海200241
【正文语种】中文
【中图分类】V232.4
【相关文献】
1.气固两相流下球阀磨损特性研究 [J], 李长俊;季楚凌;陈磊;马树锋
2.固液两相流离心泵内部流场数值模拟与磨损特性 [J], 汪家琼;蒋万明;孔繁余;宿向辉;陈浩
3.脱硫泵固液两相流动的数值模拟与磨损特性 [J], 李昳
;何伟强;朱祖超;张玉良;崔宝玲
4.基于Particle模型轴流泵固液两相流数值模拟和磨损特性研究 [J], 徐杰;陈松山;沈家伟;吴志峰;钱忠裕;周晓润
5.管道内气固两相流冲刷磨损特性数值模拟 [J], 张义;周文;孙志强;周孑民
因版权原因,仅展示原文概要,查看原文内容请购买。

哈工程两相流第4节1

哈工程两相流第4节1

1
0.6 1.5β 2 Fr' 1/ 4
1
p pcr
式中: Fr g全Gd2液2 相弗劳德数;
Pcr- 临界压力,对于水 Pcr=22.12MPa.
上式,当 S 3, •P 时12M,P与a 试验值的误差
0.05
适用于:竖直管,当用于水平管时,要求G>1500kg/m2
二.米洛波尔斯基公式
W
Jg
Co J
Wgm
斜率:Co tg
截距:Wgm
(2).轴对称圆管内分布参数 Co 的确定
1).假定 和 的分j 布
j jc
1
y
m
r
w c w
1
y
n
r
2).推导得出分布参数 Co 表达式
用 表w 示
Co
1
m
2 n
2
1
w
用 表C 示
Co
m
2 n
2
1
c
n m
2
3).讨论 ① 若 沿截面分布均匀,如雾状流,则
3. 对两相流动作若干简化假设,进而建立计算 的流动模型。
经验公式计算法
阿曼德公式:五十年代(1955)
0.833•••• 0.9
范格拉里关系式
1 x
1
0.67
1
1
0.1
胡马克关系式(Hughwork):
k
4.2 滑速比模型计算法
一.奥斯马奇金公式
S
q T ••
hf
hf— 单相强迫对流换热系数。
— 系数, 26exp p
6.2
p — 系统压力,MPa
欠热沸腾起始q hf

蒸汽发生器二次侧汽液两相流数值模拟

蒸汽发生器二次侧汽液两相流数值模拟

蒸汽发生器二次侧汽液两相流数值模拟杨元龙;孙宝芝;杨龙滨;张羽【期刊名称】《原子能科学技术》【年(卷),期】2012(046)001【摘要】以大亚湾核电站蒸汽发生器为原型,在相似原理的指导下,建立了蒸汽发生器“单元管”三维物理模型,采用Particle模型和热力学相变模型,并基于CFX软件实现了蒸汽发生器二回路侧两相流流动与沸腾换热特性数值模拟.计算结果表明:满负荷运行时,沿传热管高度升高,蒸汽发生器的传热系数及截面含汽率均呈上升趋势,其平均传热系数的数值模拟结果与Rohsenow经验关联式计算结果间的误差为8.4%,出口质量含汽率与大亚湾核电站实际运行参数相符.热相变模型在蒸汽发生器两相流数值模拟中的成功应用,可为蒸汽发生器热工水力的准确分析提供参考.【总页数】6页(P51-56)【作者】杨元龙;孙宝芝;杨龙滨;张羽【作者单位】哈尔滨工程大学动力与能源工程学院,黑龙江哈尔滨150001;哈尔滨工程大学动力与能源工程学院,黑龙江哈尔滨150001;哈尔滨工程大学动力与能源工程学院,黑龙江哈尔滨150001;哈尔滨工程大学动力与能源工程学院,黑龙江哈尔滨150001【正文语种】中文【中图分类】TL33【相关文献】1.管束外垂直上升汽液两相流沸腾传热特性的数值模拟 [J], 杨柳;孙宝芝;杨元龙;郑陆松2.管束外垂直上升汽液两相流沸腾传热特性的数值模拟 [J], 杨柳;孙宝芝;杨元龙;郑陆松3.水平管内汽液两相流流型及换热特性数值模拟 [J], 李书磊;蔡伟华;李凤臣4.基于群体平衡原理的蒸汽发生器汽液两相流动与沸腾数值模拟 [J], 杨元龙;孙宝芝;杨柳;郑陆松5.孔隙介质中汽液两相流数值模拟的Lattice-Boltzmann方法 [J], 张新明;刘家琦;刘克安因版权原因,仅展示原文概要,查看原文内容请购买。

星孔型装药发动机三维两相流场的数值模拟

星孔型装药发动机三维两相流场的数值模拟

星孔型装药发动机三维两相流场的数值模拟
贺征;郜冶
【期刊名称】《推进技术》
【年(卷),期】2004(25)2
【摘要】为了研究颗粒在星孔型装药固体火箭发动机燃烧室和喷管中的运动轨迹以及颗粒与发动机壁面的碰撞情况,针对可压两相流动,采用了高雷诺数下的k ε湍流模型和欧拉拉格朗日两相流模型,用全速度SIMPLE方法对方程组进行求解,并用PSIC方法进行气固耦合计算。

计算得出了流场内两相的速度、温度等参数的分布及多种情况下固体颗粒的运动轨迹。

在燃气生成量确定的情况下,从距离喷管较近的某些位置进入流场的颗粒比较容易撞击壁面;颗粒的尺寸和局部产生的旋涡对颗粒的轨迹和碰撞也会产生较大的影响。

【总页数】4页(P118-121)
【关键词】二相流;欧拉-拉格朗日方程;流动分布;数值仿真
【作者】贺征;郜冶
【作者单位】哈尔滨工程大学建筑工程学院
【正文语种】中文
【中图分类】V435.11
【相关文献】
1.旋转条件下长尾喷管发动机三维两相流场数值模拟 [J], 严聪;何国强;刘洋
2.双燃速星孔药柱长尾喷管发动机三维两相流场数值模拟 [J], 郭颜红;梁晓庚;陈斌
3.锥柱型装药固体火箭发动机两相内流场中颗粒运动的数值模拟 [J], 贺征;郜冶;顾璇
4.中心点火装药结构三维两相流内弹道数值模拟 [J], 刘千里;王升晨;李启明
5.煤油超燃冲压发动机两相流场数值模拟(I)数值校验及总体流场特征 [J], 黄生洪;徐胜利;刘小勇
因版权原因,仅展示原文概要,查看原文内容请购买。

哈尔滨工程大学研制出便携式多波束测深仪

哈尔滨工程大学研制出便携式多波束测深仪

哈尔滨工程大学研制出便携式多波束测深仪
佚名
【期刊名称】《传感器世界》
【年(卷),期】2006(12)12
【摘要】11月下旬,由哈尔滨工程大学研制出的国内第一台便携式多波束测深仪通过相关部分检验。

该项研究由哈尔滨工程大学水声工程学院等单位负责,由从美国著名海洋研究所WHOI留学归来的李海森教授领衔,哈尔滨工程大学工程院院士杨士莪对该项目的研究给予了连续的支持和学术指导。

【总页数】1页(P40-40)
【关键词】哈尔滨工程大学;多波束测深仪;便携式;海洋研究所;工程院院士;工程学院
【正文语种】中文
【中图分类】P716.11
【相关文献】
1.便携式多波束测深仪 [J],
2.便携式高分辨浅水多波束测深仪 [J],
3.国内首台便携式多波束测深仪 [J], 佳工
4.便携式高分辨浅水多波束测深仪系列产品 [J],
5.便携式多波束测深仪研制成功 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. 分层流
特征: (1)出现在 W都,W比较小的情况; (2)两相完全分离,气相在管道上方流动; (3)气液之间有明显的分界面。
4. 波状流
气相流速足够高时,由于气相的作用,在界面上产生一个扰动波,扰 动波向前推进向波浪一样,形成波状流。
5. 弹状流
在波状流基础上,随着气相流速的增加,会使这些扰动பைடு நூலகம்碰到流道的 顶部表面,形成气弹。 弹状流与塞状流的区别
2.坐标参数
横坐标
Fr
jg jf
2
j2
gd gd
y
w
w
w
3
0.25
纵坐标 V 1 V
2.4 水平管中的流动型式
一.水平不加热管中的流动型式
1.泡状流
气泡趋于管道上部,下部较 少。其分布与流速关系很大。 液相流速增大,分布趋于均匀。
2.塞状流
气泡聚结长大而形成气塞, 与垂直上升流中弹状流相似。 大气塞后有小气泡,由泡状流 过渡而来。
1. 实验条件 Di=31.2mm; P=0.14-
0.54MPa, 流动工质是空气和水。 2. 该图和应用P=3.45-
6.9MPa, 汽水混合物在Di=121.7mm
管 子中得到的实验数据符合良
j f 2
3.坐标参数
横坐标:分液相动压头
j
2 f
(1
x)2 G2
纵坐标:分气相动压头
jg2 G2x2
(2)出现范围
1)在P<Pcr,0<x<1下都可能出现; 2)发生在气相流速较高时。
5.细束环状流
当液相流速较大时,气柱中液滴量 增多,使小液滴连成串,向上流动。与 环状流不易区分。
环状流
二.垂直上升加热直圆管中的流动型式
1.流型的演变
在受热管中,流型沿途发生变化, 受热管中可能同时存在几种流型。
5.块状流 6.雾式环状流
1.泡状流
特征: 1)气泡集中在管子中心部分 2)气泡尺寸更小,更接近于球形。
2.弹状流
若 M co,ns则t, x气泡将聚集成气弹。 特征:
1)气弹较长,尾部呈球形; 2)下降流时贴壁面液膜向下流动,故比上升流 时稳定。
3.环状流
(1)下降液膜流
当 M , M小时,有一层液膜沿管壁下流,核心部分为 气相,液膜中无气泡。
(1)弹状流的气相流速低于塞状流的; (2)气弹顶部无液膜; (3)塞状流由泡状流过渡而来,弹状流由波状流过渡而来。
6. 环状流
受重力作用,周向液膜厚度不均匀。 出现在气相流速较高、流量比较大,而液相流速较低时。当壁面粗糙 时,液膜可能不连续。
水平不加热管中的流型图片
水平不加热管中的流型图片
二.水平加热管中的流动型式
(优选)哈工程两相流
2.1 研究流型的意义
一.何谓两相流的流型?单相流与两相流的区 别?
1.气液两相流体在流动过程中,两相之间存在 分界面,这就是两相流区别于单相流的重要特 征。
2.两相流中两相介质的分布状况,不同的界面 分布就构成了不同的两相流流型。
二.研究流型的意义
1.流型影响流体的换热特性; 2.流型影响压降特性; 3.流动不稳定性与流型有关; 4.建立流动模型与流型密切相关。
上节重要知识点
1. 两相流型的定义,与单相流的区别; 2. 研究两相流流型的意义? 3. 影响两相流流型的因素? 4. 垂直上升绝热、加热直圆管中的流型分
别有哪些?每种流型的特征和出现的范 围是什么?
2.3垂直下降管中的气液两相流流 型及其流型图
一. 流型的分类
1.泡状流
2.弹状流 3.下降液膜流 4.带气泡的 下降液膜流
2.注意两个问题
(1)流型的演变需要一定时间和距离; 高q下:环状流区域较大,流型演变 时间较短; 高P下:P>10Mpa,弹状流消失,流 型 直接从泡状流向环状流转变。 (2)绝热管中不会出现雾状流。
三.流型图
目前广泛采用的流型图均 为二元的,其坐标为流动参 数或组合参数。
选用右图流型图注意 jg 2
弹状流
3.乳沫状流(搅混流)
(1)特征 1)破碎的气泡形状不规则,有
许多小气泡夹杂在液相中; 2)贴壁液膜发生上下交替运动,
从而使得流动具有震荡性。 (2)出现范围
它是一种过渡流,一般出现在 大口径管中,小口径的管中观察不 到。
乳沫状流
4.环状流
(1)特征
1)贴壁液膜呈环形向上流动; 2)管子中部为夹带水滴的气柱; 3)液膜和气流核心之间存在波动界面。
1.单相流 2.泡状流 3.塞状流 4.弹状流 5.波状流 6.环状流
流型演变与P、q、Wo密切相关 P:当P很高时,塞状流和弹状流消失; q:q较大,环状流所占范围扩大; Wo:Wo高,惯性作用增强,可消除波状流,流型不对称
性减小,接近竖直管中的流型。 注意:从工程角度,避免水平布置;当水平布置时,需要提高 入口水的流速,使Wo>>1m/s,可避免波状流。
(2)带气泡的下降液膜流
当 M 时,由于惯性的作用,气相将进入液膜。
(3)块状流
当M , M较 高时,贴壁为液膜,由于气相的卷吸作用, 核心为雾状气柱。
(4)雾式环状流
当 M较 高时,贴壁为液膜,由于气相的卷吸作用,核 心为雾状气柱。
二.流型图
1.实验条件
空气和多种液体混合 物,di=25.4mm,P=0.17MPa
三.影响流型的因素
1.x,P,G; 2.是否受热(非绝热); 3.流动方向; 4.流道结构。
2.2 垂直上升管中的流型
一. 垂直上升不加热直圆管 1.泡状流
(1)特征: 1)液相连续,气相不连续; 2)气泡多数呈球形; 3)管子中心气泡密度大,有趋中效应。
(2)出现范围: 主要出现在低x区,在中低压情况下,出
现在 0;.3 高压情况下, 较大仍为泡状流, P
泡状流
2.弹状流
(1)特征
1)大气泡与大液块交替出现,头部呈球 形,尾部扁平,形如炮弹;
2)气弹间液块向上流动,夹有小气泡; 3)气弹与管壁间液层缓慢向下流动。 (2)出现范围 1)低压、低流速, , 0低.3压时气泡长 度可达1m以上; 2) P ,不 能 形成大气泡,当P>10MPa 时,弹状流消失; 3)出现在泡-环过渡区。
流型图遵循四原则
简 主适 发 易 导用 展 性 性性 性 原 原原 原 则 则则 则
2.9 管内淹没和流向反转过程的流型
一.气液两相逆向流动的两种极限现象
淹没(液泛)、流向反转(回流)
二.淹没和流向反转现象
1.气体流量由零开始增加
相关文档
最新文档