波形产生电路仿真报告
波形发生电路实验报告总结.docx
![波形发生电路实验报告总结.docx](https://img.taocdn.com/s3/m/19ba12b67cd184254a353560.png)
专业:实验报告姓名:学号:日期:课程名称:电路与模拟电子技术实验指导老师:张冶沁成绩:实验名称:波形发生器电路分析与设计实验类型:电路实验同组学生姓名:一、实验目的和要求:桥式正弦振荡电路设计1.正弦波振荡电路的起振条件。
2.正弦波振荡电路稳幅环节的作用以及稳幅环节参数变化对输出波形的影响。
3.选频电路参数变化对输出波形频率的影响。
4.学习正弦振荡电路的仿真分析与调试方法。
B.用集成运放构成的方波、三角波发生电路设计1.掌握方波和三角波发生电路的设计方法。
2.主要性能指标的测试。
3.学习方波和三角波的仿真与调试方法。
二、实验设备:示波器、万用表模电实验箱三、实验须知:1. RC桥式正弦波振荡电路,起振时应满足的条件是:闭环放大倍数大于3,即 R f >2R1,引入正反馈3. RC桥式正弦波振荡电路的振荡频率:RC桥式正弦波振荡电路,稳定振荡时应满足的条件是:电路中有非线性元件起自动稳幅的作用4. RC桥式正弦波振荡电路里C的大小:f01/(2π RC)C5. RC桥式正弦波振荡电路R1 的大小:6. RC桥式正弦波振荡电路 R2 的大小:R1=15kΩR2=Ω7.RC桥式正弦波振荡电路是通过哪几个8.波形发生器电路里 A1的输出会不会元器件来实现稳幅作用的随电源电压的变化而变化答:配对选用硅二极管,使两只二极答:A1输出不会改变,电源电压的变管的特性相同,上下对称,根据振荡化通过选频网络调节,不影响放大和幅度的变化,采用非线性元件来自动稳幅环节改变放大电路中负反馈的强弱,以实现稳幅目的8.波形发生器电路里v01的输出主要由谁9.波形发生器电路里, R 和 C的参数大决定,当电源电压发生变化时,它会小会不会影响 v0的输出波形答:发生变化吗会影响,而且 v o的频率和幅值都由答:由两只二极管决定,电源电压变RC决定,因为 R和 C的回路构成选频化时, V 不会变化网络o1四、实验步骤:A. RC桥式正弦波振荡电路:原理图:1.PSpice 仿真波形:示波器测量的波形:T=616us,v pp,v RMS667mV根据实际波形,比较实际数据和理论数据之间的差异:理论周期为650us,略大于试验数据,但非常接近,由于实际电阻和二极管的线性或非线性特性与理想状态有所不同,在误差允许范围内认为符合要求2.改变R2的参数(减小或增大R2),使输出v0从无到有,从正弦波直至削顶,分析出现这三种情况的原因和条件。
波形产生与波形变换电路的设计与仿真
![波形产生与波形变换电路的设计与仿真](https://img.taocdn.com/s3/m/501c8dbd71fe910ef12df8b1.png)
践,理论与实践结合,可以使学生更好地理解相关理论知识,提升学生的基本技能,与此同时提高学生的创新能力,又为进一步将理论应用于实践提供了锻炼的机会。
实践教学手段包含专业课程相关的实验、实训以及课程设计等。
与单纯的理论授课相比较,实践实验教学环节更能激发学生的学习兴趣,提高学生的实践动手能力,尤其设计性的实践环节,更能提升学生运用理论基础知识进行相关课题的设计能力。
通常情况下,对于设计性实践内容,需要学生根据选题及设计要求,独立或分组完成相应的方案设计,交给指导老师审阅,之后进行硬件组装调试,从而整体完成对电子电路的工程实践操作。
在传统的设计过程中,学生首先要查阅相关资料,结合设计要求确定合理的整体框架,然后设计电路,选择合适的元件进行电路组装调试。
通常,这种传统的设计方式需要花费学生包括指导教师大量的时间,耗时耗力,并且在电路设计调试结果出不来的情况下,很难更改电路,以至于很难顺利完成相应内容设计。
随着电子计算机技术的不断发展,与此同时出现了很多电路设计相关的EDA仿真软件,在电路设计中起到了很大的作用,使学生的电路设计能力以及设计水平在很大程度上得到了提高和改善。
Multisim仿真软件就是一款比较有效且简单易学的电路设计仿真软件。
Multisim仿真软件主要是在计算机上实现电子电路功能的设计以及性能分析,使学生设计的电路只需模拟调试成功即可组装电路,既节约了设计时间,又可避免在这一设计过程中采用传统方式可能带来的元件损耗,这是对传统实践教学方法的充实与改进,它使设计的方法和手段现代化[1]。
利用Multisim仿真软件这款电路设计与仿真的EDA软件,使实践教学环节更加丰富有趣,学生根据虚拟仪器仪表的测试等,合理设计自己的内容,对于进一步提高实践教学当今社会,随着电子技术的飞速发展,基本已经不存在纯手工设计电子产品。
对于现代化的电子产品设计的过程,首要的工作是确定产品要实现的功能,接着对电路原理图进行设计、进行PCB 版图设计、结合程序设计等步骤,这些设计工作都是在计算机上得以实现。
电路实验仿真实验报告
![电路实验仿真实验报告](https://img.taocdn.com/s3/m/5d9149a0c9d376eeaeaad1f34693daef5ff71350.png)
1. 理解电路基本理论,掌握电路分析方法。
2. 掌握电路仿真软件(如Multisim)的使用方法。
3. 分析电路参数对电路性能的影响。
二、实验内容本次实验主要针对一阶RC电路进行仿真分析,包括零输入响应、零状态响应和全响应的规律和特点。
三、实验原理一阶RC电路由一个电阻R和一个电容C串联而成,其电路符号如下:```+----[ R ]----[ C ]----+| |+---------------------+```一阶RC电路的传递函数为:H(s) = 1 / (1 + sRC)其中,s为复频域变量,R为电阻,C为电容,RC为电路的时间常数。
根据传递函数,可以得到以下结论:1. 当s = -1/RC时,电路发生谐振。
2. 当s = 0时,电路发生零输入响应。
3. 当s = jω时,电路发生零状态响应。
四、实验仪器与设备1. 电脑:用于运行电路仿真软件。
2. Multisim软件:用于搭建电路模型和进行仿真实验。
1. 打开Multisim软件,创建一个新的仿真项目。
2. 在项目中选择“基本电路库”,搭建一阶RC电路模型。
3. 设置电路参数,如电阻R、电容C等。
4. 选择合适的激励信号,如正弦波、方波等。
5. 运行仿真实验,观察电路的响应波形。
6. 分析仿真结果,验证实验原理。
六、实验结果与分析1. 零输入响应当电路处于初始状态,即电容电压Uc(0-) = 0V时,给电路施加一个初始电压源,电路开始工作。
此时,电路的响应为电容的充电过程。
通过仿真实验,可以得到以下结论:(1)随着时间t的增加,电容电压Uc逐渐增大,趋于稳态值。
(2)电容电流Ic先减小后增大,在t = 0时达到最大值。
(3)电路的时间常数τ = RC,表示电路响应的快慢。
2. 零状态响应当电路处于初始状态,即电容电压Uc(0-) = 0V时,给电路施加一个激励信号,电路开始工作。
此时,电路的响应为电容的放电过程。
通过仿真实验,可以得到以下结论:(1)随着时间t的增加,电容电压Uc逐渐减小,趋于0V。
方波-三角波发生电路实验报告
![方波-三角波发生电路实验报告](https://img.taocdn.com/s3/m/d942206aee06eff9aef807e4.png)
河西学院物理与机电工程学院综合设计实验方波-三角波产生电路实验报告学院:物理与机电工程学院专业:电子信息科学与技术姓名:侯涛日期:2016年 4月 26日方波-三角波发生电路要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波的波形发生器。
指标:输出频率分别为:102HZ、103HZ和104Hz;方波的输出电压峰峰值VPP≥20V一、方案的提出方案一:1、由文氏桥振荡产生一个正弦波信号。
2、把文氏桥产生的正弦波通过一个过零比较器从而把正弦波转换成方波。
3、把方波信号通过一个积分器。
转换成三角波。
方案二:1、由滞回比较器和积分器构成方波三角波产生电路。
2、然后通过低通滤波把三角波转换成正弦波信号。
方案三:1、由比较器和积分器构成方波三角波产生电路。
2、用折线法把三角波转换成正弦波。
二、方案的比较与确定方案一:文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。
当R1=R2、C1=C2。
即f=f0时,F=1/3、Au=3。
然而,起振条件为Au略大于3。
实际操作时,如果要满足振荡条件R4/R3=2时,起振很慢。
如果R4/R3大于2时,正弦波信号顶部失真。
调试困难。
RC串、并联选频电路的幅频特性不对称,且选择性较差。
因此放弃方案一。
方案二:把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。
比较器输出的方波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器。
通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化范围很小的情况下使用。
然而,指标要求输出频率分别为102HZ、103HZ和104Hz 。
因此不满足使用低通滤波的条件。
放弃方案二。
方案三:方波、三角波发生器原理如同方案二。
比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大即零附近的差别最小,峰值附近差别最大。
高精度三角波发生电路设计及仿真分析
![高精度三角波发生电路设计及仿真分析](https://img.taocdn.com/s3/m/fa9ae82126d3240c844769eae009581b6ad9bd65.png)
高精度三角波发生电路设计及仿真分析1. 引言三角波发生电路广泛应用于信号发生器、频率比较器和功率变换等领域。
本文旨在设计一种高精度的三角波发生电路,并通过仿真分析验证其性能。
2. 设计原理三角波发生电路一般采用积分器和比较器的组合。
其中,积分器用于生成一个随时间线性增加或减小的电压波形,比较器则用于将积分结果与参考电压进行比较,从而产生三角波。
设计一个高精度的三角波发生电路需要考虑以下因素:2.1 选取合适的积分器电路常用的积分器电路有反馈电容式和电压控制电压源(VCCS)等。
反馈电容式积分器简单可靠,但存在漂移和温度敏感性较大的问题。
相比之下,VCCS积分器对漂移和温度的依赖性较小,但在设计和布线上较为复杂。
根据需求选择适合的积分器电路。
2.2 参考电压源的选择参考电压源用于比较器的输入,一般为一个稳定的直流电压。
可选用电阻分压电路、稳压二极管或精度较高的运放电路作为参考电压源。
选取合适的参考电压源可以有效提高发生波形的精度。
2.3 比较器设计比较器用于将积分器输出的波形与参考电压进行比较。
常用的比较器电路有固定阈值比较器、比较器芯片等。
为提高精度,可采用电路补偿技术,并根据需求选择高性能的比较器芯片。
3. 电路图设计基于上述设计原理,我们可以绘制如下的高精度三角波发生电路图:(电路图请自行设计,这里仅提供设计思路)4. 仿真分析使用电子仿真软件对所设计的高精度三角波发生电路进行仿真分析,可以验证其性能和精度。
4.1 建立仿真模型将所设计的电路图导入仿真软件,并设置合适的参数和工作条件。
注意考虑元件的非理想性,如电容的等效串并联电阻、比较器的漂移等。
4.2 验证性能指标根据设计要求,设置仿真测量点并记录三角波的频率、峰峰值、上升时间、下降时间、线性度等指标。
4.3 分析结果根据仿真结果分析电路的性能,如精度、稳定性、非线性失真等。
如有需要,可以对某些参数进行调整和优化,再次进行仿真分析,直至满足设计要求。
电子电路实验四 实验报告
![电子电路实验四 实验报告](https://img.taocdn.com/s3/m/71372f3d16fc700abb68fc48.png)
实验四波形发生电路实验报告一、理论计算1.正弦振荡电路实验电路如图1所示,电源电压为±12V。
分析图1电路的工作原理,根据图中的元件参数,计算符合振荡条件的Rw值以及振荡频率f0。
该正弦振荡电路采用RC串并联选频网络,选频网络的示意图如下:当输入信号的频率足够低时,,超前,且当频率趋近于零时,相位超前趋近于+90°;当输入信号的频率足够高时,,滞后,且当频率趋近于无穷大时,相位滞后趋近于-90°。
因此,当信号频率从零逐渐变化到无穷大时,的相位将从+90°逐渐变化到-90°,故必定存在一个频率f0,当f= f0时,与同相。
RC串并联选频网络的反馈系数整理可得令,则代入上式,得出当f=f0时,,由正弦振荡电路的起振条件知,。
对于图1的正弦振荡电路,有将R3、R4代入上式,令之大于3,得Rw>10kΩ。
将R1=R2=16kΩ、C1=C2=0.01μF代入f0式,得f0=994.7Hz。
2.多谐振荡电路实验电路如图2所示。
深入分析图2所示电路的工作原理,画出Vo1、Vo2的波形,推导Vo1、Vo2波形的周期(频率)和幅度的计算公式。
再按图2中给出的元件参数计算Vo1、Vo2波形的周期(频率)、幅度,以备与实验实测值进行比较。
该电路为三角波发生电路,原理图如下:虚线左边为滞回电路,故Vo1为方波。
根据叠加原理,集成运放A1同相输入端的电位令,则阈值电压对于虚线右边的积分电路,其输入电压不是+U Z,就是-U Z,故积分电路的输出电压的波形为三角波。
设输出电压的初始值为-U T,终了值为+U T,则可解得T为矩形波、三角波共同的周期。
矩形波的幅度的理论值即为UZ,等于6V;将实验电路图中的各个参数代入各式,得UT=0.5*6=3V,故三角波的幅度理论值为3V,矩形波、三角波的周期 。
3.锯齿波发生电路锯齿波发生电路的原理图见仿真实验电路图。
设二极管导通时的等效电阻可忽略不计,当u o1=+U Z时,D3导通,D4截止,输出电压的表达式为uo随时间线性下降。
仿真信号发生器实训报告
![仿真信号发生器实训报告](https://img.taocdn.com/s3/m/1ada664c15791711cc7931b765ce050877327573.png)
一、实训目的本次实训旨在通过使用仿真软件Proteus和Keil uVision,学习并掌握信号发生器的设计与仿真方法,加深对信号发生器原理和电路设计的理解,提高实际操作能力。
二、实训内容1. 信号发生器原理信号发生器是一种产生各种标准信号的设备,广泛应用于通信、测量、科研等领域。
本次实训主要设计以下四种波形发生器:正弦波、方波、三角波和锯齿波。
2. 信号发生器电路设计(1)正弦波发生器:采用STM32F103单片机作为核心控制单元,通过查找正弦波查表法生成正弦波数据,经DAC0832数模转换芯片转换为模拟信号输出。
(2)方波发生器:利用STM32F103单片机的定时器产生方波信号,通过改变定时器的计数值来调整方波频率。
(3)三角波发生器:通过STM32F103单片机的定时器产生方波信号,再经过积分电路转换为三角波信号。
(4)锯齿波发生器:利用STM32F103单片机的定时器产生方波信号,再经过微分电路转换为锯齿波信号。
3. 信号发生器仿真(1)使用Proteus软件搭建信号发生器电路,并进行仿真测试。
(2)通过调整电路参数,观察输出波形的变化,验证电路设计的正确性。
(3)将仿真结果与理论分析进行对比,分析仿真结果与理论分析的一致性。
三、实训步骤1. 设计信号发生器电路原理图根据信号发生器原理,设计电路原理图,包括单片机、DAC0832数模转换芯片、矩阵键盘、LCD12864液晶屏幕等元件。
2. 编写程序使用C语言编写信号发生器程序,包括初始化配置、按键扫描、波形生成、LCD显示等功能。
3. 仿真测试(1)在Proteus软件中搭建电路,将程序编译生成的hex文件烧录到STM32F103单片机中。
(2)运行仿真,观察输出波形,验证电路设计及程序的正确性。
(3)根据仿真结果,调整电路参数,优化波形输出。
四、实训结果与分析1. 仿真结果通过仿真测试,成功实现了正弦波、方波、三角波和锯齿波的产生,波形输出稳定,符合设计要求。
矩形波发生电路multisim仿真
![矩形波发生电路multisim仿真](https://img.taocdn.com/s3/m/b014959ff424ccbff121dd36a32d7375a417c617.png)
矩形波发生电路multisim仿真矩形波发生电路是一种常见的电子电路,可以用于模拟数字信号和脉冲信号。
Multisim是一款功能强大的电路仿真软件,可以帮助工程师在计算机上快速建立电路模型并进行仿真。
本文将介绍矩形波发生电路的基本原理,并使用Multisim进行仿真。
一、原理介绍矩形波发生电路主要由555定时器、电容和电阻组成。
555定时器是一种常用的集成电路,内部包含比较器、RS触发器和电压比较器等功能。
通过控制电压比较器的阀值电压和放电电阻的值,可以实现输出端的矩形波形。
二、电路设计1. 使用Multisim打开软件,选择新建一个电路图。
2. 在工具栏中选择元器件并依次添加555定时器、电容和电阻。
3. 连接电路,将电容连接到555定时器的引脚2和引脚6之间,电阻连接到引脚7和引脚6之间。
4. 设置电阻和电容的具体数值,可以根据需要调整。
5. 连接电路的输入端和输出端。
三、仿真流程1. 在Multisim中选择仿真按钮,打开仿真设置窗口。
2. 设置仿真时间为一定的周期,如10ms。
3. 调整电容和电阻的数值,观察矩形波形的变化。
4. 运行仿真,观察输出端的波形。
四、仿真结果通过对矩形波发生电路的仿真,我们可以观察到输出端的波形。
当电容和电阻的数值合适时,输出端的波形呈现出矩形的特点,即上升时间和下降时间较短,保持时间较长。
这样的矩形波形可以用于数字信号传输、脉冲信号测量等应用场景。
五、仿真分析通过对仿真结果的分析,我们可以得出一些结论。
首先,电容和电阻的数值直接影响矩形波形的特性,存在一个最佳数值使得波形最为稳定。
其次,通过调整电容和电阻的数值可以改变矩形波的频率和占空比,从而适应不同的应用需求。
最后,矩形波的输出电平和幅度与电源电压和电阻数值有关,需要根据具体情况进行调整。
六、结论通过Multisim的仿真,我们可以快速验证矩形波发生电路的性能和特性。
这对于电子工程师来说是一个非常有用的工具,可以在设计和调试过程中节省时间和成本。
2015年全国赛复测题《多种波形产生电路》仿真文件
![2015年全国赛复测题《多种波形产生电路》仿真文件](https://img.taocdn.com/s3/m/f489130ef6ec4afe04a1b0717fd5360cba1a8dc1.png)
恭喜你,你选择了一个非常具有挑战性和深度的主题——2015年全国赛复测题《多种波形产生电路》仿真文件。
这个主题涉及到电路设计、信号处理和仿真技术等多个领域,需要我们通过深入研究和全面分析,才能够理解其内涵和价值。
接下来,我将按照你的要求,以从简到繁的方式来探讨这个主题,并逐步展开深度和广度的讨论。
1. 前言在进行对2015年全国赛复测题《多种波形产生电路》仿真文件的深入研究之前,我们首先需要了解这个主题的背景和意义。
这个主题所涉及的电路设计和仿真技术,是现代电子工程领域中极为重要的一部分。
通过研究和掌握这些技术,我们能够更好地理解和应用信号处理、波形产生和电路设计等方面的知识,为电子产品和系统的开发提供重要支持。
2. 主题简介2015年全国赛复测题《多种波形产生电路》仿真文件,是一个以多种波形产生电路为主题的仿真设计题目。
在这个主题中,我们需要考虑如何设计和实现一个能够产生多种波形信号的电路,并通过仿真技术进行验证和分析。
这涉及到信号的生成与处理、电路的设计与优化以及仿真技术的应用等多个方面的知识。
3. 深入分析在对2015年全国赛复测题《多种波形产生电路》仿真文件进行深入研究时,我们需要从以下几个方面展开分析:3.1 信号产生与处理:我们需要了解不同类型的波形信号,例如正弦波、方波、三角波等,它们在电子工程中的应用和特性。
这涉及到信号的频率、幅值、相位等基本特性的分析。
3.2 电路设计与优化:我们需要考虑如何设计一个能够产生多种波形信号的电路。
这包括使用基本的模拟电路元件,如电容、电感、运算放大器等,以及数字电路元件,如计数器、DAC等。
3.3 仿真技术的应用:我们需要利用仿真软件,如Multisim、PSPICE等,对设计的多种波形产生电路进行仿真验证。
通过仿真技术,我们能够分析电路的性能、波形的稳定性、失真情况等。
4. 总结回顾通过对2015年全国赛复测题《多种波形产生电路》仿真文件的深入研究和全面分析,我们不仅理解了这个主题所涉及的电路设计、信号处理和仿真技术等知识,同时也领悟到了电子工程领域中的重要理念和方法。
多种波形发生器实验分析报告
![多种波形发生器实验分析报告](https://img.taocdn.com/s3/m/f7ad8cd5f605cc1755270722192e453610665bf7.png)
一.设计目的1、了解并掌握电子电路的一般设计方法,具备初步的独立设计能力。
2、通过查阅手册和文献资料,进一步熟悉常用电子器件的类型和特性,并掌握合理选用的原则;进一步掌握电子仪器的正确使用方法。
3、学会使用EDA软件Multisim对电子电路进行仿真设计。
4、初步掌握普通电子电路的安装、布线、调试等基本技能。
5、提高综合运用所学的理论知识独立分析和解决问题的能力,学会撰写课程设计总结报告;培养严肃认真的工作作风和严谨的科学态度。
二.设计内容、要求及设计方案1、任务设计并制作能产生方波、三角波及正弦波等多种波形信号输出的波形发生器。
2、要求1)输出的各种波形工作频率范围0.02 Hz~20 kHz连续可调;2)正弦波幅值±l0V,失真度小于1.5%;3)方波幅值±l0V;4)三角波峰一峰值20V;各种输出波形幅值均连续可调;5)设计电路所需的直流电源。
3、总体方案设计1)设计思路波形产生电路通常可采用多种不同电路形式和元器件获得所要求的波形信号输出。
波形产生电路的关键部分是振荡器,而设计振荡器电路的关键是选择有源器件,确定振荡器电路的形式以及确定元件参数值等。
具体设计可参考以下思路。
①用正弦波振荡器产生正弦波输出,正弦波信号通过变换电路得方波输出(例如用施密特触发器),用积分电路将方波变换成三角波或锯齿波输出;②利用多谐振荡器产生方波信号输出,用积分电路将方波变换成三角波输出,用折线近似法将三角波变换成正弦波输出;③用多谐振荡器产生方波输出,方波经滤波电路可得正弦波输出,方波经积分电路可得三角波输出;④利用单片函数发生器568038,集成振荡器E1648及集成定时器555/556等可灵活地组成各种波形产生电路。
三、设计方案1)设计方案此次,多种波形发生器的实验,从设计思路可以看出,主要用到了正弦波振荡器,施密特触发器,积分电路等。
基于本学期我们已经掌握的模拟电路课程的知识。
经过我们小组讨论,我们觉得我们对于正弦波振荡器,文式电桥结构,施密特触发器的概念以及积分电路都已比较清楚的了解。
模拟电路仿真实验报告
![模拟电路仿真实验报告](https://img.taocdn.com/s3/m/54255bd7fab069dc5022017d.png)
腹有诗书气自华一、实验目的(1)学习用Multisim实现电路仿真分析的主要步骤。
(2)用仿真手段对电路性能作较深入的研究。
二、实验内容1.晶体管放大器共射极放大器(1)新建一个电路图(图1-1),步骤如下:①按图拖放元器件,信号发生器和示波器,并用导线连接好。
②依照电路图修改各个电阻与电容的参数。
③设置信号发生器的参数为Frequency 1kHz,Amplitude 10mV,选择正弦波。
④修改晶体管参数,放大倍数为40,。
(2)电路调试,主要调节晶体管的静态工作点。
若集电极与发射极的电压差不在电压源的一半上下,就调节电位器,直到合适为止。
(3)仿真腹有诗书气自华(↑图1)(↓图2)腹有诗书气自华2.集成运算放大器差动放大器差动放大器的两个输入端都有信号输入,电路如图1-2所示。
信号发生器1设置成1kHz、10mV的正弦波,作为u i1;信号发生器2设置成1kHz、20mV的正弦波,作为u i2。
满足运算法则为:u0=(1+R f/R1)*(R2/R2+R3)*u i2-(R f/R1)*u i1仿真图如图3图1-2腹有诗书气自华图33.波形变换电路检波电路原理为先让调幅波经过二极管,得到依调幅波包络变化的脉动电流,再经过一个低通滤波器,滤去高频部分,就得到反映调幅波包络的调制信号。
电路图如图1-4,仿真结果如图4.腹有诗书气自华图1-4 调幅波检波电路图4 调幅波检波电路仿真结果腹有诗书气自华三、结果分析参数不同所得的波形不同,太大或太小都会失真。
四、仿真中遇到的问题仿真中,Channel A的波看起来一直是一条直线,检查连线没有错误,更改参数也没有变化,微调Scale也看不出差别,此时继续调Scale,调到一定程度会看到波形。
五、使用Multisim的体会我觉得Multisim这个软件主要有以下优点:1) 基本器件库较全,如电源、电阻、三极管等等不仅有,而且有很多的种类。
2) 比较符合现实,我发现很多电路元件是可以自己制定其运行情况的(如可以把三极管设置成漏电等)这样在实际中更具有实用性。
方波发生电路实验报告
![方波发生电路实验报告](https://img.taocdn.com/s3/m/c8325ad933d4b14e852468c0.png)
东南大学电工电子实验中心实验报告课程名称:电工电子实验第1次实验实验名称:波形发生分解与合成院(系):吴健雄学院专业:高等理工班姓名:学号:实验室: 实验组别:同组人员:无实验时间:2013年8月24日评定成绩:审阅教师:一、实验内容要求基本要求:1.设计一个方波发生器,要求其频率为1kHz,幅度为5V;2.设计合适的滤波器,从方波中提取出基波和3次谐波;3.设计一个加法器电路,将基波和3次谐波信号按一定规律相加,将合成后的信号与原始信号比较,分析它们的区别及原因。
提高要求:⏹设计5次谐波滤波器及移相电路,调整各次谐波的幅度和相位,将合成后的信号与原始信号比较,并与基本要求部分作对比,分析它们的区别及原因。
创新要求:⏹用类似方式合成其他周期信号,如三角波、锯齿波等二、实验内容要求1.方波发生器图1:方波发生电路图1中的方波发生电路,利用迟滞比较器基础上,把输出电压经电阻电容反馈到集成运放的反相端,然后在运放的输出端使用两个稳压管组成的双向限幅电路,得到较理想的1kHz方波。
2.滤波器设计滤波器主要使用软件FilerPro,采用贝塞尔三级滤波结构,提取基波、三次谐波、五次谐波的设计电路如图2,图3,图4所示。
图2:提取基波的滤波器设计图3:提取3次谐波的滤波器设计图4:提取5次谐波的滤波器设计3. 移项电路设计按照要求应该是将分离的基波、三次谐波和五次谐波用加法器相加,但是由于在滤波的过程中对原来的波形可能会有相位的偏差,因此在相加之前需要对他们进行移项。
移项电路有以下两种选择。
图5:3311out in U j CR U j CR ωω-=+图6:3311out in U j CR U j CR ωω-+=+ 通过调节电路的参数可以进行相位的具体调节。
4. 加法电路设计在通过移项电路将各个波形相位调节一致之后,通过简单的反相加法器就能得到最后的合成信号图7:反相加法器三、模拟电路调试a)方波发生器模拟得到的方波幅值较低,我们计划在具体搭试时加一级放大器,将其放大至设计要求的5V。
电路仿真模拟实验报告
![电路仿真模拟实验报告](https://img.taocdn.com/s3/m/89f722756bec0975f565e293.png)
综合设计设计1:设计二极管整流电路。
条件:输入正弦电压,有效值 220v ,频率50Hz ;要求:输出直流电压 20V+/-2V 电路图:结果:通过电路,将 220V 的交流电转化成了大约 20V 的直流电。
先用变压器将220V 的交流电转化为20V 的交流电,再用二极管将20V 交流 电的负值滤掉,电容充当电源放电而且电压保持不变,因为一直有来自二极管的电流充电,而且周期为0.02秒,即电容两端电压能维持不变的放电到输 出端。
将电容的C 调的小一点可以使充放电的速度加快,就可以使得输出电压变化幅度很小。
设计2:设计风扇无损调速器。
波形图如下:结论分析:条件:风扇转速与风扇电机的端电压成正比;风扇电机的电感线圈的内阻为200欧姆,线圈的电感系为500mH风扇工作电源为市电,即有效值220V,频率50Hz的交流电。
要求:无损调速器,将风扇转速由最高至停止分为4档,即0,1,2,3档,其中0档停止,3档最高。
电路图:(开关从下至上依次为0,1,2,3档)开关置0档,风扇停止,其两端电压波形如下图:开关置1档,风扇转速最慢,其两端电压波形如下图:开关置2档,风扇转速适中,其两端电压波形如下图:开关置3档,风扇转速最快,其两端电压波形如下图:结果:由图可知,当开关分别置0, 1, 2,3时,风扇两端的电压依次增大,其中当风扇置0档时,电压为零,满足风扇转速与风扇电机的端电压成正比的条件。
结论分析:设计3 :设计1阶RC 滤波器。
条件:一数字电路的工作时钟为5MHz 工作电压5V 。
但是该数字电路的+5v 电源上存在一个 100MHz 的高频干扰。
要求:设计一个简单的 RC 电路,将高频干扰滤除。
电路图:结果:由图知,滤过的波形的频率与 5MHz 基本一致,将高频 100MHz 滤去,符合题意要求。
结论分析:通过简单的 RC 电路,用低通函数 H (jw )=HWc/(jw+Wc),计 算出了电路中所需的电阻大小及电容大小。
波形发生电路实验报告
![波形发生电路实验报告](https://img.taocdn.com/s3/m/96a8b7035a8102d276a22ffb.png)
实验报告课程名称:电路与电子实验Ⅱ指导老师:yyy 成绩:__________________实验名称:波形发生器电路实验类型:模电同组学生姓名:一、实验目的二、实验原理三、实验接线图四、实验设备五、实验步骤六、实验数据记录七、实验数据分析八、实验结果或结论一、实验目的和要求1.了解正弦波振荡的基本工作原理。
2.掌握RC 桥式正弦波振荡电路的分析、设计和调试方法。
3.深入理解正弦波振荡电路的起振条件、稳幅特性。
4.学习方波(矩形波)、三角波(锯齿波)振荡电路。
5.掌握比较器的使用;实现滞回比较器、窗口(三态)比较器6.以某个方波发生电路为例,比较LM358和LM393作为比较器对于波形性能有什么影响二、实验内容和原理a)正弦波振荡➢线性放大电路:器件工作在线性放大区(通频带内),负反馈;➢正弦波振荡电路:器件工作在线性放大区(通频带内),正反馈——首要条件正弦波振荡——无输入时,即能产生稳定(幅度、频率)的正弦波输出➢RC 桥式正弦波振荡电路✓正反馈,RC串并联网络✓电压传输系数为F(+)=V fV o =Z2Z1+Z2=1(1+C2C1+R1R2)+j(ωR1C2−1ωR2C1)✓✓RC桥式正弦波振荡电路设计方案右图所示用二极管实现自动稳幅的RC桥式正弦波振荡电路。
二极管的非线性:实现稳幅并有利于稳幅,但易引起失真;R3 :减少失真,但不利于稳幅增益:b)方波发生器i.滞回比较器加简单RC 积分器构成的方波发生器振荡周期T 或振荡频率f 为:优点:简单缺点:三角波的线性度不好,主要用于产生方波。
c)矩形波和锯齿波发生电路d)比较器及应用电路i.LM393工作电源电压范围宽,单电源、双电源均可工作,单电源:2~36V,双电源:±1~±18V;消耗电流小,Icc=0.8mA;输入失调电压小,VIO=±2mV;共模输入电压范围宽,Vic=0~Vcc-1.5V;输出与TTL,DTL,MOS,CMOS 等兼容;LM393的输出部分是集电极开路,两个比较器的输出可以直接并联,共用外接电阻,实现“线与”。
信号发生器实验报告波形发生器实验报告
![信号发生器实验报告波形发生器实验报告](https://img.taocdn.com/s3/m/c61ecc0b82c4bb4cf7ec4afe04a1b0717fd5b3b9.png)
信号发生器一、实验目(de)1、掌握集成运算放大器(de)使用方法,加深对集成运算放大器工作原理(de)理解.2、掌握用运算放大器构成波形发生器(de)设计方法.3、掌握波形发生器电路调试和制作方法 .二、设计任务设计并制作一个波形发生电路,可以同时输出正弦、方波、三角波三路波形信号.三、具体要求(1)可以同时输出正弦、方波、三角波三路波形信号,波形人眼观察无失真. (2)利用一个按钮,可以切换输出波形信号.. (3)频率为1-2KHz 连续可调,波形幅度不作要求. (4)可以自行设计并采用除集成运放外(de)其他设计方案(5)正弦波发生器要求频率连续可调,方波输出要有限幅环节,积分电路要保证电路不出现积分饱和失真.四、设计思路基本功能:首先采用RC 桥式正弦波振荡器产生正弦波,然后通过整形电路(比较器)将正弦波变换成方波,通过幅值控制和功率放大电路后由积分电路将方波变成三角波,最后通过切换开关可以同时输出三种信号.五、具体电路设计方案Ⅰ、RC 桥式正弦波振荡器图1图2电路(de)振荡频率为:RCf π210=将电阻12k,62k 及电容100n,22n,分别代入得频率调节范围为:~,~,~3015Hz.因为低档(de)最高频率高于高档(de)最低频率,所以符合实验中频率连续可调(de)要求.RP2 R4 R13 组成负反馈支路,作为稳幅环节.R13与D1、D2并联,实现振荡幅度(de)自动稳定.D1、D2采用1N4001二极管.在multisim 软件仿真时,调节电位器25%~35%时能够起振.如左图1所示,正弦波振荡器采用RC 桥式振荡器产生频率可调(de)正弦信号.J 1a 、J 1b 、J 2a 、J 2b 为频率粗调,通过J 1 J 2 切换三组电容,改变频率倍率.R P1采用双联线性电位器50k,便于频率细调,可获得所需要(de)输出频率.R P2 采用200k(de)电位器,调整R P2可改变电路A f 大小,使得电路满足自激振荡条件,另外也可改变正弦波失真度,同时使正弦波趋于稳定.下图2为起振波形.电路起振条件:左右22134p p f R R R R A ++=,代入数据解得Ω≤k R P 11.1002左Ⅱ方波发生器由正弦波振荡器产生(de)一定频率(de)正弦信号经过比较器产生一同频率(de)方波.如图3. 电路输出端引入(de)限流电阻R6 和两个背靠背(de)稳压管D3、D4(采用1N4734)组成双向限幅电路.UA741在这里实际上是一个电压比较器,当输入电压比基准电压高时,输出高电平,当输入电压比基准电压低时,输出低电平,输出端输出与输入同频率(de)方波.图3 图4Ⅲ比例运算放大电路转换开关J 5(de)作用是通过开关切换与比例运算放大电路连接,输出一定幅度(de)正弦波或方波.通过调节RP3(200k )调节放大倍数,936R R R A p f 右+=.如图4所示.在multisim 软件仿真时,当R P3 调节到50%时,(计算结果10%50-1*20033.0)(+=f A =)放大前信号(左图5)与放大后信号(右图6)如下图所示.图5 图6两幅图所占格数基本一致,左图中每格代表10v,右图中每格则代表100v,则此时信号约被放大了10倍. Ⅳ三角波发生器将J 公共端接到示波器上,当J 5与J 状态均处于上图状态时,输出(de)是正弦波,当拨下J 5 但J 状态如上图时,输出(de)是方波,当同时拨下J 5与J 时,输出(de)是三角波.总电路图如下图所示:六、实验过程及内容:1按照原理计算参数,确定选用电容电阻(de)参数 2按照原理图用multisim 进行仿真3按照电路图在电子实验箱中连线,进行测试 4按照电路图焊电路板5对焊好(de)电路板进行测试:观察波形及记下实际可调频率,并进行误差分析. 观察到(de)波形如下图所示:被放大后(de)方波信号通过积分电路既可得到三角波.⎰-=dt U C R U i O 9121s C R 01.0912==τ>> t mt m 是充电至饱和时间,如此选择参数可以保证电路不出现积分饱和失真,符合设计要求.实测频率为:Hz ~ Hz,113 Hz~595 Hz,,562Hz~2870Hz七、数据处理分析1波形均未失真,符合设计要求由上表可知,实测频率均比理想频率小,当仍符合低档(de)最高频率高于高档(de)最低频率,所以符合实验中频率连续可调(de)要求.出现误差(de)可能原因有:1)电容和电阻实际值和标值不完全一致,可能偏大.2)导线有微小阻抗,导致电路中阻抗增大.uA741(单运放)是高增益运算放大器,用于军事,工业和商业应用.这类单片硅提供输出短路保护和闭锁自由运作.芯片和工作说明:1和5为偏置(调零端),2为正向输入端,3为反向输入端,4接地,6为输出,7接电源8空脚内部结构图:十、收获和体会:通过本次实验充分认识到思考问题(de)重要性,碰到问题时要冷静分析电路图,实验与理论(de)结合才能更好(de)完成设计.又通过本次实验,从设计电路到焊接以及到最后调试都是慢慢摸索,认真思考,团结合作,学到了很多知识与经验.。
ADC0832模拟波形发生器实验报告
![ADC0832模拟波形发生器实验报告](https://img.taocdn.com/s3/m/af23e22cdd36a32d737581ac.png)
控制基础实验——模拟波形发生器成绩________课程名称:__ ___________学院(系):专业:班级:学号:学生姓名:分工任务:一、实验题目1、设计一个波形发生器,使能输出锯齿波、三角波、正弦波等。
2、在proteus仿真软件中连接单片机系统硬件图,在keil c51软件中编写并调试应用程序,使能在proteus中运行并达到预期效果。
二、实验目的1、学会DAC0832芯片的基本知识,并掌握使用方法。
2、掌握单片机最小系统的基本知识,能设计并完成一些简单应用。
3、掌握Proteus及Keil软件在51系列单片机中的使用及调试。
4、会根据实际功能,正确选择单片机功能接线,编制正确程序。
对实验结果能做出分析和解释,能写出符合规格的实验报告。
三、实验工具软件:Proteus单片机仿真软件、keil51,PC机。
四、实验内容掌握DAC0832芯片的使用方法,在Proteus仿真软件中连接好电路图,在Keil中编写程序,使得能够输出较规范的锯齿波、三角波、正弦波。
五、实验原理1、单片机工作原理:单片机是指一个集成在一块芯片上的完整计算机系统。
通过编程控制单片机的I/O端口、中断、定时器、寄存器等部件可以完成很多应用。
2、DAC0832的工作原理:DAC0832是8分辨率的D/A转换集成芯片,由8位输入锁存器、8位DAC寄存器、8位D/A转换电路及转换控制电路构成。
3、DAC0832引脚功能说明:DI0~DI7:数据输入线,TLL电平。
ILE:数据锁存允许控制信号输入线,高电平有效。
CS:片选信号输入线,低电平有效。
WR1:为输入寄存器的写选通信号。
XFER:数据传送控制信号输入线,低电平有效。
WR2:为DAC寄存器写选通输入线。
Iout1:电流输出线。
当输入全为1时Iout1最大。
Iout2: 电流输出线。
其值与Iout1之和为一常数。
Rfb:反馈信号输入线,芯片内部有反馈电阻.Vcc:电源输入线(+5v~+15v)Vref:基准电压输入线(-10v~+10v)AGND:模拟地,摸拟信号和基准电源的参考地.DGND:数字地,两种地线在基准电源处共地比较好.4、输出形式式:单极性(本实验需要)、双极性。
基于集成运算放大器的波形发生器实验报告
![基于集成运算放大器的波形发生器实验报告](https://img.taocdn.com/s3/m/1a85c17324c52cc58bd63186bceb19e8b9f6ec42.png)
实验项目 实验四 基于集成运算放大器的波形发生器班级学号姓名报告成绩一、实验目的1.学习用集成运放构成正弦波、方波和三角波发生器。
2.学习波形发生器的调整和主要性能指标的测试方法。
二、 实验原理1.RC 桥式正弦波振荡器(文氏电桥振荡器)RC 串、并联电路构成正反馈支路,同时兼作选频网络,R1、R2、RW 及二极管等元件构成负反馈和稳幅环节。
调节电位器RW ,可以改变负反馈深度。
利用两个反向并联二极管D1、D2正向电阻的非线性特性来实现稳幅。
R3是为了削弱二极管非线性的影响,以改善波形失真。
改变选频网络的参数C 或 R ,即可调节振荡频率。
电路的振荡频率起振的幅值条件图1 正弦波发生器原理图2、方波发生器由集成运放构成的方波发生器和三角波发生器,一般均包括比较器和RC 积分器两大部分。
电路振荡频率式中 R 1=R 1'+R W ' R 2=R 2'+R W "方波输出幅值 U om =±U Z三角波输出幅值图2 方波发生器原理图Z 212cm U R R R U +=)R 2RLn(1C 2R 1f 12f f o +==O 1f 2πRC2≥f1R R3、三角波和方波发生器如把滞回比较器和积分器首尾相接形成正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。
电路振荡频率=+2O 1f W fR f 4R (R R )C方波幅值 U ′om =±U Z调节R W 可以改变振荡频率,改变比值可调节三角波的幅值。
图3方波、三角波发生器原理图三、实验内容及步骤1、RC 桥式正弦波振荡器在仿真软件中按照图1所示原理图搭建电路。
(1)仿真电路正常运行后,调节电位器R W ,使输出波形从无到有,从正弦波到出现失真。
完成:1)描绘u O 的波形;=1omZ 2RU U R 12R R2)分别记录临界起振、正弦波输出及失真情况下的RW值;RW=0.81千欧, 0.83千欧,0.87千欧3)分析负反馈强弱对起振条件及输出波形的影响?负反馈较弱,放大倍数就过大使波形失真;负反馈太强,则起振困难或工作不稳定(2)调节电位器RW ,使uO幅值最大且不失真。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
波形产生电路仿真报告
一,正弦波的发生
1.实验电路图
2.Rw的调节
Rw=0时,输出波形为
此时电路不起振
Rw=10kΩ时,输出波形为
电路仍然不起振
Rw=15kΩ时,输出波形为
电路起振,振幅约为4.220V
Rw=20kΩ时,输出波形为
此时已经出现较为明显的失真波形,顶部电压约为10.5V,接近运放的工作电源电压值
反复在Rw=15kΩ附近调整阻值,发现刚好起振时Rw≈15kΩ
3.测量刚好不失真时的电压波形
反复调节Rw的阻值,找到使电压波形幅值最大且刚好不失真的Rw≈17.9kΩ,电压波形如下
输出电压幅值约为10.42V ,频率为f=993Hz,这与理论计算值036
2211994.722*16*10*0.01*10f Hz R C ππ-===相符合。
4.观察缺少非线性环节的波形
断开两个二极管,将Rw 调节至Rw=15 k Ω,即刚好起振的情况,输出波形如下
波形已经出现了失真,这是因为缺少了二极管的稳幅作用,原来由于两端被并联二极管的动态电阻的R4,开始起到了主要作用,使得Rw 的可调范围大大缩小。
二.矩形波和三角波振荡电路
1. 实验电路图
2. Vo1,Vo2波形的仿真
Vo1的幅值为5.54V,Vo2的幅值为2.88V二者周期相同,为419us,这与理论计算值T=400us 相符合。
3.锯齿波发生电路
修改后电路图如下
仿真Vo1,Vo2波形
Vo1 幅值为5.54V,Vo2幅值为2.72V,二者周期皆为1.368ms.
4.滞回比较器的电压传输特性仿真
实验电路图
传输特性仿真。