一次函数1

合集下载

期末总复习-一次函数(1)

期末总复习-一次函数(1)

x
(B)
o xo
x
(C)
(D)
5.一次函数y=ax+b与yy==abxx++ca(a>0)在同一坐标 系中的图象可能是(A )
y
y
y
y
o
x
A
o
x
B
o
x
C
o
x
D
6.已知点(-2,y1),(-1,y2),(1,y3)都在直线 y=-x+b上,则y1,y2,y3的大小关系为_y_1>__y_2_>__y3_.
1.已知直线y=2x+b与直线y=3x-1交于y轴上同 一 点,则b=_-_1___.
变式:一次函数与直线y=x+3相交于y轴上同一点, 并且经过点(-3,-3),则该函数图象的表达式 为_____y_=_2_x+. 3
2. 若函数y=-x+m与y=4x-8的图象交于x轴上一
点,则m=__2___.
图像法 列表法 解析法(关系式法);
3 .一次函数的概念:若两个变量x,y之间的关系式 可以表示成 y=kx+b (k≠0,k,b为常数) 的形式,则 称y是x的一次函数。
4. 特别地,当_b_=_0___时,称y是x的正比例函数,表 示: y=kx (k≠0) .
自学检测(一):2分钟
1.下列关于变量x、y的关系中:①y=2x+1,
3. 若函数y=-x+m2的图象和函数y=4x-1的图 象相交于x轴上一点,则m的值为______.
4.如下图,一次函数图象与x轴正半轴交于点 A,与y轴负半轴交于点B,与正比例函数 y 2 x
3
的图象交于点C,若OB=4,C点得横坐标为6.

苏科版数学八年级上册第六章一次函数一次函数第1课时(共21张)

苏科版数学八年级上册第六章一次函数一次函数第1课时(共21张)
解:(1) S 与 x 之间的函数关系式为: S= x2 , S 不是 x 的一次函数.
(2) l 与 x 之间的函数关系式为: l = 4x, l是 x 的一次函数,也是正比例函数.
6.2 一次函数(1)
例2: 用函数表达式表示下列变化过程中两 个变量之间的关系,并指出其中的一次函数、 正比例函数。
(3)长方形的长为常量 a 时,面积 S 与 宽x 之间的函数关系;
解:(3) S 与 x 之间的函数关系 式为:S =a x。 因为a为常数,且a ≠0,所以 S 是 x 的 一次函数,也是正比例函数.
6.2 一次函数(1)
例2: 用函数表达式表示下列变化过程中两 个变量之间的关系,并指出其中的一次函数、
解:(1)y=450-15t
(2)y=10t.
6.2 一次函数(1)
由上面情境,我们得到了一些函数表达式:
y=60x、Q=25t、Q=25t+6、y=450-15t、y=10t
(1)这些函数表达式有什么共同特点?(小组合作交流) (2)你能否将它们分类? (3)你能再写两个类似的式子吗? (4)能不能归纳一下一般情势?
1.水池中有水 300 m3,每小时排水10m3, 排水 t h后,水池中还有水 y m3.试写出 y 与 t 之间的函数表达式,并判断 y 是否为 t 的一次函数,是否为 t 的正比例函数;写出 自变量的取值范围.
解:y=-10t+300(0≤t≤30) y 是 t 的一次函数,但不是正比例函数.
6.2 一次函数(1)
老师想对你说
实际生活
一次函数 :y=k x+b (k、b为 具有y= k x常+数b (,k、且bk为≠常0);
数,且k≠0)的情势.
正比例函数 :y=k x ( k 为常

《一次函数》课件

《一次函数》课件

REPORTING
经济问题中的一次函数
总结词:经济模型
详细描述:一次函数在经济领域中常被用作简化经济模型,例如,消费和收入之 间的关系、生产成本和产量之间的关系等。通过一次函数,可以更直观地理解经 济现象和预测未来的经济趋势。
物理问题中的一次函数
总结词:物理定律
详细描述:在物理学中,许多定律和公式都可以用一次函数来表示,例如,重力与距离的关系、电流与电压的关系等。通过 一次函数,可以更准确地描述物理现象和预测实验结果。
2023
《一次函数最新》 ppt课件
REPORTING
2023
目录
• 一次函数简介 • 一次函数的表达式 • 一次函数的应用 • 一次函数的解析方法 • 一次函数的实际案例
2023
PART 01
一次函数简介
REPORTING
一次函数的定义
一次函数是形如y=kx+b的函 数,其中k和b是常数,k≠0。
一次函数在数学问题中的应用
线性规划
利用一次函数解决资源分 配问题,实现资源利用的 最大化。
代数方程求解
通过一次函数表示代数方 程,简化方程求解过程。
几何图形面积计算
利用一次函数计算几何图 形的面积,如三角形、矩 形等。
一次函数与其他数学知识的结合
与二次函数的结合
利用一次函数和二次函数的性质 ,解决更复杂的数学问题。
一次函数是线性函数的一种, 它的图像是一条直线。
一次函数在平面坐标系中表示 为一条直线,该直线经过点 (0,b)和斜率为k。
一次函数的图像
一次函数的图像是一 条直线,其斜率为k ,截距为b。
通过代入不同的x值 ,可以求出对应的y 值,从而得到函数的 图像。

数学 7.3 一次函数(1) 教案

数学 7.3  一次函数(1) 教案

7.3 一次函数(1)〖教学目标〗◆1、理解正比例函数、一次函数的概念。

◆2、会根据数量关系,求正比例函数、一次函数的解析式。

◆3、会求一次函数的值。

〖教学重点与难点〗◆教学重点:一次函数、正比例函数的概念和解析式。

◆教学难点:例2的问题情境比较复杂,学生缺乏这方面的经验。

〖教学过程〗比较下列各函数,它们有哪些共同特征?,6t m = ,2x y -= ,32+=x y 9362.3+-=t Q 提示:比较所含的代数式均为整式,代数式中表示自变量的字母次数都为一次。

定义:一般地,函数)0(≠+=k b k b kx y 都为常数,且、叫做一次函数。

当0=b时,一次函数b kx y +=就成为)0(≠=k k kx y 为常数,叫做正比例函数,常数k 叫做比例系数。

强调:(1)作为一次函数的解析式b kx y +=,其中y b x k ,,,中,哪些是常量,哪些是变量?哪一个是自变量,哪一个是自变量的函数?其中b k ,符合什么条件?(2)在什么条件下,)0(≠+=k b kx y 为正比例函数?(3)对于一般的一次函数,它的自变量的取值范围是什么?做一做:下列函数中,哪些是一次函数?哪些是正比例函数?系数k 和常数项b 的值各为多少?,2r C π= ,20032+=x y ,200vt = (),32x y -= ()x x s -=50 例1:求出下列各题中x 与y 之间的关系,并判断y 是否为x 的一次函数,是否为正比例函数:(1) 某农场种植玉米,每平方米种玉米6株,玉米株数y 与种植面积)(2mx 之间的关系。

(2) 正方形周长x 与面积y 之间的关系。

(3) 假定某种储蓄的月利率是0.16%,存入1000元本金后。

本钱元)(y 与所存月数x 之间的关系。

此例是为了及时巩固一次函数、正比例函数的概念,相对比较容易,可以让学生自己完成。

解:(1)因为每平方米种玉米6株,所以x 平方米能种玉米x 6株。

第54课时:一次函数(1)

第54课时:一次函数(1)

第54课时:一次函数(1)主备:王静 雍亚波班级 姓名 学号一、 中考考点:1.正比例、一次函数的意义2、正比例、一次函数的图象与性质3、用待定系数法求一次函数的表达式。

二、问题探索: (一)基础问题探索:1、(1)已知函数12)2(-++=k k x k y ,当k =______时它是正比例函数.(2)如果一次函数)1(-+=k kx y 的图象经过原点,那么k =_____,此时y 随x 的增大而 . (3)已知y 与12+x 成正比例,当2=x 时,10=y ,当1=x 时,=y _________.(4)请写出一个图象经过点(0,2),且y 随x 的增大而减小的一次函数关系式:__________. (5)将直线y=2x 向上平移两个单位,所得函数关系式是 . (6)已知一次函数y=ax+b 的图象经过一、二、四象限,则函数y=bx-a 的图象经过 象限. (7)如果函数y=ax+b(a<0,b<O)和y=kx(k>0)的图象交于点P ,那么点P 应该位于 象限. 2、当k 满足 时,一次函数12)31(-+-=k x k y 与y 轴交点在y 轴的负半轴上; 当k 时,一次函数12)31(-+-=k x k y 图象与直线3+-=x y 平行.3、如图某海产品生加工厂的生产流水线每小时可生产100件产品,生产前没有产品积压,生产3小时后安排工人装箱,若每小时可以装产品150件,则未装箱的产品数y (件)是时间x (小时)的函数,这个函数的大致图象可能是( )4、把直线y =-2x 向上平移后得到直线AB ,直线AB 经过点(m ,n),且2m +n =6,则直线AB 的解析式是 .(二)典型例题:问题一:一个装有进出水管的水池,单位时间内进、出水量都是一定的.已知水池的容积为800升,又知单开进水管20分钟可把空水池注满;若同时打开进、出水管,20分钟可把满水池的水放完,现已知水池内有水200升,先打开进水管3分钟,再打开出水管,两管同时开放,直至把水池中的水放(升)随时间t (分钟)变化的函数图象是( )问题二:已知正比例函数kx y =经过点P (如图所示)(1)求这个正比例函数的解析式;(2)该直线向上平移3个单位,求平移后所得直线的解析式.问题三、已知一次函数的图象经过点A(3,2)、B (-1,-6),请你求出这个一次函数的解析式,并通过计算判断点P(44,2-a a )是否在这个一次函数的图象上.问题四、 已知一个正比例函数和一个一次函数的图象都经过点P( -1, 3), 且一次函数的图象与x 轴 交于Q 点,OQ 的长等于2.(1)求这两个函数的解析式; (2)若设∠PQO=α,求sin α的值.问题五、在直角坐标系中,直线l 1 ,l 2与x 轴,y 轴相交于点A,C 和B (点A 在原点O 的左边,点C 在 原点O 的右边,点B 在y 轴的负半轴上),且直线l 1: y= -31x-2.(1)若l 2与x 轴的交角α=30°,求直线l 2的函数解析式;(2)若l 1 ⊥l 2时,垂足为B, 求直线l 2的函数解析式.问题六、 一次函数y kx k =+过点(1,4),且分别与x 轴、y 轴交于A 、B 点,点P (a ,0)在x 轴正半轴上运动,点Q (0,b )在y 轴正半轴上运动,且PQ ⊥AB (1)求k 的值,并在直角坐标系中画出一次函数的图象; (2)求a 、b 满足的等量关系式;(3)若△APQ 是等腰三角形,求△APQ 的面积。

一次函数(1)

一次函数(1)

一次函数(1)介绍一次函数又被称为线性函数,是数学中最简单的一种函数类型。

它的一般形式可以表示为y = kx + b,其中k和b为常数。

在一次函数中,x和y之间存在线性关系,可以用直线表示。

一次函数的图像特点一次函数的图像通常是一条斜率为k的直线,b表示y轴的截距,也就是与y轴的交点。

以下是一次函数图像的特点:1. 斜率一次函数的斜率k表示直线的倾斜程度。

斜率为正数时,直线向右上方倾斜;斜率为负数时,直线向左上方倾斜;斜率为零时,直线水平。

斜率的绝对值越大,直线越陡峭。

2. 截距一次函数的截距b表示直线与y轴的交点,即x=0时的y轴坐标值。

截距可以是正数、负数或零。

当截距为正数时,直线在y轴上方与y轴相交;当截距为负数时,直线在y轴下方与y轴相交;当截距为零时,直线通过原点。

如何绘制一次函数图像绘制一次函数的图像通常需要知道斜率k和截距b。

根据斜率和截距的值,可以采用以下方法绘制一次函数图像:1.确定两个坐标点。

根据斜率和截距,随意选择两个点的坐标。

可以选择两个整数,以方便计算。

2.连接两个坐标点。

使用直线连接两个坐标点,即可得到一次函数的图像。

3.检查图像是否符合预期。

检查图像是否符合一次函数的特点,如斜率、截距等。

一次函数的应用一次函数在各个领域都有广泛的应用,以下是一些常见的应用场景:1. 经济学一次函数常常用于经济学中的供求曲线、成本曲线等的建模。

它可以帮助经济学家分析市场行为、预测价格变化等。

2. 物理学在物理学中,一次函数可以用于描述某些物理量之间的线性关系,如速度和时间、力和位移等。

3. 工程学工程学中的很多问题都可以使用一次函数进行建模,如电路中的电流与电压之间的关系、线性弹性力学中的受力与位移之间的关系等。

4. 统计学一次函数可以用于统计学中的回归分析,帮助研究人员找到变量之间的关系。

回归分析广泛应用于市场调研、社会科学、生物医学等领域。

总结一次函数是数学中最简单的函数类型,可以用直线表示。

自学初中数学资料-一次函数1-(资料附答案)

自学初中数学资料-一次函数1-(资料附答案)

自学资料年份题量分值考点题型2015112一次函数的实际应用(行程问题)解答201613正比例与反比例关系选择2017110一次函数图象与性质题解答2018322一次函数与不等式;一次函数的应用;一次函数与反比例函数填空;解答2019317一次函数的解析式、图象与应用填空、选择、解答一、函数【知识探索】1.表达两个变量之间依赖关系的数学式子称为函数解析式.【错题精练】例1.下列两个变量之间不存在函数关系的是()A. 圆的面积S和半径rB. 某地一天的温度T与时间tC. 某班学生的身高y与学生的学号xD. 一个正数b的平方根a与这个正数b【解答】解:A.圆的面积S和半径r间的关系是S=πr2,S是r的函数关系;B.某地一天的温度T与时间t的关系符合函数的定义;C.每一个学生对应一个身高,y是x的函数;D.正数b和它的平方根a满足a=±b第1页共28页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训的大致图象是()A. B. C. D.第2页共页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训≈37.3(千瓦时),故选项C错误;当x=8千瓦时,y=0.55×8=4.4(元),故选项D正确.故选:C.【答案】C2.下列各曲线表示的y与x的关系中,y不是x的函数的是()A. B. C. D.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C不满足条件.故选:C.【答案】C二、正比例、反比例、一次、二次函数图像上的点及图像与坐标轴的交点【知识探索】1.一次函数(、是常数,且)的图像与轴的交点为(,0)、与轴的交点(0,).【错题精练】例1.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y'),给出如下定义:如果y'={y(x≥0)−y(x<0),那么称点Q为点P的“关联点”.例如:点(2,3)的“关联点”为点(2,3),点(-2,3)的“关联点”为点(-2,-3).(1)①点(2,1)的“关联点”为______;②点(3,-1)的“关联点”为______;(2)①如果点P′(-2,1)是一次函数y=x+1图象上点P的“关联点”,那么点P的坐标为______;②如果点Q′(m,2)是一次函数y=x+1图象上点Q的“关联点”,求点Q的坐标.【解答】解:(1)①点(2,1)的“关联点”为(2,1);②点(3,-1)的“关联点”为(3,-1);故答案为(2,1),(3,-1);第3页共28页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训(2)①∵点P′(-2,1)是一次函数y=x+1图象上点P的“关联点”,∴P(-2,-1);故答案为(-2,-1);②由题意点Q是纵坐标为2或-2,对于一次函数y=x+1,当y=2时,x=1,当y=-2时,x=-3,∴Q(1,2),或(-3,-2).【答案】(2,1)(3,-1)(-2,-1)例2.(1)如图,在一次函数y=-x+3的图象上取点P,作PA⊥x轴,作PB⊥y轴,垂足分别为A,B,且矩形OAPB的面积为2,则这样的点有______;A.4个 B.3个 C.2个 D.1个(2)如图,在一次函数y=-x+1的图象上取点P,作PA⊥x轴,作PB⊥y轴,垂足分别为A,B,且矩形OAPB的面积为2,则这样的点有______;(3)在一次函数y=-x+k的图象上取点P,作PA⊥x轴,作PB⊥y轴,垂足分别为A,B,且矩形OAPB 的面积为2,则这样的点有3个,试求k的值.【解答】解:(1)设点P的坐标为(x,y),由图象得|x||y|=2,再将y=-x+3代入,得x(-x+3)=±2,则x2-3x+2=0或x2-5x-2=0,两个方程都有两个不相等的实数根,∴这样的点P个数共有4个.故选A.(2)设点P的坐标为(x,y),由图象得|x||y|=2,再将y=-x+1代入,得x(-x+1)=±2,则x2-x+2=0或x2-x-2=0,∵方程x2-x+2=0没有实数根,方程x2-x-2=0有两个不相等的实数根,∴这样的点P个数共有2个故答案为2个;(3)设点P的坐标为(x,y),由图象得|x||y|=2,再将y=-x+k代入,得x(-x+k)=±2,则x2-kx+2=0或x2-kx-2=0∵这样的点有3个,且x2-kx-2=0有两个不相等的实数根∴方程x2-kx+2=0,∴(-k)2-4×1×2=0解得k=2√2或-2√2.第4页共28页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训【答案】A2个【举一反三】1.如图,直线y=√33x+2与x轴,y轴分别交于A,B两点,把△AOB沿着直线AB翻折后得到△AO′B,则点O′的坐标是()A. (-√3,3)B. (√3,√3)C. (2,2√3)D. (2√3,4)【解答】解:如图,连接OO′,交AB于点D,作O′E⊥y轴,交y于点E,由题意得:OD=O′D,OO′⊥AB;由直线y=√33x+2与x轴、y轴分别交于A、B两点,B(0,2),A(-2√3,0),∴OA=2√3,OB=2;∴AB=√OA2+OB2=4,由面积公式:12OA•OB=12AB•OD,∴OD=√3,∴OO′=2OD=2√3;∵OO′⊥AB,OA⊥OB,∴∠OBA=∠O′OE,∠BOA=∠OEO′,∴△OAB∽△EOO′,∴ABOO′=OBO′E=OAOE,∴O′E=√3,OE=3,第5页共28页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训∴点O′坐标为(-√3,3).故选:A.【答案】A2.已知:如图1,一次函数y=mx+5m的图象与x轴、y轴分别交于点A、B,与函数y=-23x的图象交于点C,点C的横坐标为-3.(1)求点B的坐标;(2)若点Q为直线OC上一点,且S△QAC=3S△AOC,求点Q的坐标.【答案】解:(1)把x=-3代入y=-23x得到:y=2.则C(-3,2).将其代入y=mx+5m,得2=-3m+5m,解得m=1.则该直线方程为:y=x+5.令x=0,则y=5,即B(0,5);(2)由(1)知,C(-3,2).如图1,设Q(a,-23a).∵S△QAC=3S△AOC,∴S△QAO=4S△AOC,或S△Q′AO=2S△AOC,①当S△QAO=4S△AOC时,12OA•y Q=4×12OA•y C,第6页共28页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训∴y Q=4y C,即|-23a|=4×2=8解得a=-12或12(舍去),∴Q(-12,8).②当S△Q′AO=2S△AOC时,1 2OA•y Q=2×12OA•y C,∴y Q=2y C,即|-23a|=2×2=4,解得a=6或-6(舍去负值),∴Q′(6,-4).三、正比例、反比例、一次、二次函数函数图像的平移【知识探索】1.一般地,一次函数()的图像可由正比例函数的图像平移得到:(1)当时,向上平移个单位;(2)当时,向下平移个单位.【错题精练】例1.已知直线y=-x+4与双曲线y=kx(x>0)只有一个交点,将直线y=-x+4向上平移1个单位后与双曲线y=kx(x>0)相交于A,B两点,如图,则A点的坐标为()A. (1,4)B. (1,5)C. (2,3)D. (2,4)【解答】解:解方程kx=-x+4,化为整式方程x2-4x+k=0,∵直线y=-x+4与双曲线y=kx(x>0)只有一个交点,∴△=(-4)2-4k=0,解得:k=4,∴y=4x,第7页共28页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训直线y=-x+4向上平移1个单位后解析式为y=-x+5,解方程组{y=4xy=−x+5,解得:{x1=1y1=4,{x2=4y2=1,∴A(1,4),B(4,1),故选:A.【答案】A【举一反三】1.如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.(1)当t=2时,则AP=______,此时点P的坐标是______.(2)当t=3时,求过点P的直线l:y=-x+b的解析式?(3)当直线l:y=-x+b从经过点M到点N时,求此时点P向上移动多少秒?(4)点Q在x轴时,若S△ONQ=8时,请直按写出点Q的坐标是______.【解答】解:(1)当t=2时,AP=1×2=2,∵OP=OA+AP=3,∴点P的坐标是(0,3);(2)∵当t=3时,AP=1×3=3,∴OP=OA+AP=1+3=4,∴点P的坐标是(0,4).把(0,4)代入y=-x+b,得b=4,∴y=-x+4;(3)当直线y=-x+b过M(3,2)时,2=-3+b,解得b=5,5=1+t1,解得t1=4,当直线y=-x+b过N(4,4)时,4=-4+b,解得b=8,8=1+t2,解得t2=7,t2-t1=7-4=3秒;(4)设点Q的坐标为(x,0),第8页共28页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训∵S△ONQ=8,|x|•4=8,∴12解得x=±4,∴点Q的坐标是(4,0)或(-4,0).故答案为3,(0,3);(4,0)或(-4,0).【答案】2(0,3)(4,0)或(-4,0)四、一次函数与一元一次方程/不等式【错题精练】例1.如图,经过点B(-2,0)的直线y=kx+b与直线y=4x+2相交于点A(-1,-2),则不等式kx+b<4x+2<0的解集为______.【解答】解:∵经过点B(-2,0)的直线y=kx+b与直线y=4x+2相交于点A(-1,-2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(-1,-2),∵当x>-1时,kx+b<4x+2,当x<-12时,4x+2<0,∴不等式kx+b<4x+2<0的解集为-1<x<-12.故答案为-1<x<-1第9页共28页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训2.【答案】-1<x<-【答案】12例2.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为()A. x≥mB. x≥2C. x≥1D. y≥2【解答】解:∵直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),∴a+1=2,解得:a=1,观察图象知:关于x的不等式x+1≥mx+n的解集为x≥1,故选:C.【答案】C例3.某日上午,甲,乙两车先后从A地出发沿同一条公路匀速前往B地,甲车8点出发,如图是其行驶路程s(千米)随行驶时间t(小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v(单位:千米/小时)的范围是.【答案】60≤v≤80第10页共28页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训例4.一次函数y=kx+b(k≠0)的图象经过点B(-6,0),且与正比例函数y=13x的图象交于点A(m,-3),若kx-13x>-b,则()A. x>0B. x>-3C. x>-6D. x>-9【解答】解:把A(m,-3)代入y=13x得13m=-3,解得m=-9,所以当x>-9时,kx+b>13x,即kx-13x>-b的解集为x>-9.故选:D.【答案】D【举一反三】1.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A. x=2B. y=2C. x=-1D. y=-1【解答】解:∵一次函数y=kx+b的图象与x轴的交点为(-1,0),∴当kx+b=0时,x=-1.故选:C.【答案】C2.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是______.【解答】解:当x>3时,x+b>kx+6,即不等式x+b>kx+6的解集为x>3.故答案为:x>3.【答案】x>33.如图,已知函数y=kx+b和y=12x-2的图象交于点P,根据图象则不等式组kx+b<12x-2<0的解是.【解答】解:∵一次函数y=kx+b和y=12x-2的图象交于点P(2,-1),由图象上可以看出:当x>2是kx+b<12x-2,又∵当x<4时,一次函数y=12x-2<0,∴不等式组kx+b<12x-2<0的解集为:2<x<4.故答案为:2<x<4【答案】2<x<4五、一次函数与二元一次方程的关系【错题精练】例1.若正比例函数y=-2x 的图象与一次函数y=x+m 的图象交于点A ,且点A 的横坐标为-3. (1)求该一次函数的解析式;(2)直接写出方程组{y =−2xy =x +m的解.【答案】解:(1)将x=-3代入y=-2x ,得y=6, 则点A 坐标为(-3,6).将A (-3,6)代入y=x+m ,得-3+m=6, 解得m=9,所以一次函数的解析式为y=x+9;(2)方程组{y =−2x y =x +m 的解为{x =−3y =6.例2.如图,直线l 1:y=x+1与直线l 2:y=mx+n 相交于点P (1,b ).(1)求b 的值;(2)不解关于x 、y 的方程组{y =x +1y =mx +n ,请你直接写出它的解;(3)直线l 3:y=nx+m 是否也经过点P ?请说明理由.【答案】解:(1)把P (1,b )代入y=x+1得b=1+1=2; (2)由(1)得P (1,2),所以方程组{y =x +1y =mx +n 的解为{x =1y =2;(3)直线l 3:y=nx+m 经过点P .理由如下:因为y=mx+n 经过点P (1,2), 所以m+n=2,所以直线y=nx+m 也经过P 点.【举一反三】1.在直角坐标系中,直线l 1经过点(1,-3)和(3,1),直线l 2经过(1,0),且与直线l 1交于点A (2,a ).(1)求a 的值;(2)A (2,a )可看成怎样的二元一次方程组的解?(3)设直线l 1与y 轴交于点B ,直线l 2与y 轴交于点C ,求△ABC 的面积.【答案】解:(1)设直线l 1的解析式为y=kx+b , 把(1,-3)和(3,1)代入, 得{k +b =−33k +b =1,解得:{k =2b =−5, 则直线l 1的解析式为:y=2x-5, 把A (2,a )代入y=2x-5,得:a=2×2-5=-1;(2)设l 2的解析式为y=mx+n , 把A (2,-1)、(1,0)代入, 得{2m +n =−1m +n =0,解得{m =−1n =1,所以L 2的解析式为y=-x+1,所以点A (2,a )可以看作是二元一次方程组{2x −y =5x +y =1的解;(3)把x=0代入y=2x-5,得y=-5, 把x=0代入y=-x+1,得y=1,∴点B 的坐标为(0,-5),点C 的坐标为(0,1), ∴BC=1-(-5)=6.又∵A 点坐标为(2,-1), ∴S △ABC =12×6×2=6.2.如图,在直角坐标系中,点C 在直线AB 上,点A 、B 的坐标分别是(-1,0),(1,2),点C 的横坐标为2,过点B 作BD ⊥x 轴于D ,过点C 作CE ⊥x 轴于E ,直线BE 与y 轴交于点F .(1)若∠OFE=α,∠ACE=β,求∠ABE (用α,β表示);(2)已知直线AB 上的点的横坐标x 与纵坐标y 都是二元一次方程x-y=-1的解(同学们可以用点A 、B 的坐标进行检验),直线BE 上的点的横坐标x 与纵坐标y 都是二元一次方程2x+y=4的解,求点C 、F 的坐标;(3)解方程组{x −y =−12x +y =4,比较该方程组的解与两条直线的交点B 的坐标,你得出什么结论?【答案】解:(1)∵BD ⊥x 轴,CE ⊥x 轴, ∴BD ∥CE ,∴∠DBE=∠OFE=α,∠ABD=∠ACE=β, ∴∠ABE=∠ABD+∠DBE=α+β;(2)∵点C 的横坐标为2,把x=2代入方程x-y=-1, 解得y=3,∴点C 的坐标为(2,3); ∵点F 在y 轴上, ∴点F 的横坐标为0,把x=0代入2x+y=4,解得y=4,∴点F 的坐标是(0,4);(3)方程组{x −y =−12x +y =4的解是{x =1y =2,∵点B 的坐标是(1,2),∴直线AB 与直线BE 的交点坐标就是方程组{x −y =−12x +y =4的解.3.如图,已知函数y=ax+b 和y=kx 的图象交于点P ,则根据图象可得关于x ,y 的二元一次方程组{y =ax +by =kx的解是( )A. {x =−2y =−4B. {x =−4y =−2 C. {x =2y =−4D. {x =−4y =2【解答】解:函数y=ax+b 和y=kx 的图象交于点P (-4,-2), 即x=-4,y=-2同时满足两个一次函数的解析式. 所以关于x ,y 的方程组{y =ax +by =kx的解是{x =−4y =−2.故选:B.【答案】B六、一次函数的应用【知识探索】1.【错题精练】例1.小张骑车从甲地出发到达乙地后立即按原路返回甲地,出发后距甲地的路程y(km)与时间x(h)的函数图象如图所示.(1)小张在路上停留______h,他从乙地返回时骑车的速度为______km/h;(2)小王在距甲地路程15km的地方与小张同时出发,按相同路线前往乙地,当他到达乙地停止行动时,小张已返回到甲、乙两地的中点处.已知小王距甲地的路程y(km)与时间x(h)成一次函数关系.①求y与x的函数关系式;②利用函数图象,判断小王与小张在途中共相遇几次?并计算第一次相遇的时间.【解答】解:(1)1,60÷(6-4)=30;(2)①设函数关系式为y=kx+b根据题意图象经过(0,15),(5,60)所以b=155k+b=60b=155k+b=60解得k=9b=15k=9b=15∴解析式为y=9x+15;②根据图象,相遇两次,第一次相遇小张的函数图象经过(2,20),(4,60),设函数关系式为y=kx+b,则2k+b=204k+b=602k+b=204k+b=60,解得k=20b=-20k=20b=-20,所以,y=20x-20,联立y=9x+15y=20x-20y=9x+15y=20x-20,解得x=3511y=43711x=35113511y=43711711,所以,第一次相遇的时间是3511h.【答案】130例2.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达科技馆;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是()A. ①②③B. ①②④C. ①③④D. ①②③④【解答】解:由图象得出甲步行720米,需要9分钟,所以甲的运动速度为:720÷9=80(m/分),当第15分钟时,乙运动15-9=6(分钟),运动距离为:15×80=1200(m),∴乙的运动速度为:1200÷6=200(m/分),∴200÷80=2.5,(故②正确);当第19分钟以后两人之间距离越来越近,说明乙已经到达终点,则乙先到达科技馆,(故①正确);此时乙运动19-9=10(分钟),运动总距离为:10×200=2000(m),∴甲运动时间为:2000÷80=25(分钟),故a的值为25,(故④错误);∵甲19分钟运动距离为:19×80=1520(m),∴b=2000-1520=480,(故③正确).故正确的有:①②③.故选:A.【答案】A【举一反三】1.在一条笔直的公路旁依次有A、B、C三个村庄,甲、乙两人同时分别从A、B两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C村,最终到达C村,设甲、乙两人到C村的距离y1,y2(km)与行驶时间x(h)之间的函数关系如图所示,请回答下列问题(1)A、C两村间的距离为______km(2)求y1的关系式,并写出自变量x的取值范围;(3)求出图中点P的坐标,并解释该点坐标所表示的实际意义.【解答】解:(1)由图象可知:A、C两村间的距离为120km.故答案为120;(2)由图可知,y1与y轴交点为(0,120),所以设y1=k1x+120,∵甲运动0.5小时共行驶120-90=30km,∴甲运动的速度为每小时60km,∵A、C两村间的距离为120km,∴甲从A村到C村共用时间a=2(h),代入(2,0)得,0=k1×2+120,解得k1=-60,所以y1=-60x+120.把y=0代入得x=2,所以自变量x的取值范围为0<x<2;(3)设y2=k2x+90,代入(3,0),得0=3k2+90,解得k2=-30,所以y2=-30x+90.当y1=y2时,-60t+120=-30t+90,解得:t=1,所以甲乙二人行驶1小时后两人相遇,此时距离C村60km,故P点坐标为P(1,60).【答案】1202.甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②n=7.5;③点H的坐标是(7,80);④m=160.其中说法正确的是______.【解答】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,②错误.当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;由图象第2-6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,④正确;∴正确的有①③④.故答案为:①③④【答案】①③④1.已知y-2与x+1成正比例函数关系,且x=-2时,y=6.(1)写出y与x之间的函数关系式;(2)求当x=-3时,y的值;(3)求当y=4时,x的值.【答案】解:(1)依题意得:设y-2=k(x+1).将x=-2,y=6代入:得k=-4所以,y=-4x-2.(2)由(1)知,y=-4x-2,∴当x=-3时,y=(-4)×(-3)-2=10,即y=10;(3)由(1)知,y=-4x-2,∴当y=4时,4=(-4)×x-2,解得,x=-32.2.下列各曲线中,能表示y是x的函数的是()A. B.C. D.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以D正确.故选:D.【答案】D3.直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2.则关于x的不等【解答】解:∵直线y=-x+m 与y=nx+4n (n≠0)的交点的横坐标为-2,∴关于x 的不等式-x+m >nx+4n 的解集为x <-2,∴y=nx+4n=0时,x=-4,∴不等式-x+m >nx+4n >0的解集为4<x <-2.故答案为:-4<x <-2.【答案】-4<x <-24.如图,已知函数y=3x+b 和y=ax-3的图象交于点P (-2,-5),则根据图象可得不等式3x+b >ax-3的解集是______.【解答】解:∵函数y=3x+b 和y=ax-3的图象交于点P (-2,-5),∴不等式 3x+b >ax-3的解集是x >-2,故答案为:x >-2.【答案】x >-25.已知一次函数y 1=2x+m 与y 2=2x+n (m≠n )的图象如图所示,则关于x 与y 的二元一次方程组{2x −y =−m 2x −y =−n的解的个数为( )A. 0个B. 1个C. 2个D. 无数个【解答】解:∵一次函数y 1=2x+m 与y 2=2x+n (m≠n )是两条互相平行的直线,∴关于x 与y 的二元一次方程组{2x −y =−m 2x −y =−n无解.【答案】A6.【数学活动回顾】:七年级下册教材中我们曾探究过“以方程x-y=0的解为坐标(x 的值为横坐标、y 的值为纵坐标)的点的特性”,了解了二元一次方程的解与其图象上点的坐标的关系.规定:以方程x-y=0的解为坐标的所有点的全体叫做方程x-y=0的图象;结论:一般的,任何一个二元一次方程的图象都是一条直线.示例:如图1,我们在画方程x-y=0的图象时,可以取点A (-1,-1)和B (2,2),作出直线AB .【解决问题】:1、请你在图2所给的平面直角坐标系中画出二元一次方程组{2x +y =4x −y =−1中的两个二元一次方程的图象(提示:依据“两点确定一条直线”,画出图象即可,无需写过程)2、观察图象,两条直线的交点坐标为______,由此你得出这个二元一次方程组的解是______;【拓展延伸】:3、已知二元一次方程ax+by=6的图象经过两点A (-1,3)和B (2,0),试求a 、b 的值.【解答】解:1、如图,2、观察图象,两条直线的交点坐标为(1,2),由此得出这个二元一次方程组的解是{x =1y =2; 3、根据题意得{−a +3b =62a =6,解得{a =3b =3 故答案为(1,2),{x =1y =2.{x =1y =27.在同一直角坐标系内分别作出一次函数y=12x+1和y=2x-2的图象,则下面的说法:①函数y=2x-2的图象与y 轴的交点是(-2,0);②方程组{2y −x =22x −y =2的解是{x =2y =2; ③函数y=12x+1和y=2x-2的图象交点的坐标为(-2,2);④两直线与y 轴所围成的三角形的面积为3.其中正确的有______.(填序号)【解答】解:①当x=0时,y=-2,所以函数y=2x-2的图象与y 轴的交点是(0,-2),故①不正确; ②{2y −x =2①2x −y =2②, 化简得:{−2x +4y =4③2x −y =2②, ②+③得:3y=6,y=2,∴x=2,∴方程组{2y −x =22x −y =2的解是{x =2y =2; 故②正确;③{y =12x +1y =2x −2解得{x =2y =2 ∴函数y=12x+1和y=2x-2的图象交点的坐标为(2,2);故③不正确;④如图所示,过A 作AD ⊥y 轴于D ,当x=0时,y=1,则C(0,1),同理得E(0,-2),∴CE=2+1=3,由②知A(2,2),∴S△AEC=12EC•AD=12×3×2=3,故④正确;故答案为:②④.【答案】②④8.甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x=2或6时,甲乙两队所挖管道长度都相差100米.正确的有______.(在横线上填写正确的序号)【解答】解:①根据函数图象得:甲队的工作效率为:600÷6=100米/天,故正确;②根据函数图象,得乙队开挖两天后的工作效率为:(500-300)÷(6-2)=50米/天,故正确;③乙队完成任务的时间为:2+(600-300)÷50=8天,∴甲队提前的时间为:8-6=2天.∵2≠3,∴③错误;④当x=2时,甲队完成的工作量为:2×100=200米,乙队完成的工作量为:300米.当x=6时,甲队完成的工作量为600米,乙队完成的工作量为500米.∵300-200=600-500=100,∴当x=2或6时,甲乙两队所挖管道长度都相差100米.故正确.故答案为:①②④.9.一条笔直的公路上依次有A、B、C三地,甲、乙两车同时从B地出发,匀速驶往C地.乙车直接驶往C地,甲车先到A地取一物件后立即调转方向追赶乙车(甲车取物件的时间忽略不计).已知两车间距离y(km)与甲车行驶时间x(h)的关系图象如图1所示.(1)求两车的速度分别是多少?(2)填空:A、C两地的距离是:______,图中的t=______(3)在图2中,画出两车离B地距离y(km)与各自行驶时间x(h)的关系图象,并求两车与B地距离相等时行驶的时间.【解答】解:(1)由直线1可得,出v甲+v乙=150①;由直线2得,v甲-v乙=30②,结合①②可得:v甲=90km/小时,v乙=60km/小时;(2)由直线1、2得,乙运用3.5小时候到达C地,故B、C之间的距离为:v乙t=3.5×60=210km.由图也可得:甲用1小时从B到达A,故A、B之间的距离为v甲t=90×1=90km,综上可得A、C之间的距离为:AB+BC=300km;甲需要先花1小时从B到达A,然后再花30090=103小时从A到达C,从而可得t=103+1=13;(3)甲:当0≤t≤1时,y=90x;②当1<t≤2时,y=180-90x;③当2<x≤133,y=90x-180;乙:y乙=60x.由题意可得,当甲从A到B行驶的过程中会出现题意所述情况,故可得:90-90(t-1)=60t,解得:t=65小时.答:两车与B地距离相等时行驶的时间为1.2小时或133小时.【答案】300km【答案】133。

19.2.3一次函数1

19.2.3一次函数1

o
G= h-105
下列问题中变量间的对应关系可用怎样的函数 表示?这些函数有什么共同点?
(3)某城市的市内电话的月收费额y(单位: 元) 包括:月租费22元,拨打电话x分的计 时费按0.1元/分收取;
解:y=0.1x+22 (x≥ 0)
(4)把一个长10cm、宽5cm的长方形的长减少xcm, 宽不变,长方形的面积y(单位:cm2)随x的值而 变化。 y=5(10-x)
(2) y与x之间是什么函数关系式; (3)求x =2.5时, y的值 解: (1) ∵ y与x-3成正比例
∴可设y = k(x-3)
又∵当x=4时, y=3 ∴3 = k(4-3)
(k ≠ 0)
解得k =3 ∴y = 3(x-3) = 3x-9
(2) y是x的一次函数;
(3)当x =2.5时, y = 3×2.5-9 =-1.5
这节课的收获:
怎样的函数是一次函数?
一般地,形如y=kx+b(k,b是常数,k≠0) 的函数,叫做一次函数。 当b=0时,y=kx+b就变成了y=kx,所以 说正比例函数是一种特殊的一次函数。
3.已知A、B两地相距30千米, B 、C两地相距48千米, 某人骑自行车以每小时12千米的速度从A地出发,经 过B地到达C地.设此人骑车时间为x(时)离B地距离为 y(千米). (1)当此人在A、B两地之间时,求 y与x之间的函数关 系式及自变量x的取值范围;
2
2 ( 4) y 13 x x3 ( 6) y 2
你能举出一些一次函数的例子吗?
3 例2.已知函数 y (m 3) x 是一次函数,求其解析式。 2 m 3 m 8 1 由题意得: 解: m 3 m 3 0

一次函数1

一次函数1

2.(2006河北中考25题)有两段长度相等的河渠挖掘任务,分别交 给甲、乙两个工程队同时进行挖掘.图11是反映所挖河渠长度y(米) 与挖掘时间x(时)之间关系的部分图象.请解答下列问题:
(1)乙队开挖到30米时,用了_____小时.开挖6小时时,甲队比乙
队多挖了______米;
(2)请你求出:
4.当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例函
数是特殊的一次函数.
5.函数图像性质:当k相同,且b不相等,图像平行; 当k不同,且b相等,图像相交于Y轴; 当k互为负倒数时,两直线垂直;
图像性质:
1.作法与图形:通过如下3个步骤:
(1)列表:每确定自变量x的一个值,求出因变量y的一个值,并列表, (2)描点:一般取两个点,根据“两点确定一条直线”的道理; (3)连线:可以作出一次函数的图像——一条直线。因此,作一次函 数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴
走平路到达学校,所用的时间与路返回,且走平路、上坡路、下坡 路的速度分别保持和去上学时一致,那么他从学校到家 需要的时间是( A.14分钟 ) B.17分钟 C.18分钟 D.20分钟
某种洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四 个连续的过程,其中进水、清洗、排水时洗衣机中的水量y(升) 与时间x(分钟)之间的关系如图所示: 根据图象解答下列问题:
(1)汽车共行驶了___________ km; (2)汽车在行驶途中停留了___________ h; (3)汽车在整个行驶过程中的平均速度为___________ km/h;
(4)汽车自出发后3h至4.5h之间行驶的方向是___________.
6、图中,射线l甲、l乙分别表示甲、乙两运动员在自 行车比赛中所走的路程s与时间t的函数关系,求它们行 进的速度关系。 7、(2011四川内江)小高从家骑自行车去学校上 学,先走上坡路到达点A,再走下坡路到达点B,最后

14.2.2一次函数(1)

14.2.2一次函数(1)
①y=-8x ④y=5x-6 8 ②y=- x x-1 ⑤y=3 ③y=5x2+6 ⑥y=kx+b
例1:下列函数中y是x的一次函数的 有 ①④⑤ ,y是x的正比例函数的有 ① 。 (只填序号)如果是一次函数,k、b分别是 多少
①y=-8x ④y=5x-6 8 ②y=- x x-1 ⑤y=3 ③y=5x2+6 ⑥y=kx+b
思考下列问题中变量间的对应关系可用怎样
的函数表示?这些函数有什么共同点?
(1)有人发现,在20~25℃时蟋蟀每分鸣叫次数C与 位:℃)有关,即c的值约是t的7倍与35的差 (2)一种计算成年人标准体重G(单位:千克)的方法是,以厘米为单位量 出身高值h减常数105,所得差是G的值; (3)某城市的市内电话的月收入费额y(单位:元)包括:月租费22元,拨打 电话X分的计时费按0.01元/分收取; (4)把一个长10 cm,宽5cm的长方形的长减少Xcm, 面积y (单位:cm2)随x的值而变化. 宽不变,长方形的 温度t(单
①y=-8x ④y=5x-6 8 ②y=- x x-1 ⑤y=3 ③y=5x2+6 ⑥y=kx+b
可将函数关系式变形为 y=- 1 x+ 1 其中K=- 1 ,b= 1 3 3 3 3
例1:下列函数中y是x的一次函数的 有 ,y是x的正比例函数的有 。 (只填序号)如果是一次函数,k、b分别是 多少
解:由已知可得 k-2≠0② 由①得k=2或k=0 由②得k≠2 ∴k=0 故k的值为0. |k-1|=1①
3、为了加强公民的节水意识,我市制定了 如下用水收费标准:每户每月的用水量不超 过10吨时,水价为每吨1.2元,超过10吨时, 超过部分按每吨1.8元收费,设某户居民月用 水量为x吨,月交纳水费y元。

八年级数学一次函数1

八年级数学一次函数1
(1).用整式表示的函数,自变量的取值范围是全体实数。 (2)用分式表示的函数,自变量的取值范围是使分母不为0的 一切实数。 (3)用寄次根式表示的函数,自变量的取值范围是全体实数。
用偶次根式表示的函数,自变量的取值范围是使被开方数 为非负数的一 切实数。
(4)若解析式由上述几种形式综合而成,须先求出各部分的取 值范围,然后再求其公共范围,即为自变量的取值范围。 (5)对于与实际问题有关系的,自变量的取值范围应使实际问 题有意义。
3
O
2
5
x/时
6、某医药研究所开发了一种新药,在实际验药时发现, 如果成人按规定剂量服用,那么每毫升血液中含药量y(毫 克)随时间x(时)的变化情况如图所示,当成年人按规定 剂量服药后。
y=3x (3)当x≤2时y与x之间的函数关系式是___________。
(4)当x≥2时y与x之间的函数关系式是___________。 y=-x+8 (5)如果每毫升血液中含
y/毫克
6
药量3毫克或3毫克以上时,
治疗疾病最有效,那么这
个有效时间是___时。 4
3
O
2
5
x/时
1.梳理本章知识脉络,加强知识点的 巩固和理解. 2.进一步学会函数的研究方法,提高 解题的灵活性. 3.对综合性题目,会合理使用数学思 想方法探究解决.
作业:小聪上午8:00从家里出发,骑车去一家超市购物,然后从
b 40 22.5 3.5k b
k 5 解得 b 40
(0≤t≤8)
解析式为:Q=-5t+40
5、柴油机在工作时油箱中的余油量Q(千克)与工作 时间t(小时)成一次函数关系,当工作开始时油箱中有 油40千克,工作3.5小时后,油箱中余油22.5千克 (1)写出余油量Q与时间t的函数关系式. Q=-5t+40 (2)画出这个函数的图象。 (0≤t≤8)

【经典例题剖析】一次函数[1]

【经典例题剖析】一次函数[1]

第十一章 一次函数复习课知识点1 一次函数和正比例函数的概念若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数.例如:y=2x+3,y=-x+2,y=21x 等都是一次函数,y=21x ,y=-x 都是正比例函数.【说明】 (1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b (k ,b 为常数,b ≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数.(3)当b=0,k ≠0时,y= kx 仍是一次函数.(4)当b=0,k=0时,它不是一次函数.知识点2 函数的图象把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.知识点 3一次函数的图象由于一次函数y=kx+b (k ,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b .由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-kb ,0).但也不必一定选取这两个特殊点.画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可.知识点4 一次函数y=kx+b (k ,b 为常数,k ≠0)的性质(1)k 的正负决定直线的倾斜方向;①k >0时,y 的值随x 值的增大而增大;②k ﹤O 时,y 的值随x 值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b 的正、负决定直线与y 轴交点的位置;①当b >0时,直线与y 轴交于正半轴上;②当b <0时,直线与y 轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k ,b 的符号不同,直线所经过的象限也不同;①如图11-18(l )所示,当k >0,b >0时,直线经过第一、二、三象限(直线不经过第四象限);②如图11-18(2)所示,当k>0,b﹥O时,直线经过第一、三、四象限(直线不经过第二象限);③如图11-18(3)所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);④如图11-18(4)所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点3 正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.知识点4 点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.知识点5 确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.知识点6 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.知识点7 用待定系数法确定一次函数表达式的一般步骤(1)设函数表达式为y=kx+b ;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k 与b 的值,得到函数表达式.例如:已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式.解:设一次函数的关系式为y =kx+b (k ≠0),由题意可知,⎩⎨⎧+-=-+=,3,21b k b k 解⎪⎪⎩⎪⎪⎨⎧-==.35,34b k ∴此函数的关系式为y=3534-x . 【说明】 本题是用待定系数法求一次函数的关系式,具体步骤如下:第一步,设(根据题中要求的函数“设”关系式y=kx+b ,其中k ,b 是未知的常量,且k ≠0);第二步,代(根据题目中的已知条件,列出方程(或方程组),解这个方程(或方程组),求出待定系数k ,b );第三步,求(把求得的k ,b 的值代回到“设”的关系式y=kx+b 中);第四步,写(写出函数关系式).思想方法小结 (1)函数方法.函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.(2)数形结合法.数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.知识规律小结 (1)常数k ,b 对直线y=kx+b(k ≠0)位置的影响.①当b >0时,直线与y 轴的正半轴相交;当b=0时,直线经过原点;当b ﹤0时,直线与y 轴的负半轴相交.②当k ,b 异号时,即-k b >0时,直线与x 轴正半轴相交; 当b=0时,即-kb =0时,直线经过原点;当k ,b 同号时,即-kb ﹤0时,直线与x 轴负半轴相交. ③当k >O ,b >O 时,图象经过第一、二、三象限;当k >0,b=0时,图象经过第一、三象限;当b >O ,b <O 时,图象经过第一、三、四象限;当k ﹤O ,b >0时,图象经过第一、二、四象限;当k ﹤O ,b=0时,图象经过第二、四象限;当b <O ,b <O 时,图象经过第二、三、四象限.(2)直线y=kx+b (k ≠0)与直线y=kx(k ≠0)的位置关系.直线y=kx+b(k ≠0)平行于直线y=kx(k ≠0)当b >0时,把直线y=kx 向上平移b 个单位,可得直线y=kx+b ;当b ﹤O 时,把直线y=kx 向下平移|b|个单位,可得直线y=kx+b .(3)直线b 1=k 1x+b 1与直线y 2=k 2x+b 2(k 1≠0 ,k 2≠0)的位置关系.①k 1≠k 2⇔y 1与y 2相交;②⎩⎨⎧=≠2121b b k k ⇔y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2); ③⎩⎨⎧≠=2121,b b k k ⇔y 1与y 2平行; ④⎩⎨⎧==2121,b b k k ⇔y 1与y 2重合.典例剖析 基本概念题本节有关基本概念的题目主要是一次函数、正比例函数的概念及它们之间的关系,以及构成一次函数及正比例函数的条件.例1 下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=-21x ; (2)y=-x2; (3)y=-3-5x ; (4)y=-5x 2; (5)y=6x-21 (6)y=x(x-4)-x 2. [分析] 本题主要考查对一次函数及正比例函数的概念的理解.解:(1)(3)(5)(6)是一次函数,(l )(6)是正比例函数.例2 当m 为何值时,函数y=-(m-2)x 32-m +(m-4)是一次函数?[分析] 某函数是一次函数,除应符合y=kx+b 外,还要注意条件k ≠0. 解:∵函数y=(m-2)x32-m +(m-4)是一次函数,∴⎩⎨⎧≠--=-,0)2(,132m m ∴m=-2.∴当m=-2时,函数y=(m-2)x 32-m +(m-4)是一次函数.小结 某函数是一次函数应满足的条件是:一次项(或自变量)的指数为1,系数不为0.而某函数若是正比例函数,则还需添加一个条件:常数项为0. 基础知识应用题本节基础知识的应用主要包括:(1)会确定函数关系式及求函数值;(2)会画一次函数(正比例函数)图象及根据图象收集相关的信息;(3)利用一次函数的图象和性质解决实际问题;(4)利用待定系数法求函数的表达式.例3 一根弹簧长15cm ,它所挂物体的质量不能超过18kg ,并且每挂1kg 的物体,弹簧就伸长0.5cm ,写出挂上物体后,弹簧的长度y (cm )与所挂物体的质量x(kg )之间的函数关系式,写出自变量x 的取值范围,并判断y 是否是x 的一次函数.[分析] (1)弹簧每挂1kg 的物体后,伸长0.5cm ,则挂xkg 的物体后,弹簧的长度y 为(l5+0.5x )cm ,即y=15+0.5x .(2)自变量x 的取值范围就是使函数关系式有意义的x 的值,即0≤x ≤18.(3)由y=15+0.5x 可知,y 是x 的一次函数.解:(l )y=15+0.5x .(2)自变量x 的取值范围是0≤x ≤18.(3)y 是x 的一次函数.学生做一做 乌鲁木齐至库尔勒的铁路长约600千米,火车从乌鲁木齐出发,其平均速度为58千米/时,则火车离库尔勒的距离s (千米)与行驶时间t (时)之间的函数关系式是 .老师评一评 研究本题可采用线段图示法,如图11-19所示.火车从乌鲁木齐出发,t 小时所走路程为58t 千米,此时,距离库尔勒的距离为s 千米,故有58t+s=600,所以,s=600-58t .例4 某物体从上午7时至下午4时的温度M (℃)是时间t (时)的函数:M=t 2-5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为 ℃.[分析] 本题给出了函数关系式,欲求函数值,但没有直接给出t 的具体值.从题中可以知道,t=0表示中午12时,t=1表示下午1时,则上午10时应表示成t=-2,当t=-2时,M=(-2)3-5×(-2)+100=102(℃).答案:102例5 已知y-3与x 成正比例,且x=2时,y=7.(1)写出y 与x 之间的函数关系式;(2)当x=4时,求y 的值;(3)当y=4时,求x 的值.[分析] 由y-3与x 成正比例,则可设y-3=kx ,由x=2,y=7,可求出k ,则可以写出关系式.解:(1)由于y-3与x 成正比例,所以设y-3=kx .把x=2,y=7代入y-3=kx 中,得7-3=2k ,∴k =2.∴y 与x 之间的函数关系式为y-3=2x ,即y=2x+3.(2)当x=4时,y=2×4+3=11.(3)当y =4时,4=2x+3,∴x=21. 学生做一做 已知y 与x+1成正比例,当x=5时,y=12,则y 关于x 的函数关系式是 .老师评一评 由y 与x+1成正比例,可设y 与x 的函数关系式为y=k (x+1). 再把x=5,y=12代入,求出k 的值,即可得出y 关于x 的函数关系式. 设y 关于x 的函数关系式为y=k (x+1).∵当x=5时,y=12,∴12=(5+1)k ,∴k=2.∴y 关于x 的函数关系式为y=2x+2.【注意】 y 与x+1成正比例,表示y=k(x+1),不要误认为y=kx+1.例6 若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1﹤x 2时,y 1>y 2,则m 的取值范围是( )A .m ﹤OB .m >0C .m ﹤21D .m >M[分析] 本题考查正比例函数的图象和性质,因为当x 1<x 2时,y 1>y 2,说明y 随x 的增大而减小,所以1-2m ﹤O,∴m >21,故正确答案为D 项. 学生做一做 某校办工厂现在的年产值是15万元,计划今后每年增加2万元.(1)写出年产值y (万元)与年数x (年)之间的函数关系式;(2)画出函数的图象;(3)求5年后的产值.老师评一评 (1)年产值y (万元)与年数x (年)之间的函数关系式为y=15+2x .(2)画函数图象时要特别注意到该函数的自变量取值范围为x ≥0,因此,函数y=15+2x 的图象应为一条射线.画函数y=12+5x 的图象如图11-21所示.(3)当x=5时,y =15+2×5=25(万元)∴5年后的产值是25万元.例7 已知一次函数y=kx+b 的图象如图11-22所示,求函数表达式.[分析] 从图象上可以看出,它与x 轴交于点(-1,0),与y 轴交于点(0,-3),代入关系式中,求出k 为即可.解:由图象可知,图象经过点(-1,0)和(0,-3)两点,代入到y=kx+b 中,得⎩⎨⎧+=-+-=,03,0b b k ∴⎩⎨⎧-=-=.3,3b k ∴此函数的表达式为y=-3x-3.例8 求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式. [分析] 图象与y=2x+1平行的函数的表达式的一次项系数为2,则可设此表达式为y=2x+b ,再将点(2,-1)代入,求出b 即可.解:由题意可设所求函数表达式为y=2x+b ,∴图象经过点(2,-1),∴-l=2×2+b .∴b=-5,∴所求一次函数的表达式为y=2x-5.综合应用题本节知识的综合应用包括:(1)与方程知识的综合应用;(2)与不等式知识的综合应用;(3)与实际生活相联系,通过函数解决生活中的实际问题.例8 已知y+a 与x+b (a ,b 为是常数)成正比例.(1)y 是x 的一次函数吗?请说明理由;(2)在什么条件下,y 是x 的正比例函数?[分析] 判断某函数是一次函数,只要符合y=kx+b (k ,b 中为常数,且k ≠0)即可;判断某函数是正比例函数,只要符合y=kx(k 为常数,且k ≠0)即可.解:(1)y 是x 的一次函数.∵y+a 与x+b 是正比例函数,∴设y+a=k(x+b)(k 为常数,且k ≠0)整理得y=kx+(kb-a ).∵k ≠0,k ,a ,b 为常数,∴y=kx+(kb-a)是一次函数.(2)当kb-a=0,即a=kb 时,y 是x 的正比例函数.例9 某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分,再付电话费0.4元;“神州行”使用者不交月租费,每通话1分,付话费0.6元(均指市内通话)若1个月内通话x 分,两种通讯方式的费用分别为y 1元和y 2元.(1)写出y 1,y 2与x 之间的关系;(2)一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算? [分析] 这是一道实际生活中的应用题,解题时必须对两种不同的收费方式仔细分析、比较、计算,方可得出正确结论.解:(1)y 1=50+0.4x (其中x ≥0,且x 是整数)y 2=0.6x (其中x ≥0,且x 是整数)(2)∵两种通讯费用相同,∴y 1=y 2,即50+0.4x=0.6x .∴x =250.∴一个月内通话250分时,两种通讯方式的费用相同.(3)当y 1=200时,有200=50+0.4x ,∴x=375(分).∴“全球通”可通话375分.当y 2=200时,有200=0.6x ,∴x=33331(分). ∴“神州行”可通话33331分. ∵375>33331, ∴选择“全球通”较合算.例10 已知y+2与x 成正比例,且x=-2时,y=0.(1)求y 与x 之间的函数关系式;(2)画出函数的图象;(3)观察图象,当x 取何值时,y ≥0?(4)若点(m ,6)在该函数的图象上,求m 的值;(5)设点P 在y 轴负半轴上,(2)中的图象与x轴、y 轴分别交于A ,B 两点,且S △ABP =4,求P 点的坐标.[分析] 由已知y+2与x 成正比例,可设y+2=kx ,把x=-2,y=0代入,可求出k ,这样即可得到y 与x 之间的函数关系式,再根据函数图象及其性质进行分析,点(m ,6)在该函数的图象上,把x=m ,y=6代入即可求出m 的值.解:(1)∵y+2与x 成正比例,∴设y+2=kx (k 是常数,且k ≠0)∵当x=-2时,y=0.∴0+2=k ·(-2),∴k =-1.∴函数关系式为x+2=-x ,即y=-x-2.(2)列表;(3)由函数图象可知,当x ≤-2时,y ≥0.∴当x ≤-2时,y ≥0.(4)∵点(m ,6)在该函数的图象上,∴6=-m-2,∴m =-8.(5)函数y=-x-2分别交x 轴、y 轴于A ,B 两点,∴A (-2,0),B (0,-2).∵S △ABP =21·|AP|·|OA|=4, ∴|BP|=428||8==OA . ∴点P 与点B 的距离为4.又∵B 点坐标为(0,-2),且P 在y 轴负半轴上,∴P 点坐标为(0,-6).例11 已知一次函数y=(3-k )x-2k 2+18.(1)k 为何值时,它的图象经过原点?(2)k 为何值时,它的图象经过点(0,-2)?(3)k 为何值时,它的图象平行于直线y=-x ?(4)k 为何值时,y 随x 的增大而减小?[分析] 函数图象经过某点,说明该点坐标适合方程;图象与y 轴的交点在y 轴上方,说明常数项b >O ;两函数图象平行,说明一次项系数相等;y 随x 的增大而减小,说明一次项系数小于0.解:(1)图象经过原点,则它是正比例函数.∴⎩⎨⎧≠-=+-,03,01822k k ∴k =-2.∴当k=-3时,它的图象经过原点.(2)该一次函数的图象经过点(0,-2).∴-2=-2k 2+18,且3-k ≠0,∴k=±10∴当k=±10时,它的图象经过点(0,-2)(3)函数图象平行于直线y=-x ,∴3-k=-1,∴k =4.∴当k =4时,它的图象平行于直线x=-x .(4)∵随x 的增大而减小,∴3-k ﹤O .∴k >3.∴当k >3时,y 随x 的增大而减小.例12 判断三点A (3,1),B (0,-2),C (4,2)是否在同一条直线上.[分析] 由于两点确定一条直线,故选取其中两点,求经过这两点的函数表达式,再把第三个点的坐标代入表达式中,若成立,说明在此直线上;若不成立,说明不在此直线上.解:设过A ,B 两点的直线的表达式为y=kx+b .由题意可知,⎩⎨⎧+=-+=,02,31b b k ∴⎩⎨⎧-==.2,1b k ∴过A ,B 两点的直线的表达式为y=x-2.∴当x=4时,y=4-2=2.∴点C (4,2)在直线y=x-2上.∴三点A (3,1), B (0,-2),C (4,2)在同一条直线上.学生做一做 判断三点A (3,5),B (0,-1),C (1,3)是否在同一条直线上.探索与创新题主要考查学生运用知识的灵活性和创新性,体现分类讨论思想、数形结合思想在数学问题中的广泛应用.例13 老师讲完“一次函数”这节课后,让同学们讨论下列问题:(1)x 从0开始逐渐增大时,y=2x+8和y=6x 哪一个的函数值先达到30?这说明了什么?(2)直线y=-x 与y=-x+6的位置关系如何?甲生说:“y=6x 的函数值先达到30,说明y=6x 比y=2x+8的值增长得快.” 乙生说:“直线y=-x 与y=-x+6是互相平行的.”你认为这两个同学的说法正确吗?[分析] (1)可先画出这两个函数的图象,从图象中发现,当x >2时,6x >2x+8,所以,y=6x 的函数值先达到30.(2)直线y=-x 与y=-x+6中的一次项系数相同,都是-1,故它们是平行的,所以这两位同学的说法都是正确的.解:这两位同学的说法都正确.例14 某校一名老师将在假期带领学生去北京旅游,用旅行社说:“如果老师买全票,其他人全部半价优惠.”乙旅行社说:“所有人按全票价的6折优惠.”已知全票价为240元.(1)设学生人数为x ,甲旅行社的收费为y 甲元,乙旅行社的收费为y 乙元,分别表示两家旅行社的收费;(2)就学生人数讨论哪家旅行社更优惠.[分析] 先求出甲、乙两旅行社的收费与学生人数之间的函数关系式,再通过比较,探究结论.解:(1)甲旅行社的收费y 甲(元)与学生人数x 之间的函数关系式为y 甲=240+21×240x=240+120x. 乙旅行社的收费y 乙(元)与学生人数x 之间的函数关系式为y 乙=240×60%×(x+1)=144x+144.(2)①当y 甲=y 乙时,有240+120x=144x+144,∴24x =96,∴x=4.∴当x=4时,两家旅行社的收费相同,去哪家都可以.②当y 甲>y 乙时,240+120x >144x+144,∴24x <96,∴x <4.∴当x ﹤4时,去乙旅行社更优惠.③当y 甲﹤y 乙时,有240+120x ﹤140x+144,∴24x >96,∴x >4.∴当x >4时,去甲旅行社更优惠.小结 此题的创新之处在于先通过计算进行讨论,再作出决策,另外,这两个函数都是一次函数,利用图象来研究本题也不失为一种很好的方法.学生做一做 某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案.甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y (元)与所购买的水果量x (千克)之间的函数关系式,并写出自变量X 的取值范围;(2)当购买量在什么范围时,选择哪种购买方案付款少?并说明理由. 老师评一评 先求出两种购买方案的付款y (元)与所购买的水果量x (千克)之间的函数关系式,再通过比较,探索出结论.(1)甲方案的付款y 甲(元)与所购买的水果量x (千克)之间的函数关系式为y 甲=9x (x ≥3000);乙方案的付款y 乙(元)与所购买的水果量x (千克)之间的函数关系式为 y 乙=8x+500O (x ≥3000).(2)有两种解法:解法1:①当y 甲=y 乙时,有9x=8x+5000,∴x=5000.∴当x=5000时,两种方案付款一样,按哪种方案都可以.②当y 甲﹤y 乙时,有9x ﹤8x+5000,∴x <5000.又∵x ≥3000,∴当3000≤x ≤5000时,甲方案付款少,故采用甲方案.③当y 甲>y 乙时,有9x >8x+5000,∴x >5000.∴.当x >500O 时,乙方案付款少,故采用乙方案.解法2:图象法,作出y 甲=9x 和y 乙=8x+5000的函数图象,如图11-24所示,由图象可得:当购买量大于或等于3000千克且小于5000千克时,y 甲﹤y 乙,即选择甲方案付款少;当购买量为5000千克时,y 甲﹥y 乙即两种方案付款一样;当购买量大于5000千克时,y 甲>y 乙,即选择乙方案付款最少.【说明】 图象法是解决问题的重要方法,也是考查学生读图能力的有效途径.例15 一次函数y=kx+b 的自变量x 的取值范围是-3≤x ≤6,相应函数值的取值范围是-5≤y ≤-2,则这个函数的解析式为 .[分析] 本题分两种情况讨论:①当k >0时,y 随x 的增大而增大,则有:当x=-3,y=-5;当x=6时,y=-2,把它们代入y=kx+b 中可得⎩⎨⎧+=-+-=-,62,35b k b k ∴⎪⎩⎪⎨⎧-==,4,31b k ∴函数解析式为y=-31x-4.②当k ﹤O 时则随x 的增大而减小,则有:当x=-3时,y=-2;当x=6时,y=-5,把它们代入y=kx +b 中可得⎩⎨⎧+=-+-=-,65,32b k b b ∴⎪⎩⎪⎨⎧-=-=,3,31b k ∴函数解析式为y=-31x-3. ∴函数解析式为y=31x-4,或y=-31x-3. 答案:y=31x-4或y=-31x-3. 【注意】 本题充分体现了分类讨论思想,方程思想在一次函数中的应用,切忌考虑问题不全面.中考试题预测例1 某地举办乒乓球比赛的费用y (元)包括两部分:一部分是租用比赛场地等固定不变的费用b (元),另一部分与参加比赛的人数x (人)成正比例,当x=20时y=160O ;当x=3O 时,y=200O .(1)求y 与x 之间的函数关系式;(2)动果有50名运动员参加比赛,且全部费用由运动员分摊,那么每名运动员需要支付多少元?[分析] 设举办乒乓球比赛的费用y (元)与租用比赛场地等固定不变的费用b (元)和参加比赛的人数x (人)的函数关系式为y=kx+b (k ≠0).把x=20,y=1600;x=30,y=2000代入函数关系式,求出k ,b 的值,进而求出y 与x 之间的函数关系式,当x=50时,求出y 的值,再求得y ÷50的值即可.解:(1)设y 1=b ,y 2=kx (k ≠0,x >0),∴y=kx+b .又∵当x=20时,y=1600;当x=30时,y=2000,∴⎩⎨⎧+=+=,302000,201600b k b k ∴⎩⎨⎧==.800,40b k∴y 与x 之间的函数关系式为y=40x+800(x >0).(2)当x=50时,y=40×50+800=2800(元).∴每名运动员需支付2800÷50=56(元〕答:每名运动员需支付56元.例2 已知一次函数y=kx+b ,当x=-4时,y 的值为9;当x=2时,y 的值为-3.(1)求这个函数的解析式。

八年级数学《一次函数 ( 1 )》教案

八年级数学《一次函数 ( 1 )》教案
课后作业
课后反思
中学“自导式”教学设计方案
课时累计:1 主备: 备课组长: 审阅:( )
时间
年 月 日
第 周 星期
年级学科
八年级数学
课题
19.1.1变量与函数
教学目标
(四维)
1.知识:理解常量、变量与函数的概念
2.技能:了解函数的概念,能在具体实例(解析式、表格、图像)中辨别变量之间的关系是否是函数关系,能举出函数的实例。
常量:在一个变化过程中,数值始终不变的量为常量。
2.某地手机通话费为0.2元/min.李明在手机话费卡中存入30元,记此后他的手机通话时间为tmin,话费卡中的余额为w元。此问题中的常量和变量分别为什么?
变量为t和w ;常量为0.2和30
教师和学生一起分析以下变化过程中变量之间的关系。
教材71问题(1)
在变化过程(1)中,存在两个变量s,t,s随着t的变化而变化。
追问:s是怎样随着t的变化而变化呢?能用数值加以说明吗?教师引导学生根据给定的t的一些值,计算s的对应值。
发现:当t的值取定后,s的值有一个并且只有一个。也就是说,当t取定一个值时,s的值由程(2)中,存在两个变量x,y,y随着x的变化而变化,当x取定一个值时,y有唯一确定的值与之对应。
问题(3)
在变化过程(3)中,存在两个变量r,s,s随着r的变化而变化,当r取定一个值时,s有唯一确定的值与之对应。
问题(4)
在变化过程(4)中,存在两个变量x,y,y随着x的变化而变化,当x取定一个值时,y有唯一确定的值与之对应。
教师引导学生归纳:
变化过程中有两个变量,当一个变量取定一个值时,另一个变量有唯一确定的值与之对应。举例
2.完成练习册P 自主学习的内容。

《一次函数1》教学案

《一次函数1》教学案

《一次函数1》教学案学习目标:1、掌握一次函数的概念,根据概念判断一个式子是否是一次函数2、会区分正比例函数与一次函数的关系。

重点:一次函数的概念难点:区分正比例函数与一次函数的关系。

一、预习导学:复习:根据上节课所学内容回答下列问题:(1)、正比例函数的概念:一般地,形如 (k 是 ,k )的函数,叫做 ,其中k 叫做(2)、下列函数是正比例函数的是:①y =2πx ② y = x+2 ③ y=x 3 ④ y=3x ⑤ y=x 2+1 ⑥y=-12x+1 ⑦y=-4x ⑧y= 2 x (3)、试对正比例函数y=-0.5x 的图象、性质进行简单描述:该函数的图象是过 的一条 ,图象经过第 象限,它的图像从左到右是 趋势,即:y 随x 的增大而 。

(4)、试对正比例函数y=10x 的图象、性质进行简单描述:该函数的图象是过 的一条 ,图象经过第 象限,它的图像从左到右是 趋势,即:y 随x 的增大而 。

(5)、判断点(2,-1)是否在函数y=-0.5x 的图象上,答: ,点(-3,-1.5)呢?答: 你能自己说出几个在该函数图象上的点吗? 。

(6)若A (1,m )在函数x y 2=的图像上,则m=________。

(7)请判断点(1,k )在正比例函数y=kx 的图象上吗?答: 。

正比例函数的图象还必经过原点,因此画正比例函数图象的最简单方法是经过 和点 画一条直线即可。

二、研习探究:(一)一次函数概念探究:根据题意写出下列函数的解析式(1) 有人发现,在20~25℃时蟋蟀每分鸣叫次数c 与温度t (单位:℃)有关,即c 的值约是t 的7倍与35的差;_______________(2) 一种计算成年人标准体重G (单位:千克)的方法是,以厘米为单位量出身高值h ,再减常数105,所得的差是G 的值;_______________(3) 某城市的市内电话的月收费为y (单位:元)包括:月租22元,拨打电话x 分的计时费(按0.1元/分收取);_______________(4) 把一个长10cm 、宽5cm 的长方形的长减少xcm ,宽不变,长方形的面积y (单位:cm 2)随x 的值而变化。

第12讲. 一次函数1

第12讲. 一次函数1

某中学要印制宣传册,联系了甲、乙两家印刷厂. 甲厂的优惠条件是:按每份定价1.5元的8折收费, 另收900元的制版费; 乙厂的优惠条件是:每份定价1.5元的价格不变, 而制版费900元则按4折优惠,且甲、乙两厂都 规定:一次印刷数量不低于1000份. (1)分别求出两家印刷厂收费y(元)与印刷 数量x(份)的函数关系式,并指出自变量x的 取值范围; (2)如何根据印刷数量选择比较合算的方案? 如果该中学要印制3000份宣传册,那么应当选 择哪家印刷厂?需要多少费用?
s/c㎡
A
D
a
0
5
8
12Βιβλιοθήκη 16 18 20t/sB
P
C
(3)补全P自D A时,相应的S 关于时间t的函 数图象. (4)写出线段的相应函数关系式.
S = 6t (0≤t≤5),
S = 30
(5≤t≤8)
(8≤t≤18)
A D
S = -3t + 54
s/c㎡
a
0
5
8
12
16 18 20
t/s
B
P
C
当堂训练(10分钟)
3.如图,在平面直角坐标系中,▱OABC的顶点 A在x轴上,顶点B的坐标为(6,4).若直线l经 过点(1,0),且将▱OABC分割成面积相等的 两部分,则直线l的函数解析式是 .
1.已知y+a与x+b成正比例,当x=1时,y=7; 当x=-2时,y=4.求y与x的函数关系式. y=x+6 2.一直线与直线y=3x+4的交点在y轴上,且 与x轴的交点到y轴的距离是2,则此直线的 表达式是 y=2x+4或y=-2x+4. 3.一直线与直线y=-2x+5平行且与两坐标 轴围成的面积是4,求此直线的表达式. y=-2x-4或y=-2x+4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例函 数是特殊的一次函数.
5.函数图像性质:当k相同,且b不相等,图像平行; 当k不同,且b相等,图像相交于Y轴; 当k互为负倒数时,两直线垂直;
图像性质:
1.作法与图形:通过如下3个步骤: (1)列表:每确定自变量x的一个值,求出因变量y的一个值,并列表, (2)描点:一般取两个点,根据“两点确定一条直线”的道理; (3)连线:可以作出一次函数的图像——一条直线。因此,作一次函 数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴 的交点分别是(-b/k,0),(0,b)。
当k<0时,y随x的增大而减小。 当b>0时,该函数与y轴交于正半轴; 当b<0时,该函数与y轴交于负半轴 当x=0时,b为函数在y轴上的截距。
4.一次函数定义域x∈R,值域f(x)∈R
5.一次函数在x∈R上的单调性: 若f(x)=kx+b,k>0,则该函数在x∈R上单调递增。 若f(x)=kx+b,k<0,则该函数在x∈R上单调递减。
函数的性质:
1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b(k≠0) (k不等于0,且k,b为常数)
2. 当x=0时,b为函数在y轴上的,坐标为(0,b). 当y=0时,该函数图像在x轴上的交点坐标为(-b/k,0)
3.k为一次函数y=kx+b的斜率,k=tanΘ(角Θ为一次函数图象与x轴 正方向夹角,Θ≠90°)。
补充证明:
关于平面直角坐标系中两直线垂直时,其函 数解析式中K值互为负倒数的证明:
如图,这2个函数互相垂直,但若直接证 明,存在困难,不易理解,
如果平移平面直角坐标系,使这2个函数 的交点交于原点,就会更简单。就像这一样 ,可以设这2个函数的表达式分别为;y=ax, y=bx.
一次函数中考考点分析
当b>0时,直线必通过一、二象限; 当b<0时,直线必通过三、四象限。 特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数 的图像。 这时,当k>0时,直线只通过一、三象限,不会通过二、四象限。
当k<0时,直线只通过二、四象限,不会通过一、三象限。
4、特殊位置关系 ①、当平面直角坐标系中两直线平行时,其函数解析式中K值(即 一次项系数)相等. ②、当平面直角坐标系中两直线垂直时,其函数解析式中K值互为 负倒数(即两个K值的乘积为-1.)
数图像如图5所示.根据图像信息,下列说法正确的是( )
A.甲的速度是4 km/ h
B.乙的速度是10 km/ h
C.乙比甲晚出发1 h
D.甲比乙晚到B地3 h
2、(2011河北中考5题)一次函数y=6x+1的图象不经过( )
A 第一象限
B第二象限
C第三象限
D第四象限
3、(2010河北中考9题).一艘轮船在同一航线上往返于甲、乙两地.已知
4.k,b与函数图像所在象限: 1)、y=kx时(即b等于0,y与x成正比,) 当k>0时,直线必通过一、三象限,y随x的增大而增大; 当k<0时,直线必通过二、四象限,y随x的增大而减小。 2)、y=kx+b(k,b为常数,k≠0)时: 当 k>0,b>0, 这时此函数的图象经过一,二,三象限; 当 k>0,b<0, 这时此函数的图象经过一,三,四象限; 当 k<0,b>0, 这时此函数的图象经过一,二,四象限; 当 k<0,b<0, 这时此函数的图象经过二,三,四象限。
函数基础&初中数学必备工具
一次函数
乐学教育
定义:
正比例函数:形如y=kx的函数叫做正比例函数。 一次函数;形如y=kx+b(k,b为常数且k不等于0)的函数 叫做一次函数;[当式中b=0时,y=kx成为正比例函数]。
基本信息:
1.y的变化值与对应的x的变化值呈正比例,比值为k 即:△y/△x=k (△为任意不为零的实数),即函数图象的 斜率。 2.一次函数的表达式:y=kx+b 3.性质: 当k>0时,y随x的增大而增大;
考点一:一次函数的概念;
如果Y=kx+b(k、b是常数,k≠0),那么Y叫做x的一次函数。由定 义可知一次函数有两个基本特征:一是自变量x的次数是1;二是 自变量的系数 k≠0。
1. 当m= 时,函数y=(m+1)x m+1是一次函数
2、已知一次函数y=(m+2)x+1,函数y的值随x值的增大而增大,则 m的取值范围是
轮船在静水中的速度为 15 km/h,水流速 度为 5 km/h.轮船先从甲地从乙地逆水航 行返回到甲地.设轮船从甲
地出发后所用时间为 t(h),航行的路程为 s(km),则 s 与t 的函数图象大致
是(

4、(2008河北中考21题)如图11,直线l1的解析式为y=-3x+3, 且l1与x轴交与点D,直线l2经过A,B,直线l1,l2交与点C
一次函数是学生第一次接触具体的函数,是学生进一步学习 “数形结合”思想的很好素材。作为一种数学模型,一次函数在 日常生活中也有着极其广泛的应用。
一次函数在近几年河北中考命题为填空题、选择题和解答题, 做为河北中考的必考内容在中考分值中呈上升趋势,且为中考命 题的热点。
主要考查一次函数的性质和一次函数的应用
∴ y与x之间的函数关系式为y-3=2x,即y=2x+3.
(2)当x=4时,y=2×4+3=11.
(3)当y=4时,4=2x+3,∴x=
考点二:一次函数的图象与性质
1.(2007河北中考9题)甲、乙二人沿相同的路线由A到B匀速行进,A,B两
地间的路程为20km.他们行进的路程s(km)与甲出发后的时间t(h)之间的函
(1)求点D的坐标; (2)求直线l2的解析表达式; (3)求三角形ADC的面积; (4)在直线l2上存在异于点C的另一 点P,使得∆ADP与∆ADC的面积相等,请 求出点P的坐标。
.
.
如果函数
是正比例函数,那么(C).
A.m=2或m=0
B.m=2
C.m=0
D.m=1
已知y-3与x成正比例,且x=2时,y=7.
(1)写出y与x之间的函数关系式;
(2)当x=4时,求y的值;
(3)当y=4时,求x的值.
解析:(1)由于y-3与x成正比例,所以设y-3=kx.
把 x=2,y=7代入y-3=kx中,得:7-3=2k, ∴ k=2.
相关文档
最新文档